1
|
Salim Abed H, Oghenemaro EF, Kubaev A, Jeddoa ZMA, S R, Sharma S, Vashishth R, Jabir MS, Jawad SF, Zwamel AH. Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs. Cell Biochem Biophys 2024:10.1007/s12013-024-01585-2. [PMID: 39424765 DOI: 10.1007/s12013-024-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
Collapse
Affiliation(s)
- Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Karbala, Iraq
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001, Babil, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Wu Y, Shen J. Unraveling the intricacies of neutrophil extracellular traps in inflammatory bowel disease: Pathways, biomarkers, and promising therapies. Cytokine Growth Factor Rev 2024:S1359-6101(24)00082-0. [PMID: 39438227 DOI: 10.1016/j.cytogfr.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The development of inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, involves various factors and is characterized by persistent inflammation of the mucosal lining. However, the role of neutrophils in this process remains controversial. Neutrophil extracellular traps (NETs), which consist of chromatin, antimicrobial proteins, and oxidative enzymes, are released by neutrophils to trap pathogens. They are also involved in various immune-mediated and vascular diseases. NETs act as a vital defense mechanisms at the gut-mucosal interface and are frequently exposed to bacterial, viral, and fungal threats. However, they can also contribute to inflammation and worsen imbalances in the gut bacteria. Recent studies have suggested that NETs have a significant impact on IBD development. Previous studies have shown increased levels of NETs in tissue and blood samples from patients with IBD, as well as in experimental colitis mouse models. Therefore, this review discusses how NETs are formed and their role in the pathophysiology of IBD. It discusses how NETs may lead to tissue damage and contribute to IBD-associated complications. Moreover, non-invasive biomarkers are needed to replace invasive procedures such as endoscopy to better evaluate the disease status. Given the crucial role of NETs in IBD progression, this review focuses on potential NET biomarkers that can help predict the evolution of IBD. Furthermore, this review identifies potential therapeutic targets for regulating NET production, which could expand the range of available treatment options for IBD.
Collapse
Affiliation(s)
- Yilin Wu
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China.
| |
Collapse
|
3
|
Honap S, Jairath V, Sands BE, Dulai PS, Danese S, Peyrin-Biroulet L. Acute severe ulcerative colitis trials: the past, the present and the future. Gut 2024; 73:1763-1773. [PMID: 38834296 DOI: 10.1136/gutjnl-2024-332489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Acute severe ulcerative colitis (ASUC), characterised by bloody diarrhoea and systemic inflammation, is associated with a significant risk of colectomy and a small risk of mortality. The landmark trial of cortisone in 1955 was pivotal for two reasons: first, for establishing the efficacy of a drug that remains a first-line therapy today and, second, for producing the first set of disease severity criteria and clinical trial endpoints that shaped the subsequent ASUC trial landscape. Trials in the 1990s and at the turn of the millennium established the efficacy of infliximab and ciclosporin, but since then, there has been little progress in drug development for this high-risk population. This systematic review evaluates all interventional randomised controlled trials (RCTs) conducted in patients hospitalised with severe UC. It provides an overview of the efficacy of treatments from past to present and assesses the evolution of trial characteristics with respect to study populations, eligibility criteria and study designs over time. This review details ongoing RCTs in this field and provides a perspective on the challenges for future clinical trial programmes and how these can be overcome to help deliver novel ASUC therapies.
Collapse
Affiliation(s)
- Sailish Honap
- King's College London, School of Immunology & Microbial Sciences, London, UK
- INFINY Institute, Nancy University Hospital Center, Vandœuvre-lès-Nancy, France
| | - Vipul Jairath
- Departments of Gastroenterology and Medicine, Western University Schulich School of Medicine & Dentistry, London, Ontario, Canada
- Departments of Epidemiology and Biostatistics, Western University Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Parambir S Dulai
- Division of Gastroenterology, Northwestern University, Evanston, Illinois, USA
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, San Raffaele Hospital, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Nancy University Hospital Center, Vandœuvre-lès-Nancy, France
- Inserm NGERE U1256, University of Lorraine, Nancy, Vandœuvre-lès-Nancy, France
| |
Collapse
|
4
|
Lee HR, Jeong YJ, Park SA, Kim HJ, Heo TH. Geraniin Alleviates Inflammation in Caco-2 Cells and Dextran Sulfate Sodium-Induced Colitis Mice by Targeting IL-1β. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7882-7893. [PMID: 38530797 DOI: 10.1021/acs.jafc.3c09396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
IL-1β is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1β-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1β-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1β and IL-1R by directly binding to IL-1β and inhibited the IL-1β activity. It suppressed IL-1β-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1β-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1β activity and anticolitis effect by hindering the IL-1β and IL-1R interaction and may be a promising therapeutic anti-IL-1β agent for IBD treatment.
