1
|
Xu W, Guo Y, Zhao L, Fu R, Qin X, Zhang Y, Cheng X, Xu S. The Aging Immune System: A Critical Attack on Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04464-2. [PMID: 39271626 DOI: 10.1007/s12035-024-04464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke caused by cerebrovascular embolism is an age-related disease with high rates of disability and mortality. Although the mechanisms of immune and inflammatory development after stroke have been of great interest, most studies have neglected the critical and unavoidable factor of age. As the global aging trend intensifies, the number of stroke patients is constantly increasing, emphasizing the urgency of finding effective measures to address the needs of elderly stroke patients. The concept of "immunosenescence" appears to explain the worse stroke outcomes in older individuals. Immune remodeling due to aging involves dynamic changes at all levels of the immune system, and the overall consequences of central (brain-resident) and peripheral (non-brain-resident) immune cells in stroke vary according to the age of the individual. Lastly, the review outlines recent strategies aimed at immunosenescence to improve stroke prognosis.
Collapse
Affiliation(s)
- Wenzhe Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Qin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
2
|
Delhey LM, Shi X, Morgenstern LB, Brown DL, Smith MA, Case EC, Springer MV, Lisabeth LD. Neighborhood Resources and Health Outcomes Among Stroke Survivors in a Population-Based Cohort. J Am Heart Assoc 2024; 13:e034308. [PMID: 38958125 PMCID: PMC11292760 DOI: 10.1161/jaha.124.034308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Stroke survivors believe neighborhood resources such as community centers are beneficial; however, little is known about the influence of these resources on stroke outcomes. We evaluated whether residing in neighborhoods with greater resource density is associated with favorable post-stroke outcomes. METHODS AND RESULTS We included Mexican American and non-Hispanic White stroke survivors from the Brain Attack Surveillance in Corpus Christi project (2009-2019). The exposure was density of neighborhood resources (eg, community centers, restaurants, stores) within a residential census tract at stroke onset. Outcomes included time to death and recurrence, and at 3 months following stroke: disability (activities of daily living/instrumental activities of daily living), cognition (Modified Mini-Mental State Exam), depression (Patient Health Questionnaire-8), and quality of life (abbreviated Stroke-Specific Quality of Life scale). We fit multivariable Cox regression and mixed linear models. We considered interactions with stroke severity, ethnicity, and sex. Among 1786 stroke survivors, median age was 64 years (interquartile range, 56-73), 55% men, and 62% Mexican American. Resource density was not associated with death, recurrence, or depression. Greater resource density (75th versus 25th percentile) was associated with more favorable cognition (Modified Mini-Mental State Exam mean difference=0.838, 95% CI=0.092, 1.584) and among moderate-severe stroke survivors, with more favorable functioning (activities of daily living/instrumental activities of daily living=-0.156 [95% CI, -0.284 to 0.027]) and quality of life (abbreviated Stroke-Specific Quality of Life scale=0.194 [95% CI, 0.029-0.359]). CONCLUSIONS We observed associations between greater resource density and cognition overall and with functioning and quality of life among moderate-severe stroke survivors. Further research is needed to confirm these findings and determine if neighborhood resources may be a tool for recovery.
