1
|
Brock S, Jackson DB, Soldatos TG, Hornischer K, Schäfer A, Diella F, Emmert MY, Hoerstrup SP. Whole patient knowledge modeling of COVID-19 symptomatology reveals common molecular mechanisms. FRONTIERS IN MOLECULAR MEDICINE 2023; 2:1035290. [PMID: 39086962 PMCID: PMC11285600 DOI: 10.3389/fmmed.2022.1035290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 08/02/2024]
Abstract
Infection with SARS-CoV-2 coronavirus causes systemic, multi-faceted COVID-19 disease. However, knowledge connecting its intricate clinical manifestations with molecular mechanisms remains fragmented. Deciphering the molecular basis of COVID-19 at the whole-patient level is paramount to the development of effective therapeutic approaches. With this goal in mind, we followed an iterative, expert-driven process to compile data published prior to and during the early stages of the pandemic into a comprehensive COVID-19 knowledge model. Recent updates to this model have also validated multiple earlier predictions, suggesting the importance of such knowledge frameworks in hypothesis generation and testing. Overall, our findings suggest that SARS-CoV-2 perturbs several specific mechanisms, unleashing a pathogenesis spectrum, ranging from "a perfect storm" triggered by acute hyper-inflammation, to accelerated aging in protracted "long COVID-19" syndromes. In this work, we shortly report on these findings that we share with the community via 1) a synopsis of key evidence associating COVID-19 symptoms and plausible mechanisms, with details presented within 2) the accompanying "COVID-19 Explorer" webserver, developed specifically for this purpose (found at https://covid19.molecularhealth.com). We anticipate that our model will continue to facilitate clinico-molecular insights across organ systems together with hypothesis generation for the testing of potential repurposing drug candidates, new pharmacological targets and clinically relevant biomarkers. Our work suggests that whole patient knowledge models of human disease can potentially expedite the development of new therapeutic strategies and support evidence-driven clinical hypothesis generation and decision making.
Collapse
Affiliation(s)
| | | | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochschule, University of Applied Science, Heidelberg, Germany
| | | | | | | | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Brock S, Soldatos TG, Jackson DB, Diella F, Hornischer K, Schäfer A, Hoerstrup SP, Emmert MY. The COVID-19 explorer-An integrated, whole patient knowledge model of COVID-19 disease. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1035215. [PMID: 39086977 PMCID: PMC11285624 DOI: 10.3389/fmmed.2022.1035215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/07/2022] [Indexed: 08/02/2024]
Abstract
Since early 2020 the COVID-19 pandemic has paralyzed the world, resulting in more than half a billion infections and over 6 million deaths within a 28-month period. Knowledge about the disease remains largely disjointed, especially when considering the molecular mechanisms driving the diversity of clinical manifestations and symptoms. Despite the recent availability of vaccines, there remains an urgent need to develop effective treatments for cases of severe disease, especially in the face of novel virus variants. The complexity of the situation is exacerbated by the emergence of COVID-19 as a complex and multifaceted systemic disease affecting independent tissues and organs throughout the body. The development of effective treatment strategies is therefore predicated on an integrated understanding of the underlying disease mechanisms and their potentially causative link to the diversity of observed clinical phenotypes. To address this need, we utilized a computational technology (the Dataome platform) to build an integrated clinico-molecular view on the most important COVID-19 clinical phenotypes. Our results provide the first integrated, whole-patient model of COVID-19 symptomatology that connects the molecular lifecycle of SARS-CoV-2 with microvesicle-mediated intercellular communication and the contact activation and kallikrein-kinin systems. The model not only explains the clinical pleiotropy of COVID-19, but also provides an evidence-driven framework for drug development/repurposing and the identification of critical risk factors. The associated knowledge is provided in the form of the open source COVID-19 Explorer (https://covid19.molecularhealth.com), enabling the global community to explore and analyze the key molecular features of systemic COVID-19 and associated implications for research priorities and therapeutic strategies. Our work suggests that knowledge modeling solutions may offer important utility in expediting the global response to future health emergencies.