Collapse
Affiliation(s)
- Hae-Ri Lee
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young-Jin Jeong
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Sun-Ae Park
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
5
|
Söderman J, Almer S. Discerning Endoscopic Severity of Inflammatory Bowel Disease by Scoping the Peripheral Blood Transcriptome. GASTRO HEP ADVANCES 2024; 3:618-633. [PMID: 39165421 PMCID: PMC11330933 DOI: 10.1016/j.gastha.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/29/2024] [Indexed: 08/22/2024]
Abstract
Background and Aims Ulcerative colitis (UC) and Crohn's disease (CD) are chronic inflammatory bowel diseases (IBDs) with an incompletely understood etiology and pathogenesis. Identification of suitable drug targets and assessment of disease severity are crucial for optimal management. Methods Using RNA sequencing, we investigated differential gene expression in peripheral blood samples from IBD patients and non-inflamed controls, analyzed pathway enrichment, and identified genes whose expression correlated with endoscopic disease severity. Results Neutrophil degranulation emerged as the most significant pathway across all IBD sample types. Signaling by interleukins was prominent in patients with active intestinal inflammation but also enriched in CD and UC patients without intestinal inflammation. Nevertheless, genes correlated to endoscopic disease severity implicated the primary cilium in CD patients and translation and focal adhesion in UC patients. Moreover, several of these genes were located in genome-wide associated loci linked to IBD, cholesterol levels, blood cell counts, and levels of markers assessing liver and kidney function. These genes also suggested connections to intestinal epithelial barrier dysfunction, contemporary IBD drug treatment, and new actionable drug targets. A large number of genes associated with endoscopic disease severity corresponded to noncoding RNAs. Conclusion This study revealed biological pathways associated with IBD disease state and endoscopic disease severity, thus providing insights into the underlying mechanisms of IBD pathogenesis as well as identifying potential biomarkers and therapies. Peripheral blood might constitute a suitable noninvasive diagnostic sample type, in which gene expression profiles might serve as indicators of ongoing mucosal inflammation, and thus guide personalized treatment decisions.
Collapse
Affiliation(s)
- Jan Söderman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Laboratory Medicine, Jönköping, Region Jönköping County, Sweden
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- IBD-Unit, Division of Gastroenterology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Truyens M, Hoste L, Geldof J, Hoorens A, Haerynck F, Huis In 't Veld D, Lobatón T. Successful treatment of ulcerative colitis with anakinra: a case report. Acta Gastroenterol Belg 2023; 86:573-576. [PMID: 38240554 DOI: 10.51821/86.4.11246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Currently the effect of IL-1 blockade on ulcerative colitis (UC) is still ambiguous. This case report describes a patient with UC who developed severe complications after an episode of azathioprineinduced pancytopenia including cytomegalovirus pneumonitis, hemophagocytic lymphohistiocytosis, and probable pulmonary aspergillosis. Imaging after the hospitalization revealed a severe disseminated chronic candidiasis and persisting inflammation was seen. Genetic testing revealed heterozygous variants in NOD2 and NLRP12, and cytokine testing showed an increase in IL-1Ra, IL-18, CXCL9, and CXCL10. Consequently an IL-1 mediated autoinflammatory syndrome was suspected. Simultaneously, the patient developed a corticosteroid dependent UC flare-up. Treatment with anakinra was initiated for the IL-1 mediated disease which quickly induced remission of both the inflammatory syndrome and the UC.
Collapse
Affiliation(s)
- M Truyens
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - L Hoste
- Department of Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University, Ghent, Belgium
| | - J Geldof
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - A Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - F Haerynck
- Department of Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University, Ghent, Belgium
| | - D Huis In 't Veld
- Department of Internal Medicine and Infectious Diseases, University Hospital, Ghent, Belgium
| | - T Lobatón
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
7
|
Scalavino V, Piccinno E, Valentini AM, Schena N, Armentano R, Giannelli G, Serino G. miR-369-3p Modulates Intestinal Inflammatory Response via BRCC3/NLRP3 Inflammasome Axis. Cells 2023; 12:2184. [PMID: 37681916 PMCID: PMC10486421 DOI: 10.3390/cells12172184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Inflammasomes are multiprotein complexes expressed by immune cells in response to distinct stimuli that trigger inflammatory responses and the release of pro-inflammatory cytokines. Evidence suggests a different role of inflammasome NLRP3 in IBD. NLRP3 inflammasome activation can be controlled by post-translational modifications such as ubiquitination through BRCC3. The aim of this study was to investigate the effect of miR-369-3p on the expression and activation of NLRP3 inflammasomes via BRCC3 regulation. After bioinformatics prediction of Brcc3 as a gene target of miR-369-3p, in vitro, we validated its modulation in bone marrow-derived macrophages (BMDM). The increase in miR-369-3p significantly reduced BRCC3 gene and protein expression. This modulation, in turn, reduced the expression of NLRP3 and blocked the recruitment of ASC adaptor protein by NLRP3. As a result, miR-369-3p reduced the activity of Caspase-1 by the inflammasome, decreasing the cleavage of pro-IL-1β and pro-IL-18. These results support a novel mechanism that seems to act on post-translational modification of NLRP3 inflammasome activation by BRCC3. This may be an interesting new target in the personalized treatment of inflammatory disorders, including IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (V.S.); (E.P.); (A.M.V.); (N.S.); (R.A.); (G.G.)
| |
Collapse
|
8
|
Berinstein JA, Aintabi D, Higgins PD. In-hospital management of inflammatory bowel disease. Curr Opin Gastroenterol 2023; 39:274-286. [PMID: 37265192 PMCID: PMC11227907 DOI: 10.1097/mog.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW The management of hospitalized patients with inflammatory bowel disease (IBD) is complex. Despite considerable therapeutic advancements in outpatient ulcerative colitis and Crohn's disease management, the in-hospital management continues to lag with suboptimal outcomes. The purpose of this review is to provide a brief overview of our approach to managing patients hospitalized with acute severe ulcerative colitis (ASUC) and Crohn's disease-related complications, followed by a summary of emerging evidence for new management approaches. RECENT FINDINGS ASUC has seen the emergence of well validated prognostic models for colectomy as well as the development of novel treatment strategies such as accelerated infliximab dosing, Janus kinase inhibitor therapy, and sequential therapy, yet the rate of colectomy for steroid-refractory ASUC has not meaningfully improved. Crohn's disease has seen the development of better diagnostic tools, early Crohn's disease-related complication stratification and identification, as well as better surgical techniques, yet the rates of hospitalization and development of Crohn's disease-related complications remain high. SUMMARY Significant progress has been made in the in-hospital IBD management; however, both the management of ASUC and hospitalized Crohn's disease remain a challenge with suboptimal outcomes. Critical knowledge gaps still exist, and dedicated studies in hospitalized patients with IBD are needed to address them.
