1
|
Mullins AV, Snider JM, Michael B, Porter LR, Brinton RD, Chilton FH. Impact of fish oil supplementation on plasma levels of highly unsaturated fatty acid-containing lipid classes and molecular species in American football athletes. Nutr Metab (Lond) 2024; 21:43. [PMID: 38978004 PMCID: PMC11232345 DOI: 10.1186/s12986-024-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Previous studies have linked sports-related concussions and repeated subconcussive head impacts in contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain injury, but clinical research has shown mixed results. METHODS We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis. RESULTS FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in Weeks 17 and 21. CONCLUSIONS This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the effects of sports-related concussions and repeated subconcussive head impacts. TRIAL REGISTRATION All deidentified data are available at ClinicalTrials.gov #NCT0479207.
Collapse
Affiliation(s)
- Anne Veronica Mullins
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Bryce Michael
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Lydia Rose Porter
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, The University of Arizona Health Sciences, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ, 85719, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
| |
Collapse
|
2
|
Bazarian JJ, Abar B, Merchant-Borna K, Pham DL, Rozen E, Mannix R, Kawata K, Chou Y, Stephen S, Gill JM. A Pilot Study Investigating the Use of Serum Glial Fibrillary Acidic Protein to Monitor Changes in Brain White Matter Integrity After Repetitive Head Hits During a Single Collegiate Football Game. J Neurotrauma 2024; 41:1597-1608. [PMID: 38753702 DOI: 10.1089/neu.2023.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Repetitive head hits (RHHs) in sports and military settings are increasingly recognized as a risk factor for adverse neurological outcomes, but they are not currently tracked. Blood-based biomarkers of concussion have recently been shown to increase after nonconcussive RHHs during a single sporting contest, raising the possibility that they could be used in real time to monitor the brain's early response to repeated asymptomatic head hits. To test this hypothesis, we measured GFAP in serum immediately before (T0), immediately after (T1) and 45 min (T2) after a single collegiate football game in 30 athletes. Glial fibrillary acidic protein (GFAP) changes were correlated with three measures of head impact exposure (number of hits, total linear acceleration, and total rotational acceleration captured by helmet impact sensors) and to changes in brain white matter (WM) integrity, estimated by regional changes in fractional anisotropy (FA) and mean diffusivity (MD) on diffusion tensor imaging from 24 h before (T1) to 48 h after (T3) the game. To account for the potentially confounding effects of physical exertion on GFAP, correlations were adjusted for kilocalories of energy expended during the game measured by wearable body sensors. All 30 participants were male with a mean age of 19.5 ± 1.2 years. No participant had a concussion during the index game. We observed a significant increase in GFAP from T0 to T1 (mean 79.69 vs. 91.95 pg/mL, p = 0.008) and from T0 to T2 (mean 79.69 vs. 99.21 pg/mL, p < 0.001). WM integrity decreased in multiple WM regions but was statistically significant in the right fornix (mean % FA change -1.43, 95% confidence interval [CI]: -2.20, -0.66). T0 to T2 increases in GFAP correlated with reduced FA in the left fornix, right fornix, and right medical meniscus and with increased MD in the right fornix (r-values ranged from 0.59 to 0.61). Adjustment for exertion had minimal effect on these correlations. GFAP changes did not correlate to head hit exposure, but after adjustment for exertion, T0 to T2 increases correlated with all three hit metrics (r-values ranged from 0.69 to 0.74). Thus, acute elevations in GFAP after a single collegiate football game of RHHs correlated with in-game head hit exposure and with reduced WM integrity 2 days later. These results suggest that GFAP may be a biologically relevant indicator of the brain's early response to RHHs during a single sporting event. Developing tools to measure the neurological response to RHHs on an individual level has the potential to provide insight into the heterogeneity in adverse outcomes after RHH exposure and for developing effective and personalized countermeasures. Owing to the small sample size, these findings should be considered preliminary; validation in a larger, independent cohort is necessary.
Collapse
Affiliation(s)
- Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Beau Abar
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Kian Merchant-Borna
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eric Rozen
- Department of Athletics and Recreation, University of Rochester, Rochester, New York, USA
| | - Rebekah Mannix
- Departments of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, Indiana, USA
| | - Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Steve Stephen
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jessica M Gill
- Johns Hopkins School of Nursing and Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Lember LM, Ntikas M, Mondello S, Wilson L, Di Virgilio TG, Hunter AM, Kobeissy F, Mechref Y, Donaldson DI, Ietswaart M. The Use of Biofluid Markers to Evaluate the Consequences of Sport-Related Subconcussive Head Impact Exposure: A Scoping Review. SPORTS MEDICINE - OPEN 2024; 10:12. [PMID: 38270708 PMCID: PMC10811313 DOI: 10.1186/s40798-023-00665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Amidst growing concern about the safety of sport-related repetitive subconcussive head impacts (RSHI), biofluid markers may provide sensitive, informative, and practical assessment of the effects of RSHI exposure. OBJECTIVE This scoping review aimed to systematically examine the extent, nature, and quality of available evidence from studies investigating the effects of RSHI on biofluid markers, to identify gaps and to formulate guidelines to inform future research. METHODS PRISMA extension for Scoping Reviews guidelines were adhered to. The protocol was pre-registered through publication. MEDLINE, Scopus, SPORTDiscus, CINAHL, PsycINFO, Cochrane Library, OpenGrey, and two clinical trial registries were searched (until March 30, 2022) using descriptors for subconcussive head impacts, biomarkers, and contact sports. Included studies were assessed for risk of bias and quality. RESULTS Seventy-nine research publications were included in the review. Forty-nine studies assessed the acute effects, 23 semi-acute and 26 long-term effects of RSHI exposure. The most studied sports were American football, boxing, and soccer, and the most investigated markers were (in descending order): S100 calcium-binding protein beta (S100B), tau, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), brain-derived neurotrophic factor (BDNF), phosphorylated tau (p-tau), ubiquitin C-terminal hydrolase L1 (UCH-L1), and hormones. High or moderate bias was found in most studies, and marker-specific conclusions were subject to heterogeneous and limited evidence. Although the evidence is weak, some biofluid markers-such as NfL-appeared to show promise. More markedly, S100B was found to be problematic when evaluating the effects of RSHI in sport. CONCLUSION Considering the limitations of the evidence base revealed by this first review dedicated to systematically scoping the evidence of biofluid marker levels following RSHI exposure, the field is evidently still in its infancy. As a result, any recommendation and application is premature. Although some markers show promise for the assessment of brain health following RSHI exposure, future large standardized and better-controlled studies are needed to determine biofluid markers' utility.
Collapse
Affiliation(s)
- Liivia-Mari Lember
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Michail Ntikas
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- The School of Psychology, University of Aberdeen, Aberdeen, UK
| | - Stefania Mondello
- Biomedical and Dental Sciences and Morphofunctional Imaging, Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Lindsay Wilson
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Thomas G Di Virgilio
- Physiology Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Angus M Hunter
- Physiology Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
- Department of Sports Science, Nottingham Trent University, Nottingham, UK
| | - Firas Kobeissy
- Center for Neurotrauma, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine (MSM), Multiomics & Biomarkers, Atlanta, GA, 30310, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, UK
| | - Magdalena Ietswaart
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| |
Collapse
|
4
|
Hageman G, Hageman I, Nihom J. Chronic Traumatic Encephalopathy in Soccer Players: Review of 14 Cases. Clin J Sport Med 2024; 34:69-80. [PMID: 37403989 DOI: 10.1097/jsm.0000000000001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE Exposure to repetitive sports-related concussions or (sub)concussive head trauma may lead to chronic traumatic encephalopathy (CTE). Which impact (heading or concussion) poses the greatest risk of CTE development in soccer players? DESIGN Narrative review. SETTING Teaching hospital and University of Applied sciences. PATIENTS A literature search (PubMed) was conducted for neuropathologic studies in the period 2005-December 2022, investigating soccer players with dementia and a CTE diagnosis, limited to English language publications. 210 papers were selected for final inclusion, of which 7 papers described 14 soccer players. ASSESSMENT Magnetic resonance imaging studies in soccer players show that lifetime estimates of heading numbers are inversely correlated with cortical thickness, grey matter volume, and density of the anterior temporal cortex. Using diffusion tensor imaging-magnetic resonance imaging, higher frequency of headings-particularly with rotational accelerations-are associated with impaired white matter integrity. Serum neurofilament light protein is elevated after heading. MAIN OUTCOME MEASURES Chronic traumatic encephalopathy pathology, history of concussion, heading frequency. RESULTS In 10 of 14 soccer players, CTE was the primary diagnosis. In 4 cases, other dementia types formed the primary diagnosis and CTE pathology was a concomitant finding. Remarkably, 6 of the 14 cases had no history of concussion, suggesting that frequent heading may be a risk for CTE in patients without symptomatic concussion. Rule changes in heading duels, management of concussion during the game, and limiting the number of high force headers during training are discussed. CONCLUSIONS Data suggest that heading frequency and concussions are associated with higher risk of developing CTE in (retired) soccer players. However based on this review of only 14 players, questions persist as to whether or not heading is a risk factor for CTE or long-term cognitive decline.
Collapse
Affiliation(s)
- Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| | - Ivar Hageman
- Saxion University of Applied Sciences, Enschede, the Netherlands
| | - Jik Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| |
Collapse
|
5
|
Da Broi M, Al Awadhi A, Voruz P, Nouri A, Schaller K. The spectrum of acute and chronic consequences of neurotrauma in professional and amateur boxing - A call to action is advocated to better understand and prevent this phenomenon. BRAIN & SPINE 2023; 4:102743. [PMID: 38510617 PMCID: PMC10951782 DOI: 10.1016/j.bas.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 03/22/2024]
Abstract
Introduction Despite changes in regulations, boxing-related injuries and fatalities are still occurring. The numbers available in the literature regarding mortality and long-term consequences may not accurately represent the actual situation. Indeed, the real extent of this phenomenon remains poorly known. Research question Delineating the spectrum of acute and chronic consequences of boxing-related traumatic brain injuries (TBI). Material and methods Narrative review of the literature concerning acute and chronic boxing-related TBI. Keywords such as mortality, boxing, subdural hematoma were used to search in PubMed and Google scholar. An updated analysis of the Velazquez fatalities collection in boxing was undertaken. Results The Velazquez collection includes 2076 fatalities from 1720 to the present with a death rate of 10 athletes per year. More than half of the deaths (N = 1354, 65.2%) occurred after a knock-out, and nearly 75% happened during professional bouts. In Australia, from 1832 to 2020, 163 fatalities were recorded (75% professional). In Japan, from 1952 to 2016, 38 deaths were recorded with a mean age of 23.9 years. Up to 40% of retired professional boxers in the United States were diagnosed with symptoms of chronic brain injury. Clinical dementia is far more prevalent among professional boxers than in amateurs with an incidence of 20%. Discussion and conclusions A concerted effort to raise awareness and shed light on boxing-related neuro-trauma is required. Similar considerations can be made for other combat sports or contact sports. A call to action to address this knowledge gap, decrease and prevent this phenomenon is advocated.
