1
|
Vealan K, Joseph N, Alimat S, Karumbati AS, Thilakavathy K. Lateral flow assay: a promising rapid point-of-care testing tool for infections and non-communicable diseases. ASIAN BIOMED 2023; 17:250-266. [PMID: 38161347 PMCID: PMC10754503 DOI: 10.2478/abm-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The point-of-care testing (POCT) approach has established itself as having remarkable importance in diagnosing various infectious and non-communicable diseases (NCDs). The POCT approach has succeeded in meeting the current demand for having diagnostic strategies that can provide fast, sensitive, and highly accurate test results without involving complicated procedures. This has been accomplished by introducing rapid bioanalytical tools or biosensors such as lateral flow assays (LFAs). The production cost of these tools is very low, allowing developing countries with limited resources to utilize them or produce them on their own. Thus, their use has grown in various fields in recent years. More importantly, LFAs have created the possibility for a new era of incorporating nanotechnology in disease diagnosis and have already attained significant commercial success worldwide, making POCT an essential approach not just for now but also for the future. In this review, we have provided an overview of POCT and its evolution into the most promising rapid diagnostic approach. We also elaborate on LFAs with a special focus on nucleic acid LFAs.
Collapse
Affiliation(s)
- Kumaravel Vealan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Sharizah Alimat
- Department of Chemistry Malaysia, Ministry of Science, Technology and Innovation, Petaling Jaya46661, Selangor, Malaysia
| | - Anandi S. Karumbati
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore560065, India
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| |
Collapse
|
2
|
Kumar S, Ko T, Chae Y, Jang Y, Lee I, Lee A, Shin S, Nam MH, Kim BS, Jun HS, Seo S. Proof-of-Concept: Smartphone- and Cloud-Based Artificial Intelligence Quantitative Analysis System (SCAISY) for SARS-CoV-2-Specific IgG Antibody Lateral Flow Assays. BIOSENSORS 2023; 13:623. [PMID: 37366988 DOI: 10.3390/bios13060623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Smartphone-based point-of-care testing (POCT) is rapidly emerging as an alternative to traditional screening and laboratory testing, particularly in resource-limited settings. In this proof-of-concept study, we present a smartphone- and cloud-based artificial intelligence quantitative analysis system (SCAISY) for relative quantification of SARS-CoV-2-specific IgG antibody lateral flow assays that enables rapid evaluation (<60 s) of test strips. By capturing an image with a smartphone camera, SCAISY quantitatively analyzes antibody levels and provides results to the user. We analyzed changes in antibody levels over time in more than 248 individuals, including vaccine type, number of doses, and infection status, with a standard deviation of less than 10%. We also tracked antibody levels in six participants before and after SARS-CoV-2 infection. Finally, we examined the effects of lighting conditions, camera angle, and smartphone type to ensure consistency and reproducibility. We found that images acquired between 45° and 90° provided accurate results with a small standard deviation and that all illumination conditions provided essentially identical results within the standard deviation. A statistically significant correlation was observed (Spearman correlation coefficient: 0.59, p = 0.008; Pearson correlation coefficient: 0.56, p = 0.012) between the OD450 values of the enzyme-linked immunosorbent assay and the antibody levels obtained by SCAISY. This study suggests that SCAISY is a simple and powerful tool for real-time public health surveillance, enabling the acceleration of quantifying SARS-CoV-2-specific antibodies generated by either vaccination or infection and tracking of personal immunity levels.
