1
|
Gerzen OP, Potoskueva IK, Tzybina AE, Myachina TA, Nikitina LV. Cardiac Myosin and Thin Filament as Targets for Lead and Cadmium Divalent Cations. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1273-1282. [PMID: 39218024 DOI: 10.1134/s0006297924070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Lead and cadmium are heavy metals widely distributed in the environment and contribute significantly to cardiovascular morbidity and mortality. Using Leadmium Green dye, we have shown that lead and cadmium enter cardiomyocytes, distributing throughout the cell. Using an in vitro motility assay, we have shown that sliding velocity of actin and native thin filaments over myosin decreases with increasing concentrations of Pb2+ and Cd2+. Significantly lower concentrations of Pb2+ and Cd2+ (0.6 mM) were required to stop sliding of thin filaments over myosin compared to the stopping actin sliding over the same myosin (1.1-1.6 mM). Lower concentration of Cd2+ (1.1 mM) needed to stop actin sliding over myosin compared to the Pb2++Cd2+ combination (1.3 mM) and lead alone (1.6 mM). There were no differences found in the effects of lead and cadmium cations on relative force developed by myosin heads or number of actin filaments bound to myosin. Sliding velocity of actin over myosin in the left atrium, right and left ventricles changed equally when exposed to the same dose of the same metal. Thus, we have demonstrated for the first time that Pb2+ and Cd2+ can directly affect myosin and thin filament function, with Cd2+ exerting a more toxic influence on myosin function compared to Pb2+.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia.
| | - Iulia K Potoskueva
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| | - Alena E Tzybina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| | - Tatiana A Myachina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620078, Russia
| |
Collapse
|
2
|
Verzelloni P, Urbano T, Wise LA, Vinceti M, Filippini T. Cadmium exposure and cardiovascular disease risk: A systematic review and dose-response meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123462. [PMID: 38295933 DOI: 10.1016/j.envpol.2024.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Exposure to toxic metals is a global public health threat. Among other adverse effects, exposure to the heavy metal cadmium has been associated with greater risk of cardiovascular disease (CVD). Nonetheless, the shape of the association between cadmium exposure and CVD risk is not clear. This systematic review summarizes data on the association between cadmium exposure and risk of CVD using a dose-response approach. We carried out a literature search in PubMed, Web of Science, and Embase from inception to December 30, 2023. Inclusion criteria were: studies on adult populations, assessment of cadmium exposure, risk of overall CVD and main CVD subgroups as endpoints, and observational study design (cohort, cross-sectional, or case-control). We retrieved 26 eligible studies published during 2005-2023, measuring cadmium exposure mainly in urine and whole blood. In a dose-response meta-analysis using the one-stage method within a random-effects model, we observed a positive association between cadmium exposure and risk of overall CVD. When using whole blood cadmium as a biomarker, the association with overall CVD risk was linear, yielding a risk ratio (RR) of 2.58 (95 % confidence interval-CI 1.78-3.74) at 1 μg/L. When using urinary cadmium as a biomarker, the association was linear until 0.5 μg/g creatinine (RR = 2.79, 95 % CI 1.26-6.16), after which risk plateaued. We found similar patterns of association of cadmium exposure with overall CVD mortality and risks of heart failure, coronary heart disease, and overall stroke, whereas for ischemic stroke there was a positive association with mortality only. Overall, our results suggest that cadmium exposure, whether measured in urine or whole blood, is associated with increased CVD risk, further highlighting the importance of reducing environmental pollution from this heavy metal.
Collapse
Affiliation(s)
- Pietro Verzelloni
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Teresa Urbano
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Wechselberger C, Messner B, Bernhard D. The Role of Trace Elements in Cardiovascular Diseases. TOXICS 2023; 11:956. [PMID: 38133357 PMCID: PMC10747024 DOI: 10.3390/toxics11120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Essential trace elements play an important role in human physiology and are associated with various functions regulating cellular metabolism. Non-essential trace elements, on the other hand, often have well-documented toxicities that are dangerous for the initiation and development of diseases due to their widespread occurrence in the environment and their accumulation in living organisms. Non-essential trace elements are therefore regarded as serious environmental hazards that are harmful to health even in low concentrations. Many representatives of these elements are present as pollutants in our environment, and many people may be exposed to significant amounts of these substances over the course of their lives. Among the most common non-essential trace elements are heavy metals, which are also associated with acute poisoning in humans. When these elements accumulate in the body over years of chronic exposure, they often cause severe health damage in a variety of tissues and organs. In this review article, the role of selected essential and non-essential trace elements and their role in the development of exemplary pathophysiological processes in the cardiovascular system will be examined in more detail.
Collapse
Affiliation(s)
- Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
4
|
Cirovic A, Orisakwe OE, Cirovic A, Jevtic J, Tasic D, Tasic N. Non-Uniform Bioaccumulation of Lead and Arsenic in Two Remote Regions of the Human Heart's Left Ventricle: A Post-Mortem Study. Biomolecules 2023; 13:1232. [PMID: 37627297 PMCID: PMC10452273 DOI: 10.3390/biom13081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The extent of heavy-metal-induced cardiotoxicity is proportional to the levels of metal bioaccumulation, and it was previously assumed that heavy metals accumulate uniformly in the myocardium. Therefore, the aim of this study was to investigate concentrations of metals and metalloids in two distant regions of the left ventricle (LV), the base of the LV, and apex of the LV using inductively coupled plasma mass spectrometry (ICP-MS). We also examined the potential correlation between metal levels and the thickness of the interventricular septum in twenty LV specimens (ten from the base of LV and ten from the apex of LV) from 10 individuals (mean age 75 ± 6 years). We found significantly higher concentrations of arsenic and lead in the LV apex compared to the base of the LV. We also found a positive correlation between the concentrations of arsenic in the myocardium of LV and the thickness of the interventricular septum. Our results indicate that arsenic and lead accumulate to a higher extent in the apex of the LV compared to the base of the LV. Therefore, future studies designed to measure levels of metals in heart muscle should consider non-uniform accumulation of metals in the myocardium.
Collapse
Affiliation(s)
- Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia;
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria;
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia;
| | - Jovan Jevtic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| | - Danijela Tasic
- Institute for Cardiovascular Diseases Dedinje, 5 Heroja Milana Tepica Street, 11000 Belgrade, Serbia; (D.T.); (N.T.)
- Faculty of Medicine, University of Banja Luka, Banja Luka 74278, Bosnia and Herzegovina
| | - Nebojsa Tasic
- Institute for Cardiovascular Diseases Dedinje, 5 Heroja Milana Tepica Street, 11000 Belgrade, Serbia; (D.T.); (N.T.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Zhao L, Cheng J, Liu D, Gong H, Bai D, Sun W. Potentilla anserina polysaccharide alleviates cadmium-induced oxidative stress and apoptosis of H9c2 cells by regulating the MG53-mediated RISK pathway. Chin J Nat Med 2023; 21:279-291. [PMID: 37120246 DOI: 10.1016/s1875-5364(23)60436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/01/2023]
Abstract
Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.
Collapse
Affiliation(s)
- Lixia Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ju Cheng
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Di Liu
- Key laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730000, China
| | - Hongxia Gong
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Decheng Bai
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Sun
- Department of Cardiac Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Disturbed Ratios between Essential and Toxic Trace Elements as Potential Biomarkers of Acute Ischemic Stroke. Nutrients 2023; 15:nu15061434. [PMID: 36986164 PMCID: PMC10058587 DOI: 10.3390/nu15061434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Cadmium (Cd) and lead (Pb) are known to be two of the metal contaminants that pose the greatest potential threat to human health. The purpose of this research study was to compare the levels of toxic metals (Cd, Pb) in patients with acute ischemic stroke (AIS), with a control group in Podlaskie Voivodeship, Poland. The study also aimed to assess the correlations between toxic metals and clinical data in AIS patients, and to assess the potential effect of smoking. Materials and methods: The levels of mineral components in the collected blood samples were assessed by means of atomic absorption spectrometry (AAS). Results: The Cd blood concentration was significantly higher in AIS patients as compared to the control group. We found that the molar ratios of Cd/Zn and Cd/Pb were significantly higher (p < 0.001; p < 0.001, respectively), when the molar ratios of Se/Pb, Se/Cd, and Cu/Cd were significantly lower (p = 0.01; p < 0.001; p < 0.001, respectively), in AIS patients as compared to control subjects. However, there were no considerable fluctuations in relation to the blood Pb concentration or molar ratios of Zn/Pb and Cu/Pb between our AIS patients and the control group. We also found that patients with internal carotid artery (ICA) atherosclerosis, particularly those with 20–50% ICA stenosis, had higher concentrations of Cd and Cd/Zn, but lower Cu/Cd and Se/Cd molar ratios. In the course of our analysis, we observed that current smokers among AIS patients had significantly higher blood-Cd concentrations, Cd/Zn and Cd/Pb molar ratios, and hemoglobin levels, but significantly lower HDL-C concentrations, Se/Cd, and Cu/Cd molar ratios. Conclusions: Our research has shown that the disruption of the metal balance plays a crucial role in the pathogenesis of AIS. Furthermore, our results broaden those of previous studies on the exposure to Cd and Pb as risk factors for AIS. Further investigations are necessary to examine the probable mechanisms of Cd and Pb in the onset of ischemic stroke. The Cd/Zn molar ratio may be a useful biomarker of atherosclerosis in AIS patients. An accurate assessment of changes in the molar ratios of essential and toxic trace elements could serve as a valuable indicator of the nutritional status and levels of oxidative stress in AIS patients. It is critical to investigate the potential role of exposure to metal mixtures in AIS, due to its public health implications.
