1
|
Tang ZQ, Xu HB, Cao C, Liu YJ, Ye YR, Shen Y. Induction of neuronal differentiation in glioma cells by histone deacetylase inhibitors based on Connectivity Map discovery. Anticancer Drugs 2025; 36:104-113. [PMID: 39589225 DOI: 10.1097/cad.0000000000001667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neuron conversion leads to proliferation inhibition of glioma cells and may be an effective strategy to combat glioma and prevent recurrence. In this study, drug repositioning based on Connectivity Map (CMap) was conducted to discover drugs that could induce the differentiation of glioma cells into neuron-like cells, complemented by in vitro experimental validation. Downregulated neuronal genes in glioma were identified by the Human Protein Atlas database and the GeneCards database, and enrichment analysis and Gene Expression Profiling Interactive Analysis (GEPIA) were performed to ensure their reliability before they were uploaded to CMap for drug screening. The potential drug targets were screened through GEPIA and validated by the Chinese Glioma Genome Atlas database. Cell morphology, proliferation, and neuronal marker expression were detected to evaluate the differentiation-inducing effect of the selected drugs. The bioinformatics analysis identified histone deacetylase (HDAC) inhibitors as potential drugs. HDAC1/3/7 showed the relationship with neuronal genes, and HDAC1 showed the highest level of inverse correlation with neuronal gene expression and had the highest hazard ratio. In vitro study showed that both the pan-HDAC inhibitor belinostat, class I and class IIa HDAC inhibitor valproic acid, and selective HDAC1 inhibitor parthenolide induce morphology alteration, proliferation inhibition, expression of neuronal markers including microtubule-associated protein 2, neuronal nuclei antigen, and synaptophysin in U87 cells. This study suggests that the HDAC inhibitors belinostat, valproic acid, and parthenolide can induce glioma cells to differentiate into neuron-like cells, with HDAC1/3/7 being the likely drug targets and HDAC1 potentially playing an important role in this.
Collapse
Affiliation(s)
- Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Hong-Bin Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Yue-Jin Liu
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Guo Y, Jin L, Shen Z, Fan L, Yu X, Kuang Y, Cai L, Zhou J, Chen Z, Yan F, Zhang J, Tong M, Yuan J, Mao Z, Chen G. Biomimetic Membrane Vesicles Reprogram Microglia Polarization and Remodel the Immunosuppressive Microenvironment of Glioblastoma via PERK/HIF-1α/Glycolysis Pathway. Adv Healthc Mater 2025:e2404782. [PMID: 39757442 DOI: 10.1002/adhm.202404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 01/07/2025]
Abstract
The malignant interaction between tumor cells and immune cells is one of the important reasons for the rapid progression and refractoriness of glioblastoma (GBM). As an essential metabolic center of M2 macrophages, the inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leads to the reduction of M2 macrophages. Nevertheless, the restriction of the blood-brain barrier (BBB) and non-specific cell targeting hinder the application of PERK inhibitors in GBM. Herein, the optimal NP-M-M2pep is developed successfully, which has shown the capacity of BBB penetration and specific targeting of M2 microglia. In addition to inhibiting the polarization of M2 microglia, the administration of iPERK@NP-M-M2pep reprogrammed M2 microglia into M1 ones in vitro via PERK/HIF-1α/glycolysis pathway. Efficient brain accumulation of nanoparticles is achieved after tail vein injection, with effective inhibition of GBM progression after one course of treatment. The glioma-associated microglia and macrophages (GAM) with M2 type are induced to M1 and the immunosuppressive TME is remodeled by upregulating immunostimulatory cells and downregulating immunosuppressive cells. In summary, the biomimetic membrane vesicles (BMVs) specifically delivered iPERK to GAMs offer an inspiring strategy to reprogram microglia polarization, re-educate immunosuppressive TME, and inhibit the progression of GBM.
Collapse
Affiliation(s)
- Yinghan Guo
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhipeng Shen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Linfeng Fan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Xian Yu
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Yirui Kuang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lingxin Cai
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jiayin Zhou
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Zihang Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Feng Yan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Minfeng Tong
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Jianlie Yuan
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gao Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
3
|
Škarková A, Pelantová M, Tolde O, Legátová A, Mateu R, Bušek P, Garcia‐Borja E, Šedo A, Etienne‐Manneville S, Rösel D, Brábek J. Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells. Brain Pathol 2025; 35:e13294. [PMID: 39097525 PMCID: PMC11669409 DOI: 10.1111/bpa.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
Collapse
Affiliation(s)
- Aneta Škarková
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Markéta Pelantová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Ondřej Tolde
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Anna Legátová
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Elena Garcia‐Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | | | - Daniel Rösel
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| | - Jan Brábek
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, BIOCEV, Faculty of ScienceCharles UniversityVestecCzech Republic
| |
Collapse
|
4
|
Ahmadi M, Ashoub MH, Heydarian K, Abolghasemi S, Dawi EA, Khajouei G, Amiri M. Magnetic and pH sensitive nanocomposite microspheres for controlled temozolomide delivery in glioblastoma cells. Sci Rep 2024; 14:29897. [PMID: 39622938 PMCID: PMC11612508 DOI: 10.1038/s41598-024-80596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Controlled drug delivery systems have been intensively researched for cancer treatment to increase precision targeting and therapeutic efficacy. In this context, novel magnetic-/pH-sensitive graphene oxide/chitosan/iron oxide magnetic nanocomposite microspheres were synthesized. Fe3O4 (IO) nanoparticles (NPs) were synthesized via the green synthesis method in the presence of Salvia officinalis extract. The graphene oxide (GO) NPs were prepared using the Staudenmaier method, and synthesized materials were characterized. Chitosan (CS) was used to prepare microspheres. GO/CS/IO microspheres were investigated as prospective vehicles for controlled temozolomide delivery in the presence and absence of an external magnetic field. The release percentage of temozolomide molecules in the presence of 100 Hz reached a maximum in 90 min. This is approximately twice the amount of drug release in the absence of a magnetic field and more than that in the presence of a 50 Hz magnetic field. Also, the highest degree of swelling was observed at a pH of 4.5, higher than at a pH of 7.4. Also, the MTT assay results indicated the cytotoxicity of the synthesized microspheres for glioblastoma cells; notably, a significant difference was observed between the groups exposed to the magnetic field and those not, with exposure to the magnetic field further reducing survival. These results indicated that the magnetic microspheres potentially apply to controlled drug delivery systems.
Collapse
Affiliation(s)
- Meysam Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kamran Heydarian
- Department of Medical and Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Sanaz Abolghasemi
- Department of Microbiology, Faculty of Science, Islamic Azad University, Kerman Branch, Kerman, Iran
| | - Elmuez A Dawi
- Nonlinear Dynamic Research Center (NDRC), College of Humanities and Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Ghazal Khajouei
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| | - Mahnaz Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
5
|
Bulbeck H, Noble K, Oliver K, Skinner TM. Challenges and opportunities in newly diagnosed glioblastoma in the United Kingdom: A Delphi panel. Neurooncol Pract 2024; 11:740-752. [PMID: 39554782 PMCID: PMC11567735 DOI: 10.1093/nop/npae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Glioblastoma is the deadliest primary malignant brain tumor in adults with limited treatment options and an average survival time of 12-18 months in the United Kingdom. In addition, glioblastoma has a highly detrimental impact on physical, cognitive, and emotional well-being, leaving substantial unmet needs for patients and caregivers. This study aimed to identify unmet needs in people with newly diagnosed glioblastoma and opportunities to mitigate them. Methods Utilizing Delphi methodology, an initial roundtable discussion with patient advocacy experts from 5 brain tumor organizations in the United Kingdom informed the development of 2 rounds of surveys across 9 domains (diagnosis, treatment, integrated care, support beyond treatment, quality of life, access to new treatments, access to trials, measures to ease the burden, and impact of COVID-19). Consensus was predefined as ≥70% agreement. Results A total of 17 Delphi panelists (glioblastoma patients, caregivers, and patient representatives) completed the first round of questionnaires and 26 completed the second. Consensus was reached on 16/21 questions (76.2%) and 7/9 domains. Panelists reached a consensus on key questions including the high frequency of diagnosis via emergency departments, the lack of effective personalized treatments and holistic care, the high caregiver burden, the lack of awareness and availability of access to clinical trials, and the negative impact of COVID-19 on glioblastoma care. Conclusions Significant unmet needs exist for newly diagnosed glioblastoma patients in the United Kingdom, highlighting the demand for increased research funding, comprehensive patient care, caregiver support, enhanced awareness and access to clinical trials, and new treatments.
Collapse
Affiliation(s)
| | | | - Kathy Oliver
- The International Brain Tumour Alliance (IBTA), Tadworth, UK
| | | |
Collapse
|
6
|
Li J, Yang J, Jiang S, Tian Y, Zhang Y, Xu L, Hu B, Shi H, Li Z, Ran G, Huang Y, Ruan S. Targeted reprogramming of tumor-associated macrophages for overcoming glioblastoma resistance to chemotherapy and immunotherapy. Biomaterials 2024; 311:122708. [PMID: 39047538 DOI: 10.1016/j.biomaterials.2024.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The resistance of glioblastoma multiforme (GBM) to standard chemotherapy is primarily attributed to the existence of tumor-associated macrophages (TAMs) in the GBM microenvironment, particularly the anti-inflammatory M2 phenotype. Targeted modulation of M2-TAMs is emerging as a promising strategy to enhance chemotherapeutic efficacy. However, combination TAM-targeted therapy with chemotherapy faces substantial challenges, notably in terms of delivery efficiency and targeting specificity. In this study, we designed a pH-responsive hierarchical brain-targeting micelleplex loaded with temozolomide (TMZ) and resiquimod (R848) for combination chemo-immunotherapy against GBM. This delivery system, termed PCPA&PPM@TR, features a primary Angiopep-2 decoration on the outer layer via a pH-cleavable linker and a secondary mannose analogue (MAN) on the middle layer. This pH-responsive hierarchical targeting strategy enables effective BBB permeability while simultaneous GBM- and TAMs-targeting delivery. GBM-targeted delivery of TMZ induces alkylation and triggers an anti-GBM immune response. Concurrently, TAM-targeted delivery of R848 reprograms their phenotype from M2 to pro-inflammatory M1, thereby diminishing GBM resistance to TMZ and amplifying the immune response. In vivo studies demonstrated that targeted modulation of TAMs using PCPA&PPM@TR significantly enhanced anti-GBM efficacy. In summary, this study proposes a promising brain-targeting delivery system for the targeted modulation of TAMs to combat GBM.