Collapse
Affiliation(s)
- Leanna M. Delhey
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Xu Shi
- Department of BiostatisticsUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Lewis B. Morgenstern
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
- Stroke Program, University of Michigan Medical SchoolAnn ArborMIUSA
| | - Devin L. Brown
- Stroke Program, University of Michigan Medical SchoolAnn ArborMIUSA
| | - Melinda A. Smith
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Erin C. Case
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | | | - Lynda D. Lisabeth
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| |
Collapse
|
3
|
Suerte ACC, Liddle LJ, Abrahart A, Khiabani E, Colbourne F. A Systematic Review and Meta-Analysis of Therapeutic Hypothermia and Pharmacological Cotherapies in Animal Models of Ischemic Stroke. Ther Hypothermia Temp Manag 2024. [PMID: 38946643 DOI: 10.1089/ther.2024.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Therapeutic hypothermia (TH) lessens ischemic brain injury. Cytoprotective agents can augment protection, although it is unclear which combinations are most effective. The objective of this study is to identify which cytoprotective drug works best with delayed TH. Following PRISMA guidelines, a systematic review (PubMed, Web of Science, MEDLINE, Scopus) identified controlled experiments that used an in vivo focal ischemic stroke model and evaluated the efficacy of TH (delay of ≥1 hour) coupled with cytoprotective agents. This combination was our main intervention compared with single treatments with TH, drug, or no treatment. Endpoints were brain injury and neurological impairment. The CAMARADES checklist for study quality and the SYRCLE's risk of bias tool gauged study quality. Twenty-five studies were included. Most used young, healthy male rats, with only one using spontaneously hypertensive rats. Two studies used mice models, and six used adult animals. Study quality was moderate (median score = 6), and risk of bias was high. Pharmacological agents provided an additive effect on TH for all outcomes measured. Magnesium coupled with TH had the greatest impact compared with other agent-TH combinations on all outcomes. Longer TH durations improved both behavioral and histological outcomes and had greater cytoprotective efficacy than shorter durations. Anti-inflammatories were the most effective in reducing infarction (standardized mean difference [SMD]: -1.64, confidence interval [CI]: [-2.13, -1.15]), sulfonylureas reduced edema the most (SMD: -2.32, CI: [-3.09, -1.54]), and antiapoptotic agents improved behavioral outcomes the most (normalized mean difference: 52.38, CI: [45.29, 59.46]). Statistically significant heterogeneity was observed (I2 = 82 - 98%, all p < 0.001), indicating that studies wildly differ in their effect size estimates. Our results support the superiority of adding cytoprotective therapies with TH (vs. individual or no therapy). Additional exploratory and confirmatory studies are required to identify and thoroughly assess combination therapies owing to limited work and inconsistent translational quality.
Collapse
Affiliation(s)
| | - Lane J Liddle
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Ashley Abrahart
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Elmira Khiabani
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Frederick Colbourne
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Alshammari A, Pillai B, Kamat P, Jones TW, Bosomtwi A, Khan MB, Hess DC, Li W, Somanath PR, Sayed MA, Ergul A, Fagan SC. Angiotensin II Type 2 Receptor Agonism Alleviates Progressive Post-stroke Cognitive Impairment in Aged Spontaneously Hypertensive Rats. Transl Stroke Res 2024:10.1007/s12975-024-01232-1. [PMID: 38302738 DOI: 10.1007/s12975-024-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hypertension and aging are leading risk factors for stroke and vascular contributions to cognitive impairment and dementia (VCID). Most animal models fail to capture the complex interplay between these pathophysiological processes. In the current study, we examined the development of cognitive impairment in 18-month-old spontaneously hypertensive rats (SHR) before and following ischemic stroke. Sixty SHRs were housed for 18 months with cognitive assessments every 6 months and post-surgery. MRI scans were performed at baseline and throughout the study. On day 3 post-stroke, rats were randomized to receive either angiotensin II type 2 receptor (AT2R) agonist Compound 21 (C21) or plain water for 8 weeks. SHRs demonstrated a progressive cognitive decline and significant MRI abnormalities before stroke. Perioperative mortality within 72 h of stroke was low. Stroke resulted in significant acute brain swelling, chronic brain atrophy, and sustained sensorimotor and behavioral deficits. There was no evidence of anhedonia at week 8. C21 enhanced sensorimotor recovery and ischemic lesion resolution at week 8. SHRs represent a clinically relevant animal model to study aging and stroke-associated VCID. This study underscores the importance of translational disease modeling and provides evidence that modulation of the AT2R signaling via C21 may be a useful therapeutic option to improve sensorimotor and cognitive outcomes even in aged animals.