Collapse
Affiliation(s)
- Jeffrey A. Berinstein
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine, Ann Arbor, MI, USA
| | - Daniel Aintabi
- Department of Medicine, St. Joseph Mercy Ann Arbor Hospital, Ypsilanti, MI, USA
| | - Peter D.R. Higgins
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Illig D, Kotlarz D. Dysregulated inflammasome activity in intestinal inflammation - Insights from patients with very early onset IBD. Front Immunol 2022; 13:1027289. [PMID: 36524121 PMCID: PMC9744759 DOI: 10.3389/fimmu.2022.1027289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disorder triggered by imbalances of the microbiome and immune dysregulations in genetically susceptible individuals. Several mouse and human studies have demonstrated that multimeric inflammasomes are critical regulators of host defense and gut homeostasis by modulating immune responses to pathogen- or damage-associated molecular patterns. In the context of IBD, excessive production of pro-inflammatory Interleukin-1β has been detected in patient-derived intestinal tissues and correlated with the disease severity or failure to respond to anti-tumor necrosis factor therapy. Correspondingly, genome-wide association studies have suggested that single nucleotide polymorphisms in inflammasome components might be associated with risk of IBD development. The relevance of inflammasomes in controlling human intestinal homeostasis has been further exemplified by the discovery of very early onset IBD (VEO-IBD) patients with monogenic defects affecting different molecules in the complex regulatory network of inflammasome activity. This review provides an overview of known causative monogenic entities of VEO-IBD associated with altered inflammasome activity. A better understanding of the molecular mechanisms controlling inflammasomes in monogenic VEO-IBD may open novel therapeutic avenues for rare and common inflammatory diseases.
Collapse
Affiliation(s)
- David Illig
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,*Correspondence: Daniel Kotlarz,
| |
Collapse
|
10
|
Tackling Inflammatory Bowel Diseases: Targeting Proinflammatory Cytokines and Lymphocyte Homing. Pharmaceuticals (Basel) 2022; 15:ph15091080. [PMID: 36145301 PMCID: PMC9502105 DOI: 10.3390/ph15091080] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic inflammatory disorders that are a result of an abnormal immune response mediated by a cytokine storm and immune cell infiltration. Proinflammatory cytokine therapeutic agents, represented by TNF inhibitors, have developed rapidly over recent years and are promising options for treating IBD. Antagonizing interleukins, interferons, and Janus kinases have demonstrated their respective advantages in clinical trials and are candidates for anti-TNF therapeutic failure. Furthermore, the blockade of lymphocyte homing contributes to the excessive immune response in colitis and ameliorates inflammation and tissue damage. Factors such as integrins, selectins, and chemokines jointly coordinate the accumulation of immune cells in inflammatory regions. This review assembles the major targets and agents currently targeting proinflammatory cytokines and lymphatic trafficking to facilitate subsequent drug development.
Collapse
|
11
|
Sewell GW, Kaser A. Interleukin-23 in the Pathogenesis of Inflammatory Bowel Disease and Implications for Therapeutic Intervention. J Crohns Colitis 2022; 16:ii3-ii19. [PMID: 35553667 PMCID: PMC9097674 DOI: 10.1093/ecco-jcc/jjac034] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interleukin-23 [IL-23] cytokine, derived predominantly from macrophages and dendritic cells in response to microbial stimulation, has emerged as a critical promoter of chronic intestinal inflammation. Genome-wide association studies linking variants in IL23R to disease protection, bolstered by experimental evidence from colitis models, and the successful application of therapies against the IL-12/IL-23 shared p40 subunit in the treatment of inflammatory bowel disease [IBD] all provide compelling evidence of a crucial role for IL-23 in disease pathogenesis. Moreover, targeting the p19 subunit specific for IL-23 has shown considerable promise in recent phase 2 studies in IBD. The relative importance of the diverse immunological pathways downstream of IL-23 in propagating mucosal inflammation in the gut, however, remains contentious. Here we review current understanding of IL-23 biology and explore its pleiotropic effects on T cells, and innate lymphoid, myeloid and intestinal epithelial cells in the context of the pathogenesis of IBD. We furthermore discuss these pathways in the light of recent evidence from clinical trials and indicate emerging targets amenable to therapeutic intervention and translation into clinical practice.