Collapse
|
7
|
Sasikumar S, Yuvraj S, Veilumuthu P, Godwin Christopher JS, Anandkumar P, Nagarajan T, Sureshkumar S, Selvam GS. Ascorbic acid attenuates cadmium-induced myocardial hypertrophy and cardiomyocyte injury through Nrf2 signaling pathways comparable to resveratrol. 3 Biotech 2023; 13:108. [PMID: 36875963 PMCID: PMC9978049 DOI: 10.1007/s13205-023-03527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic cadmium (Cd) exposure severely affects the structural integrity of the heart, leading to cardiovascular disease. This study investigates the protective role of ascorbic acid (AA) and resveratrol (Res) in cellular defense against Cd-induced cardiomyocyte damage and myocardial hypertrophy in H9c2 cardiomyocytes. Experimental results showed that AA and Res treatment significantly increased cell viability, reduced ROS production, attenuated lipid peroxidation, and increased antioxidant enzyme activity in Cd-induced H9c2 cells. AA and Res decreased the mitochondrial membrane permeability and protected the cells from Cd induced cardiomyocyte damage. This also suppressed the pathological hypertrophic response triggered by Cd, which increased the cell size of cardiomyocytes. Gene expression studies revealed that cells treated with AA and Res decreased the expression of hypertrophic genes ANP (two-fold), BNP (one-fold) and β- MHC (two-fold) compared to Cd exposed cells. AA and Res promoted the nuclear translocation of Nrf2 and increased the expression of antioxidant genes (HO-1, NQO1, SOD and CAT) during Cd mediated myocardial hypertrophy. This study proves that AA and Res play a significant role in improving Nrf2 signaling, thereby reversing stress-induced injury, and facilitating the regression of myocardial hypertrophy.
Collapse
Affiliation(s)
- Sundaresan Sasikumar
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| | - Subramani Yuvraj
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| | | | | | | | | | - Selvaraj Sureshkumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Molecular Cardiology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021 India
| |
Collapse
|
8
|
Combating lead and cadmium exposure with an orally administered chitosan-based chelating polymer. Sci Rep 2023; 13:2215. [PMID: 36750623 PMCID: PMC9905611 DOI: 10.1038/s41598-023-28968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Heavy metals present a threat to human health, even at minimal concentrations within the body. One source of exposure is due to the consumption of low-level contaminated foodstuff and water. Lead and cadmium have been shown to be absorbed by and accumulate within organs like the kidneys and liver, and they have also been associated to many diseases including cardiovascular disease and kidney dysfunction as well as developmental disorders and neurodegenerative diseases. Since this contamination of lead and cadmium is found worldwide, limiting the exposure is complicated and novel strategies are required to prevent the absorption and accumulation of these metals by forcing their elimination. In this study, a DOTAGA-functionalized chitosan polymer is evaluated for this preventative strategy. It shows promising results when orally administered in mice to force the elimination and negate the toxic effects of lead and cadmium found within foodstuff.
Collapse
|
9
|
Sielski J, Jóźwiak MA, Kaziród-Wolski K, Siudak Z, Jóźwiak M. Impact of Air Pollution and COVID-19 Infection on Periprocedural Death in Patients with Acute Coronary Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16654. [PMID: 36554535 PMCID: PMC9778735 DOI: 10.3390/ijerph192416654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Air pollution and COVID-19 infection affect the pathogenesis of cardiovascular disease. The impact of these factors on the course of ACS treatment is not well defined. The purpose of this study was to evaluate the effects of air pollution, COVID-19 infection, and selected clinical factors on the occurrence of perioperative death in patients with acute coronary syndrome (ACS) by developing a neural network model. This retrospective study included 53,076 patients with ACS from the ORPKI registry (National Registry of Invasive Cardiology Procedures) including 2395 COVID-19 (+) patients and 34,547 COVID-19 (-) patients. The neural network model developed included 57 variables, had high performance in predicting perioperative patient death, and had an error risk of 0.03%. Based on the analysis of the effect of permutation on the variable, the variables with the greatest impact on the prediction of perioperative death were identified to be vascular access, critical stenosis of the left main coronary artery (LMCA) or left anterior descending coronary artery (LAD). Air pollutants and COVID-19 had weaker effects on end-point prediction. The neural network model developed has high performance in predicting the occurrence of perioperative death. Although COVID-19 and air pollutants affect the prediction of perioperative death, the key predictors remain vascular access and critical LMCA or LAD stenosis.
Collapse
Affiliation(s)
- Janusz Sielski
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | | | - Karol Kaziród-Wolski
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | - Zbigniew Siudak
- Collegium Medicum, Jan Kochanowski University in Kielce, al. IX Wieków Kielc 19A, 25-369 Kielce, Poland
| | - Marek Jóźwiak
- Institute of Geography and Environmental Sciences, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
10
|
Xing X, Xu M, Yang L, Shao C, Wang Y, Qi M, Niu X, Gao D. Association of selenium and cadmium with heart failure and mortality based on the National Health and Nutrition Examination Survey. J Hum Nutr Diet 2022. [DOI: 10.1111/jhn.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Xin Xing
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
| | - Min Xu
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
| | - Lijun Yang
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
| | - Congcong Shao
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
| | - Yuan Wang
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
| | - Mengyao Qi
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xiaolin Niu
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
- Department of Cardiology, Meishan Brach of the Third Affiliated Hospital Yanan University School of Medical Meishan Sichuan China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
11
|
Schaefer HR, Flannery BM, Crosby L, Jones-Dominic OE, Punzalan C, Middleton K. A systematic review of adverse health effects associated with oral cadmium exposure. Regul Toxicol Pharmacol 2022; 134:105243. [PMID: 35981600 DOI: 10.1016/j.yrtph.2022.105243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
Abstract
Scientific data characterizing the adverse health effects associated with dietary cadmium (Cd) exposure were identified in order to make informed decisions about the most appropriate toxicological reference value (TRV) for use in assessing dietary Cd exposure. Several TRVs are available for Cd and regulatory organizations have used epidemiologic studies to derive these reference values; however, risk of bias (RoB) evaluations were not included in the assessments. We performed a systematic review by conducting a thorough literature search (through January 4, 2020). There were 1714 references identified by the search strings and 328 studies identified in regulatory assessments. After applying the specific inclusion and exclusion criteria, 208 studies (Human: 105, Animal: 103) were considered eligible for further review and data extraction. For the epidemiologic and animal studies, the critical effects identified for oral Cd exposure from the eligible studies were a decrease in bone mineral density (BMD) and renal tubular degeneration. A RoB analysis was completed for 49 studies (30 epidemiological and 19 animal) investigating these endpoints. The studies identified through the SR that were considered high quality and low RoB (2 human and 5 animal) can be used to characterize dose-response relationships and inform the derivation of a Cd TRV.
Collapse
Affiliation(s)
- Heather R Schaefer
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA.
| | - Brenna M Flannery
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lynn Crosby
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Olivia E Jones-Dominic
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Cecile Punzalan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Karlyn Middleton
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
12
|
Comparison of antagonistic effects of nanoparticle-selenium, selenium-enriched yeast and sodium selenite against cadmium-induced cardiotoxicity via AHR/CAR/PXR/Nrf2 pathways activation. J Nutr Biochem 2022; 105:108992. [DOI: 10.1016/j.jnutbio.2022.108992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
|
13
|
Tägt J, Helte E, Donat-Vargas C, Larsson SC, Michaëlsson K, Wolk A, Vahter M, Kippler M, Åkesson A. Long-term cadmium exposure and fractures, cardiovascular disease, and mortality in a prospective cohort of women. ENVIRONMENT INTERNATIONAL 2022; 161:107114. [PMID: 35114608 DOI: 10.1016/j.envint.2022.107114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cadmium (Cd) is a toxic metal, which the non-smoking population is mainly exposed to through diet. Current health-based guidance values are based on renal toxicity; however, emerging evidence suggests that bone and the cardiovascular system might be more sensitive to Cd exposure. OBJECTIVE To assess the association of urinary Cd (U-Cd) with incidence of fractures, myocardial infarction, heart failure, ischemic stroke and mortality in postmenopausal women. METHODS We used data from 4024 women, aged 56-85 in the population-based prospective Swedish Mammography Cohort-Clinical. U-Cd was measured by ICP-MS at baseline (2004-2009) and categorized into tertiles. Incident cases of the outcomes were ascertained via register linkage through 2019. Multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression. RESULTS The median U-Cd at baseline was 0.33 µg/g creatinine (cr) (5-95 percentiles 0.15-0.77). We ascertained the following incident cases: 903 first fracture of any type, 149 myocardial infarction, 174 heart failure, 162 ischemic stroke and 545 total deaths during the approximately 11 years of follow-up. U-Cd was dose-dependently associated with risk of any fracture (HR: 1.20, 95% CI: 1.01 to 1.43, ptrend: 0.04) and all-cause mortality (HR: 1.38, 95% CI: 1.10 to 1.74, ptrend: <0.01) when comparing the highest tertile of U-Cd (median 0.54 µg/g cr) with the lowest (median 0.20 µg/g cr). No clear associations were observed for myocardial infarction, heart failure or stroke. DISCUSSION Long-term Cd exposure might be associated with risk of fractures and all-cause mortality at lower levels than previously suggested.
