1
|
Hare KS, Wood KM, Mustapha Y, Swanson KC, Steele MA. Colostrum insulin supplementation to neonatal Holstein bulls affects small intestinal histomorphology, mRNA expression, and enzymatic activity with minor influences on peripheral metabolism. J Dairy Sci 2023; 106:5054-5073. [PMID: 37268570 DOI: 10.3168/jds.2022-22965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/29/2022] [Indexed: 06/04/2023]
Abstract
The objectives of this study were to evaluate how varying colostral insulin concentrations influenced small intestinal development and peripheral metabolism in neonatal Holstein bulls. Insulin was supplemented to approximately 5× (70.0 μg/L; n = 16) or 10× (149.7 μg/L; n = 16) the basal colostrum insulin (12.9 μg/L; BI, n = 16) concentration to maintain equivalent macronutrient intake (crude fat: 4.1 ± 0.06%; crude protein: 11.7 ± 0.05%; and lactose: 1.9 ± 0.01%) among treatments. Colostrum was fed at 2, 14, and 26 h postnatal and blood metabolites and insulin concentration were measured at 0, 30, 60, 90, 120, 180, 240, 360, 480, and 600 min postprandial respective to the first and second colostrum meal. At 30 h postnatal, a subset of calves (n = 8/treatment) were killed to excise the gastrointestinal and visceral tissues. Gastrointestinal and visceral gross morphology and dry matter and small intestinal histomorphology, gene expression, and carbohydrase activity were assessed. Insulin supplementation tended to linearly reduce the glucose clearance rate following the first meal, whereas after the second meal, supplementation linearly increased the rate of glucose absorption and nonesterified fatty acid clearance rate, decreased the time to maximum glucose concentrations, and decreased the time to reach minimum nonesterified fatty acid concentrations. Additionally, insulin clearance rate was linearly increased by insulin supplementation following the second colostrum feeding. However, there were no overall differences between treatments in the concentrations of glucose, nonesterified fatty acids, or insulin in plasma or serum. With respect to macroscopic intestinal development, dry rumen tissue mass linearly decreased when insulin was supplemented in colostrum, and supplementation linearly increased duodenal dry tissue density (g dry matter/cm) while tending to increase duodenal dry tissue weight. Increasing the colostrum insulin concentration improved small intestinal histomorphological development in the distal small intestine, as ileal villi height and mucosal-serosal surface area index were increased by supplementing insulin. Lactase enzymatic activity linearly increased in the proximal jejunum while ileal isomaltase activity linearly decreased with insulin supplementation. These data indicate that changes in colostrum insulin concentrations rapidly affect gastrointestinal growth prioritization and carbohydrase activity. The changes in gastrointestinal ontology result in minor changes in postprandial metabolite availability and clearance.
Collapse
Affiliation(s)
- K S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - K M Wood
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - Y Mustapha
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108
| | - K C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada N1G 1Y2.
| |
Collapse
|
2
|
Impact of magnesium sulfate therapy in improvement of renal functions in high fat diet-induced diabetic rats and their offspring. Sci Rep 2023; 13:2273. [PMID: 36755074 PMCID: PMC9908981 DOI: 10.1038/s41598-023-29540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The role of magnesium sulfate (MgSO4) administration to prevent diabetic nephropathy (DN) by reducing insulin resistance (IR) and the relationship of this action with gender and the expression of NOX4 and ICAM1 genes in the parents and their offspring were studied. Males and females rat, and their pups were used. Type 2 diabetes induced by high-fat diet (HFD) administration and a low dose of streptozotocin. Animals were divided into the: non-treated diabetic (DC), the diabetic group received insulin (Ins), and the diabetic group received MgSO4. Two groups of parents received just a normal diet (NDC). Following each set of parents for 16 weeks and their pups for 4 months, while eating normally. We assessed the amount of water consumed, urine volume, and blood glucose level. The levels of glucose, albumin, and creatinine in the urine were also measured, as well as the amounts of sodium, albumin, and creatinine in the serum. Calculations were made for glomerular filtration rate (GFR) and the excretion rates of Na and glucose fractions (FE Na and FE G, respectively). The hyperinsulinemic-euglycemic clamp was done. NOX4 and ICAM1 gene expressions in the kidney were also measured. MgSO4 or insulin therapy decreased blood glucose, IR, and improved GFR, FE Na, and FE G in both parents and their offspring compared to D group. MgSO4 improved NOX4 and ICAM1 gene expressions in the parents and their offspring compared to D group. Our results indicated that MgSO4 could reduce blood glucose levels and insulin resistance, and it could improve kidney function.