Collapse
Affiliation(s)
- Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK,Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Arthur Kaser
- Corresponding author: Arthur Kaser, Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK. Tel: +44 1223 331130;
| |
Collapse
|
12
|
Abraham C, Abreu MT, Turner JR. Pattern Recognition Receptor Signaling and Cytokine Networks in Microbial Defenses and Regulation of Intestinal Barriers: Implications for Inflammatory Bowel Disease. Gastroenterology 2022; 162:1602-1616.e6. [PMID: 35149024 PMCID: PMC9112237 DOI: 10.1053/j.gastro.2021.12.288] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is characterized by defects in epithelial function and dysregulated inflammatory signaling by lamina propria mononuclear cells including macrophages and dendritic cells in response to microbiota. In this review, we focus on the role of pattern recognition receptors in the inflammatory response as well as epithelial barrier regulation. We explore cytokine networks that increase inflammation, regulate paracellular permeability, cause epithelial damage, up-regulate epithelial proliferation, and trigger restitutive processes. We focus on studies using patient samples as well as speculate on pathways that can be targeted to more holistically treat patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| | - Maria T. Abreu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Liso M, Verna G, Cavalcanti E, De Santis S, Armentano R, Tafaro A, Lippolis A, Campiglia P, Gasbarrini A, Mastronardi M, Pizarro TT, Cominelli F, Lopetuso LR, Chieppa M. Interleukin 1β Blockade Reduces Intestinal Inflammation in a Murine Model of Tumor Necrosis Factor-Independent Ulcerative Colitis. Cell Mol Gastroenterol Hepatol 2022; 14:151-171. [PMID: 35314399 PMCID: PMC9120241 DOI: 10.1016/j.jcmgh.2022.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel diseases are multifactorial diseases commonly treated with either immunomodulatory drugs or anti-tumor necrosis factor (TNF). Currently, failure to respond to anti-TNF therapy (assessed no earlier than 8-12 weeks after starting treatment) occurs in 20%-40% of patients enrolled in clinical trials and in 10%-20% in clinical practice. Murine models of inflammatory bowel disease provide important tools to better understand disease mechanism(s). In this context and among the numerous models available, Winnie-TNF-knockout (KO) mice recently were reported to show characteristics of ulcerative colitis (UC) that are independent of TNF, and with increased interleukin (IL)1β production. METHODS Herein, the efficacy of recombinant IL1-receptor antagonist (anakinra) administration was evaluated in Winnie-TNF-KO mice, used as a UC model of primary anti-TNF nonresponders. RESULTS We analyzed gut mucosal biopsy specimens and circulating cytokine profiles of a cohort of 30 UC patients; approximately 75% of primary nonresponders were characterized by abundant IL1β in both the serum and local intestinal tissues. In Winnie-TNF-KO mice, administration of anakinra efficiently reduced the histologic score of the distal colon, which represents the most common site of inflammation in Winnie mice. Furthermore, among lamina propria and mesenteric lymph node-derived T cells, interferon γ-expressing CD8+ T cells were reduced significantly after anakinra administration. CONCLUSIONS Our study provides new insight and alternative approaches to treat UC patients, and points to anti-IL1 strategies (ie, anakinra) that may be a more effective therapeutic option for primary nonresponders to anti-TNF therapy.
Collapse
Affiliation(s)
- Marina Liso
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Elisabetta Cavalcanti
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Angela Tafaro
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Antonio Lippolis
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Antonio Gasbarrini
- Digestive Disease Center–Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Mauro Mastronardi
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy
| | - Theresa Torres Pizarro
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Loris Riccardo Lopetuso
- Digestive Disease Center–Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy,Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy,Center for Advanced Studies and Technology, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte (BA), Italy,Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, Lecce, Italy,Correspondence Address correspondence to: Marcello Chieppa, PhD, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
14
|
Cader MZ, Kaser A. Finding the right target for drug-resistant inflammatory bowel disease. Nat Med 2021; 27:1870-1871. [PMID: 34750554 DOI: 10.1038/s41591-021-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M Zaeem Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre & Department of Medicine, University of Cambridge, Cambridge, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre & Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Dulai PS, Jairath V. A Microsimulation Model to Project the 5-Year Impact of Using Hyperbaric Oxygen Therapy for Ulcerative Colitis Patients Hospitalized for Acute Flares. Dig Dis Sci 2021; 66:3740-3752. [PMID: 33185788 PMCID: PMC9035275 DOI: 10.1007/s10620-020-06707-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) improves short-term outcomes for ulcerative colitis (UC) patients hospitalized for acute flares. Longer-term impacts and cost-effectiveness are unknown. METHODS We compared disease outcomes and cost-effectiveness of HBOT in addition to standard of care versus standard of care alone for UC patients hospitalized for acute flares using a microsimulation model. Published literature was used for transition probabilities, costs, and quality-adjusted life year (QALY) estimates. We modeled 100,000 individuals in each group over a 5-year horizon and compared rates of re-hospitalization, rescue medical therapy, colectomy, death, and cost-effectiveness at a willingness-to-pay of $100,000/QALY. Probabilistic sensitivity analyses were performed with 500 samples and 250 trials, in addition to multiple microsimulation sensitivity analyses. RESULTS The use of HBOT at the time of index hospitalization for an acute UC flare is projected to reduce the risk of re-hospitalization, inpatient rescue medical therapy, and inpatient emergent colectomy by over 60% (p < 0.001) and mortality by over 30% (p <0.001), during a 5-year horizon. The HBOT strategy costs more ($5600 incremental cost) but also yielded higher QALYs (0.13 incremental yield), resulting in this strategy being cost-effective ($43,000/QALY). Results were sensitive to HBOT costs and rates of endoscopic improvement with HBOT. Probabilistic sensitivity analyses observed HBOT to be more cost-effective than standard of care in 95% of iterations. CONCLUSION The use of HBOT to optimize response to steroids during the index hospitalization for an acute UC flare is cost-effective and is projected to result in significant reductions in disease-related complications in the long term.