Collapse
Affiliation(s)
- Jianan Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunxin Tian
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Xu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Huiping Shi
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaohan Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Guangyao Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shaobo Ruan
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
7
|
Lei J, Yang J, Cheng S, Lu F, Wu Z, Wang Z, Wang Z, Sun C, Lin L. Peimine induces apoptosis of glioblastoma cells through regulation of the PI3K/AKT signaling pathway. Exp Ther Med 2024; 28:447. [PMID: 39430343 PMCID: PMC11487465 DOI: 10.3892/etm.2024.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant forms of intracranial tumors, with high mortality rates and invariably poor prognosis, due to the limited clinical treatment strategies available. As a natural compound, peimine's favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of peimine on GBM have not been explored. In the present study, both in vitro and in vivo experiments were performed to elucidate the effects of peimine on GBM and to further delineate the underlying molecular mechanism of action. Different doses (0, 25 and 50 µM) of peimine were added to U87 cells, before MTT, colony formation, wound healing, Transwell migration and invasion, reactive oxygen species and mitochondrial transmembrane potential assays were used to measure proliferation, migration, invasion and apoptosis. Furthermore, western blotting was used to examine the possible effects of peimine on the expression of proteins associated with apoptosis and the PI3K/AKT signaling pathway. Subsequently, a GBM mouse xenograft model was used to assess the effects of peimine in vivo. The findings showed that peimine inhibited GBM proliferation, migration and invasion in a dose-dependent manner, whilst also inducing apoptosis. Peimine also reduced tumor growth in vivo. Mechanistically, peimine downregulated the expression of Bcl-2 and Caspase 3, whilst upregulating the protein expression levels of p53, Bax and Cleaved-Caspase 3 in a dose-dependent manner. In addition, PI3K and AKT phosphorylation levels were found to be decreased by peimine in a dose-dependent manner. In conclusion, these findings suggest that peimine may limit GBM growth by regulating the PI3K/AKT signaling pathway both in vitro and in vivo. These findings may have promising clinical implications.
Collapse
Affiliation(s)
- Jiaming Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jianbao Yang
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shijiao Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Feifei Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zihan Wu
- Department of Ultrasound, Xianning Traditional Chinese Medicine Hospital, Xianning, Hubei 437100, P.R. China
| | - Ziyi Wang
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ziqi Wang
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Chenyu Sun
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
8
|
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y, Guo D. Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug Deliv 2024; 31:2400476. [PMID: 39252545 PMCID: PMC11389645 DOI: 10.1080/10717544.2024.2400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Collapse
Affiliation(s)
- Zhanpeng Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
9
|
Tang Z, Cao C, Tang W, Ye Y, Chen Z, Shen Y. Neuronal Differentiation of Human Glioma Cells Induced by Parthenolide Under In Vitro Conditions. Biomedicines 2024; 12:2543. [PMID: 39595109 PMCID: PMC11591755 DOI: 10.3390/biomedicines12112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: Previous drug repositioning studies have suggested that parthenolide may be a differentiation-inducing agent for glioma cells. This study aimed to experimentally verify the neuronal differentiation-inducing effects and proliferative impact of parthenolide on human glioma cells and explore its potential mechanisms. Methods: HE staining was used to observe the morphological changes in human glioma cell lines U87 and A172 induced by parthenolide. Immunocytochemistry was conducted to detect the expression of differentiation markers. The Ki-67 detection and CCK-8 assay were used to assess the effects of parthenolide on cell proliferation. The sphere formation assay was conducted to evaluate the self-renewal. Glioma stem cells (GSCs) derived from U87 cells were utilized to assess the ability of parthenolide to induce differentiation in GSCs. Western blot was used to detect the expression of histone deacetylase 1 (HDAC1). Bioinformatics analysis based on the CGGA database was conducted to evaluate the role of HDAC1 in glioma. Results: Parthenolide (4 μM) altered the morphology of U87 and A172 cells, as elongated cell projections were observed. Parthenolide induced glioma cells to express neuronal markers NeuN, MAP2, SYP, and NEFL, but not astrocyte or oligodendrocyte markers. Parthenolide significantly inhibited proliferation and self-renewal in glioma cells. Similar effects were observed in U87 GSCs. Furthermore, parthenolide downregulated HDAC1 expression in glioma cells, and the bioinformatics analysis revealed a potential relationship between neuronal characteristics and low expression of HDAC1 in glioma. Conclusion: Parthenolide induced neuronal differentiation and inhibited the cell proliferation in human glioma cells, which might be associated with the inhibition of HDAC1.
Collapse
Affiliation(s)
- Zhaoqi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yanrong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhenhui Chen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Chang X, Liu J, Li Y, Li W. Pluronic F127-Complexed PEGylated Poly(glutamic acid)-Cisplatin Nanomedicine for Enhanced Glioblastoma Therapy. Macromol Rapid Commun 2024; 45:e2400662. [PMID: 39264576 DOI: 10.1002/marc.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Glioblastoma is one of the most aggressive and treatment-resistant forms of primary brain cancer, posing significant challenges in effective therapy. This study aimed to enhance the effectiveness of glioblastoma therapy by developing a unique nanomedicine composed of Pluronic F127-complexed PEGylated poly(glutamic acid)-cisplatin (PLG-PEG/PF127-CDDP). PLG-PEG/PF127-CDDP demonstrated an optimal size of 133.97 ± 12.60 nm, facilitating efficient cell uptake by GL261 glioma cells. In vitro studies showed significant cytotoxicity against glioma cells with a half-maximal (50%) inhibitory concentration (IC50) of 12.61 µg mL-1 at 48 h and a 72.53% ± 1.89% reduction in cell invasion. Furthermore, PLG-PEG/PF127-CDDP prolonged the circulation half-life of cisplatin to 9.75 h in vivo, leading to a more than 50% reduction in tumor size on day 16 post-treatment initiation in a murine model of glioma. The treatment significantly elevated lactate levels in GL261 cells, indicating enhanced metabolic disruption. Therefore, PLG-PEG/PF127-CDDP offers a promising approach for glioblastoma therapy due to its effects on improving drug delivery efficiency, therapeutic outcomes, and safety while minimizing systemic side effects. This work underscores the potential of polymer-based nanomedicines in overcoming the challenges of treating brain tumors, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Chang
- Department of Neurosurgery, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jiaxue Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin, 132000, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yunqian Li
- Department of Neurosurgery, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin, 132000, P. R. China
| |
Collapse
|
11
|
Hou L, Chen Z, Chen F, Sheng L, Ye W, Dai Y, Guo X, Dong C, Li G, Liao K, Li Y, Ma J, Wei H, Ran W, Shang J, Ling X, Patel JS, Liang SH, Xu H, Wang L. Synthesis, preclinical assessment, and first-in-human study of [ 18F]d 4-FET for brain tumor imaging. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06964-8. [PMID: 39482500 DOI: 10.1007/s00259-024-06964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Tumor-to-background ratio (TBR) is a critical metric in oncologic PET imaging. This study aims to enhance the TBR of [18F]FET in brain tumor imaging by substituting deuterium ("D") for hydrogen ("H"), thereby improving the diagnostic sensitivity and accuracy. METHODS [18F]d4-FET was synthesised by two automated radiochemistry modules. Biodistribution studies and imaging efficacy were evaluated in vivo and ex vivo in rodent models, while metabolic stability and radiation dosimetry were assessed in non-human primates. Additionally, preliminary imaging evaluations were carried out in five brain tumor patients: three glioma patients underwent imaging with both [18F]d4-FET and [18F]FET, and two patients with brain metastases were imaged using [18F]d4-FET and [18F]FDG. RESULTS [18F]d4-FET demonstrated high radiochemical purity and yield. PET/MRI in rodent models demonstrated superior TBR for [18F]d4-FET compared to [18F]FET, and autoradiography showed tumor margins that correlated well with pathological extents. Studies in cynomolgus monkeys indicated comparable in vivo stability and effective dose with [18F]FET. In glioma patients, [18F]d4-FET showed enhanced TBR, while in patients with brain metastases, [18F]d4-FET displayed superior lesion delineation compared to [18F]FDG, especially in smaller metastatic sites. CONCLUSION We successfully synthesized the novel PET radiotracer [18F]d4-FET, which retains the advantageous properties of [18F]FET while potentially enhancing TBR for glioma imaging. Preliminary studies indicate excellent stability, efficacy, and sensitivity of [18F]d4-FET, suggesting its potential in clinical evaluations of brain tumors. TRIAL REGISTRATION ChiCTR2400081576, registration date: 2024-03-05, https://www.chictr.org.cn/bin/project/edit?pid=206162.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhiyong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, China
| | - Lianghe Sheng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yingchu Dai
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiaoyu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Dutt R, Thorpe C, Galileo DS. QSOX1 Modulates Glioblastoma Cell Proliferation and Migration In Vitro and Invasion In Vivo. Cancers (Basel) 2024; 16:3620. [PMID: 39518060 PMCID: PMC11545231 DOI: 10.3390/cancers16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number of cancers, and the overexpression of QSOX1 has been correlated with aggressive cancers and poor patient prognosis. Glioblastoma (GBM) brain cancer has been practically impossible to treat effectively, with cells that rapidly invade normal brain tissue and escape surgery and other treatment. Thus, there is a crucial need to understand the multiple mechanisms that facilitate GBM cell invasion and to determine if QSOX1 is involved. Methods and Results: Here, we investigated the function of QSOX1 in human glioblastoma cells using two cell lines derived from T98G cells, whose proliferation, motility, and invasiveness has been shown by us to be dependent on disulfide bond-containing adhesion and receptor proteins, such as L1CAM and the FGFR. We lentivirally introduced shRNA to attenuate the QSOX1 protein expression in one cell line, and a Western blot analysis confirmed the decreased QSOX1 expression. A DNA content/cell cycle analysis using flow cytometry revealed 27% fewer knockdown cells in the S-phase of the cell cycle, indicating a reduced proliferation. A cell motility analysis utilizing our highly quantitative SuperScratch time-lapse microscopy assay revealed that knockdown cells migrated more slowly, with a 45% decrease in migration velocity. Motility was partly rescued by the co-culture of knockdown cells with control cells, indicating a paracrine effect. Surprisingly, knockdown cells exhibited increased motility when assayed using a Transwell migration assay. Our novel chick embryo orthotopic xenograft model was used to assess the in vivo invasiveness of knockdown vs. control cells, and tumors developed from both cell types. However, fewer invasive knockdown cells were observed after about a week. Conclusions: Our results indicate that an experimental reduction in QSOX1 expression in GBM cells leads to decreased cell proliferation, altered in vitro migration, and decreased in vivo invasion.