Collapse
Affiliation(s)
- Michele Da Broi
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Abdullah Al Awadhi
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Voruz
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
| | - Aria Nouri
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Grijalva C, Mullins VA, Michael BR, Hale D, Wu L, Toosizadeh N, Chilton FH, Laksari K. Neuroimaging, wearable sensors, and blood-based biomarkers reveal hyperacute changes in the brain after sub-concussive impacts. BRAIN MULTIPHYSICS 2023; 5:100086. [PMID: 38292249 PMCID: PMC10827333 DOI: 10.1016/j.brain.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Impacts in mixed martial arts (MMA) have been studied mainly in regard to the long-term effects of concussions. However, repetitive sub-concussive head impacts at the hyperacute phase (minutes after impact), are not understood. The head experiences rapid acceleration similar to a concussion, but without clinical symptoms. We utilize portable neuroimaging technology - transcranial Doppler (TCD) ultrasound and functional near infrared spectroscopy (fNIRS) - to estimate the extent of pre- and post-differences following contact and non-contact sparring sessions in nine MMA athletes. In addition, the extent of changes in neurofilament light (NfL) protein biomarker concentrations, and neurocognitive/balance parameters were determined following impacts. Athletes were instrumented with sensor-based mouth guards to record head kinematics. TCD and fNIRS results demonstrated significantly increased blood flow velocity (p = 0.01) as well as prefrontal (p = 0.01) and motor cortex (p = 0.04) oxygenation, only following the contact sparring sessions. This increase after contact was correlated with the cumulative angular acceleration experienced during impacts (p = 0.01). In addition, the NfL biomarker demonstrated positive correlations with angular acceleration (p = 0.03), and maximum principal and fiber strain (p = 0.01). On average athletes experienced 23.9 ± 2.9 g peak linear acceleration, 10.29 ± 1.1 rad/s peak angular velocity, and 1,502.3 ± 532.3 rad/s2 angular acceleration. Balance parameters were significantly increased following contact sparring for medial-lateral (ML) center of mass (COM) sway, and ML ankle angle (p = 0.01), illustrating worsened balance. These combined results reveal significant changes in brain hemodynamics and neurophysiological parameters that occur immediately after sub-concussive impacts and suggest that the physical impact to the head plays an important role in these changes.
Collapse
Affiliation(s)
- Carissa Grijalva
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
| | - Veronica A. Mullins
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Bryce R. Michael
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Dallin Hale
- University of Arizona, Department of Physiology, Tucson, AZ, United States
| | - Lyndia Wu
- Univerisity of British Columbia, Department of Mechanical Engineering, Vancouver, BC, Canada
| | - Nima Toosizadeh
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Medicine, Arizona Center for Aging, Tucson, AZ, United States
| | - Floyd H. Chilton
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Kaveh Laksari
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
- University of California Riverside, Department of Mechanical Engineering, Riverside, CA, United States
| |
Collapse
|
7
|
Filben TM, Tomblin BT, Pritchard NS, Bullock GS, Hemmen JM, Neri KE, Krug V, Miles CM, Stitzel JD, Urban JE. Assessing the association between on-field heading technique and head impact kinematics in a cohort of female youth soccer players. SCI MED FOOTBALL 2023:1-10. [PMID: 37753837 DOI: 10.1080/24733938.2023.2264272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
There is concern that exposure to soccer headers may be associated with neurological sequelae. Training proper heading technique represents a coachable intervention that may reduce head acceleration exposure. The objective was to assess relationships between heading technique and head kinematics in female youth soccer players. Fourteen players (mean age = 14.4 years) wore instrumented mouthpieces during practices and games. Headers were reviewed by three raters to assign a technique score. Mixed models and LASSO regression evaluated associations of technique with peak linear acceleration (PLA), rotational acceleration (PRA), rotational velocity (PRV), and head impact power ratio (HIP Ratio) while adjusting for session type and ball delivery. Two hundred eighty-nine headers (n = 212 standing, n = 77 jumping) were analyzed. Technique score (p = 0.043) and the technique score - session type interaction (p = 0.004) were associated with PRA of standing headers, whereby each 10-unit increase in technique score was associated with an 8.6% decrease in PRA during games but a 5.1% increase in PRA during practices. Technique was not significantly associated with any other kinematic metrics; however, peak kinematics tended to decrease as technique score increased. LASSO regression identified back extension and shoulder/hip alignment as important predictors of peak kinematics. Additional research on heading technique and head acceleration is recommended.
Collapse
Affiliation(s)
- Tanner M Filben
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| | - Brian T Tomblin
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| | - N Stewart Pritchard
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| | - Garrett S Bullock
- Department of Orthopaedic Surgery & Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jordan M Hemmen
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kristina E Neri
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Victoria Krug
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher M Miles
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| | - Jillian E Urban
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Jain D, Huber CM, Patton DA, McDonald CC, Wang L, Ayaz H, Master CL, Arbogast KB. Use of functional near-infrared spectroscopy to quantify neurophysiological deficits after repetitive head impacts in adolescent athletes. Sports Biomech 2023:1-15. [PMID: 37430440 PMCID: PMC10776807 DOI: 10.1080/14763141.2023.2229790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
There is concern that repetitive head impact exposure (RHIE) may lead to neurophysiological deficits in adolescents. Twelve high school varsity soccer players (5 female) completed the King-Devick (K-D) and complex tandem gait (CTG) assessments pre- and post-season while wearing a functional near-infrared spectroscopy (fNIRS) sensor. The average head impact load (AHIL) for each athlete-season was determined via a standardised protocol of video-verification of headband-based head impact sensor data. Linear mixed effect models were used to determine the effects of AHIL and task condition (3 K-D cards or 4 CTG conditions) on the change in mean prefrontal cortical activation measured by fNIRS, and performance on K-D and CTG, from pre- to post-season. Although there was no difference in the pre- to post-season change in K-D or CTG performance, greater AHIL was associated with greater cortical activation at post-season in comparison to pre-season during the most challenging conditions of K-D (p = 0.003) and CTG (p = 0.02), suggesting that greater RHIE necessitates increased cortical activation to complete the more challenging aspects of these assessments at the same level of performance. These results describe the effect of RHIE on neurofunction and suggest the need for further study of the time course of these effects.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioengineering, University of Pennsylvania, PA, USA
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colin M. Huber
- Department of Bioengineering, University of Pennsylvania, PA, USA
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine C. McDonald
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lei Wang
- College of Computing and Informatics, Drexel University, Philadelphia, PA, USA
- Data Science and Biostatistics Unit, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hasan Ayaz
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Data Science and Biostatistics Unit, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA
| | - Christina L. Master
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA
| | - Kristy B. Arbogast
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Kalbfell RM, Rettke DJ, Mackie K, Ejima K, Harezlak J, Alexander IL, Wager-Miller J, Johnson BD, Newman SD, Kawata K. The modulatory role of cannabis use in subconcussive neural injury. iScience 2023; 26:106948. [PMID: 37332596 PMCID: PMC10275955 DOI: 10.1016/j.isci.2023.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/31/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023] Open
Abstract
Cannabis use has become popular among athletes, many of whom are exposed to repetitive subconcussive head impacts. We aimed to test whether chronic cannabis use would be neuroprotective or exacerbating against acute subconcussive head impacts. This trial included 43 adult soccer players (Cannabis group using cannabis at least once a week for the past 6 months, n = 24; non-cannabis control group, n = 19). Twenty soccer headings, induced by our controlled heading model, significantly impaired ocular-motor function, but the degrees of impairments were less in the cannabis group compared to controls. The control group significantly increased its serum S100B level after heading, whereas no change was observed in the cannabis group. There was no group difference in serum neurofilament light levels at any time point. Our data suggest that chronic cannabis use may be associated with an enhancement of oculomotor functional resiliency and suppression of the neuroinflammatory response following 20 soccer headings.
Collapse
Affiliation(s)
- Rachel M. Kalbfell
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
- Bioethics Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Devin J. Rettke
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Gill Center for Molecular Bioscience, The College of Arts and Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, IN, USA
| | - Keisuke Ejima
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Isabella L. Alexander
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences and Gill Center for Molecular Bioscience, The College of Arts and Sciences, Indiana University, Bloomington, IN, USA
| | - Blair D. Johnson
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Sharlene D. Newman
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
10
|
Huibregtse ME, Sweeney SH, Stephens MR, Cheng H, Chen Z, Block HJ, Newman SD, Kawata K. Association Between Serum Neurofilament Light and Glial Fibrillary Acidic Protein Levels and Head Impact Burden in Women's Collegiate Water Polo. J Neurotrauma 2023; 40:1130-1143. [PMID: 36259456 PMCID: PMC10266555 DOI: 10.1089/neu.2022.0300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent investigations have identified water polo athletes as at risk for concussions and repetitive subconcussive head impacts. Head impact exposure in collegiate varsity women's water polo, however, has not yet been longitudinally quantified. We aimed to determine the relationship between cumulative and acute head impact exposure across pre-season training and changes in serum biomarkers of brain injury. Twenty-two Division I collegiate women's water polo players were included in this prospective observational study. They wore sensor-installed mouthguards during all practices and scrimmages during eight weeks of pre-season training. Serum samples were collected at six time points (at baseline, before and after scrimmages during weeks 4 and 7, and after the eight-week pre-season training period) and assayed for neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) using Simoa® Human Neurology 2-Plex B assay kits. Serum GFAP increased over time (e.g., an increase of 0.6559 pg/mL per week; p = 0.0087). Neither longitudinal nor acute pre-post scrimmage changes in GFAP, however, were associated with head impact exposure. Contrarily, an increase in serum NfL across the study period was associated with cumulative head impact magnitude (sum of peak linear acceleration: B = 0.015, SE = 0.006, p = 0.016; sum of peak rotational acceleration: B = 0.148, SE = 0.048, p = 0.006). Acute changes in serum NfL were not associated with head impacts recorded during the two selected scrimmages. Hormonal contraceptive use was associated with lower serum NfL and GFAP levels over time, and elevated salivary levels of progesterone were also associated with lower serum NfL levels. These results suggest that detecting increases in serum NfL may be a useful way to monitor cumulative head impact burden in women's contact sports and that female-specific factors, such as hormonal contraceptive use and circulating progesterone levels, may be neuroprotective, warranting further investigations.