Collapse
Affiliation(s)
- Samir Kumar
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Taewoo Ko
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | | | - Yuyeon Jang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Inha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ahyeon Lee
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Sanghoon Shin
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byung Soo Kim
- Department of Hematology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Sungkyu Seo
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Maida CM, Tramuto F, Giammanco GM, Palermo R, Priano W, De Grazia S, Purpari G, La Rosa G, Suffredini E, Lucentini L, Palermo M, Pollina Addario W, Graziano G, Immordino P, Vitale F, Mazzucco W. Wastewater-Based Epidemiology as a Tool to Detect SARS-CoV-2 Circulation at the Community Level: Findings from a One-Year Wastewater Investigation Conducted in Sicily, Italy. Pathogens 2023; 12:748. [PMID: 37375438 PMCID: PMC10305655 DOI: 10.3390/pathogens12060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Wastewater-based epidemiology is a well-established tool for detecting and monitoring the spread of enteric pathogens and the use of illegal drugs in communities in real time. Since only a few studies in Italy have investigated the correlation between SARS-CoV-2 in wastewater and the prevalence of COVID-19 cases from clinical testing, we conducted a one-year wastewater surveillance study in Sicily to correlate the load of SARS-CoV-2 RNA in wastewater and the reported cumulative prevalence of COVID-19 in 14 cities from October 2021 to September 2022. Furthermore, we investigated the role of SARS-CoV-2 variants and subvariants in the increase in the number of SARS-CoV-2 infections. Our findings showed a significant correlation between SARS-CoV-2 RNA load in wastewater and the number of active cases reported by syndromic surveillance in the population. Moreover, the correlation between SARS-CoV-2 in wastewater and the active cases remained high when a lag of 7 or 14 days was considered. Finally, we attributed the epidemic waves observed to the rapid emergence of the Omicron variant and the BA.4 and BA.5 subvariants. We confirmed the effectiveness of wastewater monitoring as a powerful epidemiological proxy for viral variant spread and an efficient complementary method for surveillance.
Collapse
Affiliation(s)
- Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Giovanni Maurizio Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Roberta Palermo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Walter Priano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Simona De Grazia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Marinuzzi, 90129 Palermo, Italy;
| | - Giuseppina La Rosa
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Elisabetta Suffredini
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Luca Lucentini
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Mario Palermo
- Regional Health Authority of Sicily, Via Vaccaro 5, 90145 Palermo, Italy
| | | | - Giorgio Graziano
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Palmira Immordino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | | | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| |
Collapse
|
4
|
Yoon JY, Chen CH. Microfluidic detection of viruses for human health. BIOMICROFLUIDICS 2022; 16:060401. [PMID: 36337833 PMCID: PMC9633095 DOI: 10.1063/5.0130555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, USA
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Islam A, Hossen F, Rahman A, Sultana KF, Hasan MN, Haque A, Sosa-Hernández JE, Oyervides-Muñoz MA, Parra-Saldívar R, Ahmed T, Islam T, Dhama K, Sangkham S, Bahadur NM, Reza HM, Jakariya, Al Marzan A, Bhattacharya P, Sonne C, Ahmed F. An opinion on Wastewater-Based Epidemiological Monitoring (WBEM) with Clinical Diagnostic Test (CDT) for detecting high-prevalence areas of community COVID-19 Infections. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 31:100396. [PMID: 36320818 PMCID: PMC9612100 DOI: 10.1016/j.coesh.2022.100396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2024]
Abstract
Wastewater-Based Epidemiological Monitoring (WBEM) is an efficient surveillance tool during the COVID-19 pandemic as it meets all requirements of a complete monitoring system including early warning, tracking the current trend, prevalence of the disease, detection of genetic diversity as well asthe up-surging SARS-CoV-2 new variants with mutations from the wastewater samples. Subsequently, Clinical Diagnostic Test is widely acknowledged as the global gold standard method for disease monitoring, despite several drawbacks such as high diagnosis cost, reporting bias, and the difficulty of tracking asymptomatic patients (silent spreaders of the COVID-19 infection who manifest nosymptoms of the disease). In this current reviewand opinion-based study, we first propose a combined approach) for detecting COVID-19 infection in communities using wastewater and clinical sample testing, which may be feasible and effective as an emerging public health tool for the long-term nationwide surveillance system. The viral concentrations in wastewater samples can be used as indicatorsto monitor ongoing SARS-CoV-2 trends, predict asymptomatic carriers, and detect COVID-19 hotspot areas, while clinical sampleshelp in detecting mostlysymptomaticindividuals for isolating positive cases in communities and validate WBEM protocol for mass vaccination including booster doses for COVID-19.