Collapse
Affiliation(s)
| | - Theodoros G. Soldatos
- Molecular Health GmbH, Heidelberg, Germany
- SRH Hochscule, University of Applied Science, Heidelberg, Germany
| | | | | | | | | | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Azhar A, Khan WH, Al-Hosaini K, Zia Q, Kamal MA. Crosstalk between SARS-CoV-2 Infection and Type II Diabetes. Comb Chem High Throughput Screen 2022; 25:2429-2442. [PMID: 35293290 DOI: 10.2174/1386207325666220315114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Since the outbreak of coronavirus disease (COVID-19) in Wuhan, China, triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) in late November 2019, spreading to more than 200 countries of the world, the ensuing pandemic to an enormous loss of lives, mainly the older population with comorbidities, like diabetes, cardiovascular disease, chronic obstructive pulmonary disease, obesity, and hypertension. Amongst these immune-debilitating diseases, SARS-CoV-2 infection is the most common in patients with diabetes due to the absence of a normal active immune system to fight the COVID-19. Recovery of patients having a history of diabetes from COVID-19 encounters several complications, and their management becomes cumbersome. For control of coronavirus, antiviral medications, glucose-lowering agents, and steroids have been carefully evaluated. In the present review, we discuss the crosstalk between SARS-CoV-2 infection and patients with a history of diabetes. We mainly emphasize the molecular factors that are involved in diabetic individuals recently infected by SARS-CoV-2 and developed COVID-19 disease. Lastly, we examine the medications available for the long-term management of diabetic patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh, Uttar Pradesh, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia.,West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease- related Molecular Network, West China Hospital, Sichuan University, Chengdu 6141001, Sichuan, China
| |
Collapse
|
4
|
Dambha-Miller H, Hinton W, Wilcox CR, Lemanska A, Joy M, Feher M, Stuart B, de Lusignan S, Hippisley-Cox J, Griffin S. Mortality from angiotensin-converting enzyme-inhibitors and angiotensin receptor blockers in people infected with COVID-19: a cohort study of 3.7 million people. Fam Pract 2022; 40:330-337. [PMID: 36003039 PMCID: PMC9452130 DOI: 10.1093/fampra/cmac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Concerns have been raised that angiotensin-converting enzyme-inhibitors (ACE-I) and angiotensin receptor blockers (ARBs) might facilitate transmission of severe acute respiratory syndrome coronavirus 2 leading to more severe coronavirus disease (COVID-19) disease and an increased risk of mortality. We aimed to investigate the association between ACE-I/ARB treatment and risk of death amongst people with COVID-19 in the first 6 months of the pandemic. METHODS We identified a cohort of adults diagnosed with either confirmed or probable COVID-19 (from 1 January to 21 June 2020) using computerized medical records from the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) primary care database. This comprised 465 general practices in England, United Kingdom with a nationally representative population of 3.7 million people. We constructed mixed-effects logistic regression models to quantify the association between ACE-I/ARBs and all-cause mortality among people with COVID-19, adjusted for sociodemographic factors, comorbidities, concurrent medication, smoking status, practice clustering, and household number. RESULTS There were 9,586 COVID-19 cases in the sample and 1,463 (15.3%) died during the study period between 1 January 2020 and 21 June 2020. In adjusted analysis ACE-I and ARBs were not associated with all-cause mortality (adjusted odds ratio [OR] 1.02, 95% confidence interval [CI] 0.85-1.21 and OR 0.84, 95% CI 0.67-1.07, respectively). CONCLUSION Use of ACE-I/ARB, which are commonly used drugs, did not alter the odds of all-cause mortality amongst people diagnosed with COVID-19. Our findings should inform patient and prescriber decisions concerning continued use of these medications during the pandemic.
Collapse
Affiliation(s)
- Hajira Dambha-Miller
- Division of Primary Care and Population Health, University of Southampton, Southampton, United Kingdom
| | - William Hinton
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Christopher R Wilcox
- Division of Primary Care and Population Health, University of Southampton, Southampton, United Kingdom
| | - Agnieszka Lemanska
- Department of Clinical and Experimental Medicine, School of Health Sciences, University of Surrey, Surrey, United Kingdom
| | - Mark Joy
- Department of Clinical and Experimental Medicine, School of Health Sciences, University of Surrey, Surrey, United Kingdom
| | - Michael Feher
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Beth Stuart
- Division of Primary Care and Population Health, University of Southampton, Southampton, United Kingdom
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Julia Hippisley-Cox
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Simon Griffin
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.,MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Arefin S, Hernandez L, Ward LJ, Schwarz A, Barany P, Stenvinkel P, Kublickiene K. Angiotensin-converting enzyme 2 and transmembrane protease serine 2 in female and male patients with end-stage kidney disease. Eur J Clin Invest 2022; 52:e13786. [PMID: 35366343 PMCID: PMC9541326 DOI: 10.1111/eci.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Individuals with chronic kidney disease are affected by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to multiple comorbidities and altered immune system. The first step of the infection process is the binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) receptor, followed by its priming by transmembrane protease serine 2 (TMPRSS2). We hypothesized that circulating soluble ACE2 levels, as well as the expressions of ACE2 and TMPRSS2 in the microvasculature, are increased in patients with end-stage kidney disease (ESKD). METHODS A total of 210 participants were enrolled, representing 80 ESKD patients and 73 non-CKD controls for soluble ACE2, and 31 ESKD and 26 non-CKD controls for vasculature and fat tissue bioassays. We have assessed ACE2 expression in blood using ELISA and in tissue using immunofluorescence. RESULTS Soluble ACE2 levels were higher in ESKD patients compared to controls; however, there is no sex difference observed. In ESKD and controls, soluble ACE2 positively correlated with Interleukin 6 (IL-6) and C-reactive protein (CRP), respectively. Similarly, ACE2 tissue expression in the vasculature was higher in ESKD patients; moreover, this higher ACE2 expression was observed only in male ESKD patients. In addition, TMPRSS2 expression was observed in vessels from males and females but showed no sex difference. The expression of ACE2 receptor was higher in ESKD patients on ACE-inhibitor/angiotensin blocker treatment. CONCLUSION ESKD is associated with increased ACE2 levels in the circulation and pronounced in male vasculature; however, further studies are warranted to assess possible sex differences on specific treatment regime(s) for different comorbidities present in ESKD.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Liam J Ward