Collapse
Affiliation(s)
- Abdulkarim Alshammari
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Timothy W Jones
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Asamoah Bosomtwi
- Georgia Cancer Center and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Weiguo Li
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA
| | - Payaningal R Somanath
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | | | - Adviye Ergul
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| |
Collapse
|
5
|
Reistetter T, Hreha K, Dean JM, Pappadis MR, Deer RR, Li CY, Hong I, Na A, Nowakowski S, Shaltoni HM, Bhavnani SK. The Pre-Adaptation of a Stroke-Specific Self-Management Program Among Older Adults. J Aging Health 2023; 35:632-642. [PMID: 36719035 PMCID: PMC10387498 DOI: 10.1177/08982643231152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objectives: Managing multimorbidity as aging stroke patients is complex; standard self-management programs necessitate adaptations. We used visual analytics to examine complex relationships among aging stroke survivors' comorbidities. These findings informed pre-adaptation of a component of the Chronic Disease Self-Management Program. Methods: Secondary analysis of 2013-2014 Medicare claims with stroke as an index condition, hospital readmission within 90 days (n = 42,938), and 72 comorbidities. Visual analytics identified patient subgroups and co-occurring comorbidities. Guided by the framework for reporting adaptations and modifications to evidence-based interventions, an interdisciplinary team developed vignettes that highlighted multimorbidity to customize the self-management program. Results: There were five significant subgroups (z = 6.19, p < .001) of comorbidities such as obesity and cancer. We constructed 6 vignettes based on the 5 subgroups. Discussion: Aging stroke patients often face substantial disease-management hurdles. We used visual analytics to inform pre-adaptation of a self-management program to fit the needs of older adult stroke survivors.
Collapse
Affiliation(s)
- Timothy Reistetter
- Department of Occupational Therapy, School of Health Professions, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Kimberly Hreha
- Department of Orthopaedic Surgery, Occupational Therapy Doctorate Division, School of Medicine, Duke University, 40 Duke Medicine Circle, Durham, NC 27710
| | - Julianna M. Dean
- Department of Clinical, Health, and Applied Sciences, College of Human Sciences and Humanities, University of Houston-Clear Lake, 2700 Bay Area Blvd, Houston, TX 77058
| | - Monique R. Pappadis
- Department of Population Health and Health Disparities, School of Public and Population Health, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555
| | - Rachel R. Deer
- Department of Nutrition, Metabolism and Rehabilitation Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555
| | - Chih-Ying Li
- Department of Occupational Therapy, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555
| | - Ickpyo Hong
- Department of Occupational Therapy, Yonsei University, 135 Backun Hall, Yonsei Univroad 1, Wonju, Gangwon-do, Republic of Korea, 26493
| | - Annalisa Na
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102
| | - Sara Nowakowski
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Hashem M. Shaltoni
- Department of Neurology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555
| | - Suresh K. Bhavnani
- Department of Population Health and Health Disparities, School of Public and Population Health, 300 University Blvd, Galveston, TX 77555
| |
Collapse
|
6
|
Simmons SS. Strikes and Gutters: Biomarkers and anthropometric measures for predicting diagnosed diabetes mellitus in adults in low- and middle-income countries. Heliyon 2023; 9:e19494. [PMID: 37810094 PMCID: PMC10558610 DOI: 10.1016/j.heliyon.2023.e19494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
The management of diabetes necessitates the requirement of reliable health indices, specifically biomarkers and anthropometric measures, to detect the presence or absence of the disease. Nevertheless, limited robust empirical evidence exists regarding the optimal metrics for predicting diabetes in adults, particularly within low- and middle-income countries. This study investigates objective and subjective indices for screening diabetes in these countries. METHODS Data for this study was sourced from surveys conducted among adults (aged 18 years and above) in seventeen (17) countries. Self-reported diabetes status, fifty-four biomarkers, and twenty-six core and twenty-eight estimated anthropometric indices, including weight, waist circumference, body mass index, glycaemic triglycerides, and fasting blood glucose, were utilised to construct lasso regression models. RESULTS The study revealed variances in diabetes prediction outcomes across different countries. Central adiposity measures, fasting plasma glucose and glycaemic triglycerides demonstrated superior predictive capabilities for diabetes when compared to body mass index. Furthermore, fasting plasma or blood glucose, serving as a biomarker, emerged as the most accurate predictor of diabetes. CONCLUSIONS These findings offer critical insights into both general and context-specific tools for diabetes screening. The study proposes that fasting plasma glucose and central adiposity indices should be considered as routine screening tools for diabetes, both in policy interventions and clinical practice. By identifying adults with or at higher risk of developing diabetes and implementing appropriate interventions, these screening tools possess the potential to mitigate diabetes-related complications in low- and middle-income countries.
