1
|
Costa KA, Barbosa LMDR, Marques DBD, da Silva W, Camilo BS, de Souza Netto DL, Saraiva A, Guimarães JD, Guimarães SEF. Supplementation of l-arginine in pregnant gilts affects the protein abundance of DNMT1 in 35-day fetuses. Anim Reprod Sci 2024; 270:107574. [PMID: 39167962 DOI: 10.1016/j.anireprosci.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Maternal nutrition is one of the main environmental factors regulating gene expression during fetal development through epigenetic modifications. Some nutrients, such as the amino acid l-arginine, are added to maternal diets to modulate gene expression, improve the reproductive performance of females, and enhance conceptus development. This study investigated the hypothesis that supplementation of pregnant gilts with l-arginine regulates gene expression in conceptuses through epigenetic mechanisms. For this, fetal programming phenotypic markers, the expression of key epigenetic genes, and the abundance of DNA methylation proteins (DNMT3A and DNMT1) were evaluated in 25- and 35-day conceptuses from gilts supplemented (ARG) or not (CON) with 1.0 % l-arginine during early gestation. At 25 days, there were no significant differences in phenotypic markers between CON and ARG embryos (P > 0.05). Similarly, no differences were found between CON and ARG fetuses at 35 days (P > 0.05). Maternal supplementation with l-arginine did not influence the expression of the evaluated key epigenetic genes in pig embryos or fetuses, nor DNMT3A protein abundance (P > 0.05); on the other hand, DNMT1 protein abundance was lower in ARG fetuses (P = 0.002). It is concluded that supplementation of l-arginine in pregnant gilts affects epigenetic mechanisms, such as DNA methylation, in 35-day fetuses through regulation of DNMT1 levels. Further studies using transcriptomic and proteomic analysis could reveal additional epigenetic modifications in embryos and fetuses following maternal supplementation with l-arginine.
Collapse
Affiliation(s)
- Karine Assis Costa
- Department of Biology and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Ilha Solteira, SP 15385-088, Brazil.
| | | | | | - Walmir da Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - Breno Soares Camilo
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | | | - Alysson Saraiva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - José Domingos Guimarães
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | | |
Collapse
|
2
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Pratiwi RA, Avidhianita D, Margono A, Julianto I, Nyoman Putri Artiningsih DA, Megantoro A. Potential Use of L-Arginine Amino Acids towards Proliferation and Migratory Speed Rate of Human Dental Pulp Stem Cells. Eur Endod J 2024; 9:260-265. [PMID: 39213455 DOI: 10.14744/eej.2023.54376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE L-arginine is a semi-essential amino acid produced by the body which has an important role in the process of stem cell regeneration. However, under inflammatory conditions, denaturation of pulp amino acids and proteins occurr resulting in a decrease in the ability of stem cells to self-renew. Therefore, in this study, L-arginine was added in vitro to the culture media Dulbecco's Modified Eagle Medium - (DMEM) of human dental pulp stem cells (hDPSCs) to analyse the potential of L-arginine on migration and proliferation by comparing between 3 concentrations, namely 300, 400, 500 μmol/L and control group (DMEM), to obtain the most optimal concentration for proliferation and migration. METHODS Serum-starved hDPSCs were divided into four groups: control: hDPSCs in DMEM; hDPSCs in 300 μmol/L of the L-Arginine based culture media group; hDPSCs in 400 μmol/L of the L-Arginine based culture media group; and hDPSCs in 500 μmol/L of the L-Arginine based culture media group, which were added in two separate 24-well-plates (5×104 cell/well) for proliferation and migration evaluation. The proliferation of all groups was measured by using a cell count test (haemacytometer and manual checker) after 24 h. The migratory speed rate of all groups was measured by using cell migration assay (scratch wound assay) after 24 h. Cell characteristics were evaluated under microscope that was then evaluated using image-J® interpretation. This image J represented the measurement of migratory speed rate (nm/h) data. Statistical analysis was conducted using one-way ANOVA and post hoc Bonferroni (p<0.05) for proliferation and post hoc LSD (p<0.05) for migration. RESULTS There was a statistically significant difference in hDPSCs proliferation among various concentration groups of the L-Arginine based solution (300, 400 and 500 μmol/L) compared to the control group (p<0.05). There was a statistically significant difference in the migratory speed rate of hDPSCs at 500 μmol/L of the L-Arginine based solution group compared to lower concentrations and control group (p<0.05). CONCLUSION All three concentrations of L-arginine can induce proliferation of hDPSCs. L-arginine at 500 μmol/L can induce higher hDPSCs proliferation and faster migration at 24 hours compared to lower concen-trations and control.