Collapse
Affiliation(s)
- Jonas Tägt
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Donat-Vargas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Preventive Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Sciences, Unit of Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Unit of Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Sciences, Unit of Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Sears CG, Eliot M, Raaschou-Nielsen O, Poulsen AH, Harrington JM, Howe CJ, James KA, Roswall N, Overvad K, Tjønneland A, Meliker J, Wellenius GA. Urinary Cadmium and Incident Heart Failure: A Case-Cohort Analysis Among Never-Smokers in Denmark. Epidemiology 2022; 33:185-192. [PMID: 34860726 PMCID: PMC8810592 DOI: 10.1097/ede.0000000000001446] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Epidemiologic studies suggest cadmium exposure is associated with cardiovascular disease risk, including heart failure. However, prior findings may be influenced by tobacco smoking, a dominant source of cadmium exposure and risk factor for heart failure. The present study leverages up to 20 years of follow-up in the Danish Diet, Cancer and Health cohort to examine the relationship between urinary cadmium and incident heart failure among people who never smoked. METHODS Between 1993 and 1997, 19,394 never-smoking participants (ages 50-64 years) enrolled and provided a urine sample. From this sample, we randomly selected a subcohort of 600 men and 600 women and identified 958 incident heart failure cases occurring between baseline and 2015. Using a case-cohort approach, we estimated adjusted hazard ratios (aHR) for heart failure in Cox proportional hazards models with age as the time scale. RESULTS Participants had relatively low concentrations of urinary cadmium, as expected for never smokers (median = 0.20; 25th, 75th = 0.13, 0.32 μg cadmium/g creatinine). In adjusted models, we found that higher urinary cadmium was associated with a higher rate of incident heart failure overall (aHR = 1.1 per interquartile range difference [95% CI = 1.0, 1.2). In sex-stratified analyses, the association seemed restricted to men (aHR = 1.5 [95% CI = 1.2, 1.9]). CONCLUSIONS In this cohort of people who never smoked tobacco, environmental cadmium was positively associated with incident heart failure, especially among men.
Collapse
Affiliation(s)
- Clara G. Sears
- Department of Epidemiology, Brown University School of
Public Health, Providence, RI, USA
- Christina Lee Brown Envirome Institute, Division of
Environmental Medicine, Department of Medicine, University of Louisville,
Louisville, KY, USA
| | - Melissa Eliot
- Department of Epidemiology, Brown University School of
Public Health, Providence, RI, USA
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen,
Denmark
- Department of Environmental Science, Aarhus University,
Roskilde, Denmark
| | | | - James M. Harrington
- Center for Analytical Science, Research Triangle Institute,
Research Triangle Park, NC, USA
| | - Chanelle J. Howe
- Department of Epidemiology, Brown University School of
Public Health, Providence, RI, USA
| | - Katherine A. James
- Department of Family Medicine, University of Colorado
Denver, Denver, CO, USA
| | - Nina Roswall
- Danish Cancer Society Research Center, Copenhagen,
Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus,
Denmark
- Department of Cardiology, Aalborg University Hospital,
Aalborg, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen,
Denmark
- Department of Public Health, University of Copenhagen,
Copenhagen, Denmark
| | - Jaymie Meliker
- Program in Public Health, Department of Family,
Population, & Preventive Medicine, Stony Brook University, NY, USA
| | - Gregory A. Wellenius
- Department of Epidemiology, Brown University School of
Public Health, Providence, RI, USA
- Department of Environmental Health, Boston University,
Boston, MA, USA
| |
Collapse
|
15
|
The preferential accumulation of cadmium ions among various tissues in mice. Toxicol Rep 2022; 9:111-119. [PMID: 35059304 PMCID: PMC8760390 DOI: 10.1016/j.toxrep.2022.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is hazardous to human health because of its toxicity and long half-life of clearance. Many studies have explored the relationship between chronic Cd exposure and different human diseases. However, most of the studies limited the study targets of Cd toxicity to two or three organ systems. The goal of this study was to establish a mouse model of Cd accumulation in most organ systems and to particularly investigate the potential toxic effects of Cd to the cardiovascular system. Mice were divided into three groups: the control group, Cd-100 group, and Cd-200 group. In the control group, Cd was detected in the kidney, lung, liver, heart and urine but was undetectable in the aorta, intestine, thigh bone, spinal bone and serum. Upon chronic exposure in the Cd-100 and Cd-200 groups, Cd accumulated in all tissues, with a dramatic increase in concentration. We confirmed that Cd could accumulate significantly in the heart and aorta upon chronic exposure. This finding might help to explain the potential toxic effects of Cd on these organs. In addition, the calcium concentration in the bones and kidney declined when the exposure to Cd increased. This finding aligned with the negative effects of Cd on bony mineralization and the potential direct toxic effects of Cd on bones. The impacts of Cd on the cardiovascular system were explored. Histologically, chronic Cd exposure led to myocytes hypertrophy and myocardial architecture disarray in the Cd-100 group compared to those in the control group. Our research confirms that Cd can accumulate in all of the organs studied upon chronic exposure, and suggests that the toxicity of Cd accumulation may play important roles in mediating the pathophysiologic effects in these target organs, especially the bone and heart.
Collapse
|
16
|
Sielski J, Kaziród-Wolski K, Jóźwiak MA, Jóźwiak M. The influence of air pollution by PM2.5, PM10 and associated heavy metals on the parameters of out-of-hospital cardiac arrest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147541. [PMID: 34134382 DOI: 10.1016/j.scitotenv.2021.147541] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Out-of-hospital cardiac arrest (OHCA), defined as abrupt cessation of mechanical activity of the heart, is one of the most common causes of death in high-income countries. Cardiac arrest is most often a result of severe cardiovascular disease. New evidence shows that air pollutants such as heavy metals and atmospheric particulate matter have an impact on the pathophysiology of many cardiovascular diseases as well on incidences of OHCA. This retrospective analysis includes all OHCA cases that occurred in central Poland covering the area of 11.711 km2 with the population density of 108 people per square kilometer. Among 2878 EMS-treated OHCA cases between 2013 and 2016, cardiopulmonary resuscitation (CPR) was attempted in 2076 (72%) patients. Concentrations of air pollutants were compared with temperature, humidity and clinical factors affecting the CPR. The study shows seasonal variation of PM 2.5 (p < 0.001), PM 10 (p < 0.001), As (p < 0.001) and Cd (p < 0.001) over the years. Air pollution has a significant effect on the parameters of pre-hospital evaluation in OHCA patients, especially with respect to the content of PM2.5/PM10 and heavy metals. Nickel exposure affects the incidence of initial shockable rhythm (IRR 0.92; p = 0.01) and effectiveness of CPR (IRR 0.94; p = 0.003). Arsenic has an impact on overall mortality (IRR 1.07; p = 0.01) and death upon the arrival of EMS team (IRR 1.15; p < 0.001). Overall mortality was also related to ambient levels of PM10 (IRR 1.004; p < 0.047).
Collapse
Affiliation(s)
- Janusz Sielski
- The Jan Kochanowski University in Kielce, Collegium Medicum, Poland
| | | | | | - Marek Jóźwiak
- The Jan Kochanowski University, Institute of Geography and Environmetal Sciences, Poland.
| |
Collapse
|
17
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
18
|
Skalny AV, Kopylov PY, Paoliello MMB, Chang JS, Aschner M, Bobrovnitsky IP, Chao JCJ, Aaseth J, Chebotarev SN, Tinkov AA. Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158195. [PMID: 34360489 PMCID: PMC8345938 DOI: 10.3390/ijerph18158195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
The objective of the present study was to evaluate hair toxic metal levels in patients with obesity and/or coronary heart disease (CHD). Following a 2 × 2 factorial design, subjects without CHD were grouped into normal weight control (n = 123) and obese groups (n = 140). Patients suffering from CHD were divided into normal weight (n = 180) and obese CHD subjects (n = 240). Hair Al, As, Cd, Hg, Ni, and Pb levels were evaluated using inductively-coupled plasma mass-spectrometry. The data demonstrate that hair Al and Hg levels were higher in obese subjects as compared to normal weight controls. Normal weight CHD patients were characterized by significantly higher hair Al, As, Cd, and Pb levels when compared to healthy subjects. The highest hair Al, As, and Pb levels were observed in obese CHD patients, significantly exceeding the respective values in other groups. Factorial analysis revealed significant influence of factorial interaction (CHD*obesity) only for hair Pb content. Given the role of obesity as a risk factor for CHD, it is proposed that increased toxic metal accumulation in obesity may promote further development of cardiovascular diseases.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (A.V.S.); (P.Y.K.)