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Angelina Schwarz
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Peter Barany
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Moore GJ, Ridgway H, Kelaidonis K, Chasapis CT, Ligielli I, Mavromoustakos T, Bojarska J, Matsoukas JM. Actions of Novel Angiotensin Receptor Blocking Drugs, Bisartans, Relevant for COVID-19 Therapy: Biased Agonism at Angiotensin Receptors and the Beneficial Effects of Neprilysin in the Renin Angiotensin System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154854. [PMID: 35956801 PMCID: PMC9369639 DOI: 10.3390/molecules27154854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Angiotensin receptor blockers (ARBs) used in the treatment of hypertension and potentially in SARS-CoV-2 infection exhibit inverse agonist effects at angiotensin AR1 receptors, suggesting the receptor may have evolved to accommodate naturally occurring angiotensin ‘antipeptides’. Screening of the human genome has identified a peptide (EGVYVHPV) encoded by mRNA, complementary to that encoding ANG II itself, which is an inverse agonist. Thus, opposite strands of DNA encode peptides with opposite effects at AR1 receptors. Agonism and inverse agonism at AR1 receptors can be explained by a receptor ‘switching’ between an activated state invoking receptor dimerization/G protein coupling and an inverse agonist state mediated by an alternative/second messenger that is slow to reverse. Both receptor states appear to be driven by the formation of the ANG II charge-relay system involving TyrOH-His/imidazole-Carboxylate (analogous to serine proteases). In this system, tyrosinate species formed are essential for activating AT1 and AT2 receptors. ANGII is also known to bind to the zinc-coordinated metalloprotease angiotensin converting enzyme 2 (ACE2) used by the COVID-19 virus to enter cells. Here we report in silico results demonstrating the binding of a new class of anionic biphenyl-tetrazole sartans (‘Bisartans’) to the active site zinc atom of the endopeptidase Neprilysin (NEP) involved in regulating hypertension, by modulating humoral levels of beneficial vasoactive peptides in the RAS such as vasodilator angiotensin (1–7). In vivo and modeling evidence further suggest Bisartans can inhibit ANG II-induced pulmonary edema and may be useful in combatting SARS-CoV-2 infection by inhibiting ACE2-mediated viral entry to cells.
Collapse
Affiliation(s)
- Graham J. Moore
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada
- Correspondence: (G.J.M.); (J.M.M.)
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- AquaMem Consultants, Rodeo, New Mexico, NM 88056, USA
| | | | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Irene Ligielli
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.L.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece; (I.L.); (T.M.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - John M. Matsoukas
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Correspondence: (G.J.M.); (J.M.M.)
| |
Collapse
|
7
|
Matsoukas JM, Gadanec LK, Zulli A, Apostolopoulos V, Kelaidonis K, Ligielli I, Moschovou K, Georgiou N, Plotas P, Chasapis CT, Moore G, Ridgway H, Mavromoustakos T. Diminazene Aceturate Reduces Angiotensin II Constriction and Interacts with the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2022; 10:biomedicines10071731. [PMID: 35885036 PMCID: PMC9312513 DOI: 10.3390/biomedicines10071731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains its AT1R antagonistic activity. Additionally, the activation of ACE2 by DIZE converts the toxic octapeptide angiotensin II (AngII) to the heptapeptides angiotensin 1–7 and alamandine, which promote vasodilation and maintains homeostatic balance. Due to DIZE’s protective cardiovascular and pulmonary effects and its ability to target ACE2 (the predominant receptor utilized by severe acute respiratory syndrome coronavirus 2 to enter host cells), it is a promising treatment for coronavirus 2019 (COVID-19). To determine DIZE’s ability to inhibit AngII constriction, in vitro isometric tension analysis was conducted on rabbit iliac arteries incubated with DIZE or candesartan and constricted with cumulative doses of AngII. In silico docking and ligand interaction studies were performed to investigate potential interactions between DIZE and other ARBs with AT1R and the spike protein/ACE2 complex. DIZE, similar to the other ARBs investigated, was able to abolish vasoconstriction in response to AngII and exhibited a binding affinity for the spike protein/ACE2 complex (PDB 6LZ6). These results support the potential of DIZE as a treatment for COVID-19.
Collapse
Affiliation(s)
- John M. Matsoukas
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (J.M.M.); (T.M.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (A.Z.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | | | - Irene Ligielli
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Kalliopi Moschovou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Nikitas Georgiou
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
| | - Panagiotis Plotas
- Laboratory of Primary Health Care, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece;
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Graham Moore
- Pepmetics Incorporated, 772 Murphy Pace, Victoria, BC V8Y 3H4, Canada;
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Thomas Mavromoustakos
- Department of Chemistry National and Kapodistrian, University of Athens, Zographou, 15784 Athens, Greece; (I.L.); (K.M.); (N.G.)