Collapse
Affiliation(s)
| | | | | | - Indah Julianto
- Department of Dermatology and Venereology, Sebelas Maret University Faculty of Medicine, Surakarta, Indonesia
| | | | | |
Collapse
|
4
|
Perez-Palencia JY, Ramirez-Camba CD, Haydon K, Urschel KL, Levesque CL. Effects of increasing dietary arginine supply during the three first weeks after weaning on pig growth performance, plasma amino acid concentrations, and health status. Transl Anim Sci 2024; 8:txae047. [PMID: 38651117 PMCID: PMC11034433 DOI: 10.1093/tas/txae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
A total of 425 weaned pigs (Exp. 1: 225 pigs [5.8 ± 0.9 kg]; Exp. 2: 200 pigs [6.1 ± 1.2 kg]) were used to determine the optimal dietary standardized ileal digestible (SID) arginine (Arg) level in early nursery diets based on growth and health responses. The basal diet in Exp.1 was formulated to meet SID Arg recommendation (0.66%; NRC, 2012) and in Exp. 2, SID Arg was set to simulate current industry practices for feeding nursery pigs (1.15 %). Basal diets were supplemented with 0.3%, 0.6%, 0.9%, and 1.2% of l-arginine to provide five levels of dietary SID Arg. Experimental diets were fed during phases I (days 0 to 7) and II (days 8 to 21) with common diets until market. Feed disappearance and body weight (BW) were measured on days 7, 14, 21, and 43. Final BW was recorded at first removal of pigs for market. Pen fecal score was assigned daily from days 0 to 21. Plasma immunoglobulin A (IgA) was determined on days 0, 7, and 14 and amino acids (AAs) concentration and plasma urea nitrogen (PUN) on days 0 and 14. Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of dietary Arg. Optimal SID Arg was determined by fitting the data with piecewise regression, using growth performance as the primary response variable. In Exp. 1, dietary Arg linearly increased (P < 0.1) BW, average daily gain (ADG), and gain to feed ratio (G:F) ratio on day 21, as well as reduced (χ2 = 0.004) the percentage of pigs that lost weight (PLW) in week 1 by 29%. Dietary Arg resulted in linear improvement (P = 0.082) of ADG for the overall nursery period and quadratic improvement (P < 0.1) of final BW at marketing. In Exp. 2, dietary Arg linearly increased (P < 0.05) ADG and average daily feed intake (ADFI) in week 1, BW and ADFI (P < 0.1) on day 14, as well as reduced (χ2 ≤ 0.001) PLW in week 1. From days 0 to 21, G:F was improved quadratically (P < 0.1). Dietary Arg linearly increased (P < 0.1) ADG and BW on day 43. Dietary Arg supplementation decreased the incidence (χ2 < 0.05) of soft and watery feces during the first weeks after weaning and lower concentration of plasma IgA on days 7 and 14. Dietary Arg linearly and/or quadratically influenced plasma AA concentrations (P < 0.05), including an increase in Arg, Leu, Phe, Val, citrulline, ornithine, and PUN concentrations. Overall, weaned pigs exhibit optimal nursery growth performance and health when provided with dietary SID Arg ranging from 1.5% to 1.9%. This dietary range contributes to a reduction in the occurrence of fall-back pigs and improvements in final BW at marketing.
Collapse
Affiliation(s)
| | - Christian D Ramirez-Camba
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN 57008, USA
| | - Keith Haydon
- CJ Bio America Inc, Downers Grove, IL 60515, USA
| | - Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
5
|
Sui Z, Wang N, Zhang X, Liu C, Wang X, Zhou H, Mai K, He G. Comprehensive study on the effect of dietary leucine supplementation on intestinal physiology, TOR signaling and microbiota in juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109060. [PMID: 37678482 DOI: 10.1016/j.fsi.2023.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Intestinal damage and inflammation are major health and welfare issues in aquaculture. Considerable efforts have been devoted to enhancing intestinal health, with a specific emphasis on dietary additives. Branch chain amino acids, particularly leucine, have been reported to enhance growth performance in various studies. However, few studies have focused on the effect of leucine on the intestinal function and its underlying molecular mechanism is far from fully illuminated. In the present study, we comprehensively evaluated the effect of dietary leucine supplementation on intestinal physiology, signaling transduction and microbiota in fish. Juvenile turbot (Scophthalmus maximus L.) (10.13 ± 0.01g) were fed with control diet (Con diet) and leucine supplementation diet (Leu diet) for 10 weeks. The findings revealed significant improvements in intestinal morphology and function in the turbot fed with Leu diet. Leucine supplementation also resulted in a significant increase in mRNA expression levels of mucosal barrier genes, indicating enhanced intestinal integrity. The transcriptional levels of pro-inflammatory factors il-1β, tnf-α and irf-1 was decreased in response to leucine supplementation. Conversely, the level of anti-inflammatory factors tgf-β, il-10 and nf-κb were up-regulated by leucine supplementation. Dietary leucine supplementation led to an increase in intestinal complement (C3 and C4) and immunoglobulin M (IgM) levels, along with elevated antioxidant activity. Moreover, dietary leucine supplementation significantly enhanced the postprandial phosphorylation level of the target of rapamycin (TOR) signaling pathway in the intestine. Finally, intestinal bacterial richness and diversity were modified and intestinal bacterial composition was re-shaped by leucine supplementation. Overall, these results provide new insights into the beneficial role of leucine supplementation in promoting intestinal health in turbot, offering potential implications for the use of leucine as a nutritional supplement in aquaculture practices.