Collapse
Affiliation(s)
- Reetika Dutt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Deni S. Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
13
|
Tuoheti M, Li J, Zhang C, Gao F, Wang J, Wu Y. MiR-124-3p inhibits cell stemness in glioblastoma via targeting EPHA2 through ALKBH5-mediated m6A modification. Hum Cell 2024; 38:10. [PMID: 39460871 DOI: 10.1007/s13577-024-01129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma, characterized by high mortality and poor prognosis. Dysregulation of microRNAs (miRNAs) plays a critical role in the progression and metastasis of GBM. This study aimed to investigate the role and molecular mechanism of miR-124-3p in GBM. Levels of miR-124-3p, EPHA2, and ALKBH5 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, invasion, and stemness were assessed using the Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays, respectively. Bioinformatics prediction, dual-luciferase reporter assays, and RNA pull-down experiments were employed to validate the target of miR-124-3p. RNA binding protein immunoprecipitation (RIP) and methylated RNA immunoprecipitation (Me-RIP) were utilized to evaluate the regulation of miR-124-3p maturation by ALKBH5. The results indicated that overexpression of miR-124-3p inhibited the proliferation, migration, invasion, and stemness of GBM cells. EPHA2 was identified as a direct downstream target of miR-124-3p, and its overexpression reversed the inhibitory effects of miR-124-3p on cellular functions. Furthermore, miR-124-3p targeted EPHA2 to inactivate the Wnt/β-catenin pathway. Additionally, ALKBH5 negatively regulated miR-124-3p by impeding its processing. In conclusion, knockdown of ALKBH5 promoted the processing of pri-miR-124-3p, increasing mature miR-124-3p levels, which inhibited the malignant behaviors of GBM cells by targeting EPHA2. These findings highlight the importance of the ALKBH5/miR-124-3p/EPHA2 axis in GBM.
Collapse
Affiliation(s)
- Maimaitiyiming Tuoheti
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jinxian Li
- Department of Rehabilitative Medicine, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Cheng Zhang
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Feng Gao
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jichao Wang
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Yonggang Wu
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
14
|
Du R, Zhang J, Lukas RV, Tripathi S, Ahrendsen JT, Curran MA, Dmello C, Zhang P, Stupp R, Rao G, Heimberger AB. Is modulation of immune checkpoints on glioblastoma-infiltrating myeloid cells a viable therapeutic strategy? Neuro Oncol 2024:noae193. [PMID: 39427326 DOI: 10.1093/neuonc/noae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
The field of immunology has traditionally focused on immune checkpoint modulation of adaptive immune cells. However, many malignancies such as glioblastoma are mostly devoid of T cells and rather are enriched with immunosuppressive myeloid cells of the innate immune system. While some immune checkpoint targets are shared between adaptive and innate immunity, myeloid-specific checkpoints could also serve as potential therapeutics. To better understand the impact of immune checkpoint blockade on myeloid cells, we systematically summarize the current literature focusing on the direct immunological effects of PD-L1/PD-1, CD24/Siglec-10, collagen/LAIR-1, CX3CL1/CX3CR1, and CXCL10/CXCR3. By synthesizing the molecular mechanisms and the translational implications, we aim to prioritize agents in this category of therapeutics for glioblastoma.
Collapse
Affiliation(s)
- Ruochen Du
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianzhong Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shashwat Tripathi
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA (J.T.A.)
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael A Curran
- Department of Immunology, MD Anderson Cancer Center, the University of Texas, Houston, Texas, USA
| | - Crismita Dmello
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peng Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amy B Heimberger
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
15
|
Shen H, Mei Q, Chai X, Jiang Y, Liu A, Liu J. The prognostic significance of synchronous metastasis in glioblastoma multiforme patients: a propensity score-matched analysis using SEER data. Front Neurol 2024; 15:1429826. [PMID: 39440248 PMCID: PMC11493671 DOI: 10.3389/fneur.2024.1429826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) with synchronous metastasis(SM) is a rare occurrence. We extracted the data of GBM patients from the SEER database to look into the incidence of SM in GBM, determine the prognostic significance of SM in GBM, and assess therapeutic options for patients presenting with SM. Methods From 2004 to 2015, information on GBM patients was obtained from the Surveillance, Epidemiology, and End Results (SEER) database. The propensity score matching (PSM) method was employed to mitigate confounding factors between SM and non-SM groups, subsequently investigating the prognostic significance of SM in patients with GBM. Multivariate Cox proportional hazards regression analyses were employed to identify independent prognostic variables for GBM patients with SM. A forest plot was used to visualize the results. Results A cohort of 19,708 patients was obtained from the database, among which 272 (1.4%) had SM at the time of diagnosis. Following PSM at a 3:1 ratio, in both univariate and multivariate cox regression analysis, SM (HR = 1.27, 95% CI: 1.09-1.46) was found to be an independent predictive predictor for GBM patients. Furthermore, the Cox proportional hazard forest plot demonstrated that independent risk variables for GBM patients with SM included age (Old vs. Young, HR = 1.44, 95% CI: 1.11-1.88), surgery (biopsy vs. no surgery, HR = 0.67, 95% CI: 0.46-0.96;Subtotal resection vs. no surgery, HR = 0.47, 95% CI: 0.32-0.68;Gross total resection vs. no surgery, HR = 0.44, 95% CI: 0.31-0.62), radiotherapy (HR = 0.58, 95% CI: 0.41-0.83), and chemotherapy (HR = 0.51, 95% CI: 0.36-0.72). Conclusion The predictive value of SM in GBM was determined by this propensity-matched analysis using data from the SEER database. Radiotherapy, chemotherapy, and surgery constitute an effective treatment regimen for patients with SM. A more positive approach toward the use of aggressive treatment for GBM patients with SM may be warranted.
Collapse
Affiliation(s)
- Hui Shen
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qing Mei
- Department of Neurology, Beijing Pinggu Hospital, Beijing, China
| | - Xubin Chai
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanfeng Jiang
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Aihua Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiachun Liu
- Department of Interventional Neuroradiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| |
Collapse
|
16
|
Zhang J, Zheng H, Liang P. SENP7 inhibits glioblastoma metastasis and invasion by dissociating SUMO2/3 binding to specific target proteins. Open Med (Wars) 2024; 19:20241052. [PMID: 39381427 PMCID: PMC11459272 DOI: 10.1515/med-2024-1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background The poor surgical efficacy and recurrence of glioblastoma (GBM) are due to its lack of visible infiltrative features. Our bioinformatics study suggests that low expression of small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) indicates poor prognosis in GBM. Objectives This study investigated the effect of SENP7 expression on the invasion, migration, and proliferation of GBM cells and aims to identify the SUMO target proteins affected by SENP7. Methods SENP7 expression was analyzed in eight GBM tumor samples and four GBM cell lines, comparing them to normal brain tissue. The effect of SENP7 overexpression on GBM LN229 cell migration, invasion, and proliferation was examined through in vitro assays. Furthermore, four SUMO target proteins involved in tumor invasion and proliferation (CDK6, matrix metalloproteinase-9 [MMP9], AKT, and HIF-1α) were studied to explore SENP7's molecular mechanism. Results SENP7 expression was significantly lower in GBM tumors compared to normal tissue. SENP7 overexpression in LN229 cells inhibited migration and invasion without affecting proliferation. Overexpression reduced the levels of MMP9, AKT, and HIF-1α, but not CDK6. Immunohistochemical analysis showed decreased MMP9 and CD31 levels, suggesting reduced tumor invasion and angiogenesis. However, SENP7 overexpression did not affect tumor growth in vivo. Conclusions SENP7 inhibits GBM invasion by dissociating proteins associated with tumor invasion from SUMO2/3, providing a potential target for future GBM therapies.
Collapse
Affiliation(s)
- Jixing Zhang
- Harbin Medical University Cancer Hospital, Harbin, China
| | | | - Peng Liang
- Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
17
|
Zhao C, Wu Z, Yao Z, Zhang F, Zhao R, Cao X, Ling S, Jiang X. The tumorigenic effect of the high expression of ABRACL in glioma and its potential as a therapeutic target. Heliyon 2024; 10:e36597. [PMID: 39286126 PMCID: PMC11402703 DOI: 10.1016/j.heliyon.2024.e36597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Gliomas are the most common malignant intracranial tumors, with no effective treatments. Better understanding and identification of novel targets are urgently warranted. Actin-binding Rho activating C-terminal like (ABRACL) has been reported as an oncogene in several cancer types. However, the potential roles of ABRACL in the tumorigenesis of malignant glioma remain unknown. We discovered that ABRACL is highly expressed in different sub-types of gliomas in both CGGA and TCGA databases, which was further validated in glioblastoma cell lines and normal human astrocyte lines. RT-qPCR, Western blotting and immunohistochemistry demonstrated that ABRACL expression in glioma tissues was upregulated along with the increasing WHO grades. Further survival analysis of glioma patients also revealed that the overall survival of patients in the ABRACL high expression level group were significantly shorter than those in the low expression level group. Knockdown of ABRACL inhibited the proliferation, cell migration, invasion and cytodynamics behaviors in glioma cell lines via activating STAT3 signaling, which also induced apoptosis and cell cycle arrest. Conversely, overexpressing ABRACL promoted cell renewing and migration, enabled more flexible cell deformation, supporting ABRACL being a bona fide oncogene. Intracranial orthotopic xenograft experiment further confirmed that ABRACL downregulation significantly suppressed glioma growth. These results have demonstrated that the tumorigenic effect of ABRACL is partly mediated by STAT3, whose expression also correlates with clinical prognosis. ABRACL facilitates glioma malignancy phenotype through regulating the cytoskeleton by activating STAT3 pathway, suggesting that it may represent a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Chenhui Zhao
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Zeyu Wu
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Zhipeng Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Rui Zhao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaoxiang Cao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Shizhang Ling
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| |
Collapse
|
18
|
Gravesen CD, Chanchiri I, Kristensen IB, Jensen MB, Harbo FSG, Dahlrot RH. Ibrutinib as treatment for Bing-Neel syndrome reclassified as glioblastoma: a case report. J Med Case Rep 2024; 18:424. [PMID: 39256774 PMCID: PMC11389307 DOI: 10.1186/s13256-024-04757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Glioblastoma is a highly malignant disease with limited treatment options. Ibrutinib, a covalent Bruton tyrosine kinase inhibitor, is an oral agent with manageable side effects used for hematological diseases including Waldenström macroglobulinemia. We present the case of a 69-year-old Caucasian male patient treated with ibrutinib for suspected Bing-Neel syndrome (BNS), which following a biopsy, was reclassified as glioblastoma. CASE PRESENTATION In December 2018, a 69-year-old Caucasian male patient was diagnosed with Waldenström macroglobulinemia. As the patient was asymptomatic, without bone marrow failure or high M-component count, watchful waiting was initiated. Due to increasing neurological symptoms, the patient, based on magnetic resonance imaging, was diagnosed with Bing-Neel syndrome in May 2019. The patient received different treatments before starting ibrutinib monotherapy in August 2019 due to disease progression, both on magnetic resonance imaging and clinically. The patient remained clinically stable for 7 months. In March 2020, the patient developed headaches, and both magnetic resonance imaging and a biopsy revealed glioblastoma IDH-wildtype. Treatment was changed in line with the new diagnosis, but the patient died at the end of 2020. CONCLUSION We present a case in which a patient with glioblastoma IDH-wildtype remained clinically stable for 7 months when treated with ibrutinib monotherapy, which is similar to what would be expected for the standard treatment for glioblastoma. To our knowledge, this is the first patient receiving ibrutinib for a glioblastoma IDH-wildtype with a meaningful clinical outcome. Our case may therefore support previous nonclinical findings, indicating a therapeutic value of ibrutinib in patients with glioblastoma and support for further investigation of ibrutinib as a possible treatment for glioblastoma.