Collapse
Affiliation(s)
- Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Foysal Hossen
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Arifur Rahman
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Khandokar Fahmida Sultana
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
- Joint Rohingya Response Program, Food for the Hungry, Cox's Bazar, Bangladesh
| | - Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | | | | | | | - Tanvir Ahmed
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | | | - Kuldeep Dhama
- Indian Veterinary Research Institute, Izzatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, 56000, Phayao, Thailand
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and TechnologyUniversity, Noakhali-3814, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Firoz Ahmed
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
6
|
Mannier C, Yoon JY. Progression of LAMP as a Result of the COVID-19 Pandemic: Is PCR Finally Rivaled? BIOSENSORS 2022; 12:492. [PMID: 35884295 PMCID: PMC9312731 DOI: 10.3390/bios12070492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/01/2023]
Abstract
Reflecting on the past three years and the coronavirus disease 19 (COVID-19) pandemic, varying global tactics offer insights into the most effective public-health responses. In the US, specifically, rapid and widespread testing was quickly prioritized to lower restrictions sooner. Essentially, only two types of COVID-19 diagnostic tests were publicly employed during the peak pandemic: the rapid antigen test and reverse transcription polymerase chain reaction (RT-PCR). However, neither test ideally suited the situation, as rapid antigen tests are far too inaccurate, and RT-PCR tests require skilled personnel and sophisticated equipment, leading to long wait times. Loop-mediated isothermal amplification (LAMP) is another exceptionally accurate nucleic acid amplification test (NAAT) that offers far quicker time to results. However, RT-LAMP COVID-19 tests have not been embraced as extensively as rapid antigen tests or RT-PCR. This review will investigate the performance of current RT-LAMP-based COVID-19 tests and summarize the reasons behind the hesitancy to embrace RT-LAMP instead of RT-PCR. We will also look at other LAMP platforms to explore possible improvements in the accuracy and portability of LAMP, which could be applied to COVID-19 diagnostics and future public-health outbreaks.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, the University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
7
|
Nguyen HA, Choi H, Lee NY. A Rotatable Paper Device Integrating Reverse Transcription Loop-Mediated Isothermal Amplification and a Food Dye for Colorimetric Detection of Infectious Pathogens. BIOSENSORS 2022; 12:488. [PMID: 35884291 PMCID: PMC9313173 DOI: 10.3390/bios12070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
In this study, we developed a rotatable paper device integrating loop-mediated isothermal amplification (RT-LAMP) and a novel naked-eye readout of the RT-LAMP results using a food additive, carmoisine, for infectious pathogen detection. Hydroxyl radicals created from the reaction between CuSO4 and H2O2 were used to decolor carmoisine, which is originally red. The decolorization of carmoisine can be interrupted in the presence of DNA amplicons produced by the RT-LAMP reaction due to how DNA competitively reacts with the hydroxyl radicals to maintain the red color of the solution. In the absence of the target DNA, carmoisine is decolored, owing to its reaction with hydroxyl radicals; thus, positive and negative samples can be easily differentiated based on the color change of the solution. A rotatable paper device was fabricated to integrate the RT-LAMP reaction with carmoisine-based colorimetric detection. The rotatable paper device was successfully used to detect SARS-CoV-2 and SARS-CoV within 70 min using the naked eye. Enterococcus faecium spiked in milk was detected using the rotatable paper device. The detection limits for the SARS-CoV-2 and SARS-CoV targets were both 103 copies/µL. The rotatable paper device provides a portable and low-cost tool for detecting infectious pathogens in a resource-limited environment.
Collapse
Affiliation(s)
| | | | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea; (H.A.N.); (H.C.)
| |
Collapse
|
8
|
Mulder L, Carrères B, Muggli F, Zollinger A, Corthésy J, Klijn A, Togni G. A Comparative Study of Nine SARS-CoV-2 IgG Lateral Flow Assays Using Both Post-Infection and Post-Vaccination Samples. J Clin Med 2022; 11:jcm11082100. [PMID: 35456192 PMCID: PMC9032267 DOI: 10.3390/jcm11082100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Since the SARS-CoV-2 pandemic, lateral flow assays (LFA) detecting specific antibodies have entered the market in abundance. Despite being CE-IVD-labeled, the antigenic compounds of the assays are often unknown, the performance characteristics provided by the manufacturer are often incomplete, and the samples used to obtain the data are not detailed. Objective: To perform a comparative evaluation of nine lateral flow assays to detect IgG responses against SARS-CoV-2. For the evaluation, a carefully designed serum panel containing post-infection samples and post-vaccination (both mRNA vaccine and inactivated virus vaccine) samples was used. Results: The sensitivity of the assays overall ranged from 9 to 90.3% and the specificity ranged from 94.2 to 100%. Spike protein-containing assays performed generally better than the assays with only nucleocapsid protein. The sensitivity of some assays was higher on post-infection samples, while other assays had a higher sensitivity to post-vaccination samples. Conclusion: A comparative approach in the verification of LFAs with an adequately designed serum panel enabled the identification of the antigens used in the assays. Sensitivities differed between post-infection and post-vaccination samples, depending on the assays used. This demonstrates that the verification of assays must be performed with samples representative of the intended use of the assay.