Collapse
Affiliation(s)
- Megan E. Huibregtse
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Sage H. Sweeney
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Mikayla R. Stephens
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Hu Cheng
- Department of Department of Psychological and Brain Sciences and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Zhongxue Chen
- Department of Mathematics and Statistics, College of Arts, Sciences and Education, Florida International University, Miami, Florida, USA
- Department of Epidemiology and Biostatistics, School of Public Health, and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Hannah J. Block
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
- Department of Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Sharlene D. Newman
- Alabama Life Research Institute, College of Arts and Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Electrical and Computer Engineering, College of Engineering, and College of Arts and Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Psychology, College of Arts and Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Keisuke Kawata
- Department of Kinesiology and College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
- Department of Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
11
|
Smirl JD, Peacock D, Burma JS, Wright AD, Bouliane KJ, Dierijck J, van Donkelaar P. Repetitive bout of controlled soccer heading does not alter heart rate variability metrics: A preliminary investigation. Front Neurol 2022; 13:980938. [PMID: 36504654 PMCID: PMC9732532 DOI: 10.3389/fneur.2022.980938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives There is elevated unease regarding how repetitive head impacts, such as those associated with soccer heading, contribute to alterations in brain function. This study examined the extent heart rate variability (HRV) and cardiac baroreceptor sensitivity (BRS) metrics are altered immediately following an acute bout of soccer heading. Methods Seven male elite soccer players (24.1 ± 1.5 years) completed 40 successful soccer headers in 20-min. The headers were performed under controlled circumstances using a soccer ball launcher located 25 meters away and using an initial ball velocity of 77.5 ± 3.7 km/h (heading condition). An accelerometer (xPatch) on the right mastoid process quantified linear/rotational head accelerations. Participants also completed sham (body contact) and control (non-contact) sessions. A three-lead ECG and finger photoplethysmography characterized short-term spontaneous HRV/cardiac BRS, before and after each condition. The SCAT3 indexed symptom scores pre-post exposures to all three conditions. Results During the heading condition, cumulative linear and rotational accelerations experienced were 1,574 ± 97.9 g and 313,761 ± 23,966 rad/s2, respectively. Heart rate trended toward an increase from pre- to post-heading (p = 0.063), however HRV metrics in the time-domain (ps > 0.260) and frequency-domain (ps > 0.327) as well as cardiac BRS (ps > 0.144) were not significantly changed following all three conditions. Following the heading condition, SCAT3 symptom severity increased (p = 0.030) with a trend for symptom score augmentation (p = 0.078) compared to control and sham. Conclusion Whereas, symptoms as measured by the SCAT3 were induced following an acute bout of controlled soccer heading, these preliminary findings indicate they were not accompanied by alterations to autonomic function. Ultimately, this demonstrates further research is needed to understand the physiological underpinnings of alterations in brain function occurring immediately after a bout of soccer heading and how these may, over time, contribute to long-term neurological impairments.
Collapse
Affiliation(s)
- Jonathan David Smirl
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada,*Correspondence: Jonathan David Smirl
| | - Dakota Peacock
- Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Joel Stephen Burma
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Alexander D. Wright
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,University of British Columbia, Vancouver, BC, Canada,Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J. Bouliane
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| | - Jill Dierijck
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Paul van Donkelaar
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
12
|
Jack J, Woodgates A, Smail O, Brown F, Lynam K, Lester A, Williams G, Bond B. Cerebral blood flow regulation is not acutely altered after a typical number of headers in women footballers. Front Neurol 2022; 13:1021536. [PMID: 36479047 PMCID: PMC9719992 DOI: 10.3389/fneur.2022.1021536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The repeated act of heading has been implicated in the link between football participation and risk of neurodegenerative disease, and acutely alters cerebrovascular outcomes in men. This study assessed whether exposure to a realistic number of headers acutely influences indices of cerebral blood flow regulation in female footballers. METHODS Nineteen female players completed a heading trial and seated control trial on two separate days. The heading trial involved six headers in 1 h (one every 10 min), with the ball traveling at 40 ± 5 km/h. Cerebrovascular reactivity to hypercapnia and hypocapnia was determined using serial breath holding and hyperventilation attempts. Dynamic cerebral autoregulation (dCA) was assessed by scrutinizing the relationship between cerebral blood flow and mean arterial blood pressure during 5 min of squat stand maneuvers at 0.05 Hz. Neurovascular coupling (NVC) was quantified as the posterior cerebral artery blood velocity response to a visual search task. These outcomes were assessed before and 1 h after the heading or control trial. RESULTS No significant time by trial interaction was present for the hypercapnic (P = 0.48,η p 2 = 0.05) and hypocapnic (P = 0.47,η p 2 = 0.06) challenge. Similarly, no significant interaction effect was present for any metric of dCA (P > 0.12,η p 2 < 0.16 for all) or NVC (P > 0.14,η p 2 < 0.15 for all). CONCLUSION The cerebral blood flow response to changes in carbon dioxide, blood pressure and a visual search task were not altered following six headers in female footballers. Further study is needed to observe whether changes are apparent after more prolonged exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bert Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Burma JS, Van Roessel RK, Oni IK, Dunn JF, Smirl JD. Neurovascular coupling on trial: How the number of trials completed impacts the accuracy and precision of temporally derived neurovascular coupling estimates. J Cereb Blood Flow Metab 2022; 42:1478-1492. [PMID: 35209741 PMCID: PMC9274868 DOI: 10.1177/0271678x221084400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Standard practices for quantifying neurovascular coupling (NVC) with transcranial Doppler ultrasound (TCD) require participants to complete one-to-ten repetitive trials. However, limited empirical evidence exists regarding how the number of trials completed influences the validity and reliability of temporally derived NVC metrics. Secondary analyses was performed on 60 young healthy participants (30 females/30 males) who completed eight cyclical eyes-closed (20-seconds), eyes-open (40-seconds) NVC trials, using the "Where's Waldo?" visual paradigm. TCD data was obtained in posterior and middle cerebral arteries (PCA and MCA, respectively). The within-day (n = 11) and between-day (n = 17) reliability were assessed at seven- and three-time points, respectively. Repeat testing from the reliability aims were also used for the concurrent validity analysis (n = 160). PCA metrics (i.e., baseline, peak, percent increase, and area-under-the-curve) demonstrated five trials produced excellent intraclass correlation coefficient (ICC) 95% confidence intervals for validity and within-day reliability (>0.900), whereas between-day reliability was good-to-excellent (>0.750). Likewise, 95% confidence intervals for coefficient of variation (CoV) measures ranged from acceptable (<20%) to excellent (<5%) with five-or-more trials. Employing fewer than five trials produced poor/unacceptable ICC and CoV metrics. Future NVC, TCD-based research should therefore have participants complete a minimum of five trials when quantifying the NVC response with TCD via a "Where's Waldo?" paradigm.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Rowan K Van Roessel
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Serum neurofilament light in professional soccer players: goal on safety. Neurol Sci 2022; 43:5087-5090. [DOI: 10.1007/s10072-022-06109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
15
|
Mullins VA, Graham S, Cummings D, Wood A, Ovando V, Skulas-Ray AC, Polian D, Wang Y, Hernandez GD, Lopez CM, Raikes AC, Brinton RD, Chilton FH. Effects of Fish Oil on Biomarkers of Axonal Injury and Inflammation in American Football Players: A Placebo-Controlled Randomized Controlled Trial. Nutrients 2022; 14:2139. [PMID: 35631280 PMCID: PMC9146417 DOI: 10.3390/nu14102139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
There are limited studies on neuroprotection from repeated subconcussive head impacts (RSHI) following docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) supplementation in contact sports athletes. We performed a randomized, placebo-controlled, double-blinded, parallel-group design trial to determine the impact of 26 weeks of DHA+EPA supplementation (n = 12) vs. placebo (high-oleic safflower oil) (n = 17) on serum concentrations of neurofilament light (NfL), a biomarker of axonal injury, and inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a)) in National Collegiate Athletic Association Division I American football athletes. DHA+EPA supplementation increased (p < 0.01) plasma DHA and EPA concentrations throughout the treatment period. NfL concentrations increased from baseline to week 26 in both groups (treatment (<0.001); placebo (p < 0.05)), with starting players (vs. non-starters) showing significant higher circulating concentrations at week 26 (p < 0.01). Fish oil (DHA+EPA) supplementation did not mitigate the adverse effects of RSHI, as measured by NfL levels; however, participants with the highest plasma DHA+EPA concentrations tended to have lower NfL levels. DHA+EPA supplementation had no effects on inflammatory cytokine levels at any of the timepoints tested. These findings emphasize the need for effective strategies to protect American football participants from the effects of RSHI.
Collapse
Affiliation(s)
- Veronica A. Mullins
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Sarah Graham
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Danielle Cummings
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Alva Wood
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Vanessa Ovando
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Ann C. Skulas-Ray
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Dennis Polian
- Baylor Athletics, Baylor University, 1500 South University Parks Drive, Waco, TX 76706, USA;
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Claudia M. Lopez
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| |
Collapse
|
16
|
Lippa SM, Gill J, Brickell TA, Guedes VA, French LM, Lange RT. Blood Biomarkers Predict Future Cognitive Decline after Military-Related Traumatic Brain Injury. Curr Alzheimer Res 2022; 19:351-363. [PMID: 35362372 DOI: 10.2174/1567205019666220330144432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been associated with increased likelihood of late-life dementia; however, the mechanisms driving this relationship are elusive. Blood-based biomarkers may provide insight into these mechanisms and serve as useful prognostic indicators of cognitive recovery or decline following a TBI. OBJECTIVE The aim of this study was to examine blood biomarkers within one year of TBI and explore their relationship with cognitive decline. METHODS Service members and veterans (n=224) without injury (n=77), or with history of bodily injury (n=37), uncomplicated mild TBI (n=55), or more severe TBI (n=55), underwent a blood draw and neuropsychological assessment within one year of their injury as part of a case-control study. A subsample (n=87) completed follow-up cognitive assessment. RESULTS In the more severe TBI group, baseline glial fibrillary acidic protein (p=.008) and ubiquitin C-terminal hydrolase-L1 (p=.026) were associated with processing speed at baseline, and baseline ubiquitin C-terminal hydrolase-L1 predicted change in immediate (R2Δ=.244, p=.005) and delayed memory (R2Δ=.390, p=.003) over time. In the mild TBI group, higher baseline tau predicted greater negative change in perceptual reasoning (R2Δ=.188, p=.033) and executive functioning (R2Δ=.298, p=.007); higher baseline neurofilament light predicted greater negative change in perceptual reasoning (R2Δ=.211, p=.012). CONCLUSION Baseline ubiquitin C-terminal hydrolase-L1 strongly predicted memory decline in the more severe TBI group, while tau and neurofilament light strongly predicted decline in the mild TBI group. A panel including these biomarkers could be particularly helpful in identifying those at risk for future cognitive decline following TBI.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Tracey A Brickell
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
| | - Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Louis M French
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rael T Lange
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Salivary S100 calcium-binding protein beta (S100B) and neurofilament light (NfL) after acute exposure to repeated head impacts in collegiate water polo players. Sci Rep 2022; 12:3439. [PMID: 35236877 PMCID: PMC8891257 DOI: 10.1038/s41598-022-07241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Blood-based biomarkers of brain injury may be useful for monitoring brain health in athletes at risk for concussions. Two putative biomarkers of sport-related concussion, neurofilament light (NfL), an axonal structural protein, and S100 calcium-binding protein beta (S100B), an astrocyte-derived protein, were measured in saliva, a biofluid which can be sampled in an athletic setting without the risks and burdens associated with blood sampled by venipuncture. Samples were collected from men’s and women’s collegiate water polo players (n = 65) before and after a competitive tournament. Head impacts were measured using sensors previously evaluated for use in water polo, and video recordings were independently reviewed for the purpose of validating impacts recorded by the sensors. Athletes sustained a total of 107 head impacts, all of which were asymptomatic (i.e., no athlete was diagnosed with a concussion or more serious). Post-tournament salivary NfL was directly associated with head impact frequency (RR = 1.151, p = 0.025) and cumulative head impact magnitude (RR = 1.008, p = 0.014), while controlling for baseline salivary NfL. Change in S100B was not associated with head impact exposure (RR < 1.001, p > 0.483). These patterns suggest that repeated head impacts may cause axonal injury, even in asymptomatic athletes.