Collapse
|
3
|
Insulin Resistance and High Blood Pressure: Mechanistic Insight on the Role of the Kidney. Biomedicines 2022; 10:biomedicines10102374. [PMID: 36289636 PMCID: PMC9598512 DOI: 10.3390/biomedicines10102374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
The metabolic effects of insulin predominate in skeletal muscle, fat, and liver where the hormone binds to its receptor, thereby priming a series of cell-specific and biochemically diverse intracellular mechanisms. In the presence of a good secretory reserve in the pancreatic islets, a decrease in insulin sensitivity in the metabolic target tissues leads to compensatory hyperinsulinemia. A large body of evidence obtained in clinical and experimental studies indicates that insulin resistance and the related hyperinsulinemia are causally involved in some forms of arterial hypertension. Much of this involvement can be ascribed to the impact of insulin on renal sodium transport, although additional mechanisms might be involved. Solid evidence indicates that insulin causes sodium and water retention, and both endogenous and exogenous hyperinsulinemia have been correlated to increased blood pressure. Although important information was gathered on the cellular mechanisms that are triggered by insulin in metabolic tissues and on their abnormalities, knowledge of the insulin-related mechanisms possibly involved in blood pressure regulation is limited. In this review, we summarize the current understanding of the cellular mechanisms that are involved in the pro-hypertensive actions of insulin, focusing on the contribution of insulin to the renal regulation of sodium balance and body fluids.
Collapse
|
4
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
5
|
Sędzikowska A, Szablewski L. Human Glucose Transporters in Renal Glucose Homeostasis. Int J Mol Sci 2021; 22:13522. [PMID: 34948317 PMCID: PMC8708129 DOI: 10.3390/ijms222413522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The kidney plays an important role in glucose homeostasis by releasing glucose into the blood stream to prevent hypoglycemia. It is also responsible for the filtration and subsequent reabsorption or excretion of glucose. As glucose is hydrophilic and soluble in water, it is unable to pass through the lipid bilayer on its own; therefore, transport takes place using carrier proteins localized to the plasma membrane. Both sodium-independent glucose transporters (GLUT proteins) and sodium-dependent glucose transporters (SGLT proteins) are expressed in kidney tissue, and mutations of the genes coding for these glucose transporters lead to renal disorders and diseases, including renal cancers. In addition, several diseases may disturb the expression and/or function of renal glucose transporters. The aim of this review is to describe the role of the kidney in glucose homeostasis and the contribution of glucose transporters in renal physiology and renal diseases.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
6
|
Zhang L, Gopalasingam G, Herzog H. Ninjin'yoeito, a herbal medicine, enhances glucose tolerance in mice. Neuropeptides 2021; 88:102150. [PMID: 33895618 DOI: 10.1016/j.npep.2021.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The prevalence of Type 2 diabetes increases under conditions of obesity but also due to aging. While a variety of treatment options are being explored there are still many unanswered questions about the underlying mechanisms for the aetiology and progression of this illness. Here we show that pre-treatment with Ninjin'yoeito (NYT), a herbal medicine composed of 12 different ingrediencies, before a glucose challenge results in significantly improved glucose tolerance. This occurs in the absence of significant alterations in insulin excursion compared to vehicle treatment, indicating NYT improves insulin responsiveness and/or insulin-independent glucose disposal. Furthermore, we identify Ginseng - one of the 12 ingredients of NYT - as one key component contributing to NYT's effect on glucose clearance. Importantly, lack of Y4 receptor signalling abolishes the positive effects of NYT on glucose tolerance suggesting Y4 receptor-controlled pathways are crucial in mediating this action of NYT. Using c-fos as neuronal activation marker, we show NYT activates the area postrema - a circumventricular organ in the brainstem that expresses high level of Y4 receptors, supporting an involvement of brainstem Y4 signalling in NYT-activated central networks. Together, these data suggest that NYT is a positive influencer of glucose metabolism in insulin-sensitive tissues and the mechanistic actions of NYT include brainstem Y4 circuitries.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; St. Vincent's Clinical School, University of NSW, Sydney, Australia.