- Correspondence: (J.M.M.); (T.M.)
| |
Collapse
|
8
|
Discovery of a new generation of angiotensin receptor blocking drugs: receptor mechanisms and in silico binding to enzymes relevant to covid-19. Comput Struct Biotechnol J 2022; 20:2091-2111. [PMID: 35432786 PMCID: PMC8994259 DOI: 10.1016/j.csbj.2022.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The discovery and facile synthesis of a new class of sartan-like arterial antihypertensive drugs (angiotensin receptor blockers [ARBs]), subsequently referred to as “bisartans” is reported. In vivo results and complementary molecular modelling presented in this communication indicate bisartans may be beneficial for the treatment of not only heart disease, diabetes, renal dysfunction, and related illnesses, but possibly COVID-19. Bisartans are novel bis-alkylated imidazole sartan derivatives bearing dual symmetric anionic biphenyl tetrazole moieties. In silico docking and molecular dynamics studies revealed bisartans exhibited higher binding affinities for the ACE2/spike protein complex (PDB 6LZG) compared to all other known sartans. They also underwent stable docking to the Zn2+ domain of the ACE2 catalytic site as well as the critical interfacial region between ACE2 and the SARS-CoV-2 receptor binding domain. Additionally, semi-stable docking of bisartans at the arginine-rich furin-cleavage site of the SARS-CoV-2 spike protein (residues 681–686) required for virus entry into host cells, suggest bisartans may inhibit furin action thereby retarding viral entry into host cells. Bisartan tetrazole groups surpass nitrile, the pharmacophoric “warhead” of PF-07321332, in its ability to disrupt the cysteine charge relay system of 3CLpro. However, despite the apparent targeting of multifunctional sites, bisartans do not inhibit SARS-CoV-2 infection in bioassays as effectively as PF-07321332 (Paxlovid).
Collapse
|
9
|
Rezel‐Potts E, Douiri A, Chowienczyk PJ, Gulliford MC. Antihypertensive medications and COVID-19 diagnosis and mortality: Population-based case-control analysis in the United Kingdom. Br J Clin Pharmacol 2021; 87:4598-4607. [PMID: 33908074 PMCID: PMC8239680 DOI: 10.1111/bcp.14873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/15/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Antihypertensive drugs have been implicated in coronavirus disease 2019 (COVID-19) susceptibility and severity, but estimated associations may be susceptible to bias. We aimed to evaluate antihypertensive medications and COVID-19 diagnosis and mortality, accounting for healthcare-seeking behaviour. METHODS A population-based case-control study was conducted including 16 866 COVID-19 cases and 70 137 matched controls from the UK Clinical Practice Research Datalink. We evaluated all-cause mortality among COVID-19 cases. Exposures were angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), beta-blockers (B), calcium-channel blockers (C), thiazide diuretics (D) and other antihypertensive drugs (O). Analyses were adjusted for covariates and consultation frequency. RESULTS ACEIs were associated with lower odds of COVID-19 diagnosis (adjusted odds ratio [AOR] 0.82, 95% confidence interval [CI] 0.77-0.88) as were ARBs (AOR 0.87, 95% CI 0.80-0.95) with little attenuation from adjustment for consultation frequency. C and D were also associated with lower odds of COVID-19 diagnosis. Increased odds of COVID-19 for B (AOR 1.19, 95% CI 1.12-1.26) were attenuated after adjustment for consultation frequency (AOR 1.01, 95% CI 0.95-1.08). Patients treated with ACEIs or ARBs had similar odds of mortality (AOR 1.00, 95% CI 0.83-1.20) to patients treated with classes B, C, D or O or patients receiving no antihypertensive therapy (AOR 0.99, 95% CI 0.83-1.18). CONCLUSIONS There was no evidence that antihypertensive therapy is associated with increased risk of COVID-19 diagnosis or mortality; most classes of antihypertensive therapy showed negative associations with COVID-19 diagnosis.
Collapse
Affiliation(s)
- Emma Rezel‐Potts
- King's College LondonSchool of Population Health and Environmental SciencesLondonUK
- National Institute for Health Research Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Abdel Douiri
- King's College LondonSchool of Population Health and Environmental SciencesLondonUK
- National Institute for Health Research Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
- National Institute for Health Research Applied Research Collaboration South LondonGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | | | - Martin C. Gulliford
- King's College LondonSchool of Population Health and Environmental SciencesLondonUK
- National Institute for Health Research Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
- National Institute for Health Research Applied Research Collaboration South LondonGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| |
Collapse
|
10
|
Rath S, Perikala V, Jena AB, Dandapat J. Factors regulating dynamics of angiotensin-converting enzyme-2 (ACE2), the gateway of SARS-CoV-2: Epigenetic modifications and therapeutic interventions by epidrugs. Biomed Pharmacother 2021; 143:112095. [PMID: 34479017 PMCID: PMC8403698 DOI: 10.1016/j.biopha.2021.112095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) is one of the major components of the renin-angiotensin system (RAS) and participates in the physiological functions of the cardiovascular system and lungs. Recent studies identified ACE2 as the receptor for the S-protein of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and thus acts as the gateway for viral entry into the human body. Virus infection causes an imbalance in the RAS axis and induces acute lungs injury and fibrosis. Various factors regulate ACE2 expression patterns as well as control its epigenetic status at both transcription and translational levels. This review is mainly focused on the impact of environmental toxicants, drugs, endocrine disruptors, and hypoxia as controlling parameters for ACE2 expression and its possible modulation by epigenetic changes which are marked by DNA methylation, histone modifications, and micro-RNAs (miRNAs) profile. Furthermore, we have emphasized on interventions of various phytochemicals and bioactive compounds as epidrugs that regulate ACE2-S-protein interaction and thereby curb viral infection. Since ACE2 is an important component of the RAAS axis and a crucial entry point of SARS-CoV-2, the dynamics of ACE2 expression in response to various extrinsic and intrinsic factors are of contemporary relevance. We have collated updated information on ACE2 expression modulated by epidrugs, and urge to take over further studies on these important physiological regulators to unravel many more systemic linkages related to both metabolic and infectious diseases, in general and SARS-CoV-2 in particular for further development of targeted interventions.