Collapse
Affiliation(s)
| | - Imanl Chanchiri
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | | | | | | | - Rikke Hedegaard Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Afsordeh N, Pournajaf S, Bayat H, Mohajerani F, Shojaei A, Mirnajafi-Zadeh J, Pourgholami MH. Eslicarbazepine induces apoptosis and cell cycle arrest in C6 glioma cells in vitro and suppresses tumor growth in an intracranial rat model. BMC Cancer 2024; 24:1099. [PMID: 39232721 PMCID: PMC11373099 DOI: 10.1186/s12885-024-12840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant brain tumor, with a poor prognosis and life expectancy of 14-16 months after diagnosis. The standard treatment for GBM consists of surgery, radiotherapy, and chemotherapy with temozolomide. Most patients become resistant to treatment after some time, and the tumor recurs. Therefore, there is a need for new drugs to manage GBM. Eslicarbazepine (ESL) is a well-known antiepileptic drug belonging to the dibenzazepine group with anticancer potentials. In this study, for the first time, we evaluated the potential effects of ESL on C6 cell growth, both in vitro and in vivo, and examined its molecular effects. METHODS To determine the effect of ESL on the c6 cell line, cell viability, proliferation, and migration were evaluated by MTT assay, colony formation, and wound healing assay. Also, apoptosis and cell cycle were examined by flow cytometry, qRT-PCR, and western blotting. In addition, an intracranial model in Wistar rats was used to investigate the effect of ESL in vivo, and the tumor size was measured using both Caliper and MRI. RESULTS The obtained results are extremely consistent and highly encouraging. C6 cell viability, proliferation, and migration were significantly suppressed in ESL-treated C6 cells (p < 0.001), as determined by cell-based assays. ESL treatment led to significant enhancement of apoptosis (p < 0.01), as determined by flow cytometry, and upregulation of genes involved in cell apoptosis, such as the Bax/Bcl2 ratio at RNA (p < 0.05) and protein levels (5.37-fold). Flow cytometric analysis of ESL-treated cells revealed G2/M phase cell cycle arrest. ESL-treated cells demonstrated 2.49-fold upregulation of p21 alongside, 0.22-fold downregulation of cyclin B1, and 0.34-fold downregulation of cyclin-dependent kinase-1 at the protein level. Administration of ESL (30 mg/kg) to male rats bearing C6 intracranial tumors also suppressed the tumor volume and weight (p < 0.01). CONCLUSIONS Based on these novel findings, ESL has the potential for further experimental and clinical studies in glioblastoma.
Collapse
Affiliation(s)
- Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hadi Bayat
- Biochemical Neuroendocrinology, Division of Experimental Medicine, Faculty of Medicine and Health Sciences, Institut de Recherches Cliniques de Montréal (IRCM), McGill University, Montréal, H2W 1R7, Canada
| | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | | |
Collapse
|
20
|
Wang P, Zhang X, Xiao B, Ouyang J, Zhang J, Peng X. Role of FGF21 in mediating the effect of phosphatidylcholine on GBM. Front Oncol 2024; 14:1428025. [PMID: 39286013 PMCID: PMC11402610 DOI: 10.3389/fonc.2024.1428025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Objective The causal relationship and mechanisms between lipids and glioblastoma (GBM) remain unclear. This study aims to investigate the independent causal relationship between liposomal phosphatidylcholine 16:0_22:6 (PC16) and GBM, and to identify the potential mediating role of the inflammatory factor-fibroblast growth factor 21(FGF21). Methods Utilizing summary statistics from genome-wide association studies (GWAS) of lipids (179 types in 7174 Finnish individuals), GBM (243 cases and 287137 controls), and inflammatory factors (91 types in 14824 European individuals), a two-sample Mendelian Randomization (MR) approach was employed to establish the causal link between liposomal PC16 and GBM. Additionally, a two-step MR method was used to quantify the proportion of the causal effect of PC16 on GBM that is mediated by the inflammatory factor FGF21. Results MR analyses revealed a strong causal relationship between PC16 and GBM (OR=1.72, 95% CI: 1.11-2.68, P=0.016), but no reverse causality was observed from GBM to PC16 (OR=1.01, 95% CI: 0.99-1.02, P=0.38). Mediation analysis showed a strong causal relationship between PC16 and the FGF21 (OR = 0.94, 95% CI: 0.89-0.99, P=0.018) as well as between FGF21 and GBM (OR = 0.42, 95% CI: 0.25-0.71, P=0.001), with the mediation effect accounting for 9.78% of the total effect. This suggests that the causal relationship between PC16 and GBM is likely mediated by the intermediary factor FGF21. No evidence of pleiotropy was found in the sensitivity analysis of these positive results. Conclusion In summary, the findings of this study suggest that liposomal PC16 may increase the risk of GBM occurrence, and FGF21 may play a significant mediating role in this causal relationship.
Collapse
Affiliation(s)
- Peng Wang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Boan Xiao
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jiecai Ouyang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobin Peng
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Koochakkhani S, Branco DSN, Alonso AV, Murugesan A, Sarkar P, Caires CJN, Devanesan S, AlSalhi MS, Candeias NR, Kandhavelu M. Novel tetrahydroquinoline derivatives induce ROS-mediated apoptosis in glioblastoma cells. Eur J Pharm Sci 2024; 200:106842. [PMID: 38936514 DOI: 10.1016/j.ejps.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Current treatment for Glioblastoma Multiforme (GBM) is not efficient due to its aggressive nature, tendency to infiltrate surrounding brain tissue, and chemotherapy resistance. Tetrahydroquinoline scaffolds are emerging as a new class of drug for treating many human cancers including GBM. This study investigates the cytotoxicity effect of eight novel derivatives of 2-((3,4-dihydroquinolin-1(2H)-yl)(aryl)methyl)phenol, containing substitute 1 with reduced dihydroquinoline fused with cyclohexene ring and substitute 2 with phenyl and methyl group. The 4-position of the aryl ring was determinant for the desired cytotoxicity, and out of the 8 synthesized compounds, the 4-trifluoromethyl substituted derivative (4ag) exhibited the most anti-GBM potential effect compared to the standard chemotherapeutic agent, temozolomide (TMZ), with IC50 values of 38.3 μM and 40.6 μM in SNB19 and LN229 cell lines, respectively. Our results demonstrated that 4ag triggers apoptosis through the activation of Caspase-3/7. In addition, 4ag induced intracellular reactive oxygen species (iROS) which in turn elevated mitochondrial ROS (mtROS) and causes the disruption of the mitochondrial membrane potential (Δψmt) in both GBM cells. This compound also exhibited anti-migratory properties over the time in both the cell lines. Overall, these findings suggest that tetrahydroquinoline derivative, 4ag could lead to the development of a new drug for treating GBM.
Collapse
Affiliation(s)
- Shabnaz Koochakkhani
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; BioMeditech and Tays Cancer Center, Tampere University, Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Daniela S N Branco
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Anxo Vila Alonso
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; BioMeditech and Tays Cancer Center, Tampere University, Hospital, P.O. Box 553, 33101 Tampere, Finland; Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, India
| | - Puja Sarkar
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Carina J N Caires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nuno R Candeias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; BioMeditech and Tays Cancer Center, Tampere University, Hospital, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
22
|
Kwok DW, Okada H, Costello JF. Activating the dark genome to illuminate cancer vaccine targets. Nat Genet 2024; 56:1770-1771. [PMID: 39223317 PMCID: PMC11456370 DOI: 10.1038/s41588-024-01850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Mun SH, Jang HS, Choi BO, Kim SW, Song JH. Recurrence pattern of glioblastoma treated with intensity-modulated radiation therapy versus three-dimensional conformal radiation therapy. Radiat Oncol J 2024; 42:218-227. [PMID: 39354825 PMCID: PMC11467484 DOI: 10.3857/roj.2024.00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE To evaluate recurrence patterns of and survival outcomes in glioblastoma treated with intensity-modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3D-CRT). MATERIALS AND METHODS We retrospectively examined 91 patients with glioblastoma treated with either IMRT (n = 60) or 3D-CRT (n = 31) between January 2013 and December 2019. Magnetic resonance imaging showing tumor recurrence and planning computed tomography scans were fused for analyzing recurrence patterns categorized as in-field, marginal, and out-of-field based on their relation to the initial radiation field. RESULTS The median overall survival (OS) was 18.9 months, with no significant difference between the groups. The median progression-free survival (PFS) was 9.4 months, with no significant difference between the groups. Patients who underwent gross total resection (GTR) had higher OS and PFS than those who underwent less extensive surgery. Among 78 relapse cases, 67 were of in-field; 5, marginal; and 19, out-of-field recurrence. Among 3D-CRT-treated cases, 24 were of in-field; 1, marginal; and 9, out-of-field recurrence. Among IMRT-treated cases, 43 were of in-field; 4, marginal; and 10, out-of-field recurrence. In partial tumor removal or biopsy cases, out-of-field recurrence was less frequent in the IMRT (16.2%) than in the 3D-CRT (36.3%) group, with marginal significance (p = 0.079). CONCLUSION IMRT and 3D-CRT effectively managed glioblastoma with no significant differences in OS and PFS. The survival benefit with GTR underscored the importance of maximal surgical resection. The reduced rate of out-of-field recurrence in IMRT-treated patients with partial resection highlights its potential utility in cases with unfeasible complete tumor removal.