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; School of Medical Sciences, University of NSW, Sydney, NSW, Australia; Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
7
|
Ferrannini E. A Journey in Diabetes: From Clinical Physiology to Novel Therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture. Diabetes 2021; 70:338-346. [PMID: 33472943 PMCID: PMC7881861 DOI: 10.2337/dbi20-0028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Insulin resistance and β-cell dysfunction are the core pathophysiological mechanisms of all hyperglycemic syndromes. Advances in in vivo investigative techniques have made it possible to quantify insulin resistance in multiple sites (skeletal and myocardial muscle, subcutaneous and visceral fat depots, liver, kidney, vascular tissues, brain and intestine), to clarify its consequences for tissue substrate selection, and to establish its relation to tissue perfusion. Physiological modeling of β-cell function has provided a uniform tool to measure β-cell glucose sensitivity and potentiation in response to a variety of secretory stimuli, thereby allowing us to establish feedbacks with insulin resistance, to delineate the biphasic time course of conversion to diabetes, to gauge incretin effects, and to identify primary insulin hypersecretion. As insulin resistance also characterizes several of the comorbidities of diabetes (e.g., obesity, hypertension, dyslipidemia), with shared genetic and acquired influences, the concept is put forward that diabetes is a systemic disease from the outset, actually from the prediabetic stage. In fact, early multifactorial therapy, particularly with newer antihyperglycemic agents, has shown that the burden of micro- and macrovascular complications can be favorably modified despite the rising pressure imposed by protracted obesity.
Collapse
Affiliation(s)
- Ele Ferrannini
- National Research Council (CNR) Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
8
|
Pina AF, Borges DO, Meneses MJ, Branco P, Birne R, Vilasi A, Macedo MP. Insulin: Trigger and Target of Renal Functions. Front Cell Dev Biol 2020; 8:519. [PMID: 32850773 PMCID: PMC7403206 DOI: 10.3389/fcell.2020.00519] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Kidney function in metabolism is often underestimated. Although the word “clearance” is associated to “degradation”, at nephron level, proper balance between what is truly degraded and what is redirected to de novo utilization is crucial for the maintenance of electrolytic and acid–basic balance and energy conservation. Insulin is probably one of the best examples of how diverse and heterogeneous kidney response can be. Kidney has a primary role in the degradation of insulin released in the bloodstream, but it is also incredibly susceptible to insulin action throughout the nephron. Fluctuations in insulin levels during fast and fed state add another layer of complexity in the understanding of kidney fine-tuning. This review aims at revisiting renal insulin actions and clearance and to address the association of kidney dysmetabolism with hyperinsulinemia and insulin resistance, both highly prevalent phenomena in modern society.
Collapse
Affiliation(s)
- Ana F Pina
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ProRegeM Ph.D. Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Diego O Borges
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Molecular Biosciences Ph.D. Programme, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria João Meneses
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ProRegeM Ph.D. Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patrícia Branco
- Department of Nephrology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal.,Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Rita Birne
- Department of Nephrology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal.,Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Antonio Vilasi
- Institute of Clinical Physiology - National Research Council, Reggio Calabria Unit1, Reggio Calabria, Italy
| | - Maria Paula Macedo
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| |
Collapse
|