Collapse
Affiliation(s)
- Parambir S Dulai
- Division of Gastroenterology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | | |
Collapse
|
16
|
Friedrich M, Pohin M, Jackson MA, Korsunsky I, Bullers SJ, Rue-Albrecht K, Christoforidou Z, Sathananthan D, Thomas T, Ravindran R, Tandon R, Peres RS, Sharpe H, Wei K, Watts GFM, Mann EH, Geremia A, Attar M, McCuaig S, Thomas L, Collantes E, Uhlig HH, Sansom SN, Easton A, Raychaudhuri S, Travis SP, Powrie FM. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat Med 2021; 27:1970-1981. [PMID: 34675383 PMCID: PMC8604730 DOI: 10.1038/s41591-021-01520-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Current inflammatory bowel disease (IBD) therapies are ineffective in a high proportion of patients. Combining bulk and single-cell transcriptomics, quantitative histopathology and in situ localization across three cohorts of patients with IBD (total n = 376), we identify coexpressed gene modules within the heterogeneous tissular inflammatory response in IBD that map to distinct histopathological and cellular features (pathotypes). One of these pathotypes is defined by high neutrophil infiltration, activation of fibroblasts and vascular remodeling at sites of deep ulceration. Activated fibroblasts in the ulcer bed display neutrophil-chemoattractant properties that are IL-1R, but not TNF, dependent. Pathotype-associated neutrophil and fibroblast signatures are increased in nonresponders to several therapies across four independent cohorts (total n = 343). The identification of distinct, localized, tissular pathotypes will aid precision targeting of current therapeutics and provides a biological rationale for IL-1 signaling blockade in ulcerating disease.
Collapse
Affiliation(s)
- Matthias Friedrich
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathilde Pohin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Matthew A Jackson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kevin Rue-Albrecht
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Zoe Christoforidou
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dharshan Sathananthan
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Tom Thomas
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Rahul Ravindran
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Ruchi Tandon
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Raphael Sanches Peres
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Hannah Sharpe
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alessandra Geremia
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sarah McCuaig
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lloyd Thomas
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Elena Collantes
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alistair Easton
- Old Road Campus Research Building, Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Simon P Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Rosiou K, Selinger CP. Acute severe ulcerative colitis: management advice for internal medicine and emergency physicians. Intern Emerg Med 2021; 16:1433-1442. [PMID: 33754227 PMCID: PMC8354863 DOI: 10.1007/s11739-021-02704-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Acute severe ulcerative colitis is a medical emergency that warrants in-patient management. This is best served within a multidisciplinary team setting in specialised centres or with expert consultation. Intravenous corticosteroids remain the cornerstone in the management of ASUC and should be initiated promptly, along with general management measures and close monitoring of patients. Unfortunately, one-third of patients will fail to respond to steroids. Response to intravenous corticosteroid therapy needs to be assessed on the third day and rescue therapies, including cyclosporine and infliximab, should be offered to patients not responding. Choice of rescue therapy depends on experience, drug availability and factors associated with each individual patient, such as comorbidities, previous medications or contra-indications to therapy. Patients who have not responded within 7 days to rescue therapy must be considered for surgery. Surgery is a treatment option in ASUC and should not be delayed in cases of failure of medical therapy, because such delays increase surgical morbidity and mortality. This review summarises the current management of acute severe ulcerative colitis and discusses potential future developments.
Collapse
Affiliation(s)
- Konstantina Rosiou
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Bexley Wing, Leeds, LS9 7TF, UK
| | - Christian Philipp Selinger
- Leeds Gastroenterology Institute, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Bexley Wing, Leeds, LS9 7TF, UK.
- University of Leeds, Leeds, UK.
| |
Collapse
|
18
|
Dulai PS, Sandborn WJ, Murphy J. Microsimulation Model to Determine the Cost-Effectiveness of Treat-to-Target Strategies for Ulcerative Colitis. Clin Gastroenterol Hepatol 2021; 19:1170-1179.e10. [PMID: 32437872 DOI: 10.1016/j.cgh.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about the cost effectiveness of endoscopy or biomarker-based treat to target monitoring of patients with ulcerative colitis (UC). METHODS We used a microsimulation model to identify the most cost effective treat to target monitoring strategy for patients with UC staring therapy with biologics or small molecule inhibitors. We assessed symptoms (rectal bleeding) alone, a combination of symptoms and a biomarker (fecal calprotectin), and endoscopy. Transition probabilities, costs, and quality-adjusted life year (QALY) estimates were derived from published estimates. The microsimulation model tracked an individual patient's disease course and treatment exposures to modify downstream treatment effectiveness, probabilities, and disease outcomes. The primary analysis included 100,000 individuals over 5 years with a willingness to pay threshold of $100,000/QALY. Probabilistic sensitivity analyses were performed with 500 samples and 250 trials, in addition to multiple 1-, 2-, and 3-way microsimulation sensitivity analyses. RESULTS A total of 32 treatment sequencing algorithms were modeled alongside 3 disease monitoring strategies within a treat to target approach for UC. Combination symptom and biomarker-based monitoring resulted in the highest QALY estimate among all the treatment sequencing algorithms. However, monitoring disease activity with symptoms alone was the most cost-effective strategy in 86% of scenarios, followed by combination symptom and biomarker monitoring in 9%, and endoscopy monitoring in 5%. Results were sensitive to treatment costs, patient willingness to consider colectomy as a treatment option, and endoscopy costs. Endoscopy-based monitoring was favored when treatment costs were high and patients were unwilling to undergo colectomy. CONCLUSIONS The combination symptom and biomarker-based monitoring resulted in the highest QALY estimate. However, symptom-based monitoring is the most cost-effective approach to implementing treat to target monitoring for patients with UC receiving biologics and small molecule inhibitors.