Collapse
Affiliation(s)
- Suvasmita Rath
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Venkateswarlu Perikala
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Atala Bihari Jena
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jagneshwar Dandapat
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India; Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
11
|
Sabri S, Bourron O, Phan F, Nguyen LS. Interactions between diabetes and COVID-19: A narrative review. World J Diabetes 2021; 12:1674-1692. [PMID: 34754370 PMCID: PMC8554367 DOI: 10.4239/wjd.v12.i10.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes, whether due to pancreatic beta cells insufficiency or peripheral resistance to insulin, has been suggested as a risk factor of developing severe acute respiratory disease coronavirus-2 (SARS-CoV-2) infections. Indeed, diabetes has been associated with a higher risk of infections and higher risk of developing severe forms of coronavirus disease 2019 (COVID-19) related pneumonia. Diabetic patients often present associated comorbidities such as obesity, hypertension and cardiovascular diseases, and complications of diabetes, including chronic kidney disease, vasculopathy and relative immune dysfunction, all of which make them more susceptible to infectious complications. Moreover, they often present low-grade inflammation with increased circulating interleukin levels, endothelial susceptibility to inflammation and dysfunction, and finally, hyperglycemia, which increases this risk. Additionally, corticosteroids, which count among the few medications which showed benefit on survival and mechanical ventilation requirement in COVID-19 pneumonia in large randomized controlled trials, are associated to new onsets of diabetes, and metabolic disorders in patients with previous history of diabetes. Finally, SARS-CoV-2 via the alternate effects of the renin-angiotensin system, mediated by the angiotensin-converting-enzyme 2, was also associated with insulin resistance in key tissues involved in glucose homeostasis, such as liver, skeletal muscles, and adipose tissue; and also, with impaired insulin secretion by pancreatic β-cells. In this work, we reviewed all elements which may help understand how diabetes affects patients with COVID-19, how treatments affect outcomes in patients with COVID-19, how they may cause new onsets of diabetes, and finally review how SARS-CoV-2 may inherently be a risk factor of developing diabetes, through immune-mediated diabetogenic mechanisms.
Collapse
Affiliation(s)
- Sophia Sabri
- Intensive Care Medicine, CMC Ambroise Paré, Neuilly-Sur-Seine 92200, France
| | - Olivier Bourron
- Sorbonne Université Médecine; Assistance publique Hôpitaux de Paris (APHP), Service de Diabétologie, Hôpital Pitié-Salpêtrière; INSERM UMRS_1138, Centre de recherche des Cordeliers; Institute of CArdiometabolisme and Nutrition (ICAN), Paris 75013, France
| | - Franck Phan
- Sorbonne Université Médecine; Assistance publique Hôpitaux de Paris (APHP), Service de Diabétologie, Hôpital Pitié-Salpêtrière; INSERM UMRS_1138, Centre de recherche des Cordeliers; Institute of CArdiometabolisme and Nutrition (ICAN), Paris 75013, France
| | - Lee S Nguyen
- Research and Innovation, RICAP, CMC Ambroise Paré, Neuilly-Sur-Seine 92200, France
| |
Collapse
|
12
|
Demidova TY, Lobanova KG, Perekhodov SN, Antsiferov MB, Oynotkinova OS. [Retrospective analysis of clinical outcomes of patients with COVID-19 depending on receiving antihypertensive, lipid-lowering and antihypertensive therapy]. TERAPEVT ARKH 2021; 93:1193-1202. [PMID: 36286821 DOI: 10.26442/00403660.2021.10.201072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The main factors that increase the risk of cardiovascular accidents and mortality among patients with COVID-19 include hyperglycemia, arterial hypertension and dyslipidemia. Therefore, all patients with COVID-19 and metabolic syndrome should receive antihypertensive (AHT), hypolipidemic (GLT) and hypoglycemic therapy (GGT). Currently, there is a limited number of studies regarding the effectiveness and safety of this therapy in patients with COVID-19. AIM Evaluate the clinical outcomes of patients with COVID-19, depending on the recipient of AHT, GLT and GGT. MATERIALS AND METHODS A retrospective analysis of the clinical outcomes "discharged/died" of 1753 patients with COVID-19 was carried out depending on the received AHT, GLT and GGT. RESULTS A significant reduction in the risk of mortality among patients with COVID-19 was observed during therapy with angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers ACE inhibitors/ARBs (OR 0.39, 95% CI 0.210.72; p0.05) and b-adrenergic blockers b-AB (OR 0.53, 95% CI 0.281; p0.05). At the same time, against the background of therapy with ACE inhibitors/ARBs and b-ABs, the chance of mortality decreased more significantly among patients with type 2 diabetes mellitus (T2DM) compared with patients without T2DM. Diuretic therapy was associated with a 3-fold increase in the chances of death: OR 3.33, 95% CI 1.884.79; p0.05. Statin therapy did not affect clinical outcomes in COVID-19 patients. On the background of therapy with oral hypoglycemic drugs, the risk of mortality decreased 5-fold (OR 0.19, 95% CI 0.070.54; p0.05). Against the background of insulin therapy, there was an increase in mortality risk by 2.8 times (OR 2.81, 95% CI 1.55.29; p0.05). CONCLUSION A significant reduction in mortality among patients with COVID-19 was observed during therapy with ACEI/ARB, b-AB, and oral hypoglycemic therapy. Increased risk of death was associated with insulin therapy and diuretic therapy.