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia;
| | - Philippe Yu Kopylov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (A.V.S.); (P.Y.K.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (M.M.B.P.); (M.A.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (J.-S.C.); (J.C.-J.C.)
- College of Public Health, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (M.M.B.P.); (M.A.)
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
| | - Igor P. Bobrovnitsky
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Centre for Strategic Planning of FMBA of Russia, 123182 Moscow, Russia
| | - Jane C.-J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (J.-S.C.); (J.C.-J.C.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jan Aaseth
- College of Public Health, Taipei Medical University, Taipei 110, Taiwan;
- Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Sergei N. Chebotarev
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia;
| | - Alexey A. Tinkov
- College of Public Health, Taipei Medical University, Taipei 110, Taiwan;
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Correspondence: ; Tel.: +7-961-937-8198
| |
Collapse
|
19
|
Lin HC, Hao WM, Chu PH. Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value. Rev Port Cardiol 2021; 40:611-617. [PMID: 34392906 DOI: 10.1016/j.repce.2021.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/09/2021] [Indexed: 11/26/2022] Open
Abstract
Cadmium is a widely distributed toxic heavy metal that has been associated with many diseases including chronic renal dysfunction, osteomalacia, acute heart failure, secondary hypertension, and atherosclerosis. Although several studies have suggested that cadmium may affect multiple systems by inducing lipid per oxidation in cells and disturbing the antioxidant system, the mechanism by which cadmium affects the cardiovascular system remains unclear. Recent studies on heart failure and acute myocardial infarction have shown that cadmium has good predictive ability for mortality in patients with cardiovascular disease. In this study, we briefly review the role of cadmium in cardiovascular disease, which may prompt further studies to investigate the potential association between cadmium and mortality in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Hung-Chen Lin
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, China; Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Ming Hao
- Shanghai Medical College, Fudan University, Shanghai, China; Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value. Rev Port Cardiol 2021. [PMID: 34103231 DOI: 10.1016/j.repc.2021.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cadmium is a widely distributed toxic heavy metal that has been associated with many diseases including chronic renal dysfunction, osteomalacia, acute heart failure, secondary hypertension, and atherosclerosis. Although several studies have suggested that cadmium may affect multiple systems by inducing lipid per oxidation in cells and disturbing the antioxidant system, the mechanism by which cadmium affects the cardiovascular system remains unclear. Recent studies on heart failure and acute myocardial infarction have shown that cadmium has good predictive ability for mortality in patients with cardiovascular disease. In this study, we briefly review the role of cadmium in cardiovascular disease, which may prompt further studies to investigate the potential association between cadmium and mortality in patients with cardiovascular disease.
Collapse
|
21
|
García-Esquinas E, Téllez-Plaza M, Pastor-Barriuso R, Ortolá R, Olmedo P, Gil F, López-García E, Navas-Acien A, Rodríguez-Artalejo F. Blood cadmium and physical function limitations in older adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116748. [PMID: 33639488 DOI: 10.1016/j.envpol.2021.116748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cadmium (Cd) is a toxic metal found in tobacco, air and food. Recent cross-sectional studies have suggested that Cd negatively impacts physical performance, but the prospective association is uncertain. METHODS We used data from 2548 older adults from the Seniors-ENRICA II cohort in Madrid, Spain. Whole blood Cd levels were measured at baseline using inductively coupled plasma-mass spectrometry. At baseline (2017) and follow-up (2019), overall physical function was evaluated using the physical component summary (PCS) of the SF 12-Item Health questionnaire, lower-extremity performance with the Short Physical Performance Battery (SPPB), muscle weakness with a hand dynamometer, and frailty with a Deficit Accumulation index. Mobility limitations and disability in instrumental activities of daily living (IADL) were ascertained with standardized questionnaires. Analyses were adjusted for relevant confounders, including tobacco smoke, number of cigarettes smoked per day and time since cessation in former smokers. RESULTS In cross-sectional analyses, odds ratios (95% confidence interval) per two-fold increase in blood Cd were 1.16 (1.03; 1.31) for low PCS scores, 1.08 (0.97; 1.20) for impaired lower-extremity performance, 1.10 (0.98; 1.23) for low grip strength, 1.11 (1.02; 1.20) for mobility limitations, 1.16 (1.02; 1.31) for frailty, and 1.26 (1.08; 1.47) for IADL disability. In longitudinal analyses, corresponding hazard ratios were 1.25 (1.03; 1.51) for low PCS scores, 1.14 (1.03; 1.27) for impaired lower-extremity performance, 1.02 (0.92; 1.13) for low grip strength, 1.03 (0.91; 1.16) for mobility limitations, and 1.16 (1.00; 1.35) for frailty. All the associations where consistent when current smokers were excluded from the analyses. CONCLUSIONS Our results support the role of Cd as a risk factor for physical function impairments in older adults.
Collapse
Affiliation(s)
- Esther García-Esquinas
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain.
| | - María Téllez-Plaza
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain; Biomedical Research Institute Hospital Clinic de Valencia (INCLIVA), Valencia, Valencia, Spain
| | - Roberto Pastor-Barriuso
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Rosario Ortolá
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, Granada, Spain
| | - Fernando Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, Granada, Spain
| | - Esther López-García
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; IdiPaz (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
22
|
Klinova SV, Katsnelson BA, Minigalieva IA, Gerzen OP, Balakin AA, Lisin RV, Butova KA, Nabiev SR, Lookin ON, Katsnelson LB, Privalova LI, Kuznetsov DA, Shur VY, Shishkina EV, Makeev OH, Valamina IE, Panov VG, Sutunkova MP, Nikitina LV, Protsenko YL. Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. Int J Mol Sci 2021; 22:ijms22073466. [PMID: 33801669 PMCID: PMC8036427 DOI: 10.3390/ijms22073466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO–NP and PbO–NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling β–MHC. The type of CdO–NP + PbO–NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb–NP and CdO–NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.
Collapse
Affiliation(s)
- Svetlana V. Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Boris A. Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-3717-740; Cell: +7-922-126-30-90
| | - Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Oksana P. Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Alexander A. Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Ruslan V. Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Ksenia A. Butova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Salavat R. Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Oleg N. Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Leonid B. Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Daniil A. Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Vladimir Ya. Shur
- School of Natural Sciences and Mathematics, The Ural Federal University, 620002 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.)
| | - Ekaterina V. Shishkina
- School of Natural Sciences and Mathematics, The Ural Federal University, 620002 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.)
| | - Oleg H. Makeev
- The Central Research Laboratory, The Ural State Medical University, 620014 Yekaterinburg, Russia; (O.H.M.); (I.E.V.)
| | - Irene E. Valamina
- The Central Research Laboratory, The Ural State Medical University, 620014 Yekaterinburg, Russia; (O.H.M.); (I.E.V.)
| | - Vladimir G. Panov
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (L.I.P.); (V.G.P.); (M.P.S.)
| | - Larisa V. Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| | - Yuri L. Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (O.P.G.); (A.A.B.); (R.V.L.); (K.A.B.); (S.R.N.); (O.N.L.); (L.B.K.); (D.A.K.); (L.V.N.); (Y.L.P.)
| |
Collapse
|
23
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
24
|
Lamkarkach F, Ougier E, Garnier R, Viau C, Kolossa-Gehring M, Lange R, Apel P. Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for cadmium and its compounds. ENVIRONMENT INTERNATIONAL 2021; 147:106337. [PMID: 33385924 DOI: 10.1016/j.envint.2020.106337] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 12/11/2020] [Indexed: 05/25/2023]
Abstract
AIMS The methodology agreed within the framework of the HBM4EU project is used in this work to derive HBM-GVs for the general population (HBM-GVGenPop) and for workers (HBM-GVWorker) exposed to cadmium (Cd) and its compounds. METHODS For Cd, a significant number of epidemiological studies with dose-response relationships are available, in particular for kidney effects. These effects are described in terms of a relation between urinary Cd (U-Cd) or blood Cd (B-Cd) levels and low molecular weight proteinuria (LMWP) markers like beta-2-microglobulin (β2M) and retinol-binding protein (RBP). In order to derive HBM-GVs for the general population and workers, an assessment of data from evaluations conducted by national or international organisations was undertaken. In this work, it appeared relevant to select renal effects as the critical effect for the both groups, however, differences between general population (including sensitive people) and workers (considered as an homogenous population of adults who should not be exposed to Cd if they suffer from renal diseases) required the selection of different key studies (i.e. conducted in general population for HBM-GVGenPop and at workplace for HBM-GVWorker). RESULTS AND CONCLUSIONS For U-Cd, a HBM-GVGenPop of 1 µg/g creatinine (creat) is recommended for adults older than 50 years, based on a robust meta-analysis performed by EFSA (EFSA, 2009a). To take into account the accumulation of Cd in the human body throughout life, threshold or 'alert' values according to age were estimated for U-Cd. At workplace, a HBM-GVWorker of 2 μg/g creat is derived from the study of Chaumont et al., (2011) for U-Cd, and in addition to this recommendation a HBM-GVworker for B-Cd of 5 µg/L is also proposed. The HBM-GVWorker for U-Cd is similar to the biological limit value (BLV) set by the new amendment of the European Carcinogens and Mutagens Directive in June 2019 (2 µg/g creat for U-Cd).