Collapse
|
18
|
An acute bout of controlled subconcussive impacts can alter dynamic cerebral autoregulation indices: a preliminary investigation. Eur J Appl Physiol 2022; 122:1059-1070. [PMID: 35171333 DOI: 10.1007/s00421-022-04908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES There is growing concern repetitive head contacts sustained by soccer players may lead to long-term health ramifications. Therefore, this preliminary investigation examined the impact an acute soccer heading bout has on dynamic cerebral autoregulation (dCA) metrics. METHODS In this preliminary investigation, 40 successful soccer headers were performed in 20 min by 7 male elite soccer players (24.1 ± 1.5 years). Soccer balls were launched at 77.5 ± 3.7 km/h from JUGS soccer machine, located 35 m away from participants. Linear and rotational head accelerations impacts were measured using an accelerometer (xPatch). The SCAT3 indexed concussion symptom score and severity before and after: soccer headers, sham (body contact only), and control conditions. Squat-stand maneuvers were performed at 0.05 Hz and 0.10 Hz to quantity dCA through measures of coherence, phase, and gain. RESULTS Cumulative linear and rotational accelerations during soccer headers were 1574 ± 97.9 g and 313,761 ± 23,966 rads/s2, respectively. SCAT3 symptom severity was elevated after the soccer heading bout (pre 3.7 ± 3.6, post 9.4 ± 7.6: p = 0.030) and five of the seven participants reported an increase in concussion-like symptoms (pre: 2.6 ± 3.0, post: 6.7 ± 6.2; p = 0.078). Phase at 0.10 Hz was elevated following soccer heading (p = 0.008). No other dCA metric differed following the three conditions. CONCLUSION These preliminary results indicate an acute bout of soccer heading resulted in alterations to dCA metrics. Therefore, future research with larger sample sizes is warranted to fully comprehend short- and long-term physiological changes related to soccer heading.
Collapse
|
19
|
Austin K, Lee BJ, Flood TR, Toombs J, Borisova M, Lauder M, Heslegrave A, Zetterberg H, Smith NA. Serum neurofilament light concentration does not increase following exposure to low velocity football heading. SCI MED FOOTBALL 2022; 5:188-194. [PMID: 35077291 DOI: 10.1080/24733938.2020.1853210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objectives: To investigate if heading frequency and impact biomechanics in a single session influence the concentration of serum neurofilament light (NF-L), a sensitive biomarker for axonal damage, up to 7 days after heading incident at ball velocities reflecting basic training drills.Methods: Forty-four males were randomized into either control (n = 8), 10 header (n = 12), 20 header (n = 12) or 40 header (n = 12) groups. Linear and angular head accelerations were quantified during heading. Venous blood samples were taken at baseline, 6 h, 24 h and 7 days after heading. Serum NF-L was quantified using Quanterix NF-L assay kit on the Simoa HD-1 Platform.Results: Serum NF-L did not alter over time (p = 0.44) and was not influenced by number of headers [p = 0.47; mean (95% CI) concentrations at baseline 6.00 pg · ml-1 (5.00-7.00 pg · ml-1); 6 h post 6.50 pg · ml-1 (5.70-7.29 pg · ml-1); 24 h post 6.07 pg · ml-1 (5.14-7.01 pg · ml-1); and 7 days post 6.46 pg · ml-1 (5.45-7.46 pg · ml-1)]. There was no relationship between percentage change in NF-L and summed session linear and angular head accelerations.Conclusion: In adult men, heading frequency or impact biomechanics did not affect NF-L response during a single session of headers at ball velocities reflective of basic training tasks.
Collapse
Affiliation(s)
- Kieran Austin
- Institute of Sport, University of Chichester, Chichester, UK
| | - Ben J Lee
- Institute of Sport, University of Chichester, Chichester, UK
| | - Tessa R Flood
- Institute of Sport, University of Chichester, Chichester, UK
| | - Jamie Toombs
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, UK
| | - Mina Borisova
- Department of Neurodegenerative Diseases, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Mike Lauder
- Institute of Sport, University of Chichester, Chichester, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Diseases, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Diseases, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Neal A Smith
- Institute of Sport, University of Chichester, Chichester, UK
| |
Collapse
|
20
|
Boucher ML, Conley G, Nowlin J, Qiu J, Kawata K, Bazarian JJ, Meehan WP, Mannix R. Titrating the Translational Relevance of a Low-Level Repetitive Head Impact Model. Front Neurol 2022; 13:857654. [PMID: 35785366 PMCID: PMC9246060 DOI: 10.3389/fneur.2022.857654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been increased attention in the scientific community to the phenomenon of sub-concussive impacts, those hits to the head that do not cause the signs and symptoms of a concussion. Some authors suggest that sub-concussive impacts may alter behavior and cognition, if sustained repetitively, but the mechanisms underlying these changes are not well-defined. Here, we adapt our well-established weight drop model of repetitive mild traumatic brain injury (rmTBI) to attempt to produce a model of low-level repetitive head impacts (RHI). The model was modified to eliminate differences in latency to right following impact and gross behavioral changes after a single cluster of hits. Further, we varied our model in terms of repetition of impact over a 4-h span to mimic the repeated sub-concussive impacts that may be experienced by an athlete within a single day of play. To understand the effects of a single cluster of RHIs, as well as the effect of an increased impact frequency within the cluster, we evaluated classical behavioral measures, serum biomarkers, cortical protein quantification, and immunohistochemistry both acutely and sub-acutely following the impacts. In the absence of gross behavioral changes, the impact protocol did generate pathology, in a dose-dependent fashion, in the brain. Evaluation of serum biomarkers revealed limited changes in GFAP and NF-L, which suggests that their diagnostic utility may not emerge until the exposure to low-level head impacts reaches a certain threshold. Robust decreases in both IL-1β and IL-6 were observed in the serum and the cortex, indicating downregulation of inflammatory pathways. These experiments yield initial data on pathology and biomarkers in a mouse model of low-level RHIs, with relevance to sports settings, providing a starting point for further exploration of the potential role of anti-inflammatory processes in low-level RHI outcomes, and how these markers may evolve with repeated exposure.
Collapse
Affiliation(s)
- Masen L Boucher
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Grace Conley
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jordan Nowlin
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jianhua Qiu
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, IN, United States
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Harvard Medical School, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, United States.,The Micheli Center for Sports Injury Prevention, Waltham, MA, United States
| | - Rebekah Mannix
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Nowak MK, Ejima K, Quinn PD, Bazarian JJ, Mickleborough TD, Harezlak J, Newman SD, Kawata K. ADHD May Associate With Reduced Tolerance to Acute Subconcussive Head Impacts: A Pilot Case-Control Intervention Study. J Atten Disord 2022; 26:125-139. [PMID: 33161816 PMCID: PMC8102643 DOI: 10.1177/1087054720969977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test our hypothesis that individuals with ADHD would exhibit reduced resiliency to subconcussive head impacts induced by ten soccer headings. METHOD We conducted a case-control intervention study in 51 adults (20.6 ± 1.7 years old). Cognitive assessment, using ImPACT, and plasma levels of neurofilament-light (NF-L), Tau, glial-fibrillary-acidic protein (GFAP), and ubiquitin-C-terminal hydrolase-L1 (UCH-L1) were measured. RESULTS Ten controlled soccer headings demonstrated ADHD-specific transient declines in verbal memory function. Ten headings also blunted learning effects in visual memory function in the ADHD group while the non-ADHD counterparts improved both verbal and visual memory functions even after ten headings. Blood biomarker levels of the ADHD group were sensitive to the stress induced by ten headings, where plasma GFAP and UCH-L1 levels acutely increased after 10 headings. Variance in ADHD-specific verbal memory decline was correlated with increased levels of plasma GFAP in the ADHD group. CONCLUSIONS These data suggest that ADHD may reduce brain tolerance to repetitive subconcussive head impacts.
Collapse
Affiliation(s)
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, USA
| | - Patrick D. Quinn
- Department of Applied Health, Indiana University-Bloomington, USA
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, USA
| | | | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, USA
| | - Sharlene D. Newman
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University-Bloomington, USA
- Program in Neuroscience, Indiana University-Bloomington, USA
| |
Collapse
|
22
|
Gilbert AW, Bering JM, Anderson LC. Addressing head injury risk in youth football: are heading guidelines the answer? SCI MED FOOTBALL 2021; 6:340-346. [DOI: 10.1080/24733938.2021.1967435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Alexander W. Gilbert
- 133 Union Street East, Dunedin
- Centre for Science Communication, University of Otago, Dunedin, New Zealand
| | - Jesse M. Bering
- Centre for Science Communication, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
23
|
Filben TM, Pritchard NS, Hanes-Romano KE, Miller LE, Miles CM, Urban JE, Stitzel JD. Comparison of women's collegiate soccer header kinematics by play state, intent, and outcome. J Biomech 2021; 126:110619. [PMID: 34325122 DOI: 10.1016/j.jbiomech.2021.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Although most head impacts in soccer are headers, limited knowledge exists about how header magnitude varies by on-field scenario. This study aimed to compare head kinematics during on-field headers by play state (i.e., corner kick, goal kick, free kick, throw-in, drill, or live ball), intent (i.e., pass, shot, or clearance), and outcome (i.e., successful or unsuccessful). Fifteen female collegiate soccer players were instrumented with mouthpiece-based head impact sensors during 72 practices and 24 games. A total of 336 headers were verified and contextualized via film review. Play state was associated with peak linear acceleration, rotational acceleration, and rotational velocity (all p < .001) while outcome was associated with peak linear acceleration (p < .010). Header intent was not significantly associated with any kinematic metric. Headers during corner kicks (22.9 g, 2189.3 rad/s2, 9.87 rad/s), goal kicks (24.3 g, 2658.9 rad/s2, 10.1 rad/s), free kicks (18.0 g, 1843.3 rad/s2, 8.43 rad/s), and live balls (18.8 g, 1769.7 rad/s2, 8.09 rad/s) each had significantly greater mean peak linear acceleration (all p < .050), rotational acceleration (all p < .001), and rotational velocity (all p < .001) than headers during drills (13.0 g, 982.4 rad/s2, 5.28 rad/s). Headers during goal kicks also had a significantly greater mean rotational acceleration compared to headers during live ball scenarios (p < .050). Successful headers (18.3 g) had a greater mean peak linear acceleration compared to unsuccessful headers (13.8 g; p < .010). Results may help inform efforts to reduce head impact exposure in soccer.