Collapse
Affiliation(s)
| | | | - James Murphy
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Khatri V, Kalyanasundaram R. Therapeutic implications of inflammasome in inflammatory bowel disease. FASEB J 2021; 35:e21439. [PMID: 33774860 PMCID: PMC8010917 DOI: 10.1096/fj.202002622r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) remains a persistent health problem with a global burden surging over 6.8 million cases currently. Clinical pathology of IBD is complicated; however, hyperactive inflammatory and immune responses in the gut is shown to be one of the persistent causes of the disease. Human gut inflammasome, the activator of innate immune system is believed to be a primary underlying cause for the pathology and is largely associated with the progression of IBD. To manage IBD, there is a need to fully understand the role of inflammasome activation in IBD. Since inflammasome potentially play a significant role in IBD, systemic modulation of inflammasome may provide an effective therapeutic and clinical approach to control IBD symptoms. In this review, we have focused on this association between IBD and gut inflammasome, and recent advances in the research and therapeutic strategies for IBD. We have discussed inflammasomes and their components, outcomes from the experimental animals and human studies, inflammasome inhibitors, and developments in the inflammasome-targeted therapies for IBD.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|
20
|
Holvoet T, Lobaton T, Hindryckx P. Optimal Management of Acute Severe Ulcerative Colitis (ASUC): Challenges and Solutions. Clin Exp Gastroenterol 2021; 14:71-81. [PMID: 33727846 PMCID: PMC7955027 DOI: 10.2147/ceg.s197719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Acute severe colitis is a severe complication of ulcerative colitis, affecting approximately 20% of patients. For physicians, it remains a challenging condition to treat. Current treatment algorithms have diminished the mortality associated with acute severe ulcerative colitis (ASUC), but colectomy rates remain high (approximately 30%) despite advances in therapy. Colectomy in ASUC is particularly associated with important postoperative complications and morbidity. In this review, reasons for the inability to improve care and avoid evolution to colectomy for ASUC are explored and solutions that might lead to a better management of the disease are investigated.
Collapse
Affiliation(s)
- Tom Holvoet
- Department of Gastroenterology, AZ Nikolaas, Sint-Niklaas, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Triana Lobaton
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Pieter Hindryckx
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
21
|
Drury B, Hardisty G, Gray RD, Ho GT. Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell Mol Gastroenterol Hepatol 2021; 12:321-333. [PMID: 33689803 PMCID: PMC8166923 DOI: 10.1016/j.jcmgh.2021.03.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The Inflammatory Bowel Diseases (IBD), Ulcerative Colitis (UC) and Crohn's Disease (CD) are characterised by chronic non-resolving gut mucosal inflammation involving innate and adaptive immune responses. Neutrophils, usually regarded as first responders in inflammation, are a key presence in the gut mucosal inflammatory milieu in IBD. Here, we review the role of neutrophil extracellular trap (NET) formation as a potential effector disease mechanism. NETs are extracellular webs of chromatin, microbicidal proteins and oxidative enzymes that are released by neutrophils to contain pathogens. NETs contribute to the pathogenesis of several immune-mediated diseases such as systemic lupus erythematosus and rheumatoid arthritis; and recently, as a major tissue damaging process involved in the host response to severe acute respiratory syndrome coronavirus 2 infection. NETs are pertinent as a defence mechanism at the gut mucosal interphase exposed to high levels of bacteria, viruses and fungi. On the other hand, NETs can also potentiate and perpetuate gut inflammation. In this review, we discuss the broad protective vs. pathogenic roles of NETs, explanatory factors that could lead to an increase in NET formation in IBD and how NETs may contribute to gut inflammation and IBD-related complications. Finally, we summarise therapeutic opportunities to target NETs in IBD.
Collapse
Affiliation(s)
- Broc Drury
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Gareth Hardisty
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Robert D Gray
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
22
|
Dulai PS, Raffals LE, Hudesman D, Chiorean M, Cross R, Ahmed T, Winter M, Chang S, Fudman D, Sadler C, Chiu EL, Ross FL, Toups G, Murad MH, Sethuraman K, Holm JR, Guilliod R, Levine B, Buckey JC, Siegel CA. A phase 2B randomised trial of hyperbaric oxygen therapy for ulcerative colitis patients hospitalised for moderate to severe flares. Aliment Pharmacol Ther 2020; 52:955-963. [PMID: 32745306 DOI: 10.1111/apt.15984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/10/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hyperbaric oxygen has been reported to improve disease activity in hospitalised ulcerative colitis (UC) patients. AIM To evaluate dosing strategies with hyperbaric oxygen for hospitalised UC patients. METHODS We enrolled UC patients hospitalised for acute flares (Mayo score 6-12). Initially, all patients received 3 days of hyperbaric oxygen at 2.4 atmospheres (90 minutes with two air breaks) in addition to intravenous steroids. Day 3 responders (reduction of partial Mayo score ≥ 2 points and rectal bleeding score ≥ 1 point) were randomised to receive a total of 5 days vs 3 days of hyperbaric oxygen. RESULTS We treated 20 patients with hyperbaric oxygen (75% prior biologic failure). Day 3 response was achieved in 55% (n = 11/20), with significant reductions in stool frequency, rectal bleeding and CRP (P < 0.01). A more significant reduction in disease activity was observed with 5 days vs 3 days of hyperbaric oxygen (P = 0.03). Infliximab or colectomy was required in only three patients (15%) despite a predicted probability of 80% for second-line therapy. Day 3 hyperbaric oxygen responders were less likely to require re-hospitalisation or colectomy by 3 months vs non-responders (0% vs 66%, P = 0.002). No treatment-related adverse events were observed. CONCLUSION Hyperbaric oxygen appears to be effective for optimising response to intravenous steroids in UC patients hospitalised for acute flares, with low rates of re-hospitalisation or colectomy at 3 months. An optimal clinical response is achieved with 5 days of hyperbaric oxygen. Larger phase 3 trials are needed to confirm efficacy and obtain labelled approval.