Collapse
Affiliation(s)
- Farida Lamkarkach
- ANSES, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| | - Eva Ougier
- ANSES, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Robert Garnier
- Paris Poison Centre, Toxicology Department (FeTox), APHP, Lariboisière-Fernand-Widal Hospital, Paris, France
| | - Claude Viau
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Canada
| | | | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| |
Collapse
|
25
|
Leconte S, Rousselle C, Bodin L, Clinard F, Carne G. Refinement of health-based guidance values for cadmium in the French population based on modelling. Toxicol Lett 2021; 340:43-51. [PMID: 33440227 DOI: 10.1016/j.toxlet.2020.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023]
Abstract
In France, part of the population is overexposed to cadmium by the diet. In our work, we first revised the tolerable daily intake (TDI) of 0.36 μg Cd.kg bw.d.-1 proposed by the European Food Safety Authority (EFSA), derived from effects on kidneys and based on the critical urinary Cd concentration of 1.0 μg Cd.g-1 creatinine for humans. After reviewing the epidemiological data on Cd toxicity published after 2011, bone effects were selected as the critical effects. Body burden data of 0.5 μg.g-1 creatinine was chosen for the critical threshold for human urinary cadmium concentrations. To be used for the derivation of the new oral toxicological reference value, we used a modified physiologically based pharmacokinetic model (PBPK). The reverse calculation on the PBPK model gave a TDI of 0.35 μg Cd.kg bw-1.day-1. This TDI is compatible with a urinary Cd concentrations not exceeding 0.5 μg Cd.g-1 creatinine, in a 60 year-old adult, assuming that ingestion is the only source of exposure to Cd at 60 years. After implementing the PBPK model with French physiological data, Cd biological reference values as a function of age were modelled so as to remain below the revised health-based guidance values.
Collapse
Affiliation(s)
- Stéphane Leconte
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France.
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| | - Laurent Bodin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| | - François Clinard
- Sante publique France - National Public Health Agency (ANSP) - Bourgogne-Franche-Comté Regional Unit, France
| | - Géraldine Carne
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Risk Assessment Department, 14 rue Pierre et Marie Curie, F-94701 Maisons-Alfort Cedex, France
| |
Collapse
|
26
|
Association of Blood Cadmium with Cardiovascular Disease in Korea: From the Korea National Health and Nutrition Examination Survey 2008-2013 and 2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176288. [PMID: 32872339 PMCID: PMC7503499 DOI: 10.3390/ijerph17176288] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally, although the mortality rate has declined with improved technology and risk factor control. The incidence rate of stroke, one of the CVDs, is increasing in young adults, whereas it is decreasing in the elderly. The risk factors for CVD may differ between young adults and the elderly. Previous studies have suggested that cadmium was a potential CVD risk factor in the overall and middle-aged to elderly populations. We assessed the associations between cadmium and CVD events in the Korean population aged 20-59 years using the 2008-2013 and 2016 Korea National Health and Nutrition Examination Survey (KNHANES), a population-based cross-sectional study. Among 10,626 participants aged 20-59 years, those with high blood cadmium (BCd) level (>1.874 µg/L, 90th percentile) were higher associated with stroke and hypertension (stroke: odds ratio (OR), 2.39; 95% confidence interval (CI), 1.03-5.56; hypertension: OR, 1.46; 95% CI, 1.20-1.76). The strongest association between high blood cadmium concentrations and hypertension was among current smokers. Ischemic heart disease (IHD) was not associated with high blood cadmium level. These findings suggest that high blood cadmium levels may be associated with prevalent stroke and hypertension in the Korean population under 60 years of age.
Collapse
|
27
|
Yu HT, Zhen J, Xu JX, Cai L, Leng JY, Ji HL, Keller BB. Zinc protects against cadmium-induced toxicity in neonatal murine engineered cardiac tissues via metallothionein-dependent and independent mechanisms. Acta Pharmacol Sin 2020; 41:638-649. [PMID: 31768045 PMCID: PMC7471469 DOI: 10.1038/s41401-019-0320-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cadmium (Cd) is a nonessential heavy metal and a prevalent environmental toxin that has been shown to induce significant cardiomyocyte apoptosis in neonatal murine engineered cardiac tissues (ECTs). In contrast, zinc (Zn) is a potent metallothionein (MT) inducer, which plays an important role in protection against Cd toxicity. In this study, we investigated the protective effects of Zn against Cd toxicity in ECTs and explore the underlying mechanisms. ECTs were constructed from neonatal ventricular cells of wild-type (WT) mice and mice with global MT gene deletion (MT-KO). In WT-ECTs, Cd (5-20 μM) caused a dose-dependent toxicity that was detected within 8 h evidenced by suppressed beating, apoptosis, and LDH release; Zn (50-200 μM) dose-dependently induced MT expression in ECTs without causing ECT toxicity; co-treatment of ECT with Zn (50 µM) prevented Cd-induced toxicity. In MT-KO ECTs, Cd toxicity was enhanced; but unexpectedly, cotreatment with Zn provided partial protection against Cd toxicity. Furthermore, Cd, but not Zn, significantly activated Nrf2 and its downstream targets, including HO-1; inhibition of HO-1 by a specific HO-1 inhibitor, ZnPP (10 µM), significantly increased Cd-induced toxicity, but did not inhibit Zn protection against Cd injury, suggesting that Nrf2-mediated HO-1 activation was not required for Zn protective effect. Finally, the ability of Zn to reduce Cd uptake provided an additional MT-independent mechanism for reducing Cd toxicity. Thus, Zn exerts protective effects against Cd toxicity for murine ECTs that are partially MT-mediated. Further studies are required to translate these findings towards clinical trials.
Collapse
Affiliation(s)
- Hai-Tao Yu
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Juan Zhen
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jian-Xiang Xu
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Lu Cai
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Radiation Oncology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Ji-Yan Leng
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong-Lei Ji
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
28
|
Protsenko YL, Klinova SV, Gerzen OP, Privalova LI, Minigalieva IA, Balakin AA, Lookin ON, Lisin RV, Butova KA, Nabiev SR, Katsnelson LB, Nikitina LV, Katsnelson BA. Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination. Toxicol Rep 2020; 7:433-442. [PMID: 32181144 PMCID: PMC7063142 DOI: 10.1016/j.toxrep.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
Subchronic intoxications induced in male rats by repeated intraperitoneal injections of lead acetate and cadmium chloride, administered either alone or in combination, are shown to affect the biochemical, cytological and morphometric parameters of blood, liver, heart and kidneys. The single twitch parameters of myocardial trabecular and papillary muscle preparations were measured in the isometric regime to identify changes in the heterometric (length-force) and chronoinotropic (frequency-force) contractility regulation systems. Differences in the responses of these systems in trabecules and papillary muscles to the above intoxications are shown. A number of myocardium mechanical characteristics changing in rats under the effect of a combined lead-cadmium intoxication and increased proportion of α-myosin heavy chains were observed to normalize fully or partially if such intoxication was induced against background administration of a proposed bioprotective complex. Based on the experimental results and literature data, some assumptions are suggested concerning the mechanisms of the cardiotoxic effects produced by lead and cadmium.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ksenya A Butova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.,Ural Federal University, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
29
|
Klinova SV, Minigalieva IA, Privalova LI, Valamina IE, Makeyev OH, Shuman EA, Korotkov AA, Panov VG, Sutunkova MP, Ryabova JV, Bushueva TV, Shtin TN, Gurvich VB, Katsnelson BA. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol 2019; 136:110971. [PMID: 31751644 DOI: 10.1016/j.fct.2019.110971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Outbred male rats were repeatedly injected intraperitoneally two-level sub-lethal doses of lead acetate and/or cadmium chloride solutions 3 times a week during 6 weeks. The animals developed explicit, even if moderate, subchronic intoxication characterized by a large number of indices, both common to both metals (including increased DNA fragmentation coefficient) and lead-specific. Special attention was paid to hemodynamic and electrocardiographic effects. The combined action of lead and cadmium was modeled with the help of the Response Surface Methodology to obtain additional support for the previously substantiated postulates of combined toxicity's typological ambiguity. This is dependent on which particular effect comes under consideration, on its level, and on the acting dose ratio. For one and the same toxic combination, the type of combined toxic action can vary from synergistic to contra-directional. In particular, the actions of lead and cadmium on blood pressure were found to be opposite in direction. Furthermore, it is shown once again that the systemic toxic effects of a metal combination, its in vivo genotoxicity included, can be more or less attenuated by background administration of a theoretically justified composition of biologically active agents.