Collapse
Affiliation(s)
- Leontine Mulder
- Clinical Laboratory, Medlon BV, P.O. Box 50000, 7500 KA Enschede, The Netherlands;
- Clinical Chemistry, Ziekenhuis Groep Twente, P.O. Box 7600, 7600 SZ Almelo, The Netherlands
| | - Benoit Carrères
- Société de Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (B.C.); (A.Z.); (J.C.); (A.K.)
| | - Franco Muggli
- Faculty of Biomedical Science, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
| | - Alix Zollinger
- Société de Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (B.C.); (A.Z.); (J.C.); (A.K.)
| | - John Corthésy
- Société de Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (B.C.); (A.Z.); (J.C.); (A.K.)
| | - Adrianne Klijn
- Société de Produits Nestlé S.A., Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (B.C.); (A.Z.); (J.C.); (A.K.)
| | - Giuseppe Togni
- Unilabs Central Laboratory, 1296 Coppet, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Zhao Z, Li R, Ma Y, Islam I, Rajper AMA, Song W, Ren H, Tse ZTH. Supporting Technologies for COVID-19 Prevention: Systemized Review. JMIRX MED 2022; 3:e30344. [PMID: 35695850 PMCID: PMC9168838 DOI: 10.2196/30344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/12/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022]
Abstract
Background During COVID-19, clinical and health care demands have been on the rapid rise. Major challenges that have arisen during the pandemic have included a lack of testing kits, shortages of ventilators to treat severe cases of COVID-19, and insufficient accessibility to personal protective equipment for both hospitals and the public. New technologies have been developed by scientists, researchers, and companies in response to these demands. Objective The primary objective of this review is to compare different supporting technologies in the subjugation of the COVID-19 spread. Methods In this paper, 150 news articles and scientific reports on COVID-19-related innovations during 2020-2021 were checked, screened, and shortlisted to yield a total of 23 articles for review. The keywords "COVID-19 technology," "COVID-19 invention," and "COVID-19 equipment" were used in a Google search to generate related news articles and scientific reports. The search was performed on February 1, 2021. These were then categorized into three sections, which are personal protective equipment (PPE), testing methods, and medical treatments. Each study was analyzed for its engineering characteristics and potential social impact on the COVID-19 pandemic. Results A total of 9 articles were selected for review concerning PPE. In general, the design and fabrication of PPE were moving toward the direction of additive manufacturing and intelligent information feedback while being eco-friendly. Moreover, 8 articles were selected for reviewing testing methods within the two main categories of molecular and antigen tests. All the inventions endeavored to increase sensitivity while reducing the turnaround time. However, the inventions reported in this review paper were not sufficiently tested for their safety and efficiency. Most of the inventions are temporary solutions intended to be used only during shortages of medical resources. Finally, 6 articles were selected for the review of COVID-19 medical treatment. The major challenge identified was the uncertainty in applying novel ideas to speed up the production of ventilators. Conclusions The technologies developed during the COVID-19 pandemic were considered for review. In order to better respond to future pandemics, national reserves of critical medical supplies should be increased to improve preparation. This pandemic has also highlighted the need for the automation and optimization of medical manufacturing.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Electrical and Computer Engineering University of Georgia Athens, GA United States
| | - Rui Li
- Tandon School of Engineering New York University Brooklyn, NY United States
| | - Yangmyung Ma
- Hull York Medical School University of York Heslington York United Kingdom
| | - Iman Islam
- Hull York Medical School University of York Heslington York United Kingdom
| | | | - WenZhan Song
- Department of Computer Science University of Georgia Athens, GA United States
| | - Hongliang Ren
- Department of Biomedical Engineering National University of Singapore Singapore Singapore
| | - Zion Tsz Ho Tse
- Department of Electronic Engineering University of York York United Kingdom
| |
Collapse
|
10
|