Collapse
Affiliation(s)
- So Hwa Mun
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Seok Jang
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ok Choi
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shin Woo Kim
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Lan Y, Li X, Liu B, Lu J, Zuo B, Wang Y, Cao S, Fu X, Yue Q, Luo X, Zhong X, Dong Y, Wang Z, Yang T, Xie X, Zeng T, Zhang M, Wang Y, Shen Y, Zuo H, Zhao Y, Zhang C, Guo H. Framework nucleic acid-based nanoparticles enhance temozolomide sensitivity in glioblastoma. Drug Resist Updat 2024; 76:101122. [PMID: 39079407 DOI: 10.1016/j.drup.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) is a crucial determinant of temozolomide (TMZ) sensitivity in patients with glioblastoma (GBM). The therapeutic potential of small interfering RNA (siRNA) targeting MGMT to enhance TMZ sensitivity has been hampered by serum nuclease degradation, off-target effects, poor accumulation at tumor sites, and low circulation in blood stream. In this study, we developed a framework nucleic acid-based nanoparticles (FNN), which is constructed from a six-helix DNA bundle, to encapsulate and protect siMGMT for improving TMZ sensitivity in GBM treatment. For better blood-brain barrier (BBB) penetration and GBM targeting, we conjugated Angiopep-2 (ANG) targeting modules to each end of the FNN. Nucleolin (NCL)-responsive locks were engineered along the sides of the six-helix DNA bundle, which safeguard siMGMT before tumor entry. Upon interaction with tumor-overexpressed NCL, these locks unlock, exposing siMGMT, this allows for effective suppression of MGMT, resulting in a significant improvement of TMZ therapeutic efficacy in GBM. This innovative strategy has the potential to transform the current treatment landscape for GBM.
Collapse
Affiliation(s)
- Yufei Lan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaodie Li
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Liu
- Department of Neurosurgery, Department of Neuro-oncological Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiankun Lu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boming Zuo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | | | - Xin Fu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qu Yue
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Luo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yaoyuan Dong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhao Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Yang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xinyun Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tianci Zeng
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Manqing Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuankai Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yixiong Shen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Chao Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
25
|
Park J, Kim YJ, Lee M, Kim D, Sim J, Cho K, Moon JH, Sung KS, Lee DH, Lim J. Correlation of LLT-1 and NLRC4 inflammasome and its effect on glioblastoma prognosis. J Neurooncol 2024; 169:543-553. [PMID: 38907949 DOI: 10.1007/s11060-024-04750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE LLT-1 is a well-known ligand for the natural killer (NK) cell inhibitory receptor NKRP1A. Here, we examined NLRC4 inflammasome components and LLT-1 expression in glioblastoma (GBM) tissues to elucidate potential associations and interactions between these factors. METHODS GBM tissues were collected for RNA sequencing (RNA-seq) and Immunofluorescent experiments. Colocalization of LLT-1 and other proteins was assessed by immunofluorescence. Computational analyses utilized RNA-seq data from 296 to 52 patients from the Chinese Glioma Genome Atlas and CHA medical records, respectively. These data were subjected to survival, non-negative matrix factorization clustering, Gene Ontology enrichment, and protein-protein interaction analyses. Receptor-ligand interactions between tumor and immune cells were confirmed by single-cell RNA-seq analysis. RESULTS In GBM tissues, LLT-1 was predominantly colocalized with glial fibrillary acidic protein (GFAP)-expressing astrocytes, but not with microglial markers like Iba-1. Additionally, LLT-1 and activated NLRC4 inflammasomes were mainly co-expressed in intratumoral astrocytes, suggesting an association between LLT-1, NLRC4, and glioma malignancy. High LLT-1 expression correlates with poor prognosis, particularly in the mesenchymal subtype, and is associated with TNF and NOD-like receptor signaling pathway enrichment, indicating a potential role in tumor inflammation and progression. At the single-cell level, mesenchymal-like malignant cells showed high NF, NLR, and IL-1 signaling pathway enrichment compared to other malignant cell types. CONCLUSION We revealed an association between NLRC4 inflammasome activity and LLT-1 expression, suggesting a novel regulatory pathway involving TNF, inflammasomes, and IL-1, potentially offering new NK-cell-mediated anti-glioma approaches.
Collapse
Affiliation(s)
- JeongMan Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- Department of Medicine, College of Medicine, Hallym University, Chuncheon, Korea
- CHA Institute for Future Medicine, Medical Center Research Institute, Seongnam, Korea
| | - Yu Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- CHA Institute for Future Medicine, Medical Center Research Institute, Seongnam, Korea
| | - Minwook Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Dongkil Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- CHA Institute for Future Medicine, Medical Center Research Institute, Seongnam, Korea
| | - JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- CHA Institute for Future Medicine, Medical Center Research Institute, Seongnam, Korea
| | - Kyunggi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Dong Hyeon Lee
- CHA Institute for Future Medicine, Medical Center Research Institute, Seongnam, Korea.
- Department of Physiology, CHA University School of Medicine, Pocheon, Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea.
- CHA Institute for Future Medicine, Medical Center Research Institute, Seongnam, Korea.
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea.
| |
Collapse
|
26
|
Hawly J, Murcar MG, Schcolnik-Cabrera A, Issa ME. Glioblastoma stem cell metabolism and immunity. Cancer Metastasis Rev 2024; 43:1015-1035. [PMID: 38530545 DOI: 10.1007/s10555-024-10183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Despite enormous efforts being invested in the development of novel therapies for brain malignancies, there remains a dire need for effective treatments, particularly for pediatric glioblastomas. Their poor prognosis has been attributed to the fact that conventional therapies target tumoral cells, but not glioblastoma stem cells (GSCs). GSCs are characterized by self-renewal, tumorigenicity, poor differentiation, and resistance to therapy. These characteristics represent the fundamental tools needed to recapitulate the tumor and result in a relapse. The mechanisms by which GSCs alter metabolic cues and escape elimination by immune cells are discussed in this article, along with potential strategies to harness effector immune cells against GSCs. As cellular immunotherapy is making significant advances in a variety of cancers, leveraging this underexplored reservoir may result in significant improvements in the treatment options for brain malignancies.
Collapse
Affiliation(s)
- Joseph Hawly
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouaneh, Lebanon
| | - Micaela G Murcar
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Mark E Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
27
|
Luo D, Luo A, Hu S, Ye G, Li D, Zhao H, Peng B. Genomics and proteomics to determine novel molecular subtypes and predict the response to immunotherapy and the effect of bevacizumab in glioblastoma. Sci Rep 2024; 14:17630. [PMID: 39085480 PMCID: PMC11292017 DOI: 10.1038/s41598-024-68648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive, infiltrative malignancy that cannot be completely cured by current treatment modalities, and therefore requires more precise molecular subtype signatures to predict treatment response for personalized precision therapy. Expression subtypes of GBM samples from the Cancer Genome Atlas (TCGA) were identified using BayesNM and compared with existing molecular subtypes of GBM. Biological features of the subtypes were determined by single-sample gene set enrichment analysis. Genomic and proteomic data from GBM samples were combined and Genomic Identification of Significant Targets in Cancer analysis was used to screen genes with recurrent somatic copy-number alterations phenomenon. The immune environment among subtypes was compared by assessing the expression of immune molecules and the infiltration of immune cells. Molecular subtypes adapted to immunotherapy were identified based on Tumor Immune Dysfunction and Exclusion (TIDE) score. Finally, least absolute shrinkage and selection operator (LASSO) logistic regression was performed on the expression profiles of S2, S3 and S4 in TCGA-GBM and RPPA to determine the respective corresponding best predictive model. Four novel molecular subtypes were classified. Specifically, S1 exhibited a low proliferative profile; S2 exhibited the profile of high proliferation, IDH1 mutation, TP53 mutation and deletion; S3 was characterized by high immune scores, innate immunity and adaptive immune infiltration scores, with the lowest TIDE score and was most likely to benefit from immunotherapy; S4 was characterized by high proliferation, EGFR amplification, and high protein abundance, and was the most suitable subtype for bevacizumab. LASSO analysis constructed the best prediction model composed of 13 genes in S2 with an accuracy of 96.7%, and the prediction model consisting of 17 genes in S3 with an accuracy of 86.7%, and screened 14 genes as components of the best prediction model in S4 with an accuracy of 93%. To conclude, our study classified reproducible and robust molecular subtypes of GBM, and these findings might contribute to the identification of patients responding to immunotherapy, thereby improving GBM prognosis.
Collapse
Affiliation(s)
- Dongdong Luo
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Aiping Luo
- Radiology Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China.
| | - Su Hu
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China.
| | - Ganwei Ye
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Dan Li
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Hailin Zhao
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Biao Peng
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China.
| |
Collapse
|
28
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
29
|
Chen W, Zhang T, Zhang H. Causal relationship between type 2 diabetes and glioblastoma: bidirectional Mendelian randomization analysis. Sci Rep 2024; 14:16544. [PMID: 39020091 PMCID: PMC11255221 DOI: 10.1038/s41598-024-67341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
As the prevalence of Type 2 Diabetes Mellitus (T2DM) and Glioblastoma (GBM) rises globally, the relationship between T2DM and GBM remains controversial. This study aims to investigate whether genetically predicted T2DM is causally associated with GBM. We performed bidirectional Mendelian randomization (MR) analysis using data from genome-wide studies on T2DM (N = 62,892) and GBM (N = 218,792) in European populations. The results of the inverse-variance weighted (IVW) approach served as the primary outcomes. We applied Cochran's Q test and MR-Egger regression for heterogeneity assessment. Leave-one-out analysis was used to evaluate whether any single SNP significantly influenced the observed effect. Our findings reveal a significant causal association between T2DM and an increased risk of GBM (OR [95% CI] 1.70 [1.09, 2.65], P = 0.019). Conversely, the reverse association between T2DM and GBM was insignificant (OR [95% CI] 1.00 [0.99, 1.01], P = 0.408) (P > 0.40). Furthermore, the results from Cochran's Q-test and funnel plots in the MR-Egger method indicated no evidence of pleiotropy between the SNPs and GBM. Additionally, we mapped causal SNPs to genes and identified 10 genes, including MACF1, C1orf185, PTGFRN, NOTCH2, ABCB10, GCKR, THADA, RBMS1, SPHKAP, and PPARG, located on chromosomes 1, 2, and 3. These genes are involved in key biological processes such as the BMP signaling pathway and various metabolic pathways relevant to both conditions. This study provides robust evidence of a significant causal relationship between T2DM and an increased risk of GBM. The identified SNP-mapped genes highlight potential biological mechanisms underlying this association.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710100, Shaanxi, China
| | - Taoyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
30
|
Xiao F, Zhu H, Xiong Y, Guo Y, Zhang Z, Zeng J, Xiao Y, Liao B, Shang X, Zhao S, Hu G, Huang K, Guo H. Positive feedback loop of c-myc/XTP6/NDH2/NF-κB to promote malignant progression in glioblastoma. J Exp Clin Cancer Res 2024; 43:187. [PMID: 38965580 PMCID: PMC11225266 DOI: 10.1186/s13046-024-03109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yaping Xiong
- Departments of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yun Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xuesong Shang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Siyi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China.