Collapse
Affiliation(s)
- Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str, Ekaterinburg, 620109, Russia
| | - Oleg H Makeyev
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Eugene A Shuman
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Artem A Korotkov
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str, Ekaterinburg, 620990, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Julia V Ryabova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana N Shtin
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia.
| |
Collapse
|
30
|
Refaie MMM, El-Hussieny M, Bayoumi AMA, Shehata S. Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103198. [PMID: 31154273 DOI: 10.1016/j.etap.2019.103198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal with several harmful effects including cardiotoxicity. For the first time, we aimed to evaluate the possible cardioprotective effect of carvedilol (CAR) in Cd induced cardiotoxicity and study the mechanisms involved in such protection including endothelial nitric oxide synthase (eNOS) and HO1/Nrf2 pathway. CAR (1,10 mg/kg/d) was administered orally for 4 weeks with Cd induced cardiac injury (3 mg/kg/d) orally for 4 weeks. We measured cardiac enzymes, mean arterial pressure changes, heme oxygenase-1 (HO1) and total antioxidant capacity (TAC). Moreover; cardiac tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), western blotting of caspase3 and eNOS levels and histopathology were evaluated. Immunoexpression of eNOS in cardiac tissue, gene expression changes of HO1, and nuclear factor erythroid 2-related factor 2 (Nrf2) using real time polymerase chain reactions (rtPCR) were detected. Our results showed that CAR could significantly decrease Cd induced cardiotoxicity.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61511, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| |
Collapse
|
31
|
Ansari MN, Ganaie MA, Rehman NU, Alharthy KM, Khan TH, Imam F, Ansari MA, Al-Harbi NO, Jan BL, Sheikh IA, Hamad AM. Protective role of Roflumilast against cadmium-induced cardiotoxicity through inhibition of oxidative stress and NF-κB signaling in rats. Saudi Pharm J 2019; 27:673-681. [PMID: 31297022 PMCID: PMC6598217 DOI: 10.1016/j.jsps.2019.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd), a potent cardiotoxic environmental heavy metal, induces oxidative stress and membrane disturbances in cardiac myocytes. Phosphodiesterase (PDEs) retards the positive inotropic effects of β-adrenoceptor activation by decreasing levels of cAMP via degradation. Hence, PDE inhibitors sensitize the heart to catecholamine and are therefore, used as positive inotropic agents. The present study was designed to probe the potential attenuating effects of the selective PDE4 inhibitor (Roflumilast, ROF), on cardiac biomarkers, lipid profile, lipid peroxidation products, antioxidant status and histology of cardiac tissues against Cd-induced cardiotoxicity in rats. Rats were randomly distributed into four different groups: group 1, served as the normal control group. Group 2, served as the toxic control group and were administered Cd (3 mg/kg, i.p.) for next 7 days. Groups 3 and 4, served as treatment groups that received Cd with concomitant oral administration of ROF doses (0.5 and 1.5 mg/kg), respectively for 7 days. Serum samples of toxic control group rats resulted in significant (P < 0.001) increase in lactate dehydrogenase (LDH), creatine phosphokinase (CPK), total cholesterol (TC), triglycerides (TG) and low density lipoproteins (LDL) levels with concomitant decrease in high density lipoproteins (HDL) levels in serum which were found reversed with both of ROF treatment groups. Cd also causes significant increased (P < 0.001) in myocardial malondialdehyde (MDA) contents while cardiac glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) enzyme activities were found decreased whereas both doses of ROF, significantly reversed these oxidative stress markers and antioxidant enzymes. Cardiotoxicity induced by Cd also resulted in enhanced expression of non-phosphorylated and phosphorylated form of NF-κB p65 and decreased expression of glutathione-S-transferase (GST) and NQO1 which were found reversed with ROF treatments, comparable to normal control group. Histopathological changes were also improved by ROF administration as compared to Cd treated rats alone. In conclusion, Roflumilast exhibited attenuating effect against Cd-induced cardiac toxicity.
Collapse
Affiliation(s)
- Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Majid A. Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Najeeb Ur Rehman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Tajdar H. Khan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basit L. Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ishfaq A. Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abubaker M. Hamad
- Department of Basic Sciences, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Histopathology and Cytopathology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani, Sudan
| |
Collapse
|
32
|
Borné Y, Fagerberg B, Sallsten G, Hedblad B, Persson M, Melander O, Nilsson J, Orho-Melander M, Barregard L, Engström G. Biomarkers of blood cadmium and incidence of cardiovascular events in non-smokers: results from a population-based proteomics study. Clin Proteomics 2019; 16:21. [PMID: 31114450 PMCID: PMC6518646 DOI: 10.1186/s12014-019-9231-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cadmium is a toxic metal with multiple adverse health effects, including risk of cardiovascular disease (CVD). The mechanistic link between cadmium and CVD is unclear. Our aim was to examine the associations between blood cadmium (B-Cd) and 88 potential protein biomarkers of CVD. METHODS B-Cd and 88 plasma proteins were measured in a community-based prospective cohort, the Malmö Diet and Cancer study. The primary analysis was performed in never smokers (n = 1725). Multiple linear regression was used with adjustments for age and sex, and correction for multiple comparisons using the false discovery rate method. Proteins significantly associated with B-Cd were replicated in long-term former smokers (n = 782). Significant proteins were then studied in relation to incidence of CVD (i.e., coronary events or ischemic stroke) in never smokers. RESULTS Fifteen proteins were associated with B-Cd in never smokers. Eight of them were replicated in long-term former smokers. Kidney injury molecule-1, fibroblast growth factor-23 (FGF23), tumor necrosis factor receptor-2, matrix metalloproteinase-12, cathepsin L1, urokinase plasminogen activator receptor, C-C motif chemokine-3 (CCL3), and chemokine (C-X3-C motif) ligand-1 were associated with B-Cd both in never smokers and long-term former smokers. Except for CCL3 and FGF23, these proteins were also significantly associated with incidence of CVD. CONCLUSIONS B-Cd in non-smokers was associated with eight potential plasma biomarkers of CVD and kidney injury. The results suggest pathways for the associations between B-Cd and CVD and kidney injury.
Collapse
Affiliation(s)
- Yan Borné
- Department of Clinical Sciences in Malmö, CRC, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Björn Fagerberg
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Bo Hedblad
- Department of Clinical Sciences in Malmö, CRC, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Margaretha Persson
- Department of Clinical Sciences in Malmö, CRC, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences in Malmö, CRC, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences in Malmö, CRC, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, CRC, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, CRC, Lund University, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| |
Collapse
|
33
|
Joo SH, Lee J, Hutchinson D, Song YW. Prevalence of rheumatoid arthritis in relation to serum cadmium concentrations: cross-sectional study using Korean National Health and Nutrition Examination Survey (KNHANES) data. BMJ Open 2019; 9:e023233. [PMID: 30610019 PMCID: PMC6326419 DOI: 10.1136/bmjopen-2018-023233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES It has been suggested that exposure to heavy metal cadmium (Cd) may contribute to a high risk of developing rheumatoid arthritis (RA). This study was to investigate the association of RA prevalence and serum concentrations of Cd and other heavy metals through large survey data analysis. DESIGN A retrospective cross-sectional survey study. SETTING Large population survey in Korea. PARTICIPANTS 53 829 subjects participated in Korean National Health and Nutrition Examination Survey (KNHANES) from 2008 to 2013. INTERVENTIONS Heavy metals were measured in different time periods of the survey programme which resulted in three different data sets for analysis: Cd, mercury (Hg) and lead (Pb) from 2008 to 2012 survey; serum manganese (Mn) and urine arsenic (As) from 2008 to 2009 survey; and serum zinc (Zn) from 2010 survey. RA prevalence and its associations with serum heavy metals were analysed using a general linear/logistic regression model of complex sample design. RESULTS Serum Cd was elevated in patients with RA (RA vs control: 1.30±0.07 µg/L vs 1.17±0.01 µg/L, p<0.01). There were no significant differences in urine levels of As or serum levels of Pb, Hg, Mn or Zn between patients with RA and controls. OR (95% CI) of RA prevalence according to 1 µg/L increase of serum Cd level was 1.28(95% CI 1.03 to 1.61). Prevalence of RA in women was increased with increasing quartiles of Cd levels, with a 19-fold difference in female RA prevalence between individuals in the lowest quartile of serum Cd level and those in the highest quartile (0.18% vs 3.42%). Cubic spline curve of prevalence OR showed increased risk of RA according to increased serum Cd level. Increased risk of RA in men was not observed with increased serum Cd levels. CONCLUSION There was an increased prevalence of RA in females associated with increased serum levels of Cd in the Korean population.
Collapse
Affiliation(s)
- Sang Hyun Joo
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Joongyub Lee
- Division of Clinical Epidemiology, Medical Research Collaborating Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - David Hutchinson
- Rheumatology Department, Royal Cornwall Hospital, Truro, UK
- Rheumatology Department, University of Exeter Medical School, Truro, UK
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
34
|
Association Between Urinary Cadmium and QRS|T Angle Among Adults in the United States. J Occup Environ Med 2018; 60:e412-e415. [PMID: 29905644 DOI: 10.1097/jom.0000000000001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cadmium's effect on QRS|T angle has not been studied. An abnormal QRS|T angle deviation may increase the risk for ventricular dysrhythmias. METHODS We calculated the orientation of spatial QRS|T angle using QRS and T amplitudes of leads V2, V5, V6, and AVF from the National Health and Nutritional Examination Survey III. Cadmium concentration was measured in urine. We fit weighted unadjusted and adjusted logistic regressions to calculate odds ratios and their corresponding 95% confidence intervals. RESULTS A unit increase in the logarithm of urinary cadmium increased the odds of QRS|T angle deviation by 30% [1.30 (1.01 to 1.61)]. CONCLUSIONS Cadmium exposure was associated with an abnormal QRS|T angle in women but not in men. Women exposed to cadmium should be periodically evaluated to detect QRS|T angle deviation, which can predispose them to ventricular dysrhythmias.