Collapse
Affiliation(s)
- Sally Sonia Simmons
- Department of Social Policy, London School of Economics and Political Science, London, WC2A 2AE, United Kingdom
| |
Collapse
|
7
|
Sefiani A. Morphological screens using aged primary adult neuronal, microglial, and astrocytic cultures to find novel neurotherapeutics. Front Cell Neurosci 2023; 17:1253192. [PMID: 37692551 PMCID: PMC10484707 DOI: 10.3389/fncel.2023.1253192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
The average age of a patient with neurotraumatic injuries or neurodegenerative diseases has been increasing worldwide. The preclinical live animal models used for neurotrauma and neurodegenerative diseases are typically young adults, failing to represent the age of humans in the clinic. This dichotomy in age between human populations and animal models is likely to impede the understanding of the pathological mechanisms of most neurological disorders and the translation of their respective promising therapies. This lack of cohesion between animal models and patients in the clinic begins prior to in vivo testing, it starts during the in vitro drug screening phase. Conventional screening methods typically involve the use of stem cell derived neural cells, with some researchers using embryonic derived neural cells instead. These cells lack the fundamental characteristics present in aged neural cells, such as age-induced changes in process length and branching in microglia and how astrocytes respond to various insults. Various technologies and techniques have been developed recently that can help researchers use age-appropriate neural cells for their drug discovery endeavors. The use of age-appropriate neural cells during screening phases is hypothesized to significantly increase the translation rate of the hits to the geriatric patients suffering from neurotraumatic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
- NeuroCreis, Inc., College Station, TX, United States
| |
Collapse
|
8
|
Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther 2022; 28:1279-1293. [PMID: 35751629 PMCID: PMC9344092 DOI: 10.1111/cns.13899] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/21/2022] Open
Abstract
AIMS Phagocytosis is the cellular digestion of extracellular particles, such as pathogens and dying cells, and is a key element in the evolution of central nervous system (CNS) disorders. Microglia and macrophages are the professional phagocytes of the CNS. By clearing toxic cellular debris and reshaping the extracellular matrix, microglia/macrophages help pilot the brain repair and functional recovery process. However, CNS resident and invading immune cells can also magnify tissue damage by igniting runaway inflammation and phagocytosing stressed-but viable-neurons. DISCUSSION Microglia/macrophages help mediate intercellular communication and react quickly to the "find-me" signals expressed by dead/dying neurons. The activated microglia/macrophages then migrate to the injury site to initiate the phagocytic process upon encountering "eat-me" signals on the surfaces of endangered cells. Thus, healthy cells attempt to avoid inappropriate engulfment by expressing "do not-eat-me" signals. Microglia/macrophages also have the capacity to phagocytose immune cells that invade the injured brain (e.g., neutrophils) and to regulate their pro-inflammatory properties. During brain recovery, microglia/macrophages engulf myelin debris, initiate synaptogenesis and neurogenesis, and sculpt a favorable extracellular matrix to support network rewiring, among other favorable roles. Here, we review the multilayered nature of phagocytotic microglia/macrophages, including the molecular and cellular mechanisms that govern microglia/macrophage-induced phagocytosis in acute brain injury, and discuss strategies that tap into the therapeutic potential of this engulfment process. CONCLUSION Identification of biological targets that can temper neuroinflammation after brain injury without hindering the essential phagocytic functions of microglia/macrophages will expedite better medical management of the stroke recovery stage.