- JXHC key Laboratory of Neurological medicine, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
31
|
Chen H, Ji J, Zhang L, Luo C, Chen T, Zhang Y, Ma C, Ke Y, Wang J. Nanoparticles Coated with Brain Microvascular Endothelial Cell Membranes can Target and Cross the Blood-Brain Barrier to Deliver Drugs to Brain Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306714. [PMID: 38396320 DOI: 10.1002/smll.202306714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/13/2024] [Indexed: 02/25/2024]
Abstract
The blood-brain barrier (BBB) contains tightly connected brain microvascular endothelial cells (BMECs) that hinder drug delivery to the brain, which makes brain tumors difficult to treat. Previous studies have shown that nanoparticles coated with tumor cell membranes selectively target their homologous tumors. Therefore, this study investigated whether bEnd.3-line BMEC membrane-coated nanoparticles with poly(lactide-co-glycolide)-poly(ethylene glycol)-based doxorubicin-loaded cores (BM-PDs) can be used to target BMECs and cross the BBB. In vitro, the BM-PDs effectively target BMECs and cross a BBB model. The BM-PDs enter the BMECs via macropinocytosis, clathrin-mediated endocytosis, caveolin-mediated endocytosis, and membrane fusion, which result in excellent cellular uptake. The BM-PDs also show excellent cellular uptake in brain tumor cells. In vivo, the BM-PDs target BMECs, cross the BBB, accumulate in brain tumors, and efficiently kill tumor cells. Therefore, the proposed strategy has great therapeutic potential owing to its ability to cross the BBB to reach brain tumors.
Collapse
Affiliation(s)
- Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jingsen Ji
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuangcai Luo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Chengcheng Ma
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
32
|
Miao Z, Xu L, Gu W, Ren Y, Li R, Zhang S, Chen C, Wang H, Ji J, Chen J. A targetable PRR11-DHODH axis drives ferroptosis- and temozolomide-resistance in glioblastoma. Redox Biol 2024; 73:103220. [PMID: 38838551 PMCID: PMC11179629 DOI: 10.1016/j.redox.2024.103220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Temozolomide (TMZ) is a widely utilized chemotherapy treatment for patients with glioblastoma (GBM), although drug resistance constitutes a major therapeutic hurdle. Emerging evidence suggests that ferroptosis-mediated therapy could offer an appropriate alternative treatment option against cancer cells that are resistant to certain drugs. However, recurrent gliomas display robust ferroptosis resistance, although the precise mechanism of resistance remains elusive. In the present work, we report that proline rich protein 11 (PRR11) depletion significantly sensitizes GBM cells to TMZ by inducing ferroptosis. Mechanistically, PRR11 directly binds to and stabilizes dihydroorotate dehydrogenase (DHODH), which leads to glioma ferroptosis-resistant in a DHODH-dependent manner in vivo and in vitro. Furthermore, PRR11 inhibits HERC4 and DHODH binding, by suppressing the recruitment of E3 ubiquitin ligase HERC4 and polyubiquitination degradation of DHODH at the K306 site, which maintains DHODH protein stability. Importantly, downregulated PRR11 increases lipid peroxidation and alters DHODH-mediated mitochondrial morphology, thereby promoting ferroptosis and increasing TMZ chemotherapy sensitivity. In conclusion, our results reveal a mechanism via which PRR11 drives ferroptosis resistance and identifies ferroptosis induction and TMZ as an attractive combined therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Zong Miao
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yimin Ren
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rong Li
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuai Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China.
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
33
|
Huang H, Zhang J, Wu J, Du C, Zheng B, Guo Z, Chen L, Zhang D, Liu L. Bergaptol inhibits glioma cell proliferation and induces apoptosis via STAT3/Bcl-2 pathway. Anticancer Drugs 2024; 35:535-541. [PMID: 38527238 DOI: 10.1097/cad.0000000000001603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour and lacks therapeutic options with significant effects. The aberrant activation of STAT3 is a critical factor in glioma progression via activating multiple signalling pathways that promote glioma. Among them, the antiapoptotic gene Bcl-2 could be upregulated by p-STAT3, which is an important reason for the continuous proliferation of glioma. We previously reported that bergaptol, a natural furanocoumarin widely found in citrus products, exerts antineuroinflammatory effects by inhibiting the overactivation of STAT3. Here, we aimed to evaluate whether bergaptol could promote glioma apoptosis by inhibiting the STAT3/Bcl-2 pathway. This study found that bergaptol inhibited the proliferation and migration of GBM cell lines (U87 and A172) and promoted apoptosis in vitro. We also found that bergaptol significantly inhibited the STAT3/Bcl-2 pathway in GBM cells. U87 cells were implanted intracranially into nude mice to establish a glioma model, and glioma-bearing mice were treated with bergaptol (40 mg/kg). Bergaptol treatment significantly inhibited glioma growth and prolonged the glioma-bearing mice's survival time. In addition, bergaptol administration also significantly inhibited the STAT3/Bcl-2 pathway of tumour tissue in vivo. Overall, we found that bergaptol could effectively play an antiglioma role by inhibiting STAT3/Bcl-2 pathway, suggesting the potential efficacy of bergaptol in treating glioma.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurosurgery, Guang 'an People's Hospital, Guang 'an
| | - Junrong Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou
| | - Jianbing Wu
- Department of Neurosurgery, Ya 'an People's Hospital
| | - Chunfu Du
- Department of Neurosurgery, Ya 'an People's Hospital
| | - Bo Zheng
- Department of Neurology, Ya 'an People's Hospital, Ya 'an, China
| | - Zhangchao Guo
- Department of Neurosurgery, Ya 'an People's Hospital
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou
| | - Deming Zhang
- Department of Neurosurgery, Ya 'an People's Hospital
| | - Luotong Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou
| |
Collapse
|
34
|
Jacquerie A, Hoeben A, Eekers DBP, Postma AA, Vanmechelen M, de Smet F, Ackermans L, Anten M, Severens K, Zur Hausen A, Broen MPG, Beckervordersandforth J. Prognostic relevance of high expression of kynurenine pathway markers in glioblastoma. Sci Rep 2024; 14:14975. [PMID: 38951170 PMCID: PMC11217262 DOI: 10.1038/s41598-024-65907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Glioblastoma (GBM) continues to exhibit a discouraging survival rate despite extensive research into new treatments. One factor contributing to its poor prognosis is the tumor's immunosuppressive microenvironment, in which the kynurenine pathway (KP) plays a significant role. This study aimed to explore how KP impacts the survival of newly diagnosed GBM patients. We examined tissue samples from 108 GBM patients to assess the expression levels of key KP markers-tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase (IDO1/2), and the aryl hydrocarbon receptor (AhR). Using immunohistochemistry and QuPath software, three tumor cores were analyzed per patient to evaluate KP marker expression. Kaplan-Meier survival analysis and stepwise multivariate Cox regression were used to determine the effect of these markers on patient survival. Results showed that patients with high expression of TDO2, IDO1/2, and AhR had significantly shorter survival times. This finding held true even when controlling for other known prognostic variables, with a hazard ratio of 3.393 for IDO1, 2.775 for IDO2, 1.891 for TDO2, and 1.902 for AhR. We suggest that KP markers could serve as useful tools for patient stratification, potentially guiding future immunomodulating trials and personalized treatment approaches for GBM patients.
Collapse
Affiliation(s)
- Arnaud Jacquerie
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maxime Vanmechelen
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO-KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Frederik de Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- LISCO-KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Linda Ackermans
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Monique Anten
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kim Severens
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martinus P G Broen
- Department of Neurology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Beckervordersandforth
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
35
|
He Z, Peng Y, Wang D, Yang C, Zhou C, Gong B, Song S, Wang Y. Single-cell transcriptomic analysis identifies downregulated phosphodiesterase 8B as a novel oncogene in IDH-mutant glioma. Front Immunol 2024; 15:1427200. [PMID: 38989284 PMCID: PMC11233524 DOI: 10.3389/fimmu.2024.1427200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Glioma, a prevalent and deadly brain tumor, is marked by significant cellular heterogeneity and metabolic alterations. However, the comprehensive cell-of-origin and metabolic landscape in high-grade (Glioblastoma Multiforme, WHO grade IV) and low-grade (Oligoastrocytoma, WHO grade II) gliomas remains elusive. Methods In this study, we undertook single-cell transcriptome sequencing of these glioma grades to elucidate their cellular and metabolic distinctions. Following the identification of cell types, we compared metabolic pathway activities and gene expressions between high-grade and low-grade gliomas. Results Notably, astrocytes and oligodendrocyte progenitor cells (OPCs) exhibited the most substantial differences in both metabolic pathways and gene expression, indicative of their distinct origins. The comprehensive analysis identified the most altered metabolic pathways (MCPs) and genes across all cell types, which were further validated against TCGA and CGGA datasets for clinical relevance. Discussion Crucially, the metabolic enzyme phosphodiesterase 8B (PDE8B) was found to be exclusively expressed and progressively downregulated in astrocytes and OPCs in higher-grade gliomas. This decreased expression identifies PDE8B as a metabolism-related oncogene in IDH-mutant glioma, marking its dual role as both a protective marker for glioma grading and prognosis and as a facilitator in glioma progression.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Peng
- Department of Academic Journal, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Duo Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chen Yang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengzhi Zhou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Department of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
36
|
Gue R, Lakhani DA. The 2021 World Health Organization Central Nervous System Tumor Classification: The Spectrum of Diffuse Gliomas. Biomedicines 2024; 12:1349. [PMID: 38927556 PMCID: PMC11202067 DOI: 10.3390/biomedicines12061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The 2021 edition of the World Health Organization (WHO) classification of central nervous system tumors introduces significant revisions across various tumor types. These updates, encompassing changes in diagnostic techniques, genomic integration, terminology, and grading, are crucial for radiologists, who play a critical role in interpreting brain tumor imaging. Such changes impact the diagnosis and management of nearly all central nervous system tumor categories, including the reclassification, addition, and removal of specific tumor entities. Given their pivotal role in patient care, radiologists must remain conversant with these revisions to effectively contribute to multidisciplinary tumor boards and collaborate with peers in neuro-oncology, neurosurgery, radiation oncology, and neuropathology. This knowledge is essential not only for accurate diagnosis and staging, but also for understanding the molecular and genetic underpinnings of tumors, which can influence treatment decisions and prognostication. This review, therefore, focuses on the most pertinent updates concerning the classification of adult diffuse gliomas, highlighting the aspects most relevant to radiological practice. Emphasis is placed on the implications of new genetic information on tumor behavior and imaging findings, providing necessary tools to stay abreast of advancements in the field. This comprehensive overview aims to enhance the radiologist's ability to integrate new WHO classification criteria into everyday practice, ultimately improving patient outcomes through informed and precise imaging assessments.