Collapse
|
35
|
SES, Heart Failure, and N-terminal Pro-b-type Natriuretic Peptide: The Atherosclerosis Risk in Communities Study. Am J Prev Med 2018; 54:229-236. [PMID: 29241718 PMCID: PMC5828682 DOI: 10.1016/j.amepre.2017.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/14/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Compared with coronary heart disease and stroke, the association between SES and the risk of heart failure is less well understood. METHODS In 12,646 participants of the Atherosclerosis Risk in Communities Study cohort free of heart failure history at baseline (1987-1989), the association of income, educational attainment, and area deprivation index with subsequent heart failure-related hospitalization or death was examined while accounting for cardiovascular disease risk factors and healthcare access. Because SES may affect threshold of identifying heart failure and admitting for heart failure management, secondarily the association between SES and N-terminal pro-b-type natriuretic peptide (NT-proBNP) levels, a marker reflecting cardiac overload, was investigated. Analysis was conducted in 2016. RESULTS During a median follow-up of 24.3 years, a total of 2,249 participants developed heart failure. In a demographically adjusted model, the lowest-SES group had 2.2- to 2.5-fold higher risk of heart failure compared with the highest SES group for income, education, and area deprivation. With further adjustment for time-varying cardiovascular disease risk factors and healthcare access, these associations were attenuated but remained statistically significant (e.g., hazard ratio=1.92, 95% CI=1.69, 2.19 for the lowest versus highest income), with no racial interaction (p>0.05 for all SES measures). Similarly, compared with high SES, low SES was associated with both higher baseline level of NT-proBNP in a multivariable adjusted model (15% higher, p<0.001) and increase over time (~1% greater per year, p=0.023). CONCLUSIONS SES was associated with clinical heart failure as well as NT-proBNP levels inversely and independently of traditional cardiovascular disease factors and healthcare access.
Collapse
|
36
|
Borné Y, Fagerberg B, Persson M, Östling G, Söderholm M, Hedblad B, Sallsten G, Barregard L, Engström G. Cadmium, Carotid Atherosclerosis, and Incidence of Ischemic Stroke. J Am Heart Assoc 2017; 6:JAHA.117.006415. [PMID: 29197829 PMCID: PMC5778998 DOI: 10.1161/jaha.117.006415] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Exposure to cadmium has been associated with carotid plaques, inflammation in carotid plaques, and increased risk of ischemic stroke. This study examined the separate and interacting effects of blood cadmium levels and carotid plaques on the risk of incident ischemic stroke. Methods and Results Cadmium levels were measured in 4156 subjects (39.2% men; mean±SD age 57.3±5.9 years) without history of stroke, from the Malmö Diet and Cancer cohort. The right carotid artery was examined using B‐mode ultrasound examination at baseline. Incidence of ischemic stroke was monitored over a mean follow‐up of 16.7 years. Carotid plaque was present in 34.5% of participants. Cadmium was significantly higher in subjects with plaque (mean±SD: 0.53±0.58 μg/L versus 0.42±0.49 μg/L; P<0.001). A total of 221 subjects had ischemic stroke during the follow‐up. Incidence of ischemic stroke was associated both with carotid plaque (hazard ratio 1.44, 95% confidence interval, 1.09–1.90, P=0.009) and cadmium (hazard ratio for quartile [Q] 4 versus Q1–3: 1.95, confidence interval, 1.33–2.85, P=0.001), after adjustment for risk factors. There was a significant interaction between cadmium and plaque with respect to risk of ischemic stroke (P=0.011). Adjusted for risk factors, subjects with plaque and cadmium in Q4 had a hazard ratio of 2.88 (confidence interval, 1.79–4.63) for ischemic stroke, compared with those without plaque and cadmium in Q1 to Q3. Conclusions Cadmium was associated with incidence of ischemic stroke, both independently and in synergistic interaction with carotid plaques. This supports the hypothesis that cadmium promotes vulnerability of carotid plaques, thereby increasing the risk of rupture and ischemic stroke.
Collapse
Affiliation(s)
- Yan Borné
- Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Björn Fagerberg
- Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital University of Gothenburg, Sweden
| | | | - Gerd Östling
- Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | | | - Bo Hedblad
- Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Gerd Sallsten
- Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, Sweden
| | - Lars Barregard
- Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, Sweden
| | | |
Collapse
|
37
|
Ruiz-Hernandez A, Navas-Acien A, Pastor-Barriuso R, Crainiceanu CM, Redon J, Guallar E, Tellez-Plaza M. Declining exposures to lead and cadmium contribute to explaining the reduction of cardiovascular mortality in the US population, 1988-2004. Int J Epidemiol 2017; 46:1903-1912. [PMID: 29025072 PMCID: PMC5837785 DOI: 10.1093/ije/dyx176] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background Lead and cadmium exposures have markedly declined in the USA following the implementation of large-scale public health policies and could have contributed to the unexplained decline in cardiovascular mortality in US adults. We evaluated the potential contribution of lead and cadmium exposure reductions to explain decreasing cardiovascular mortality trends occurring in the USA from 1988-94 to 1999-2004. Methods Prospective study in 15 421 adults ≥40 years old who had participated in the National Health and Nutrition Examination Survey 1988-94 or 1999-2004. We estimated the amount of change in cardiovascular mortality over time that can be independently attributed to the intermediate pathway of changes in blood lead and urine cadmium concentrations. Results There was a 42.0% decrease in blood lead and a 31.0% decrease in urine cadmium concentrations. The cardiovascular mortality rate ratio [95% confidence intervals (CIs)] associated with a doubling of metal levels was 1.19 (1.07, 1.31) for blood lead and 1.20 (1.09, 1.32) for urine cadmium. The absolute reduction in cardiovascular deaths comparing 1999-2004 to 1988-94 was 230.7 deaths/100 000 person-years, in models adjusted for traditional cardiovascular risk factors. Among these avoided deaths, 52.0 (95% CI 8.4, 96.7) and 19.4 (4.3, 36.4) deaths/100 000 person-years were attributable to changes in lead and cadmium, respectively. Conclusions Environmental declines in lead and cadmium exposures were associated with reductions in cardiovascular mortality in US adults. Given the fact that lead and cadmium remain associated with cardiovascular disease at relatively low levels of exposure, prevention strategies that further minimize exposure to lead and cadmium may be needed.
Collapse
Affiliation(s)
- Adrian Ruiz-Hernandez
- Department of Internal Medicine, Hospital Clinic of Valencia, Valencia, Spain
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia INCLIVA, Valencia, Spain
| | - Ana Navas-Acien
- Welch Center for Prevention, Epidemiology and Clinical Research and Departments of
- Environmental Health Sciences and
- Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Roberto Pastor-Barriuso
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | | | - Josep Redon
- Department of Internal Medicine, Hospital Clinic of Valencia, Valencia, Spain
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia INCLIVA, Valencia, Spain
- Consortium for Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain and
| | - Eliseo Guallar
- Welch Center for Prevention, Epidemiology and Clinical Research and Departments of
- Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia INCLIVA, Valencia, Spain
- Environmental Health Sciences and
| |
Collapse
|
38
|
Mathew RO, Schulman-Marcus J, Nichols EL, Newman JD, Bangalore S, Farkouh M, Sidhu MS. Chelation Therapy as a Cardiovascular Therapeutic Strategy: the Rationale and the Data in Review. Cardiovasc Drugs Ther 2017; 31:619-625. [DOI: 10.1007/s10557-017-6759-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Moberg L, Nilsson PM, Samsioe G, Sallsten G, Barregard L, Engström G, Borgfeldt C. Increased blood cadmium levels were not associated with increased fracture risk but with increased total mortality in women: the Malmö Diet and Cancer Study. Osteoporos Int 2017; 28:2401-2408. [PMID: 28432383 PMCID: PMC5524859 DOI: 10.1007/s00198-017-4047-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
Abstract
UNLABELLED This study aimed to investigate if high levels of blood cadmium at baseline were associated with increased fracture risk during follow-up in middle-aged women. No increased fracture risk was observed during follow-up, but women with higher levels of cadmium had an increased overall mortality. INTRODUCTION Exposure to high levels of cadmium has been associated with an increased fracture risk. The aim was to investigate a perceived association between low levels of blood cadmium (B-Cd) at baseline and risk of first incident fracture. METHODS From the population-based Malmö Diet and Cancer Study Cardiovascular cohort, 2920 middle-aged women with available background questionnaire and B-Cd measurements were included. Women were divided into quartiles (Q) according to their cadmium levels (Cd-Q1 <0.18 μg/L, Cd-Q2 0.18-0.28 μg/L, Cd-Q3 0.28-0.51 μg/L, and Cd-Q4 >0.51 μg/L). National registries were analysed for prospective risk of fractures or death. Associations between B-Cd and fracture risk were assessed by survival analysis (Cox regression analysis). RESULTS In total, 998 first incident fractures occurred in women during a follow-up lasting 20.2 years (median) (12.5-21.2 years) (25th-75th percentile). Women in Cd-Q4 were more often current smokers than in Cd-Q1 78.4 vs. 3.3% (p < 0.001) and the number of cigarettes smoked per day correlated with B-Cd (r = 0.49; p < 0.001). The risk of fracture was not associated with baseline B-Cd in adjusted models. The hazard ratio (HR) Cd-Q4 vs. Cd-Q1 was 1.06 (95% confidence interval (CI) 0.89-1.27). In the multivariate Cox regression, independent variables for increased fracture risk were history of gastric ulcer and increasing age, whereas increasing body mass index (BMI) lowered fracture risk. Overall mortality was significantly higher for women with high B-Cd, HR 2.06 (95% CI 1.57-2.69). CONCLUSIONS Higher blood levels of cadmium did not increase fracture risk in middle-aged women but reduced overall survival.