Collapse
Affiliation(s)
- Fang Yu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yangfan Wang
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne R. Stetler
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rehana K. Leak
- Graduate School of Pharmaceutical SciencesSchool of Pharmacy, Duquesne UniversityPittsburghPennsylvaniaUSA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jun Chen
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Conti E, Piccardi B, Sodero A, Tudisco L, Lombardo I, Fainardi E, Nencini P, Sarti C, Allegra Mascaro AL, Baldereschi M. Translational Stroke Research Review: Using the Mouse to Model Human Futile Recanalization and Reperfusion Injury in Ischemic Brain Tissue. Cells 2021; 10:3308. [PMID: 34943816 PMCID: PMC8699609 DOI: 10.3390/cells10123308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The approach to reperfusion therapies in stroke patients is rapidly evolving, but there is still no explanation why a substantial proportion of patients have a poor clinical prognosis despite successful flow restoration. This issue of futile recanalization is explained here by three clinical cases, which, despite complete recanalization, have very different outcomes. Preclinical research is particularly suited to characterize the highly dynamic changes in acute ischemic stroke and identify potential treatment targets useful for clinical translation. This review surveys the efforts taken so far to achieve mouse models capable of investigating the neurovascular underpinnings of futile recanalization. We highlight the translational potential of targeting tissue reperfusion in fully recanalized mouse models and of investigating the underlying pathophysiological mechanisms from subcellular to tissue scale. We suggest that stroke preclinical research should increasingly drive forward a continuous and circular dialogue with clinical research. When the preclinical and the clinical stroke research are consistent, translational success will follow.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Alessandro Sodero
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Laura Tudisco
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Ivano Lombardo
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Enrico Fainardi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
10
|
Liddle LJ, Kalisvaart ACJ, Abrahart AH, Almekhlafi M, Demchuk A, Colbourne F. Targeting focal ischemic and hemorrhagic stroke neuroprotection: Current prospects for local hypothermia. J Neurochem 2021; 160:128-144. [PMID: 34496050 DOI: 10.1111/jnc.15508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ashley H Abrahart
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Kim ID, Cave JW, Cho S. Aflibercept, a VEGF (Vascular Endothelial Growth Factor)-Trap, Reduces Vascular Permeability and Stroke-Induced Brain Swelling in Obese Mice. Stroke 2021; 52:2637-2648. [PMID: 34192895 PMCID: PMC8312568 DOI: 10.1161/strokeaha.121.034362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Background and Purpose Brain edema is an important underlying pathology in acute stroke, especially when comorbidities are present. VEGF (Vascular endothelial growth factor) signaling is implicated in edema. This study investigated whether obesity impacts VEGF signaling and brain edema, as well as whether VEGF inhibition alters stroke outcome in obese subjects. Methods High-fat diet-induced obese mice were subjected to a transient middle cerebral artery occlusion. VEGF-A and VEGFR2 (receptor) expression, infarct volume, and swelling were measured 3 days post-middle cerebral artery occlusion. To validate the effect of an anti-VEGF strategy, we used aflibercept, a fusion protein that has a VEGF-binding domain and acts as a decoy receptor, in human umbilical vein endothelial cells stimulated with rVEGF (recombinant VEGF; 50 ng/mL) for permeability and tube formation. In vivo, aflibercept (10 mg/kg) or IgG control was administered in obese mice 3 hours after transient 30 minutes middle cerebral artery occlusion. Blood-brain barrier integrity was assessed by IgG staining and dextran extravasation in the postischemic brain. A separate cohort of nonobese (lean) mice was subjected to 40 minutes middle cerebral artery occlusion to test the effect of aflibercept on malignant infarction. Results Compared with lean mice, obese mice had increased mortality, infarct volume, swelling, and blood-brain barrier disruption. These outcomes were also associated with increased VEGF-A and VEGFR2 expression. Aflibercept reduced VEGF-A-stimulated permeability and tube formation in human umbilical vein endothelial cells. Compared with the IgG-treated controls, mice treated with aflibercept had reduced mortality rates (40% versus 17%), hemorrhagic transformation (43% versus 27%), and brain swelling (28% versus 18%), although the infarct size was similar. In nonobese mice with large stroke, aflibercept neither improved nor exacerbated stroke outcomes. Conclusions The study demonstrates that aflibercept selectively attenuates stroke-induced brain edema and vascular permeability in obese mice. These findings suggest the repurposing of aflibercept to reduce obesity-enhanced brain edema in acute stroke.
Collapse
Affiliation(s)
- Il-doo Kim
- Burke Neurological Institute, White Plains, NY (I.-d.K., S.C.)
| | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY (I.-d.K., S.C.)