Collapse
Affiliation(s)
- Tanner M Filben
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA.
| | - N Stewart Pritchard
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| | | | - Logan E Miller
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| | - Christopher M Miles
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA; Sports Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA; Department of Family and Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jillian E Urban
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
24
|
Karantali E, Kazis D, McKenna J, Chatzikonstantinou S, Petridis F, Mavroudis I. Neurofilament light chain in patients with a concussion or head impacts: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 2021; 48:1555-1567. [PMID: 34003313 DOI: 10.1007/s00068-021-01693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Traumatic brain injury is one of the leading causes of disability worldwide. Mild traumatic brain injury (TBI) is the most common and benign form of TBI, usually referred to by the medical term "concussion". The purpose of our systematic review and meta-analysis was to explore the role of serum and CSF neurofilament light chain (NfL) as a potential biomarker in concussion. METHODS We systematically searched PubMed, Web of Science, and Cochrane databases using specific keywords. As the primary outcome, we assessed CSF or serum NfL levels in patients with concussion and head impacts versus controls. The role of NfL in patients with concussion and head impacts compared to healthy controls was also assessed, as well as in sports-related and military-related conditions. RESULTS From the initial 617 identified studies, we included 24 studies in our qualitative analysis and 14 studies in our meta-analysis. We found a statistically significant increase of serum NfL in patients suffering from a concussion or head impacts compared to controls (p = 0.0023), highlighting its potential role as a biomarker. From our sub-group analyses, sports-related concussion and mild TBI were mostly correlated with increased serum NfL values. Compared to controls, sports-related concussion was significantly associated with higher NfL levels (p = 0.0015), while no association was noted in patients suffering from head impacts or military-related TBI. CONCLUSION Serum NfL levels are higher in all patients suffering from concussion compared to healthy controls. The sports-related concussion was specifically associated with higher levels of NfL. Further studies exploring the use of NfL as a diagnostic and prognostic biomarker in mild TBI and head impacts are needed.
Collapse
Affiliation(s)
- Eleni Karantali
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Kazis
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jack McKenna
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Fivos Petridis
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mavroudis
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
25
|
Burma JS, Miutz LN, Newel KT, Labrecque L, Drapeau A, Brassard P, Copeland P, Macaulay A, Smirl JD. What recording duration is required to provide physiologically valid and reliable dynamic cerebral autoregulation transfer functional analysis estimates? Physiol Meas 2021; 42. [PMID: 33761474 DOI: 10.1088/1361-6579/abf1af] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Objective. Currently, a recording of 300 s is recommended to obtain accurate dynamic cerebral autoregulation estimates using transfer function analysis (TFA). Therefore, this investigation sought to explore the concurrent validity and the within- and between-day reliability of TFA estimates derived from shorter recording durations from squat-stand maneuvers.Approach. Retrospective analyses were performed on 70 young, recreationally active or endurance-trained participants (17 females; age: 26 ± 5 years, [range: 20-39 years]; body mass index: 24 ± 3 kg m-2). Participants performed 300 s of squat-stands at frequencies of 0.05 and 0.10 Hz, where shorter recordings of 60, 120, 180, and 240 s were extracted. Continuous transcranial Doppler ultrasound recordings were taken within the middle and posterior cerebral arteries. Coherence, phase, gain, and normalized gain metrics were derived. Bland-Altman plots with 95% limits of agreement (LOA), repeated measures ANOVA's, two-tailed paired t-tests, coefficient of variation, Cronbach's alpha, intraclass correlation coefficients, and linear regressions were conducted.Main results. When examining the concurrent validity across different recording durations, group differences were noted within coherence (F(4155) > 11.6,p < 0.001) but not phase (F(4155) < 0.27,p > 0.611), gain (F(4155) < 0.61,p > 0.440), or normalized gain (F(4155) < 0.85,p > 0.359) parameters. The Bland-Altman 95% LOA measuring the concurrent validity, trended to narrow as recording duration increased (60 s: < ±0.4, 120 s: < ±0.3, 180 s < ±0.3, 240 s: < ±0.1). The validity of the 180 and 240 s recordings further increased when physiological covariates were included within regression models.Significance. Future studies examining autoregulation should seek to have participants perform 300 s of squat-stand maneuvers. However, valid and reliable TFA estimates can be drawn from 240 s or 180 s recordings if physiological covariates are controlled.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Paige Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
26
|
Burma JS, Graver S, Miutz LN, Macaulay A, Copeland PV, Smirl JD. The validity and reliability of ultra-short-term heart rate variability parameters and the influence of physiological covariates. J Appl Physiol (1985) 2021; 130:1848-1867. [PMID: 33856258 DOI: 10.1152/japplphysiol.00955.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ultra-short-term (UST) heart rate variability (HRV) metrics have increasingly been proposed as surrogates for short-term HRV metrics. However, the concurrent validity, within-day reliability, and between-day reliability of UST HRV have yet to be comprehensively documented. Thirty-six adults (18 males, age: 26 ± 5 yr, BMI: 24 ± 3 kg/m2) were recruited. Measures of HRV were quantified in a quiet-stance upright orthostatic position via three-lead electrocardiogram (ADInstruments, FE232 BioAmp). All short-term data recordings were 300 s in length and five UST time points (i.e., 30 s, 60 s, 120 s, 180 s, and 240 s) were extracted from the original 300-s recording. Bland-Altman plots with 95% limits of agreement, repeated measures ANOVA and two-tailed paired t tests demarcated differences between UST and short-term recordings. Linear regressions, coefficient of variation, intraclass correlation coefficients, and other tests examined the validity and reliability in both time- and frequency domains. No group differences were noted between all short-term and UST measures, for either time- (all P > 0.202) or frequency-domain metrics (all P > 0.086). A longer recording duration was associated with augmented validity and reliability, which was less impacted by confounding influences from physiological variables (e.g., respiration rate, carbon dioxide end-tidals, and blood pressure). Conclusively, heart rate, time-domain, and relative frequency-domain HRV metrics were acceptable with recordings greater or equal to 60 s, 240 s, and 300 s, respectively. Future studies employing UST HRV metrics should thoroughly understand the methodological requirements to obtain accurate results. Moreover, a conservative approach should be utilized regarding the minimum acceptable recording duration, which ensures valid/reliable HRV estimates are obtained.NEW & NOTEWORTHY A one size fits all methodological approach to quantify HRV metrics appears to be inappropriate, where study design considerations need to be conducted upon a variable-by-variable basis. The present results found 60 s (heart rate), 240 s (time-domain parameters), and 300 s (relative frequency-domain parameters) were required to obtain accurate and reproducible metrics. The lower validity/reliability of the ultra-short-term metrics was attributable to measurement error and/or confounding from extraneous physiological influences (i.e., respiratory and hemodynamic variables).
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sarah Graver
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paige V Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
27
|
Bretzin AC, Covassin T, Wiebe DJ, Stewart W. Association of Sex With Adolescent Soccer Concussion Incidence and Characteristics. JAMA Netw Open 2021; 4:e218191. [PMID: 33904911 PMCID: PMC8080231 DOI: 10.1001/jamanetworkopen.2021.8191] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 01/02/2023] Open
Abstract
Importance Because of the negative consequences of concussion, considerable research efforts have been directed toward understanding the risk factors for sport-related concussion (SRC) and its outcomes to better inform strategies for risk reduction. Girls are suggested to have an increased risk of concussion, warranting exploration into sex-dependent variations in concussion presentation and management, with the potential that this information might inform sex-specific rules directed toward risk reduction within sports. Objective To compare sex-associated differences in epidemiology and concussion management in adolescent soccer players within a prospective, longitudinal high school injury surveillance project. Design, Setting, and Participants This prospective, longitudinal cohort study assessed male and female soccer athletes from all high schools in the Michigan High School Athletic Association (MHSAA) during academic years 2016-2017 to 2018-2019. Exposures Sport-related concussion captured in the MHSAA Head Injury Reporting System. Main Outcomes and Measures Outcomes included details regarding each documented SRC event, including injury mechanism, immediate management, and return-to-play time. Multiple comparisons were made between male and female athletes regarding SRC risk, mechanism, short-term management, and outcomes. Results A total of 43 741 male and 39 637 female soccer athletes participated in MHSAA soccer during the 3 consecutive academic years of study (2016-2017: n = 751 schools; 2017-2018: n = 750 schools; and 2018-2019: n = 747 schools). During the 3 years of surveillance, 1507 of the 83 378 soccer athletes (1.8%) were reported to have SRC during soccer participation, including 557 boys (37.0%) and 950 girls (63.0%). Documented SRC risk in female soccer participants was greater than in male soccer participants (risk ratio, 1.88; 95% CI, 1.69-2.09; P < .001). Male soccer athletes most often sustained SRC from contact with another player (48.4%), whereas SRCs in female soccer players recorded in the Head Injury Reporting System were most often from nonplayer contact events (41.9%; P < .001). Adolescent male soccer players with a documented SRC were more likely to be removed from play on the day of injury (odds ratio, 1.54; 95% CI, 1.15-2.06; P = .004). Although the overall median time to return to play was 11 days (interquartile range [IQR], 7-15 days), male athletes typically returned 2 days earlier than female athletes (median, 10 [IQR, 7-14] days vs 12 [IQR, 7-16] days; Peto test P < .001). Conclusions and Relevance In this cohort study, sex-associated differences were revealed among adolescent soccer athletes in SRC risk, mechanism of injury, immediate management, and outcomes in injuries documented in a statewide injury reporting system. Thus, consideration might be given to sex-specific approaches to participation and concussion management in the sport.
Collapse
Affiliation(s)
- Abigail C. Bretzin
- Penn Injury Science Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Tracey Covassin
- Department of Kinesiology, Michigan State University, East Lansing
| | - Douglas J. Wiebe
- Penn Injury Science Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Verduyn C, Bjerke M, Duerinck J, Engelborghs S, Peers K, Versijpt J, D'haeseleer M. CSF and Blood Neurofilament Levels in Athletes Participating in Physical Contact Sports: A Systematic Review. Neurology 2021; 96:705-715. [PMID: 33637627 DOI: 10.1212/wnl.0000000000011750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To evaluate whether participating in physical contact sports is associated with a release of neurofilaments and whether such release is related to future clinical neurologic and/or psychiatric impairment. METHODS We performed a systematic review of the PubMed, MEDLINE, and Cochrane Library databases using a combination of the search terms neurofilament(s)/intermediate filament and sport(s)/athletes. Original studies, written in English, reporting on neurofilaments in CSF and/or serum/plasma of contact sport athletes were included. This review was conducted following the Preferred Reporting Items for Systematic Review and Analyses guidelines. RESULTS Eighteen studies in 8 different contact sports (i.e., boxing, American football, ice hockey, soccer, mixed martial arts, lacrosse, rugby, and wrestling) matched our criteria. Elevated light chain neurofilament (NfL) levels were described in 13/18 cohorts. Most compelling evidence was present in boxing and American football, where exposure-related increases were appreciable at the intraindividual level (up to 4.1- and 2.0-fold, respectively) in well-defined groups. Differences in exposure severity (including previous cumulative effects), sampling/measurement time points (with regard to expected peak values), and definitions of the baseline setting are considered as main contributors to the variability in findings. No studies were encountered that have investigated the relationship with the targeted clinical end points; therefore no NfL cutoffs exist that are associated with a poor outcome. CONCLUSION NfL release can be seen, as a potential marker of neuronal brain damage, in participants of physical contact sports, particularly boxing and American football. The exact significance regarding the risk for future clinical impairment remains to be elucidated.