Collapse
Affiliation(s)
- L Moberg
- Department of Obstetrics and Gynaecology, Clinical Sciences, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden.
| | - P M Nilsson
- Department of Internal Medicine, Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - G Samsioe
- Department of Obstetrics and Gynaecology, Clinical Sciences, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden
| | - G Sallsten
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - L Barregard
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - G Engström
- Department of Internal Medicine, Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - C Borgfeldt
- Department of Obstetrics and Gynaecology, Clinical Sciences, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden
| |
Collapse
|
40
|
Hsu CW, Weng CH, Lee CC, Lin-Tan DT, Chu PH, Chen KH, Yen TH, Huang WH. Urinary cadmium levels predict mortality of patients with acute heart failure. Ther Clin Risk Manag 2017; 13:379-386. [PMID: 28392700 PMCID: PMC5375634 DOI: 10.2147/tcrm.s119010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Acute heart failure (AHF) is a serious condition that is associated with increased mortality in critically ill patients. Previous studies indicated that environmental exposure to cadmium increases mortality of general populations. However, the relationship of cadmium exposure and mortality is unclear for AHF patients. MATERIALS AND METHODS A total of 153 patients with AHF in intensive care units (ICUs) met the inclusion criteria and were followed up for 6 months. Demographic data, AHF etiology, hematological and biochemical data, and hospital mortality were recorded. The scores of two predictive systems (Sequential Organ Failure Assessment [SOFA], Acute Physiology and Chronic Health Evaluation II [APACHE II]) for mortality in critically ill patients were calculated, and urinary cadmium levels were recorded. RESULTS At the end of the follow-up period, the mortality rate was 24.8%. The survivors (n=115) had higher urinary cadmium levels on day 1 (D1UCd) of ICU admission than non-survivors (n=38). A multiple linear regression analysis revealed a positive correlation between D1UCd and acute kidney injury, but a negative correlation between D1UCd and the level of serum albumin. A multivariate Cox analysis indicated that D1UCd was an independent predictor of mortality in AHF patients. For each increment of 1 μg of D1UCd, the hazard ratio for ICU mortality was 1.20 (95% confidence interval [CI]: 1.09-1.32, P<0.001). The area under the receiver operating characteristic curve for D1UCd was 0.84 (95% CI: 0.78-0.91), better than the values for the SOFA and APACHE II systems. CONCLUSION The D1UCd may serve as a single predictor of hospital mortality for AHF patients in the ICU. Because of the high mortality and smaller sample size, more investigations are required to confirm these observations and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ching-Wei Hsu
- Department of Nephrology, Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC; Department of Nephrology, Division of Clinical Toxicology, Linkou Medical Center, Taoyuan, Taiwan, ROC; Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC
| | - Cheng-Hao Weng
- Department of Nephrology, Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC; Department of Nephrology, Division of Clinical Toxicology, Linkou Medical Center, Taoyuan, Taiwan, ROC; Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC
| | - Cheng-Chia Lee
- Department of Nephrology, Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC; Department of Nephrology, Division of Clinical Toxicology, Linkou Medical Center, Taoyuan, Taiwan, ROC; Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC
| | - Dan-Tzu Lin-Tan
- Department of Nephrology, Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC; Department of Nephrology, Division of Clinical Toxicology, Linkou Medical Center, Taoyuan, Taiwan, ROC; Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC
| | - Pao-Hsien Chu
- Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC; Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan, ROC
| | - Kuan-Hsing Chen
- Department of Nephrology, Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC; Department of Nephrology, Division of Clinical Toxicology, Linkou Medical Center, Taoyuan, Taiwan, ROC; Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC
| | - Tzung-Hai Yen
- Department of Nephrology, Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC; Department of Nephrology, Division of Clinical Toxicology, Linkou Medical Center, Taoyuan, Taiwan, ROC; Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC
| | - Wen-Hung Huang
- Department of Nephrology, Division of Clinical Toxicology, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC; Department of Nephrology, Division of Clinical Toxicology, Linkou Medical Center, Taoyuan, Taiwan, ROC; Chang Gung University and School of Medicine, Taoyuan, Taiwan, ROC
| |
Collapse
|
41
|
Burroughs Peña MS, Rollins A. Environmental Exposures and Cardiovascular Disease: A Challenge for Health and Development in Low- and Middle-Income Countries. Cardiol Clin 2017; 35:71-86. [PMID: 27886791 DOI: 10.1016/j.ccl.2016.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Environmental exposures in low- and middle-income countries lie at the intersection of increased economic development and the rising public health burden of cardiovascular disease. Increasing evidence suggests an association of exposure to ambient air pollution, household air pollution from biomass fuel, lead, arsenic, and cadmium with multiple cardiovascular disease outcomes, including hypertension, coronary heart disease, stroke, and cardiovascular mortality. Although populations in low- and middle-income countries are disproportionately exposed to environmental pollution, evidence linking these exposures to cardiovascular disease is derived from populations in high-income countries. More research is needed to further characterize the extent of environmental exposures.
Collapse
Affiliation(s)
- Melissa S Burroughs Peña
- Division of Cardiology, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, 11th Floor, Room 1180D, San Francisco, CA 94143, USA.
| | - Allman Rollins
- Department of Medicine, University of California, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
42
|
Yang WY, Zhang ZY, Thijs L, Cauwenberghs N, Wei FF, Jacobs L, Luttun A, Verhamme P, Kuznetsova T, Nawrot TS, Staessen JA. Left Ventricular Structure and Function in Relation to Environmental Exposure to Lead and Cadmium. J Am Heart Assoc 2017; 6:JAHA.116.004692. [PMID: 28151401 PMCID: PMC5523767 DOI: 10.1161/jaha.116.004692] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Experimental studies have demonstrated that lead and cadmium have direct toxic effects on the myocardium, but the few human studies are limited by design, assessment of exposure, and use of heart failure as a late‐stage endpoint. Methods and Results In a prospective population study, we studied the association of left ventricular (LV) function with blood lead (BPb) and 24‐hour urinary cadmium (UCd). In 179 participants randomly recruited from a Flemish population (50.3% women; mean age 39.1 years), geometric mean BPb and UCd at enrollment (1985‐2000) were 0.20 μmol/L and 6.1 nmol, respectively. We assessed systolic and diastolic LV function 11.9 years (median) later (2005‐2010) by using Doppler imaging of the transmitral blood flow and the mitral annular movement and speckle tracking. In multivariable‐adjusted linear regression, LV systolic function decreased with BPb. For a doubling of exposure, estimates were −0.392% for global longitudinal strain (P=0.034), −0.618% and −0.113 s−1 for regional longitudinal strain (P=0.028) and strain rate (P=0.008), and −0.056 s−1 for regional radial strain rate (P=0.050). Regional longitudinal strain rate (−0.066 s−1, P=0.009) and regional radial strain (−2.848%, P=0.015) also decreased with UCd. Models including both exposure indexes did not allow differentiating whether LV dysfunction was predominately related to BPb or UCd. Diastolic LV function was not associated with BPb or UCd (P≥0.159). Conclusions Although effect sizes were small, our results suggest that environmental exposure to lead, cadmium, or both might be a risk factor for systolic LV dysfunction, a condition often proceeding to heart failure.
Collapse
Affiliation(s)
- Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Lutgarde Thijs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Nicholas Cauwenberghs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Fang-Fei Wei
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Lotte Jacobs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Peter Verhamme
- Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Tatiana Kuznetsova
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, University of Hasselt, Belgium
| | - Jan A Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium .,R & D Group VitaK, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
43
|
Satarug S, Vesey DA, Gobe GC. Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm. TOHOKU J EXP MED 2017; 241:65-87. [DOI: 10.1620/tjem.241.65] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute and The University of Queensland Diamantina Institute
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute and The University of Queensland Diamantina Institute
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute and The University of Queensland Diamantina Institute
| |
Collapse
|