Collapse
Affiliation(s)
- Racine Gue
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
| | - Dhairya A. Lakhani
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
37
|
Wang Y, Zhong F, Xiao F, Li J, Liu X, Ni G, Wang T, Zhang W. Host-defence caerin 1.1 and 1.9 peptides suppress glioblastoma U87 and U118 cell proliferation through the modulation of mitochondrial respiration and induce the downregulation of CHI3L1. PLoS One 2024; 19:e0304149. [PMID: 38848430 PMCID: PMC11161062 DOI: 10.1371/journal.pone.0304149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain cancer, poses a significant global health challenge with a considerable mortality rate. With the predicted increase in glioblastoma incidence, there is an urgent need for more effective treatment strategies. In this study, we explore the potential of caerin 1.1 and 1.9, host defence peptides derived from an Australian tree frog, in inhibiting glioblastoma U87 and U118 cell growth. Our findings demonstrate the inhibitory impact of caerin 1.1 and 1.9 on cell growth through CCK8 assays. Additionally, these peptides effectively curtail the migration of glioblastoma cells in a cell scratch assay, exhibiting varying inhibitory effects among different cell lines. Notably, the peptides hinder the G0/S phase replication in both U87 and U118 cells, pointing to their impact on the cell cycle. Furthermore, caerin 1.1 and 1.9 show the ability to enter the cytoplasm of glioblastoma cells, influencing the morphology of mitochondria. Proteomics experiments reveal intriguing insights, with a decrease in CHI3L1 expression and an increase in PZP and JUNB expression after peptide treatment. These proteins play roles in cell energy metabolism and inflammatory response, suggesting a multifaceted impact on glioblastoma cells. In conclusion, our study underscores the substantial anticancer potential of caerin 1.1 and 1.9 against glioblastoma cells. These findings propose the peptides as promising candidates for further exploration in the realm of glioblastoma management, offering new avenues for developing effective treatment strategies.
Collapse
Affiliation(s)
- Yichen Wang
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Furong Zhong
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
| | - Fengyun Xiao
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guoying Ni
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Zhongˈao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, Guangdong, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Wei Zhang
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center of Stem Cell Therapy for Pituitary Disease, Guangzhou, China
| |
Collapse
|
38
|
Shao Y, Yang Z, Miao W, Yu X, Pu Y. Circ_0005015 upregulates BACH1 to promote aggressive behaviors in glioblastoma by sponging microRNA-382-5p. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4139-4151. [PMID: 38032493 DOI: 10.1007/s00210-023-02868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
To investigate the potential role and molecular mechanism of circ_0005015 in GBM progression. Circ_0005015, microRNA-382-5p (miR-382-5p), and BTB domain and CNC homolog 1 (BACH1) levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was determined by MTT, colony formation, and EdU assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were assessed using wound healing and transwell assays. Glucose accumulation and lactate levels were examined by the corresponding kit. RNA pull-down and dual-luciferase reporter assays were performed to confirm the interaction between miR-382-5p and circ_0005015 or BACH1. Protein levels of MMP9, PCNA, and BACH1 were examined using western blot assay. Role of circ_0005015 on tumor growth in vivo was analyzed using a xenograft tumor model. Circ_0005015 content was up-regulated in GBM patients and cells, its knockdown restrained GBM cell proliferation, migration, invasion, glycolysis, and triggered apoptosis. Mechanistically, we found that circ_0005015 could directly interact with miR-382-5p and serve as a miRNA sponge to regulate BACH1 expression. In addition, circ_0005015 knockdown might repress tumor growth in vivo. Circ_0005015 boosted GBM progression via binding to miR-382-5p to up-regulate BACH1, which may offer new effective targets for GBM treatment.
Collapse
Affiliation(s)
- Yun Shao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhengxiang Yang
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Weifeng Miao
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Xiangrong Yu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yi Pu
- Department of Neurosurgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
39
|
Li K, Li H, He A, Zhang G, Jin Y, Cai J, Ye C, Qi L, Liu Y. Deciphering the role of transcription factors in glioblastoma cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1245-1255. [PMID: 38716541 PMCID: PMC11543521 DOI: 10.3724/abbs.2024061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 10/17/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Haichao Li
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Aonan He
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Gengqiang Zhang
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yuyao Jin
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Junbin Cai
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Chenle Ye
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Ling Qi
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
| |
Collapse
|
40
|
Wang LP, Chagas PS, Salles ÉL, Naeini SE, Gouron J, Rogers HM, Khodadadi H, Bhandari B, Alptekin A, Qin X, Vaibhav K, Costigliola V, Hess DC, Dhandapani KM, Arbab AS, Rutkowski MJ, Yu JC, Baban B. Altering biomolecular condensates as a potential mechanism that mediates cannabidiol effect on glioblastoma. Med Oncol 2024; 41:140. [PMID: 38713310 DOI: 10.1007/s12032-024-02381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.
Collapse
Affiliation(s)
- Lei P Wang
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, GA, 30912, USA
| | - Pablo Shimaoka Chagas
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Évila Lopes Salles
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Sahar Emami Naeini
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jules Gouron
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hannah M Rogers
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bidhan Bhandari
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Xu Qin
- Cancer Biology Research Center & Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | | | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Martin J Rutkowski
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Babak Baban
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA.
- Department of Oral Biology and Diagnostic Sciences, Dental Colleg of Georgia, Augusta University, Augusta, GA, 30912, USA.
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, GA, 30912, USA.
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
41
|
Xu X, Zheng Y, Luo L, You Z, Chen H, Wang J, Zhang F, Liu Y, Ke Y. Glioblastoma stem cells deliver ABCB4 transcribed by ATF3 via exosomes conferring glioblastoma resistance to temozolomide. Cell Death Dis 2024; 15:318. [PMID: 38710703 PMCID: PMC11074105 DOI: 10.1038/s41419-024-06695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.
Collapse
Affiliation(s)
- Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yaofeng Zheng
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Linting Luo
- Department of Neurology, Liwan Central Hospital of Guangzhou, Guangzhou, PR China
| | - Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Huajian Chen
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Jihui Wang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Fabing Zhang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
- The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| |
Collapse
|
42
|
Ren F, Ma Y, Zhang K, Luo Y, Pan R, Zhang J, Kan C, Hou N, Han F, Sun X. Exploring the multi-targeting phytoestrogen potential of Calycosin for cancer treatment: A review. Medicine (Baltimore) 2024; 103:e38023. [PMID: 38701310 PMCID: PMC11062656 DOI: 10.1097/md.0000000000038023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.
Collapse
Affiliation(s)
- Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
43
|
Li T, Xu D, Ruan Z, Zhou J, Sun W, Rao B, Xu H. Metabolism/Immunity Dual-Regulation Thermogels Potentiating Immunotherapy of Glioblastoma Through Lactate-Excretion Inhibition and PD-1/PD-L1 Blockade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310163. [PMID: 38460167 PMCID: PMC11095231 DOI: 10.1002/advs.202310163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/23/2024] [Indexed: 03/11/2024]
Abstract
Intrinsic immunosuppressive tumor microenvironment (ITM) and insufficient tumor infiltration of T cells severely impede the progress of glioblastoma (GBM) immunotherapy. In this study, it is identify that inhibiting the expression of glucose transporter 1 (GLUT1) can facilitate the prevention of lactate excretion from tumor glycolysis, which significantly alleviates the lactate-driven ITM by reducing immunosuppressive tumor-associated macrophages (TAMs) and regulatory T cells (Tregs). Simultaneously, the findings show that the generated inflammatory cytokine IFN-γ during immune activation aggravates the immune escape by upregulating immune checkpoint programmed death-ligand 1 (PD-L1) in tumor cells and TAMs. Therefore, an injectable thermogel loaded with a GLUT1 inhibitor BAY-876 and a PD-1/PD-L1 blocker BMS-1 (Gel@B-B) for dual-regulation of metabolism and immunity of GBM is developed. Consequently, in situ injection of Gel@B-B significantly delays tumor growth and prolongs the survival of the orthotopic GBM mouse model. By actively exposing tumor antigens to antigen-presenting cells, the GBM vaccine combined with Gel@B-B is found to significantly increase the fraction of effector T cells (Th1/CTLs) in the tumor microenvironment, thereby remarkably mitigating tumor recurrence long-term. This study may provide a promising strategy for GBM immunotherapy.
Collapse
Affiliation(s)
- Tianliang Li
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Dan Xu
- Department of Nuclear MedicineZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Zhao Ruan
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Jie Zhou
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Wenbo Sun
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Bo Rao
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| | - Haibo Xu
- Department of RadiologyZhongnan Hospital of Wuhan University169 Donghu RoadWuhan430071China
| |
Collapse
|
44
|
Wu W, Jiang C, Zhu W, Jiang X. Multi-omics analysis reveals the association between specific solute carrier proteins gene expression patterns and the immune suppressive microenvironment in glioma. J Cell Mol Med 2024; 28:e18339. [PMID: 38687049 PMCID: PMC11060081 DOI: 10.1111/jcmm.18339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Glioma is the most prevalent malignant brain tumour. Currently, reshaping its tumour microenvironment has emerged as an appealing strategy to enhance therapeutic efficacy. As the largest group of transmembrane transport proteins, solute carrier proteins (SLCs) are responsible for the transmembrane transport of various metabolites and ions. They play a crucial role in regulating the metabolism and functions of malignant cells and immune cells within the tumour microenvironment, making them a promising target in cancer therapy. Through multidimensional data analysis and experimental validation, we investigated the genetic landscape of SLCs in glioma. We established a classification system comprising 7-SLCs to predict the prognosis of glioma patients and their potential responses to immunotherapy and chemotherapy. Our findings unveiled specific SLC expression patterns and their correlation with the immune-suppressive microenvironment and metabolic status. The 7-SLC classification system was validated in distinguishing subgroups within the microenvironment, specifically identifying subsets involving malignant cells and tumour-associated macrophages. Furthermore, the orphan protein SLC43A3, a core member of the 7-SLC classification system, was identified as a key facilitator of tumour cell proliferation and migration, suggesting its potential as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wende Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
45
|
Zhou L, Liu X, Wu T, Liu Q, Jing M, Li H, Xu N, Tang H. Identification of survival related key genes and long-term survival specific differentially expressed genes related key miRNA network of primary glioblastoma. Heliyon 2024; 10:e28439. [PMID: 38601561 PMCID: PMC11004527 DOI: 10.1016/j.heliyon.2024.e28439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Primary glioblastoma(pGBM) is the most malignant tumor of the central nervous system. Radiotherapy, chemotherapy and surgical treatment have little effect on the survival of pGBM patients. The prognosis is often poorly once the tumor recurs. It is urgent to develop new therapies for patients. In recent years, studies have been clarified that miRNA have a powerful regulating effect on the genes. However, the main group of miRNAs in regulating long-term survival specific related genes of pGBM is still unclear. Given that the survival period of most glioma patients is relatively short, studying long-term survival patients with pGBM is of great value for this disease. Our study aim to identify key miRNAs with long-term survival related genes present in pGBM and uncover their potential mechanisms. The gene expression profiles of GSE53733, GSE15824, GSE30563, GSE50161 were obtained from the Gene Expression Omnibus database. Firstly, samples were divided into 3 groups according to its survival time and each group compare to the normal control group. Then we obtained differential expression genes (DEGs) with a long-term survival specific (LTSDEGs) and a short-term survival specific DEGs (STSDEGs). Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted with LTSDEGs and STSDEGs together. Moreover, we used the UALCAN database to verify LTSDEGs and STSDEGs, and obtained long-term verified survival specific DEGs(LTVSDEGs) and short-term verified survival specific DEGs(STVSDEGs). Finally, we established the predicted key miRNAs-LTVSDEGs interaction network. The protein expressions of the top 4 LTVSDEGs were verified in the HPA database with immunohistochemical staining. In total, we found 260 genes changed in LTSDEGs and 822 genes changed in STSDEGs. GO and KEGG results shown that the major changes are focused on tumor metabolism. 9 LTVSDEGs and 18 STVSDEGs were verified in UALCAN database. As for protein expression verification in top 4 LTVSDEGs, ZNF630, BLVRB and RPA3 were verified, while TPBG was not detected. We obtained 59 key miRNA from the predicted key miRNAs-LTVSDEGs interaction network. 25 key miRNAs were verified using GSE90603. Finally, we constructed the key miRNAs-LTVSDEGs network using a Sankey diagram, including 25 miRNAs and 7 LTVSDEGs. In conclusion, our study shows that there is a close relationship between metabolic changes and survival in pGBM. Besides, we established a key miRNAs-LTVSDEGs network for pGBM, which could be the key path in prolonging the life of pGBM patients.