Collapse
Affiliation(s)
- Carl Verduyn
- From the Department of Physical Medicine and Rehabilitation (C.V., K.P.), Universitair Ziekenhuis Leuven; Katholieke Universiteit Leuven; Center for Neurosciences (M.B., J.D., S.E., J.V., M.D.), Vrije Universiteit Brussel; Reference Center for Biological Markers of Dementia (M.B., S.E.), Institute Born-Bunge, Universiteit Antwerpen; Neurochemistry Laboratory (M.B.), Department of Clinical Biology, Universitair Ziekenhuis Brussel; Department of Neurosurgery (J.D.), Universitair Ziekenhuis Brussel; Department of Neurology (S.E., J.V., M.D.), Universitair Ziekenhuis Brussel; and Nationaal Multiple Sclerose Centrum (M.D.); Melsbroek, Belgium.
| | - Maria Bjerke
- From the Department of Physical Medicine and Rehabilitation (C.V., K.P.), Universitair Ziekenhuis Leuven; Katholieke Universiteit Leuven; Center for Neurosciences (M.B., J.D., S.E., J.V., M.D.), Vrije Universiteit Brussel; Reference Center for Biological Markers of Dementia (M.B., S.E.), Institute Born-Bunge, Universiteit Antwerpen; Neurochemistry Laboratory (M.B.), Department of Clinical Biology, Universitair Ziekenhuis Brussel; Department of Neurosurgery (J.D.), Universitair Ziekenhuis Brussel; Department of Neurology (S.E., J.V., M.D.), Universitair Ziekenhuis Brussel; and Nationaal Multiple Sclerose Centrum (M.D.); Melsbroek, Belgium
| | - Johnny Duerinck
- From the Department of Physical Medicine and Rehabilitation (C.V., K.P.), Universitair Ziekenhuis Leuven; Katholieke Universiteit Leuven; Center for Neurosciences (M.B., J.D., S.E., J.V., M.D.), Vrije Universiteit Brussel; Reference Center for Biological Markers of Dementia (M.B., S.E.), Institute Born-Bunge, Universiteit Antwerpen; Neurochemistry Laboratory (M.B.), Department of Clinical Biology, Universitair Ziekenhuis Brussel; Department of Neurosurgery (J.D.), Universitair Ziekenhuis Brussel; Department of Neurology (S.E., J.V., M.D.), Universitair Ziekenhuis Brussel; and Nationaal Multiple Sclerose Centrum (M.D.); Melsbroek, Belgium
| | - Sebastiaan Engelborghs
- From the Department of Physical Medicine and Rehabilitation (C.V., K.P.), Universitair Ziekenhuis Leuven; Katholieke Universiteit Leuven; Center for Neurosciences (M.B., J.D., S.E., J.V., M.D.), Vrije Universiteit Brussel; Reference Center for Biological Markers of Dementia (M.B., S.E.), Institute Born-Bunge, Universiteit Antwerpen; Neurochemistry Laboratory (M.B.), Department of Clinical Biology, Universitair Ziekenhuis Brussel; Department of Neurosurgery (J.D.), Universitair Ziekenhuis Brussel; Department of Neurology (S.E., J.V., M.D.), Universitair Ziekenhuis Brussel; and Nationaal Multiple Sclerose Centrum (M.D.); Melsbroek, Belgium
| | - Koenraad Peers
- From the Department of Physical Medicine and Rehabilitation (C.V., K.P.), Universitair Ziekenhuis Leuven; Katholieke Universiteit Leuven; Center for Neurosciences (M.B., J.D., S.E., J.V., M.D.), Vrije Universiteit Brussel; Reference Center for Biological Markers of Dementia (M.B., S.E.), Institute Born-Bunge, Universiteit Antwerpen; Neurochemistry Laboratory (M.B.), Department of Clinical Biology, Universitair Ziekenhuis Brussel; Department of Neurosurgery (J.D.), Universitair Ziekenhuis Brussel; Department of Neurology (S.E., J.V., M.D.), Universitair Ziekenhuis Brussel; and Nationaal Multiple Sclerose Centrum (M.D.); Melsbroek, Belgium
| | - Jan Versijpt
- From the Department of Physical Medicine and Rehabilitation (C.V., K.P.), Universitair Ziekenhuis Leuven; Katholieke Universiteit Leuven; Center for Neurosciences (M.B., J.D., S.E., J.V., M.D.), Vrije Universiteit Brussel; Reference Center for Biological Markers of Dementia (M.B., S.E.), Institute Born-Bunge, Universiteit Antwerpen; Neurochemistry Laboratory (M.B.), Department of Clinical Biology, Universitair Ziekenhuis Brussel; Department of Neurosurgery (J.D.), Universitair Ziekenhuis Brussel; Department of Neurology (S.E., J.V., M.D.), Universitair Ziekenhuis Brussel; and Nationaal Multiple Sclerose Centrum (M.D.); Melsbroek, Belgium
| | - Miguel D'haeseleer
- From the Department of Physical Medicine and Rehabilitation (C.V., K.P.), Universitair Ziekenhuis Leuven; Katholieke Universiteit Leuven; Center for Neurosciences (M.B., J.D., S.E., J.V., M.D.), Vrije Universiteit Brussel; Reference Center for Biological Markers of Dementia (M.B., S.E.), Institute Born-Bunge, Universiteit Antwerpen; Neurochemistry Laboratory (M.B.), Department of Clinical Biology, Universitair Ziekenhuis Brussel; Department of Neurosurgery (J.D.), Universitair Ziekenhuis Brussel; Department of Neurology (S.E., J.V., M.D.), Universitair Ziekenhuis Brussel; and Nationaal Multiple Sclerose Centrum (M.D.); Melsbroek, Belgium
| |
Collapse
|
29
|
Yue JK, Phelps RRL, Chandra A, Winkler EA, Manley GT, Berger MS. Sideline Concussion Assessment: The Current State of the Art. Neurosurgery 2021; 87:466-475. [PMID: 32126135 DOI: 10.1093/neuros/nyaa022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/15/2019] [Indexed: 02/03/2023] Open
Abstract
More than 200 million American adults and children participate in organized physical activity. Growing awareness has highlighted that concussion, especially when repeated, may be associated with prolonged neurological, cognitive, and/or neuropsychiatric sequelae. Objective diagnosis of concussion remains challenging. Although some concussion symptoms may be apparent even to nonmedical observers, diagnosis and removal from play for evaluation depend on validated assessment tools and trained, vigilant healthcare personnel. Over the past 2 decades, sideline concussion measures have undergone significant revision and augmentation to become more comprehensive batteries in order to detect a wide spectrum of symptomatology, eg, neurocognitive function, postconcussive symptoms, gait/balance, and saccadic eye movements. This review summarizes the current state-of-the-art concussion evaluation instruments, ranging from the Sports Concussion Assessment Tool (SCAT) and tools that may enhance concussion detection, to near-term blood-based biomarkers and emerging technology (eg, head impact sensors, vestibulo-ocular/eye-tracking, and mobile applications). Special focus is directed at feasibility, utility, generalizability, and challenges to implementation of each measure on-field and on the sidelines. This review finds that few instruments beyond the SCAT provide guidance for removal from play, and establishing thresholds for concussion detection and removal from play in qualification/validation of future instruments is of high importance. Integration of emerging sideline concussion evaluation tools should be supported by resources and education to athletes, caregivers, athletic staff, and medical professionals for standardized administration as well as triage, referral, and prevention strategies. It should be noted that concussion evaluation instruments are used to assist the clinician in sideline diagnosis, and no single test can diagnose concussion as a standalone investigation.
Collapse
Affiliation(s)
- John K Yue
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ryan R L Phelps
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ankush Chandra
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
30
|
Russell ER, McCabe T, Mackay DF, Stewart K, MacLean JA, Pell JP, Stewart W. Mental health and suicide in former professional soccer players. J Neurol Neurosurg Psychiatry 2020; 91:1256-1260. [PMID: 32694163 PMCID: PMC8747033 DOI: 10.1136/jnnp-2020-323315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION There is growing recognition of an association between contact sports participation and increased risk of neurodegenerative disease, including Alzheimer's disease and chronic traumatic encephalopathy. In addition to cognitive impairment, a range of mental health disorders and suicidality are proposed as diagnostic features of traumatic encephalopathy syndrome, the putative clinical syndrome associated with chronic traumatic encephalopathy. However, to date, epidemiological data on contact sport participation and mental health outcomes are limited. METHODS For a cohort of former professional soccer players (n=7676) with known high neurodegenerative mortality and their matched general population controls (n=23 028), data on mental health outcomes were obtained by individual-level record linkage to national electronic records of hospital admissions and death certification. RESULTS Compared with matched population controls, former professional soccer players showed lower risk of hospital admission for anxiety and stress related disorders, depression, drug use disorders, alcohol use disorders and bipolar and affective mood disorders. Among soccer players, there was no significant difference in risk of hospitalisation for mental health disorders between outfield players and goalkeepers. There was no significant difference in rate of death by suicide between soccer players and controls. CONCLUSIONS Among a population of former professional soccer players with known high neurodegenerative disease mortality, hospital admissions for common mental health disorders were lower than population controls, with no difference in suicide. Our data provide support for the reappraisal of currently proposed diagnostic clinical criteria for traumatic encephalopathy syndrome, in particular the inclusion of mental health outcomes.
Collapse
Affiliation(s)
- Emma R Russell
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Thomas McCabe
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Daniel F Mackay
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Katy Stewart
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Hampden Sports Clinic, Hampden Park, Glasgow, UK
| | - John A MacLean
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Hampden Sports Clinic, Hampden Park, Glasgow, UK
| | - Jill P Pell
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK .,Department of Neuropathology, NHS Greater Glasgow and Clyde, Glasgow, UK
| |
Collapse
|
31
|
Abstract
As awareness on the short-term and long-term consequences of sports-related concussions and repetitive head impacts continues to grow, so too does the necessity to establish biomechanical measures of risk that inform public policy and risk mitigation strategies. A more precise exposure metric is central to establishing relationships among the traumatic experience, risk, and ultimately clinical outcomes. Accurate exposure metrics provide a means to support evidence-informed decisions accelerating public policy mandating brain trauma management through sport modification and safer play.
Collapse
Affiliation(s)
- Clara Karton
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada.
| | - Thomas Blaine Hoshizaki
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
32
|
Barro C, Chitnis T, Weiner HL. Blood neurofilament light: a critical review of its application to neurologic disease. Ann Clin Transl Neurol 2020; 7:2508-2523. [PMID: 33146954 PMCID: PMC7732243 DOI: 10.1002/acn3.51234] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal injury is a universal event that occurs in disease processes that affect both the central and peripheral nervous systems. A blood biomarker linked to neuronal injury would provide a critical measure to understand and treat neurologic diseases. Neurofilament light chain (NfL), a cytoskeletal protein expressed only in neurons, has emerged as such a biomarker. With the ability to quantify neuronal damage in blood, NfL is being applied to a wide range of neurologic conditions to investigate and monitor disease including assessment of treatment efficacy. Blood NfL is not specific for one disease and its release can also be induced by physiological processes. Longitudinal studies in multiple sclerosis, traumatic brain injury, and stroke show accumulation of NfL over days followed by elevated levels over months. Therefore, it may be hard to determine with a single measurement when the peak of NfL is reached and when the levels are normalized. Nonetheless, measurement of blood NfL provides a new blood biomarker for neurologic diseases overcoming the invasiveness of CSF sampling that restricted NfL clinical application. In this review, we examine the use of blood NfL as a biologic test for neurologic disease.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Snowden T, Reid H, Kennedy S, Kenny R, McQuarrie A, Stuart-Hill L, Garcia-Barrera MA, Gawryluk J, Christie BR. Heading in the Right Direction: A Critical Review of Studies Examining the Effects of Heading in Soccer Players. J Neurotrauma 2020; 38:169-188. [PMID: 32883162 DOI: 10.1089/neu.2020.7130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The practice of heading in soccer has become a public concern because of the potential for subconcussive impacts to cause cumulative concussive-like effects; however, experimental evidence for this hypothesis has been mixed. This systematic review used pre-defined search parameters to assess primary literature that examined changes in cognitive, behavioral, structural, and/or biological processes after acute heading exposure in youth and young adult soccer players. The findings were synthesized into a concise and comprehensive summary of the research following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format, and suggestions for standardization of acute heading protocols are described. A total of 1189 articles were considered for this review, with 19 articles meeting all of the inclusion criteria for full analysis. An attempt was made to identify methods with significant sensitivity and reliability by grouping studies based on their outcome measures. Because of lack of standardization across intervention types and data collection protocols, no sensitive and reliable methods could be identified conclusively to assess the effects of acute heading exposure in soccer players. Based on this review, there is not enough evidence to either support or refute the potential of effects of subconcussive events from acute soccer heading exposure. Recommendations for standardization of acute heading exposure studies based on the included literature are discussed. Standardization is required to better understand the impact of acute heading exposure in soccer players, while allowing for the development of guidelines that mitigate any potential risks and allowing athletes to remain active and develop their skills.