Collapse
Affiliation(s)
- Zhongmin Sui
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Ning Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Xiaojing Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
6
|
Luise D, Chalvon-Demersay T, Correa F, Bosi P, Trevisi P. Review: A systematic review of the effects of functional amino acids on small intestine barrier function and immunity in piglets. Animal 2023; 17 Suppl 2:100771. [PMID: 37003917 DOI: 10.1016/j.animal.2023.100771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The need to reduce the use of antibiotics and zinc oxide at the pharmacological level, while preserving the performance of postweaning piglets, involves finding adequate nutritional strategies which, coupled with other preventive strategies, act to improve the sustainability of the piglet-rearing system. Amino acids (AAs) are the building blocks of proteins; however, they also have many other functions within the body. AA supplementation, above the suggested nutritional requirement for piglets, has been investigated in the diets of postweaning piglets to limit the detrimental consequences occurring during this stressful period. A systematic review was carried out to summarise the effects of AAs on gut barrier function and immunity, two of the parameters contributing to gut health. An initial manual literature search was completed using an organised search strategy on PubMed, utilising the search term " AND ". These searches yielded 302 articles (published before October 2021); 59 were selected. Based on the method for extracting data (synthesis of evidence), this review showed that L-Arginine, L-Glutamine and L-Glutamate are important functional AAs playing major roles in gut morphology and immune functions. Additional benefits of AA supplementation, refereed to a supplementation above the suggested nutritional requirement for piglets, could also be observed; however, data are needed to provide consistent evidence. Taken together, this review showed that supplementation with AAs during the weaning phase supported a plethora of the physiological functions of piglets. In addition, the data reported confirmed that each amino acid targets different parameters related to gut health, suggesting the existence of potential synergies among them.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
7
|
Feng Y, Li D, Ma C, Hu X, Chen F. Barley Leaf Ameliorates Citrobacter-rodentium-Induced Colitis through Arginine Enrichment. Nutrients 2023; 15:nu15081890. [PMID: 37111109 PMCID: PMC10145403 DOI: 10.3390/nu15081890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become a global public health challenge. Our previous study showed that barley leaf (BL) significantly reduces Citrobacter-rodentium (CR)-induced colitis, but its mechanism remains elusive. Thus, in this study, we used non-targeted metabolomics techniques to search for potentially effective metabolites. Our results demonstrated that dietary supplementation with BL significantly enriched arginine and that arginine intervention significantly ameliorated CR-induced colitis symptoms such as reduced body weight, shortened colon, wrinkled cecum, and swollen colon wall in mice; in addition, arginine intervention dramatically ameliorated CR-induced histopathological damage to the colon. The gut microbial diversity analysis showed that arginine intervention significantly decreased the relative abundance of CR and significantly increased the relative abundance of Akkermansia, Blautia, Enterorhabdus, and Lachnospiraceae, which modified the CR-induced intestinal flora disorder. Notably, arginine showed a dose-dependent effect on the improvement of colitis caused by CR.