Collapse
Affiliation(s)
| | | | | | | | | | - Tasneem Ahmed
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - David Fudman
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | - Renie Guilliod
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Levine
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jay C Buckey
- Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | | |
Collapse
|
23
|
Knorr J, Wree A, Tacke F, Feldstein AE. The NLRP3 Inflammasome in Alcoholic and Nonalcoholic Steatohepatitis. Semin Liver Dis 2020; 40:298-306. [PMID: 32526788 DOI: 10.1055/s-0040-1708540] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (ASH) are advanced forms of fatty liver diseases that are associated with a high morbidity and mortality worldwide. Patients with ASH or NASH are more susceptible to the progression of fibrosis and cirrhosis up to the development of hepatocellular carcinoma. Currently, there are limited medical therapies available. Accompanied by the asymptomatic disease progression, the demand for liver transplants is high. This review provides an overview about the growing evidence for a central role of NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multiprotein complex that acts as a central driver of inflammation via activation of caspase 1, maturation and release of pro-inflammatory cytokines including interleukin-1β, and trigger of inflammatory pyroptotic cell death in both NASH and ASH. We also discuss potential therapeutic approaches targeting NLRP3 inflammasome and related upstream and downstream pathways to develop prognostic biomarkers and medical treatments for both liver diseases.
Collapse
Affiliation(s)
- Jana Knorr
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany.,Department of Pediatric Gastroenterology, University of California, San Diego (UCSD), San Diego, California and Rady Children's Hospital, San Diego, California
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine, Berlin, Germany
| | - Ariel E Feldstein
- Department of Pediatric Gastroenterology, University of California, San Diego (UCSD), San Diego, California and Rady Children's Hospital, San Diego, California
| |
Collapse
|
24
|
Mehta P, Cron RQ, Hartwell J, Manson JJ, Tattersall RS. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. THE LANCET. RHEUMATOLOGY 2020; 2:e358-e367. [PMID: 32373790 PMCID: PMC7198216 DOI: 10.1016/s2665-9913(20)30096-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The term cytokine storm syndromes describes conditions characterised by a life-threatening, fulminant hypercytokinaemia with high mortality. Cytokine storm syndromes can be genetic or a secondary complication of autoimmune or autoinflammatory disorders, infections, and haematological malignancies. These syndromes represent a key area of interface between rheumatology and general medicine. Rheumatologists often lead in management, in view of their experience using intensive immunosuppressive regimens and managing cytokine storm syndromes in the context of rheumatic disorders or infection (known as secondary haemophagocytic lymphohistiocytosis or macrophage activation syndrome [sHLH/MAS]). Interleukin (IL)-1 is pivotal in hyperinflammation. Anakinra, a recombinant humanised IL-1 receptor antagonist, is licenced at a dose of 100 mg once daily by subcutaneous injection for rheumatoid arthritis, systemic juvenile idiopathic arthritis, adult-onset Still's disease, and cryopyrin-associated periodic syndromes. In cytokine storm syndromes, the subcutaneous route is often problematic, as absorption can be unreliable in patients with critical illness, and multiple injections are needed to achieve the high doses required. As a result, intravenous anakinra is used in clinical practice for sHLH/MAS, despite this being an off-licence indication and route of administration. Among 46 patients admitted to our three international, tertiary centres for sHLH/MAS and treated with anakinra over 12 months, the intravenous route of delivery was used in 18 (39%) patients. In this Viewpoint, we describe current challenges in the management of cytokine storm syndromes and review the pharmacokinetic and safety profile of intravenous anakinra. There is accumulating evidence to support the rationale for, and safety of, intravenous anakinra as a first-line treatment in patients with sHLH/MAS. Intravenous anakinra has important clinical relevance when high doses of drug are required or if patients have subcutaneous oedema, severe thrombocytopenia, or neurological involvement. Cross-speciality management and collaboration, with the generation of international, multi-centre registries and biobanks, are needed to better understand the aetiopathogenesis and improve the poor prognosis of cytokine storm syndromes.
Collapse
Affiliation(s)
- Puja Mehta
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, London, UK
- Department of Rheumatology, University College London Hospital, London, UK
| | - Randy Q Cron
- Department of Paediatric Rheumatology, Children's Hospital of Alabama, University of Alabama, Birmingham, AL, USA
| | - James Hartwell
- Department of Pharmacy, University College London Hospital, London, UK
| | - Jessica J Manson
- Department of Rheumatology, University College London Hospital, London, UK
| | - Rachel S Tattersall
- Department of Rheumatology, Sheffield Teaching Hospitals NHS Foundation Trust and Sheffield Children's Hospital NHS Foundation trust, Sheffield, UK
| |
Collapse
|
25
|
Skendros P, Papagoras C, Mitroulis I, Ritis K. Autoinflammation: Lessons from the study of familial Mediterranean fever. J Autoimmun 2019; 104:102305. [PMID: 31337526 DOI: 10.1016/j.jaut.2019.102305] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/16/2022]
Abstract
Autoinflammatory disorders represent a heterogeneous group of systemic inflammatory diseases caused by genetic or acquired defects in key components of the innate immunity. Familial Mediterranean fever (FMF) is the most common among the other clinical phenotypes of the rare hereditary periodic fevers (HPFs) syndromes. FMF is associated with mutations in the MEFV gene encoding pyrin and is characterized by recurrent, often stress-provoked attacks of fever and serositis, but sometimes also by chronic subclinical inflammation. FMF is prevalent in Greece and other countries of the eastern Mediterranean region. Over the last 17 years, our group has focused on FMF as a model suitable for the research on innate immunity and particularly the role of neutrophils. Therefore, the study of Greek patients with FMF has yielded lessons across several levels: the epidemiology of the disease in Greece, the spectrum of its clinical manifestations and potential overlaps with other idiopathic inflammatory conditions, the demonstration of its rather complex and heterogeneous genetic background and the suggestion of a novel mechanism involved in the crosstalk between environmental stress and inflammation. Mechanistically, during FMF attack, neutrophils release chromatin structures called neutrophil extracellular traps (NETs), which are decorated with bioactive IL-1β. REDD1 (regulated in development and DNA damage responses 1), that encodes a stress-related mTOR repressor, has been found to be the most significantly upregulated gene in neutrophils during disease attacks. Upon adrenergic stress, REDD1-induced autophagy triggers a pyrin-driven IL-1β maturation, and the release of IL-1β-bearing NETs. Consequently, not only the mode of action of IL-1β-targeting therapies is explained, but also new treatment prospects emerge with the evaluation of old or the design of new drugs targeting autophagy-induced NETosis. Information gained from FMF studies may subsequently be applied in more complex but still relevant inflammatory conditions, such as adult-onset Still's disease, gout, ulcerative colitis and Behçet's disease.