Collapse
Affiliation(s)
- T Y Demidova
- Pirogov Russian National Research Medical University
| | - K G Lobanova
- Pirogov Russian National Research Medical University
| | | | | | | |
Collapse
|
13
|
Almengló C, Couselo-Seijas M, Agra RM, Varela-Román A, García-Acuña JM, González-Peteiro M, González-Juanatey JR, Eiras S, Álvarez E. Soluble angiotensin-converting enzyme levels in heart failure or acute coronary syndrome: revisiting its modulation and prognosis value. J Mol Med (Berl) 2021; 99:1741-1753. [PMID: 34529122 PMCID: PMC8443916 DOI: 10.1007/s00109-021-02129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
The main objective was to compare the meaning of soluble angiotensin-converting enzyme-2 (sACE2) plasma levels modulation on the prognosis of two cohorts of heart failure (HF) and acute coronary syndrome (ACS). We conducted an observational clinical study where sACE2 was measured in two cohorts of HF or ACS (102 patients each), matched by age and gender. The primary endpoint (cardiac death) and the secondary endpoints (non-fatal myocardial infarction or HF readmission) were registered during a 5-year follow-up period. Association with pharmacotherapy was studied, and the effects of cardiovascular drugs on ACE isoforms expression were analysed in human umbilical vein endothelial cells (HUVEC) in vitro. The levels of sACE2 were significantly higher in the HF than ACS cohort. sACE2 was inversely related with the leukocytes number and directly with urea levels. In the ACS cohort, sACE2 was associated with age and glycaemic parameters, but in the HF cohort, the association was with N-terminal pro-B-type natriuretic peptide. The levels of sACE2 were related to long-term prognosis and confirmed as a non-independent predictor in the HF cohort. Soluble ACE2 was higher in patients treated with angiotensin receptors blockers and β-blockers, accordingly with losartan and metoprolol upregulation of ACE1 and ACE2 in HUVECs. Plasma levels of sACE2 were higher in HF than in ACS, independently of age and gender, and were related to long-term cardiac death in the HF cohort. Losartan and metoprolol, but not enalapril, upregulated ACE expression in endothelial cells, accordingly with higher levels of sACE2 in patients using these drugs.
Collapse
Affiliation(s)
- Cristina Almengló
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Marinela Couselo-Seijas
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Rosa M Agra
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain.,CIBERCV, Madrid, Spain.,Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Alfonso Varela-Román
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain.,CIBERCV, Madrid, Spain.,Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - José M García-Acuña
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain.,CIBERCV, Madrid, Spain.,Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Mercedes González-Peteiro
- Departamento de Enfermería, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - José R González-Juanatey
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain.,CIBERCV, Madrid, Spain.,Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Sonia Eiras
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain.,CIBERCV, Madrid, Spain
| | - Ezequiel Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain. .,CIBERCV, Madrid, Spain. .,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
14
|
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) have been discouraged for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, fearing that they could increase the risk of infection or the severity of SARS-CoV-2. Methods Original studies providing information on exposure to NSAIDs and coronavirus disease 2019 (COVID-19) outcomes were retrieved and were included in a descriptive analysis and a meta-analysis with Cochrane Revue Manager (REVMAN 5.4), using inverse variance odds ratio (OR) with random- or fixed-effects models. Results Of 92,853 papers mentioning COVID-19, 266 mentioned NSAIDs and 61 mentioned ibuprofen; 19 papers had analysable data. Three papers described NSAID exposure and the risk of SARS-CoV-2 positivity, five papers described the risk of hospital admission in positive patients, 10 papers described death, and six papers described severe composite outcomes. Five papers studied exposure to ibuprofen and death. Using random-effects models, there was no excess risk of SARS-CoV-2 positivity (OR 0.86, 95% confidence interval [CI] 0.71–1.05). In SARS-CoV-2-positive patients, exposure to NSAIDs was not associated with excess risk of hospital admission (OR 0.90, 95% CI 0.80–1.17), death (OR 0.88, 95% CI 0.80–0.98), or severe outcomes (OR 1.14, 95% CI 0.90–1.44). With ibuprofen, there was no increased risk of death (OR 0.94, 95% CI 0.78–1.13). Using a fixed-effect model did not modify the results, nor did the sensitivity analyses. Conclusion The theoretical risks of NSAIDs or ibuprofen in SARS-CoV-2 infection are not confirmed by observational data. Supplementary Information The online version contains supplementary material available at 10.1007/s40264-021-01089-5.