Collapse
Affiliation(s)
- Taylor Snowden
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Hannah Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Samantha Kennedy
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - Rebecca Kenny
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Amanda McQuarrie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Lynneth Stuart-Hill
- School of Exercise Science, Physical and Health Education, and University of Victoria, Victoria, British Columbia, Canada
| | | | - Jodie Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,School of Exercise Science, Physical and Health Education, and University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
34
|
Rawlings S, Takechi R, Lavender AP. Effects of sub-concussion on neuropsychological performance and its potential mechanisms: A narrative review. Brain Res Bull 2020; 165:56-62. [PMID: 33011196 DOI: 10.1016/j.brainresbull.2020.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Concussion and mild traumatic brain injury (mTBI) are recognised as serious medical events that are relatively common in contact sports. Recently, the seemingly non-injurious phenomenon of sub-concussion has gained interest among neuroscience researchers and early studies are showing that there may be some acute and chronic effects on brain health and function with repeated sub-concussive events of the type seen in soccer, where players strike the ball with the head, and collision sports like the rugby codes. The aim of this narrative review is to describe sub-concussion and the current understanding of short and long term effects of repeated minor impacts that have been found to occur in human and animal models. Here, potential mechanisms for cognitive dysfunction following sub-concussion and recommend directions for future research are discussed. The Potential mechanisms of injuries resulting from sub-concussion such as changes in blood brain barrier integrity, neuroinflammation, cognitive impairment, and oxidative stress damage, among other changes in central nervous system function vary considerably making understanding of the underlying causative mechanism challenging for researchers. Some evidence suggests a link between impaired cerebrovascular function and cognitive impairment which poses a potential mechanism linking the two. It is hoped that this review helps guide researchers toward a potential direction of investigations.
Collapse
Affiliation(s)
- Samuel Rawlings
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Andrew P Lavender
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia; School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia.
| |
Collapse
|
35
|
Thangavelu B, LaValle CR, Egnoto MJ, Nemes J, Boutté AM, Kamimori GH. Overpressure Exposure From .50-Caliber Rifle Training Is Associated With Increased Amyloid Beta Peptides in Serum. Front Neurol 2020; 11:620. [PMID: 32849168 PMCID: PMC7396645 DOI: 10.3389/fneur.2020.00620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Overpressure (OP) is an increase in air pressure above normal atmospheric levels. Military personnel are repeatedly exposed to low levels of OP caused by various weapon systems. Repeated OP may increase risk of neurological disease or psychological disorder diagnoses. A means to detect early phase effects that may be relevant to brain trauma remain elusive. Therefore, development of quantitative and objective OP-mediated effects during acute timeframes would vastly augment point-of-care or field-based decisions. This pilot study evaluated the amplitude of traumatic brain injury (TBI)–associated biomarkers in serum as a consequence of repeated OP exposure from .50-caliber rifle use over training multiple days. Objective: To determine the acute temporal profile of TBI-associated serum biomarkers and their relationship with neurocognitive decrements or self-reported symptoms among participants exposed to low-level, repeated OP from weapons used in a training environment. Methods: Study participants were enrolled in .50-caliber sniper rifle training and exposed to mild OP (peak pressure 3.8–4.5 psi, impulse 19.27–42.22 psi-ms per day) for three consecutive days (D1–D3). Defense automated neurobehavioral assessment (DANA) neurocognitive testing, symptom reporting, and blood collection were conducted 2–3 h before (pre-) and again 0.45–3 h after (post-) OP exposure. The TBI-associated serum biomarkers, glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (Nf-L), tau, and amyloid beta peptides (Aβ-40 and Aβ-42) were measured using digital ELISAs. Results: Serum GFAP decreased on D1 and D3 but not D2 after OP exposure. Nf-L was suppressed on D3 alone. Aβ-40 was elevated on D2 alone while Aβ-42 was elevated each day after OP exposure. Suppression of GFAP and elevation of Aβ-42 correlated to OP-mediated impulse levels measured on D3. Conclusions: Acute measurement of Aβ-peptides may have utility as biomarkers of subconcussive OP caused by rifle fire. Fluctuation of GFAP, Nf-L, and particularly Aβ peptide levels may have utility as acute, systemic responders of subconcussive OP exposure caused by rifle fire even in the absence of extreme operational deficits or clinically defined concussion.
Collapse
Affiliation(s)
- Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christina R LaValle
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Michael J Egnoto
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jeffrey Nemes
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Gary H Kamimori
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
36
|
Smirl JD, Peacock D, Wright AD, Bouliane KJ, Dierijck J, Burma JS, Kennefick M, Wallace C, van Donkelaar P. An Acute Bout of Soccer Heading Subtly Alters Neurovascular Coupling Metrics. Front Neurol 2020; 11:738. [PMID: 32849205 PMCID: PMC7396491 DOI: 10.3389/fneur.2020.00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/16/2020] [Indexed: 01/22/2023] Open
Abstract
Objective: The current investigation examined how a bout of soccer heading may impact brain function. Design: Semi-randomized crossover cohort. Setting: Controlled soccer heading. Participants: Seven male soccer players (24.1 ± 1.5 years). Intervention: 40 successful soccer headers were performed in 20 min (25 m, launch velocity ~80 km/h). X2 xPatch recorded linear and rotational head accelerations during each impact. A contact control “sham” condition – ball made body contact, but not by the head; and a no activity time “control” condition were also completed. Main Outcome Measures: Posterior and middle cerebral artery (PCA and MCA, respectively), cerebral blood velocity (CBV) was recorded during a visual task (neurovascular coupling: NVC) alongside SCAT3 symptoms scores pre/post a controlled bout of soccer heading. Results: Cumulative linear and rotational accelerations were 1,574 ± 97.9 g and 313,761 ± 23,966 rads/s2, respectively, during heading and changes in SCAT3 symptom number (pre: 2.6 ± 3.0; post: 6.7 ± 6.2, p = 0.13) and severity (pre: 3.7 ± 3.6, post: 9.4 ± 7.6, p = 0.11) were unchanged. In the PCA, no NVC differences were observed, including: relative CBV increase (28.0 ± 7.6%, p = 0.71) and total activation (188.7 ± 68.1 cm, p = 0.93). However, MCA-derived NVC metrics were blunted following heading, demonstrating decreased relative CBV increase (7.8 ± 3.1%, p = 0.03) and decreased total activation (26.7 ± 45.3 cm, p = 0.04). Conclusion: Although an acute bout of soccer heading did not result in an increase of concussion-like symptoms, there were alterations in NVC responses within the MCA during a visual task. This suggests an acute bout of repetitive soccer heading can alter CBV regulation within the region of the brain associated with the header impacts.
Collapse
Affiliation(s)
- Jonathan D Smirl
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Dakota Peacock
- Southern Medical Program, University of British Columbia, Kelowna, BC, Canada
| | - Alexander D Wright
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada.,Southern Medical Program, University of British Columbia, Kelowna, BC, Canada.,MD/PhD Program, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J Bouliane
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada
| | - Jill Dierijck
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada.,Faculty of Health, School of Physiotherapy, Dalhousie University, Halifax, NS, Canada
| | - Joel S Burma
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada.,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada
| | - Michael Kennefick
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada
| | - Colin Wallace
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada
| | - Paul van Donkelaar
- Concussion Research Laboratory, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
37
|
Mooney J, Self M, ReFaey K, Elsayed G, Chagoya G, Bernstock JD, Johnston JM. Concussion in soccer: a comprehensive review of the literature. Concussion 2020; 5:CNC76. [PMID: 33005435 PMCID: PMC7506470 DOI: 10.2217/cnc-2020-0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sports-related concussion has been examined extensively in collision sports such as football and hockey. However, historically, lower-risk contact sports such as soccer have only more recently garnered increased attention. Here, we review articles examining the epidemiology, injury mechanisms, sex differences, as well as the neurochemical, neurostructural and neurocognitive changes associated with soccer-related concussion. From 436 titles and abstracts, 121 full texts were reviewed with a total of 64 articles identified for inclusion. Concussion rates are higher during competitions and in female athletes with purposeful heading rarely resulting in concussion. Given a lack of high-level studies examining sports-related concussion in soccer, clinicians and scientists must focus research efforts on large-scale data gathering and development of improved technologies to better detect and understand concussion.