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY (S.C.)
| |
Collapse
|
12
|
A practical guide to preclinical systematic review and meta-analysis. Pain 2021; 161:1949-1954. [PMID: 33449500 PMCID: PMC7431149 DOI: 10.1097/j.pain.0000000000001974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
|
13
|
Khan H, Pan JJ, Li Y, Zhang Z, Yang GY. Native and Bioengineered Exosomes for Ischemic Stroke Therapy. Front Cell Dev Biol 2021; 9:619565. [PMID: 33869170 PMCID: PMC8044840 DOI: 10.3389/fcell.2021.619565] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are natural cells-derived vesicles, which are at the forefront toward clinical success for various diseases, including cerebral ischemia. Exosomes mediate cell-to-cell communication in different brain cells during both physiological and pathological conditions. Exosomes are an extensively studied type of extracellular vesicle, which are considered to be the best alternative for stem cell-based therapy. They can be secreted by various cell types and have unique biological properties. Even though native exosomes have potential for ischemic stroke therapy, some undesirable features prevent their success in clinical applications, including a short half-life, poor targeting property, low concentration at the target site, rapid clearance from the lesion region, and inefficient payload. In this review, we highlight exosome trafficking and cellular uptake and survey the latest discoveries in the context of exosome research as the best fit for brain targeting owing to its natural brain-homing abilities. Furthermore, we overview the methods by which researchers have bioengineered exosomes (BioEng-Exo) for stroke therapy. Finally, we summarize studies in which exosomes were bioengineered by a third party for stroke recovery. This review provides up-to-date knowledge about the versatile nature of exosomes with a special focus on BioEng-Exo for ischemic stroke. Standard exosome bioengineering techniques are mandatory for the future and will lead exosomes toward clinical success for stroke therapy.
Collapse
Affiliation(s)
- Haroon Khan
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Ji Pan
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Liddle LJ, Dirks CA, Fedor BA, Almekhlafi M, Colbourne F. A Systematic Review and Meta-Analysis of Animal Studies Testing Intra-Arterial Chilled Infusates After Ischemic Stroke. Front Neurol 2021; 11:588479. [PMID: 33488495 PMCID: PMC7815528 DOI: 10.3389/fneur.2020.588479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: As not all ischemic stroke patients benefit from currently available treatments, there is considerable need for neuroprotective co-therapies. Therapeutic hypothermia is one such co-therapy, but numerous issues have hampered its clinical use (e.g., pneumonia risk with whole-body cooling). Some problems may be avoided with brain-specific methods, such as intra-arterial selective cooling infusion (IA-SCI) into the arteries supplying the ischemic tissue. Objective: Our research question was about the efficacy of IA-SCI in animal middle cerebral artery occlusion models. We hypothesized that IA-SCI would be beneficial, but translationally-relevant study elements may be missing (e.g., aged animals). Methods: We completed a systematic review of the PubMed database following the PRISMA guidelines on May 21, 2020 for animal studies that administered IA-SCI in the peri-reperfusion period and assessed infarct volume, behavior (primary meta-analytic endpoints), edema, or blood-brain barrier injury (secondary endpoints). Our search terms included: "focal ischemia" and related terms, "IA-SCI" and related terms, and "animal" and related terms. Nineteen studies met inclusion criteria. We adapted a methodological quality scale from 0 to 12 for experimental design assessment (e.g., use of blinding/randomization, a priori sample size calculations). Results: Studies were relatively homogenous (e.g., all studies used young, healthy animals). Some experimental design elements, such as blinding, were common whereas others, such as sample size calculations, were infrequent (median methodological quality score: 5; range: 2-7). Our analyses revealed that IA-SCI provides benefit on all endpoints (mean normalized infarct volume reduction = 23.67%; 95% CI: 19.21-28.12; mean normalized behavioral improvement = 35.56%; 95% CI: 25.91-45.20; mean standardized edema reduction = 0.95; 95% CI: 0.56-1.34). Unfortunately, blood-brain barrier assessments were uncommon and could not be analyzed. However, there was substantial statistical heterogeneity and relatively few studies. Therefore, exploration of heterogeneity via meta-regression using saline infusion parameters, study quality, and ischemic duration was inconclusive. Conclusion: Despite convincing evidence of benefit in ischemic stroke models, additional studies are required to determine the scope of benefit, especially when considering additional elements (e.g., dosing characteristics). As there is interest in using this treatment alongside current ischemic stroke therapies, more relevant animal studies will be critical to inform patient studies.
Collapse
Affiliation(s)
- Lane J. Liddle
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | - Brittany A. Fedor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|