Collapse
Affiliation(s)
- Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
26
|
Ulcerative Colitis and Familial Mediterranean Fever: Can Anakinra Treat Both? ACG Case Rep J 2019; 6:e00143. [PMID: 31620540 PMCID: PMC6722364 DOI: 10.14309/crj.0000000000000143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/04/2019] [Indexed: 11/17/2022] Open
Abstract
Anakinra is a biological drug used in rheumatoid arthritis and several autoinflammatory diseases. Its main side effects are injection site reactions and increased infection rate. We present a 28-year-old man with familial Mediterranean fever, whose disease went into remission on anakinra, with concomitant flare of his ulcerative colitis.
Collapse
|
27
|
Castro-Dopico T, Dennison TW, Ferdinand JR, Mathews RJ, Fleming A, Clift D, Stewart BJ, Jing C, Strongili K, Labzin LI, Monk EJM, Saeb-Parsy K, Bryant CE, Clare S, Parkes M, Clatworthy MR. Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity 2019; 50:1099-1114.e10. [PMID: 30876876 PMCID: PMC6477154 DOI: 10.1016/j.immuni.2019.02.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/17/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease is a chronic, relapsing condition with two subtypes, Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies (GWASs) in UC implicate a FCGR2A variant that alters the binding affinity of the antibody receptor it encodes, FcγRIIA, for immunoglobulin G (IgG). Here, we aimed to understand the mechanisms whereby changes in FcγRIIA affinity would affect inflammation in an IgA-dominated organ. We found a profound induction of anti-commensal IgG and a concomitant increase in activating FcγR signaling in the colonic mucosa of UC patients. Commensal-IgG immune complexes engaged gut-resident FcγR-expressing macrophages, inducing NLRP3- and reactive-oxygen-species-dependent production of interleukin-1β (IL-1β) and neutrophil-recruiting chemokines. These responses were modulated by the FCGR2A genotype. In vivo manipulation of macrophage FcγR signal strength in a mouse model of UC determined the magnitude of intestinal inflammation and IL-1β-dependent type 17 immunity. The identification of an important contribution of IgG-FcγR-dependent inflammation to UC has therapeutic implications.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Thomas W Dennison
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Rebeccah J Mathews
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Dean Clift
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Chenzhi Jing
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | - Konstantina Strongili
- Division of Gastroenterology, Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Larisa I Labzin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Edward J M Monk
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK
| | | | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Miles Parkes
- Division of Gastroenterology, Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge CB2 0QH, UK; Cellular Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinton CB10 1SA, UK.
| |
Collapse
|
28
|
Weissman S, Saleem S, Aldulaimi D. Landmark studies and emerging strategies for the management of acute severe ulcerative colitis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:179-182. [PMID: 31528299 PMCID: PMC6668759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Simcha Weissman
- Department of Medicine, Touro College of Osteopathic Medicine, Middletown, NY, USA
| | - Saad Saleem
- Department of Medicine, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - David Aldulaimi
- Department of Gastroenterology, South Warwickshire Foundation Trust, Warwick, UK
| |
Collapse
|
29
|
Silva AC, Lobo JMS. Cytokines and Growth Factors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:87-113. [PMID: 31384960 DOI: 10.1007/10_2019_105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several cytokines have been used to treat autoimmune diseases, viral infections, and cancer and to regenerate the skin. In particular, interferons (INFs) have been used to treat cancer, hepatitis B and C, and multiple sclerosis, while interleukins (ILs) and tumor necrosis factors (TNFs) have been used in the management of different types of cancer. Concerning the hematopoietic growth factors (HGFs), epoetin has been used for anemia, whereas the colony-stimulating factors (CSFs) have been used for neutropenia. Other growth factors have been extensively explored, although most still need to demonstrate in vivo clinical relevance before reaching the market.This chapter provides an overview on the therapeutic applications of biological medicines containing recombinant cytokines and growth factors (HGFs and others). From this review, we concluded that the clinical relevance of recombinant cytokines has been increasing. Since the 1980s, the European Medicines Agency (EMA) and/or Food and Drug Administration (FDA) have approved 89 biological medicines containing recombinant cytokines. Among these, 18 were withdrawn, 24 are biosimilars, and 18 are orphans.So far, considerable progress has been made in discovering new cytokines, additional cytokine functions, and how they interfere with human diseases. Future prospects include the approval of more biological and biosimilar medicines for different therapeutic applications.
Collapse
Affiliation(s)
- A C Silva
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal.
| | - J M Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|