Collapse
Affiliation(s)
- James Mooney
- Department of Neurosurgery, University of Alabama at Birmingham, 1813 6th Ave S #516, Birmingham, AL 35233, USA
| | - Mitchell Self
- Department of Neurosurgery, University of Alabama at Birmingham, 1813 6th Ave S #516, Birmingham, AL 35233, USA
| | - Karim ReFaey
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, 1813 6th Ave S #516, Birmingham, AL 35233, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, 1813 6th Ave S #516, Birmingham, AL 35233, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, 1813 6th Ave S #516, Birmingham, AL 35233, USA
| |
Collapse
|
38
|
Asken BM, Yang Z, Xu H, Weber AG, Hayes RL, Bauer RM, DeKosky ST, Jaffee MS, Wang KK, Clugston JR. Acute Effects of Sport-Related Concussion on Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase L1, Total Tau, and Neurofilament Light Measured by a Multiplex Assay. J Neurotrauma 2020; 37:1537-1545. [DOI: 10.1089/neu.2019.6831] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Breton M. Asken
- Department of Neurology, University of California, San Francisco, California, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Haiyan Xu
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Russell M. Bauer
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Steven T. DeKosky
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Michael S. Jaffee
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Kevin K.W. Wang
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - James R. Clugston
- Department of Community Health and Family Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Monroe DC, Cecchi NJ, Gerges P, Phreaner J, Hicks JW, Small SL. A Dose Relationship Between Brain Functional Connectivity and Cumulative Head Impact Exposure in Collegiate Water Polo Players. Front Neurol 2020; 11:218. [PMID: 32300329 PMCID: PMC7145392 DOI: 10.3389/fneur.2020.00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence suggests that chronic, sport-related head impact exposure can impair brain functional integration and brain structure and function. Evidence of a robust inverse relationship between the frequency and magnitude of repeated head impacts and disturbed brain network function is needed to strengthen an argument for causality. In pursuing such a relationship, we used cap-worn inertial sensors to measure the frequency and magnitude of head impacts sustained by eighteen intercollegiate water polo athletes monitored over a single season of play. Participants were evaluated before and after the season using computerized cognitive tests of inhibitory control and resting electroencephalography. Greater head impact exposure was associated with increased phase synchrony [r(16) > 0.626, p < 0.03 corrected], global efficiency [r(16) > 0.601, p < 0.04 corrected], and mean clustering coefficient [r(16) > 0.625, p < 0.03 corrected] in the functional networks formed by slow-wave (delta, theta) oscillations. Head impact exposure was not associated with changes in performance on the inhibitory control tasks. However, those with the greatest impact exposure showed an association between changes in resting-state connectivity and a dissociation between performance on the tasks after the season [r(16) = 0.481, p = 0.043] that could also be attributed to increased slow-wave synchrony [F(4, 135) = 113.546, p < 0.001]. Collectively, our results suggest that athletes sustaining the greatest head impact exposure exhibited changes in whole-brain functional connectivity that were associated with altered information processing and inhibitory control.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Nicholas J Cecchi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Paul Gerges
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Jenna Phreaner
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Steven L Small
- Department of Neurology, University of California, Irvine, Irvine, CA, United States.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
40
|
Hiskens MI, Schneiders AG, Angoa-Pérez M, Vella RK, Fenning AS. Blood biomarkers for assessment of mild traumatic brain injury and chronic traumatic encephalopathy. Biomarkers 2020; 25:213-227. [PMID: 32096416 DOI: 10.1080/1354750x.2020.1735521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mild traumatic brain injuries (mTBI) are prevalent and can result in significant debilitation. Current diagnostic methods have implicit limitations, with clinical assessment tools reliant on subjective self-reported symptoms or non-specific clinical observations, and commonly available imaging techniques lacking sufficient sensitivity to detect mTBI. A blood biomarker would provide a readily accessible detector of mTBI to meet the current measurement gap. Suitable options would provide objective and quantifiable information in diagnosing mTBI, in monitoring recovery, and in establishing a prognosis of resultant neurodegenerative disease, such as chronic traumatic encephalopathy (CTE). A biomarker would also assist in progressing research, providing suitable endpoints for testing therapeutic modalities and for further exploring mTBI pathophysiology. This review highlights the most promising blood-based protein candidates that are expressed in the central nervous system (CNS) and released into systemic circulation following mTBI. To date, neurofilament light (NF-L) may be the most suitable candidate for assessing neuronal damage, and glial fibrillary acidic protein (GFAP) for assessing astrocyte activation, although further work is required. Ultimately, the heterogeneity of cells in the brain and each marker's limitations may require a combination of biomarkers, and recent developments in microRNA (miRNA) markers of mTBI show promise and warrant further exploration.
Collapse
Affiliation(s)
- Matthew I Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Anthony G Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
41
|
Besse M, Belz M, Folsche T, Vogelgsang J, Methfessel I, Steinacker P, Otto M, Wiltfang J, Zilles D. Serum neurofilament light chain (NFL) remains unchanged during electroconvulsive therapy. World J Biol Psychiatry 2020; 21:148-154. [PMID: 31818180 DOI: 10.1080/15622975.2019.1702717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Although there is consistent evidence that electroconvulsive therapy (ECT) is safe and well tolerated by the majority of patients, some authors still accuse ECT to inevitably cause brain damage and permanent memory loss, assertions that may increase patients' worries about a useful treatment. Recently, the measurement of neurofilament light chain (NFL) in peripheral blood was technically implemented, permitting longitudinal analysis of this biomarker for axonal damage. NFL is part of the axonal cytoskeleton and is released into the CSF and peripheral blood in the context of neuronal damage.Methods: In our study, blood from 15 patients with major depressive disorder receiving ECT was collected before the first ECT as well as 24 h and seven days after the last ECT, respectively. NFL concentrations were analysed using the ultrasensitive single molecule array (Simoa) technology.Results: NFL concentrations did not differ between patients and healthy controls, and there was no significant change in NFL levels in the course of ECT. On the contrary, we even found a slight decrease in absolute NFL concentrations.Conclusions: Our study confirms the safety of ECT by using a most sensitive method for the detection of NFL in peripheral blood as a biomarker of neuronal damage.
Collapse
Affiliation(s)
- Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Belz
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Thorsten Folsche
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Isabel Methfessel
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Petra Steinacker
- Experimental Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Markus Otto
- Experimental Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE) Goettingen, Goettingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - David Zilles
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Lambertsen KL, Soares CB, Gaist D, Nielsen HH. Neurofilaments: The C-Reactive Protein of Neurology. Brain Sci 2020; 10:brainsci10010056. [PMID: 31963750 PMCID: PMC7016784 DOI: 10.3390/brainsci10010056] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs) are quickly becoming the biomarkers of choice in the field of neurology, suggesting their use as an unspecific screening marker, much like the use of elevated plasma C-reactive protein (CRP) in other fields. With sensitive techniques being readily available, evidence is growing regarding the diagnostic and prognostic value of NFs in many neurological disorders. Here, we review the latest literature on the structure and function of NFs and report the strengths and pitfalls of NFs as markers of neurodegeneration in the context of neurological diseases of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Kate L. Lambertsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
| | - Catarina B. Soares
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
| | - David Gaist
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Correspondence:
| |
Collapse
|
43
|
Kenny RA, Mayo CD, Kennedy S, Varga AA, Stuart-Hill L, Garcia-Barrera MA, McQuarrie A, Christie BR, Gawryluk JR. A pilot study of diffusion tensor imaging metrics and cognitive performance pre and post repetitive, intentional sub-concussive heading in soccer practice. JOURNAL OF CONCUSSION 2019. [DOI: 10.1177/2059700219885503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Although soccer players routinely head the ball in practice and games, recent research has suggested that cumulative effects of repetitive heading may cause sub-concussive injury with accompanying effects on brain and behavior. The current study aimed to prospectively investigate the effects of repetitive, intentional heading in soccer practice on brain structure and cognitive function, using a within-subjects design. Methods Participants included 10 soccer players (mean age 20.09 years ± 2.88) who were examined immediately pre- and post-heading practice. An accelerometer was used to measure the force of the impact during soccer heading. Magnetic resonance imaging data were acquired on a 3 T GE Scanner with diffusion tensor imaging. Diffusion tensor imaging analyses were completed using functional magnetic resonance imaging of the brain software library’s Tract-Based Spatial Statistics to examine changes in both fractional anisotropy and mean diffusivity due to heading the soccer ball. Behavioral measures were also completed pre- and post-soccer heading and included the Sport Concussion Assessment Tool and three short-computerized executive function tasks; R studio was used to compare behavioral data within subjects. Results Accelerometer data revealed that none of the heading impacts were >10 g. At this level of impact, there were no significant pre–post heading differences in either fractional anisotropy or mean diffusivity. Additionally, aside from minimal practice effects, there were no significant differences in Sport Concussion Assessment Tool scores and no significant differences in the performance of the three executive function tasks pre–post heading. Conclusions The results provide initial evidence that repetitive heading in soccer practice, at a g force of 10, does not cause changes in brain structure or executive function. Future research should investigate heading in the context of games and with a greater sample size that would allow for sex-based comparisons.
Collapse
Affiliation(s)
- Rebecca A Kenny
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Chantel D Mayo
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | - Samantha Kennedy
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Aaron A Varga
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Lynneth Stuart-Hill
- Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | | | - Amanda McQuarrie
- Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Brian R Christie
- Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
44
|
Di Virgilio TG, Ietswaart M, Wilson L, Donaldson DI, Hunter AM. Understanding the Consequences of Repetitive Subconcussive Head Impacts in Sport: Brain Changes and Dampened Motor Control Are Seen After Boxing Practice. Front Hum Neurosci 2019; 13:294. [PMID: 31551732 PMCID: PMC6746992 DOI: 10.3389/fnhum.2019.00294] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 01/24/2023] Open
Abstract
Objectives The potential effects of exposure to repetitive subconcussive head impacts through routine participation in sport are not understood. To investigate the effects of repetitive subconcussive head impacts we studied boxers following customary training (sparring) using transcranial magnetic stimulation (TMS), decomposition electromyographic (EMG) and tests of memory. Methods Twenty amateur boxers performed three 3-min sparring bouts. Parameters of brain function and motor control were assessed prior to sparring and again immediately, 1 h and 24 h post-sparring. Twenty control participants were assessed following mock-sparring. Results One hour after sparring boxers showed increased corticomotor inhibition, altered motor unit recruitment strategies, and decreased memory performance relative to controls, with values returning to baseline by the 24 h follow up. Conclusion Repetitive subconcussive head impacts associated with sparring resulted in acute and transient brain changes similar to those previously reported in soccer heading, providing convergent evidence that sport-related head impacts produce a GABAergic response. These acute changes in brain health are reminiscent of effects seen following brain injury, and suggest a potential mechanism underlying the damaging long-term effects of routine repetitive head impacts in sport.
Collapse
Affiliation(s)
- Thomas G Di Virgilio
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, United Kingdom
| | - Magdalena Ietswaart
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Lindsay Wilson
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - David I Donaldson
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Angus M Hunter
- Physiology, Exercise and Nutrition Research Group, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
45
|
Cecchi NJ, Oros TJ, Monroe DC, Fote GM, Moscoso WX, Hicks JW, Reinkensmeyer DJ. The Effectiveness of Protective Headgear in Attenuating Ball-to-Forehead Impacts in Water Polo. Front Sports Act Living 2019; 1:2. [PMID: 33344926 PMCID: PMC7739673 DOI: 10.3389/fspor.2019.00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Recent reports have demonstrated that there is a serious risk of head impact and injury in water polo. The use of protective headgear in contact sports is a commonly accepted strategy for reducing the risk of head injury, but there are few available protective headgears for use in water polo. Many of those that are available are banned by the sport's governing bodies due to a lack of published data supporting the effectiveness of those headgears in reducing head impact kinematics. To address this gap in knowledge, we launched a water polo ball at the forehead of an anthropomorphic testing device fitted with either a standard water polo headgear or one of two protective headgears. We selected a range of launch speeds representative of those observed across various athlete ages. Mixed-model ANOVAs revealed that, relative to standard headgear, protective headgears reduced peak linear acceleration (by 10.8-21.6%; p < 0.001), and peak rotational acceleration (by 24.5-48.5%; p < 0.001) induced by the simulated ball-to-forehead impacts. We discuss the possibility of using protective headgears in water polo to attenuate head impact kinematics.
Collapse
Affiliation(s)
- Nicholas J Cecchi
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Theophil J Oros
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, United States
| | - Derek C Monroe
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Gianna M Fote
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Wyatt X Moscoso
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, United States
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - David J Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
46
|
Singla A, Leineweber B, Monteith S, Oskouian RJ, Tubbs RS. The anatomy of concussion and chronic traumatic encephalopathy: A comprehensive review. Clin Anat 2018; 32:310-318. [DOI: 10.1002/ca.23313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Amit Singla
- Swedish Neuroscience Institute; Seattle Washington
| | | | | | | | - R. Shane Tubbs
- Seattle Science Foundation; Seattle Washington
- Department of Anatomical Sciences; St. Georges University; St. Georges Grenada
| |
Collapse
|