Collapse
|
15
|
Patoulias D, Boulmpou A, Imprialos K, Stavropoulos K, Papadopoulos C, Doumas M. Meta-analysis evaluating the risk of respiratory tract infections and acute respiratory distress syndrome with glucagon-like peptide-1 receptor agonists in cardiovascular outcome trials: Useful implications for the COVID-19 pandemic. Rev Clin Esp 2021; 222:229-232. [PMID: 34167924 PMCID: PMC8179096 DOI: 10.1016/j.rceng.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/13/2021] [Indexed: 01/04/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) are at increased risk for severe coronavirus disease 2019 (COVID-19) and related mortality. Glucagon-like peptide-1 receptor agonists (GLP-1-RAs) have significant cardiovascular and renal benefits for patients with T2DM and related comorbidities. Their anti-inflammatory properties could be beneficial in these patients. This work provides less-biased estimates regarding the risk for respiratory tract infections and acute respiratory distress syndrome by performing the first significant meta-analysis of cardiovascular outcome trials in the literature. Notably, GLP-1-RAs do not seem to increase the risk for respiratory tract infection, pneumonia, or acute respiratory distress syndrome in patients with T2DM and cardiovascular comorbidities.
Collapse
Affiliation(s)
- D Patoulias
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Greece.
| | - A Boulmpou
- Third Department of Cardiology, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Greece
| | - K Imprialos
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Greece
| | - K Stavropoulos
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Greece
| | - C Papadopoulos
- Third Department of Cardiology, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Greece
| | - M Doumas
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Greece; Veterans Affairs Medical Center, George Washington University, Washington, District of Columbia, Columbia, United States
| |
Collapse
|
16
|
Patoulias D, Boulmpou A, Imprialos K, Stavropoulos K, Papadopoulos C, Doumas M. [Meta-analysis evaluating the risk of respiratory tract infections and acute respiratory distress syndrome with glucagon-like peptide-1 receptor agonists in cardiovascular outcome trials: useful implications for the COVID-19 pandemic]. Rev Clin Esp 2021; 222:229-232. [PMID: 33935292 PMCID: PMC8075844 DOI: 10.1016/j.rce.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) are at increased risk for severe coronavirus disease 2019 (COVID-19) and related mortality. Glucagon-like peptide-1 receptor agonists (GLP-1-RAs) have significant cardiovascular and renal benefits for patients with T2DM and related comorbidities. Their anti-inflammatory properties could be beneficial in these patients. This work provides less-biased estimates regarding the risk for respiratory tract infections and acute respiratory distress syndrome by performing the first significant meta-analysis of cardiovascular outcome trials in the literature. Notably, GLP-1-RAs do not seem to increase the risk for respiratory tract infection, pneumonia, or acute respiratory distress syndrome in patients with T2DM and cardiovascular comorbidities.
Collapse
Affiliation(s)
- D Patoulias
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Grecia
| | - A Boulmpou
- Third Department of Cardiology, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Grecia
| | - K Imprialos
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Grecia
| | - K Stavropoulos
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Grecia
| | - C Papadopoulos
- Third Department of Cardiology, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Grecia
| | - M Doumas
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloniki, Grecia.,Veterans Affairs Medical Center, George Washington University, Washington, District of Columbia, Columbia, Estados Unidos
| |
Collapse
|
17
|
Belančić A, Kresović A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin Obes 2021; 11:e12439. [PMID: 33423388 PMCID: PMC7995087 DOI: 10.1111/cob.12439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present manuscript is to discuss on potential pros and cons of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as glucose-lowering agents during COVID-19 pandemic, and what is more to evaluate them as potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without diabetes mellitus type 2. Besides being important glucose-lowering agents, GLP-1RAs pose promising anti-inflammatory and anti-obesogenic properties, pulmonary protective effects, as well as beneficial impact on gut microbiome composition. Hence, taking everything previously mentioned into consideration, GLP-1RAs seem to be potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without type 2 diabetes mellitus, as well as excellent antidiabetic (glucose-lowering) agents during COVID-19 pandemic times.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Clinical PharmacologyUniversity Hospital Centre RijekaRijekaCroatia
| | - Andrea Kresović
- Division of Gastroenterology, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| | - Marija Troskot Dijan
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| |
Collapse
|
18
|
Parit R, Jayavel S. Association of ACE inhibitors and angiotensin type II blockers with ACE2 overexpression in COVID-19 comorbidities: A pathway-based analytical study. Eur J Pharmacol 2021; 896:173899. [PMID: 33508281 PMCID: PMC7839513 DOI: 10.1016/j.ejphar.2021.173899] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) outbreak is a major public health concern, which has accounted for >1.7 million deaths across the world. A surge in the case fatality ratio as compared with the infection ratio has been observed in most of the countries. The novel Coronavirus SARS-CoV-2 shares the most common sequence with SARS-CoV, but it has a higher rate of transmission. The SARS-CoV-2 pathogenesis is initiated by the binding of viral spike protein with the target receptor Angiotensin-Converting Enzyme 2 (ACE2) facilitating virus internalization within host cells. SARS-CoV-2 mainly causes alveolar damage ranging from mild to severe clinical respiratory manifestations. Most of the cases have revealed the association of Coronavirus disease with patients having earlier comorbidities like Hypertension, Diabetes mellitus, and Cerebrovascular diseases. Pharmacological investigation of the SARS-Cov-2 patients has revealed the frequent use of drugs belongs to Angiotensin-converting enzyme inhibitors (ACEi) and/or Angiotensin II type I receptor blockers (ARBs). Interestingly, a significant increase in ACE2 expression was noticed in patients routinely treated with the above group of drugs were also reported. To date, the association of ACEi and/or ARBs with the up-regulation of ACE2 expression has not been defined distinctively. The proposed review will focus on the pathways which are responsible for the upregulation of ACE2 and its impact on gravity of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Rahul Parit
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Sridhar Jayavel
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India.