Collapse
Affiliation(s)
- Lingqi Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
- Guangzhou Key Laboratory of Child Neurodevelopment, Guangzhou, 510623, China
- Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, 200031, China
| | - Xuemei Liu
- Department of Gynecology, Shunde Hospital,Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China
| | - Tong Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Qundi Liu
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Meilian Jing
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Huahan Li
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Ning Xu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518111, China
| | - Hai Tang
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
46
|
Li G, Xiong Z, Li Y, Yan C, Cheng Y, Wang Y, Li J, Dai Z, Zhang D, Du W, Men C, Shi C. Hypoxic microenvironment-induced exosomes confer temozolomide resistance in glioma through transfer of pyruvate kinase M2. Discov Oncol 2024; 15:110. [PMID: 38598023 PMCID: PMC11006647 DOI: 10.1007/s12672-024-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE Glioma, a malignant primary brain tumor, is notorious for its high incidence rate. However, the clinical application of temozolomide (TMZ) as a treatment option for glioma is often limited due to resistance, which has been linked to hypoxic glioma cell-released exosomes. In light of this, the present study aimed to investigate the role of exosomal pyruvate kinase M2 (PKM2) in glioma cells that exhibit resistance to TMZ. METHODS Sensitive and TMZ-resistant glioma cells were subjected to either a normoxic or hypoxic environment, and the growth patterns and enzymatic activity of glycolysis enzymes were subsequently measured. From these cells, exosomal PKM2 was isolated and the subsequent effect on TMZ resistance was examined and characterized, with a particular focus on understanding the relevant mechanisms. Furthermore, the intercellular communication between hypoxic resistant cells and tumor-associated macrophages (TAMs) via exosomal PKM2 was also assessed. RESULTS The adverse impact of hypoxic microenvironments on TMZ resistance in glioma cells was identified and characterized. Among the three glycolysis enzymes that were examined, PKM2 was found to be a critical mediator in hypoxia-triggered TMZ resistance. Upregulation of PKM2 was found to exacerbate the hypoxia-mediated TMZ resistance. Exosomal PKM2 were identified and isolated from hypoxic TMZ-resistant glioma cells, and were found to be responsible for transmitting TMZ resistance to sensitive glioma cells. The exosomal PKM2 also contributed towards mitigating TMZ-induced apoptosis in sensitive glioma cells, while also causing intracellular ROS accumulation. Additionally, hypoxic resistant cells also released exosomal PKM2, which facilitated TMZ resistance in tumor-associated macrophages. CONCLUSION In the hypoxic microenvironment, glioma cells become resistant to TMZ due to the delivery of PKM2 by exosomes. Targeted modulation of exosomal PKM2 may be a promising strategy for overcoming TMZ resistance in glioma.
Collapse
Affiliation(s)
- Guofu Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ziyu Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingying Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zifeng Dai
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongdong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunyang Men
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changbin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
47
|
Martín-Abreu C, Fariña-Jerónimo H, Plata-Bello J. Radiological and Not Clinical Variables Guide the Surgical Plan in Patients with Glioblastoma. Curr Oncol 2024; 31:1899-1912. [PMID: 38668045 PMCID: PMC11049408 DOI: 10.3390/curroncol31040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Purpose: The extent of resection is the most important prognostic factor in patients with glioblastoma. However, the factors influencing the decision to perform a biopsy instead of maximal resection have not been clearly established. The aim of this study was to analyze the factors associated with the intention to achieve maximal resection in glioblastoma patients. Methods: A retrospective single-center case-series analysis of patients with a new diagnosis of glioblastoma was performed. Patients were distributed into two groups: the biopsy (B) and complete resection (CR) groups. To identify factors associated with the decision to perform a B or CR, uni- and multivariate binary logistic regression analyses were performed. Cox regression analysis was also performed in the B and CR groups. Results: Ninety-nine patients with a new diagnosis of glioblastoma were included. Sixty-eight patients (68.7%) were treated with CR. Ring-enhancement and edema volume on presurgical magnetic resonance imaging were both associated with CR. Corpus callosum involvement and proximity to the internal capsule were identified as factors associated with the decision to perform a biopsy. In the multivariate analysis, edema volume (OR = 1.031; p = 0.002) and proximity to the internal capsule (OR = 0.104; p = 0.001) maintained significance and were considered independent factors. In the survival analysis, only corpus callosum involvement (HR = 2.055; p = 0.035) and MGMT status (HR = 0.484; p = 0.027) presented statistical significance in the CR group. Conclusions: The volume of edema and proximity to the internal capsule were identified as independent factors associated with the surgical decision. The radiological evaluation and not the clinical situation of the patient influences the decision to perform a biopsy or CR.
Collapse
Affiliation(s)
- Carla Martín-Abreu
- Department of Medical Oncology, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Helga Fariña-Jerónimo
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| |
Collapse
|
48
|
Vella V, Ditsiou A, Chalari A, Eravci M, Wooller SK, Gagliano T, Bani C, Kerschbamer E, Karakostas C, Xu B, Zhang Y, Pearl FM, Lopez G, Peng L, Stebbing J, Klinakis A, Giamas G. Kinome-Wide Synthetic Lethal Screen Identifies PANK4 as a Modulator of Temozolomide Resistance in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306027. [PMID: 38353396 PMCID: PMC11022721 DOI: 10.1002/advs.202306027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/23/2023] [Indexed: 02/17/2024]
Abstract
Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.
Collapse
Affiliation(s)
- Viviana Vella
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Angeliki Ditsiou
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Anna Chalari
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Murat Eravci
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Sarah K. Wooller
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Cecilia Bani
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Christos Karakostas
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Bin Xu
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubei430064China
| | - Yongchang Zhang
- Department of Medical OncologyLung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan430064China
| | - Frances M.G. Pearl
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Gianluca Lopez
- Division of PathologyFondazione IRCCS Ca' Granda – Ospedale Maggiore PoliclinicoMilan20122Italy
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilan20122Italy
| | - Ling Peng
- Department of Respiratory DiseaseZhejiang Provincial People's HospitalHangzhouZhejiang310003China
| | - Justin Stebbing
- Department of Life SciencesAnglia Ruskin UniversityEast RoadCambridgeCB1 1PTUK
| | - Apostolos Klinakis
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Georgios Giamas
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| |
Collapse
|
49
|
Alhalabi OT, Dao Trong P, Kaes M, Jakobs M, Kessler T, Oehler H, König L, Eichkorn T, Sahm F, Debus J, von Deimling A, Wick W, Wick A, Krieg SM, Unterberg AW, Jungk C. Repeat surgery of recurrent glioma for molecularly informed treatment in the age of precision oncology: A risk-benefit analysis. J Neurooncol 2024; 167:245-255. [PMID: 38334907 PMCID: PMC11023957 DOI: 10.1007/s11060-024-04595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.
Collapse
Affiliation(s)
- Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Manuel Kaes
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin Jakobs
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Department of Neurosurgery, Division for Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Oehler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
50
|
Ji Q, Guo Y, Li Z, Zhang X. WTAP regulates the production of reactive oxygen species, promotes malignant progression, and is closely related to the tumor microenvironment in glioblastoma. Aging (Albany NY) 2024; 16:5601-5617. [PMID: 38535989 PMCID: PMC11006471 DOI: 10.18632/aging.205666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
RNA modifications have been substantiated to regulate the majority of physiological activities in the organism, including the metabolism of reactive oxygen species (ROS), which plays an important role in cells. As for the effect of RNA modification genes on ROS metabolism in glioblastoma (GBM), it has not been studied yet. Therefore, this study aims to screen the RNA modification genes that are most related to ROS metabolism and explore their effects on the biological behavior of GBM in vitro. Here, an association between WTAP and ROS metabolism was identified by bioinformatics analysis, and WTAP was highly expressed in GBM tissue compared with normal brain tissue, which was confirmed by western blotting and immunohistochemical staining. When using a ROS inducer to stimulate GBM cells in the WTAP overexpression group, the ROS level increased more significantly and the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) also increased. Next, colony formation assay, wound healing assay, and transwell assay were performed to investigate the proliferation, migration, and invasion of GBM cells. The results showed that WTAP, as an oncogene, promoted the malignant progression of GBM cells. Functional enrichment analysis predicted that WTAP was involved in the regulation of tumor/immune-related functional pathways. Western blotting was used to identify that WTAP had a regulatory effect on the phosphorylation of PI3K/Akt signaling. Finally, based on functional enrichment analysis, we further performed immune-related analysis on WTAP. In conclusion, this study analyzed WTAP from three aspects, which provided new ideas for the treatment of GBM.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Yazhou Guo
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Zibo Li
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| | - Xiaoyang Zhang
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou 466000, Henan, P.R. China
| |
Collapse
|