Kierkegaard P, Hicks T, Allen AJ, Yang Y, Hayward G, Glogowska M, Nicholson BD, Buckle P. Strategies to implement SARS-CoV-2 point-of-care testing into primary care settings: a qualitative secondary analysis guided by the Behaviour Change Wheel. Implement Sci Commun 2021; 2:139. [PMID: 34922624 PMCID: PMC8684208 DOI: 10.1186/s43058-021-00242-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The purpose of this study is to develop a theory-driven understanding of the barriers and facilitators underpinning physicians' attitudes and capabilities to implementing SARS-CoV-2 point-of-care (POC) testing into primary care practices. METHODS We used a secondary qualitative analysis approach to re-analyse data from a qualitative, interview study of 22 primary care physicians from 21 primary care practices across three regions in England. We followed the three-step method based on the Behaviour Change Wheel to identify the barriers to implementing SARS-CoV-2 POC testing and identified strategies to address these challenges. RESULTS Several factors underpinned primary care physicians' attitudes and capabilities to implement SARS-CoV-2 POC testing into practice. First, limited knowledge of the SARS-CoV-2 POC testing landscape and a demanding workload affected physicians' willingness to use the tests. Second, there was scepticism about the insufficient evidence pertaining to the clinical efficacy and utility of POC tests, which affected physicians' confidence in the accuracy of tests. Third, physicians would adopt POC tests if they were prescribed and recommended by authorities. Fourth, physicians required professional education and training to increase their confidence in using POC tests but also suggested that healthcare assistants should administer the tests. Fifth, physicians expressed concerns about their limited workload capacity and that extra resources are needed to accommodate any anticipated changes. Sixth, information sharing across practices shaped perceptions of POC tests and the quality of information influenced physician perceptions. Seventh, financial incentives could motivate physicians and were also needed to cover the associated costs of testing. Eighth, physicians were worried that society will view primary care as an alternative to community testing centres, which would change perceptions around their professional identity. Ninth, physicians' perception of assurance/risk influenced their willingness to use POC testing if it could help identify infectious individuals, but they were also concerned about the risk of occupational exposure and potentially losing staff members who would need to self-isolate. CONCLUSIONS Improving primary care physicians' knowledgebase of SARS-CoV-2 POC tests, introducing policies to embed testing into practice, and providing resources to meet the anticipated demands of testing are critical to implementing testing into practice.
Collapse
Affiliation(s)
- Patrick Kierkegaard
- NIHR London In Vitro Diagnostics Co-operative, Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, Praed Street, London, W2 1NY, UK.
- CRUK Convergence Science Center, Institute for Cancer Research & Imperial College London, Roderic Hill Building, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK.
| | - Timothy Hicks
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A Joy Allen
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yaling Yang
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Gail Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
- NIHR Community Healthcare MedTech and In-Vitro Diagnostics Co-operative, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Margaret Glogowska
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Brian D Nicholson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
- NIHR Community Healthcare MedTech and In-Vitro Diagnostics Co-operative, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Peter Buckle
- NIHR London In Vitro Diagnostics Co-operative, Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, Praed Street, London, W2 1NY, UK
| |
Collapse
|
11
|
COVID-19 Testing and Diagnostics: A Review of Commercialized Technologies for Cost, Convenience and Quality of Tests. SENSORS 2021; 21:s21196581. [PMID: 34640901 PMCID: PMC8512798 DOI: 10.3390/s21196581] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
Population-scale and rapid testing for SARS-CoV-2 continues to be a priority for several parts of the world. We revisit the in vitro technology platforms for COVID-19 testing and diagnostics—molecular tests and rapid antigen tests, serology or antibody tests, and tests for the management of COVID-19 patients. Within each category of tests, we review the commercialized testing platforms, their analyzing systems, specimen collection protocols, testing methodologies, supply chain logistics, and related attributes. Our discussion is essentially focused on test products that have been granted emergency use authorization by the FDA to detect and diagnose COVID-19 infections. Different strategies for scaled-up and faster screening are covered here, such as pooled testing, screening programs, and surveillance testing. The near-term challenges lie in detecting subtle infectivity profiles, mapping the transmission dynamics of new variants, lowering the cost for testing, training a large healthcare workforce, and providing test kits for the masses. Through this review, we try to understand the feasibility of universal access to COVID-19 testing and diagnostics in the near future while being cognizant of the implicit tradeoffs during the development and distribution cycles of new testing platforms.
Collapse
|