| |
Collapse
|
19
|
Matsoukas J, Apostolopoulos V, Zulli A, Moore G, Kelaidonis K, Moschovou K, Mavromoustakos T. From Angiotensin II to Cyclic Peptides and Angiotensin Receptor Blockers (ARBs): Perspectives of ARBs in COVID-19 Therapy. Molecules 2021; 26:molecules26030618. [PMID: 33504092 PMCID: PMC7865783 DOI: 10.3390/molecules26030618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The octapeptide hormone angiotensin II is one of the most studied peptides with the aim of designing and synthesizing non-peptide mimetics for oral administration. To achieve this, cyclizations at different positions within the peptide molecule has been a useful strategy to define the active conformation. These studies on angiotensin II led to the discovery of Sarmesin, a type II angiotensin II antagonist, and the breakthrough non-peptide mimetic Losartan, the first in a series of sartans marketed as a new generation of anti-hypertensive drugs in the 1990s. Angiotensin II receptor blockers (ARBS) and angiotensin I converting enzyme inhibitors (ACEI) were recently reported to protect hypertensive patients infected with SARS-CoV-2. The renin–angiotensin system (RAS) inhibitors reduce excess angiotensin II and increase antagonist heptapeptides alamandine and aspamandine which counterbalance angiotensin II and maintain homeostasis and vasodilation.
Collapse
Affiliation(s)
- John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (A.Z.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug, P.C., Patras Science Park, 26504 Patras, Greece;
- Correspondence: ; Tel.: +30-2610-911-546(5)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (A.Z.)
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (A.Z.)
| | - Graham Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
| | | | - Kalliopi Moschovou
- Department of Chemistry, National and Kapodistrian University of Athens, Zographou, 15784 Athens, Greece; (K.M.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Zographou, 15784 Athens, Greece; (K.M.); (T.M.)
| |
Collapse
|
20
|
Stöllberger C, Winkler-Dworak M. Some Questions to Our Chinese Colleagues Pioneering Research Into Coronavirus Disease 2019 (COVID-19). Front Med (Lausanne) 2021; 7:594623. [PMID: 33425943 PMCID: PMC7793802 DOI: 10.3389/fmed.2020.594623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023] Open
Abstract
A pandemic has developed, so physicians worldwide are particularly interested in the experiences of their Chinese Colleagues which are frequently cited. To assess the long-term pulmonary, cardiac, neurologic, and psychiatric consequences after COVID-19, the outcome of patients included in the early publications and the association with baseline findings is of particular interest. Thus, we review the methods of early Coronavirus disease 2019 (COVID-19) publications. Reports published before March 19th 2020, comprising >40 patients were included, considering especially cardiologic aspects. It remains unclear whether patients were described several times, or they were different patients. Only patients with confirmed COVID-19 were described, and no differences in findings of patients with initially suspected and later confirmed, or excluded infection. It remains unclear in how many cases information was missing, since missing values were not reported. Medication before hospital admission, level of education and occupation, household size and composition, weight or body mass index are lacking. No details about electrocardiographic findings are given. Patients still in follow-up, constituting the major part of observations, were excluded. The data should be re-analyzed. A comparison between confirmed and excluded cases could be carried out. By now, in November 2020, the reported patients will most probably have recovered. Thus, it would be possible to differentiate prognostic indicators more precisely. Laboratory tests and electrocardiograms could be analyzed in more detail to shed light on the spectrum of this disease and to solve some of the unanswered questions related with COVID-19.
Collapse
Affiliation(s)
| | - Maria Winkler-Dworak
- Wittgenstein Centre for Demography and Global Human Capital, Vienna Institute of Demography of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
21
|
Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GA. Covid-19 and Diabetes: A Complex Bidirectional Relationship. Front Endocrinol (Lausanne) 2020; 11:582936. [PMID: 33133024 PMCID: PMC7578412 DOI: 10.3389/fendo.2020.582936] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Covid-19 is a recently-emerged infectious disease caused by the novel severe acute respiratory syndrome coronavirus SARS-CoV2. SARS-CoV2 differs from previous coronavirus infections (SARS and MERS) due to its high infectivity (reproduction value, R0, typically 2-4) and pre- or asymptomatic transmission, properties that have contributed to the current global Covid-19 pandemic. Identified risk factors for disease severity and death from SARS-Cov2 infection include older age, male sex, diabetes, obesity and hypertension. The reasons for these associations are still largely obscure. Evidence is also emerging that SARS-CoV2 infection exacerbates the underlying pathophysiology of hyperglycemia in people with diabetes. Here, we discuss potential mechanisms through which diabetes may affect the risk of more severe outcomes in Covid-19 and, additionally, how diabetic emergencies and longer term pathology may be aggravated by infection with the virus. We consider roles for the immune system, the observed phenomenon of microangiopathy in severe Covid-19 infection and the potential for direct viral toxicity on metabolically-relevant tissues including pancreatic beta cells and targets of insulin action.
Collapse
Affiliation(s)
- Hermine Muniangi-Muhitu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Victoria Salem
- Section of Endocrinology, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Shivani Misra
- Section of Metabolic Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas S. Oliver
- Section of Metabolic Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore, Singapore
| |
Collapse
|