Collapse
Affiliation(s)
- Yu Feng
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Dhawan V, Manes PK, Calabrese V. Nitric oxide and hormesis. Nitric Oxide 2023; 133:1-17. [PMID: 36764605 DOI: 10.1016/j.niox.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This present paper provides an assessment of the occurrence of nitric oxide (NO)-induced hormetic-biphasic dose/concentration relationships in biomedical research. A substantial reporting of such NO-induced hormetic effects was identified with particular focus on wound healing, tumor promotion, and sperm biology, including mechanistic assessment and potential for translational applications. Numerous other NO-induced hormetic effects have been reported, but require more development prior to translational applications. The extensive documentation of NO-induced biphasic responses, across numerous organs (e.g., bone, cardiovascular, immune, intestine, and neuronal) and cell types, suggests that NO-induced biological activities are substantially mediated via hormetic processes. These observations are particularly important because broad areas of NO biology are constrained by the quantitative features of the hormetic response. This determines the amplitude and width of the low dose stimulation, affecting numerous biomedical implications, study design features (e.g., number of doses, dose spacing, sample sizes, statistical power), and the potential success of clinical trials.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vikas Dhawan
- Department of Surgery, Indian Naval Ship Hospital, Mumbai, India.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
9
|
Gut microbiota mediates the anti-obesity effect of intermittent fasting by inhibiting intestinal lipid absorption. J Nutr Biochem 2023; 116:109318. [PMID: 36924854 DOI: 10.1016/j.jnutbio.2023.109318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
The prevention and treatment of obesity have been one of the most difficult problems in the world. Intermittent fasting (IF) has received wide attention as an effective diet strategy. Existing studies have shown that IF could improve obesity and diabetes-related metabolic disorders. Here, we show that IF can change the composition and metabolic function of intestinal microbes, and reduce lipid absorption by inhibiting PI3K/AKT signaling pathway, with the participation of arginine. Arginine concentration in feces of fasted mice is inversely correlated with Akkermansia muciniphila abundance. Antibiotic-induced clearance of intestinal microbiota greatly inhibits the effect of IF. Furthermore, the colonization test of Akkermansia muciniphila again activates the browning of white adipose tissue and restores the improvement of metabolism to alleviate obesity. These phenomena indicate that every-other-day fasting regimen inhibits intestinal lipid absorption and promotes the browning of white adipose tissue in mice to ameliorate the risk of obesity and metabolic disorders through the microbial flora-metabolite-fat signaling axis. And the above results demonstrate new directions for the treatment of obesity and other metabolic disorders.
Collapse
|
10
|
Brugaletta G, Zampiga M, Laghi L, Indio V, Oliveri C, De Cesare A, Sirri F. Feeding broiler chickens with arginine above recommended levels: effects on growth performance, metabolism, and intestinal microbiota. J Anim Sci Biotechnol 2023; 14:33. [PMID: 36864475 PMCID: PMC9983211 DOI: 10.1186/s40104-023-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Arginine is an essential amino acid for chickens and feeding diets with arginine beyond the recommended levels has been shown to influence the growth performance of broiler chickens in a positive way. Nonetheless, further research is required to understand how arginine supplementation above the widely adopted dosages affects metabolism and intestinal health of broilers. Therefore, this study was designed to assess the effects of arginine supplementation (i.e., total arginine to total lysine ratio of 1.20 instead of 1.06-1.08 recommended by the breeding company) on growth performance of broiler chickens and to explore its impacts on the hepatic and blood metabolic profiles, as well as on the intestinal microbiota. For this purpose, 630 one-day-old male Ross 308 broiler chicks were assigned to 2 treatments (7 replicates each) fed a control diet or a crystalline L-arginine-supplemented diet for 49 d. RESULTS Compared to control birds, those supplemented with arginine performed significantly better exhibiting greater final body weight at D49 (3778 vs. 3937 g; P < 0.001), higher growth rate (76.15 vs. 79.46 g of body weight gained daily; P < 0.001), and lower cumulative feed conversion ratio (1.808 vs. 1.732; P < 0.05). Plasma concentrations of arginine, betaine, histidine, and creatine were greater in supplemented birds than in their control counterparts, as were those of creatine, leucine and other essential amino acids at the hepatic level. In contrast, leucine concentration was lower in the caecal content of supplemented birds. Reduced alpha diversity and relative abundance of Firmicutes and Proteobacteria (specifically Escherichia coli), as well as increased abundance of Bacteroidetes and Lactobacillus salivarius were found in the caecal content of supplemented birds. CONCLUSIONS The improvement in growth performance corroborates the advantages of supplementing arginine in broiler nutrition. It can be hypothesized that the performance enhancement found in this study is associated with the increased availability of arginine, betaine, histidine, and creatine in plasma and the liver, as well as to the ability of extra dietary arginine to potentially ameliorate intestinal conditions and microbiota of supplemented birds. However, the latter promising property, along with other research questions raised by this study, deserve further investigations.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Marco Zampiga
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Luca Laghi
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Valentina Indio
- grid.6292.f0000 0004 1757 1758Department of Veterinary Medical Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Chiara Oliveri
- grid.6292.f0000 0004 1757 1758Department of Physics and Astronomy, Alma Mater Studiorum – University of Bologna, 40127 Bologna, Italy
| | - Alessandra De Cesare
- grid.6292.f0000 0004 1757 1758Department of Veterinary Medical Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano Dell'Emilia, 40064, Bologna, Italy.
| |
Collapse
|
11
|
Liu X, Zhao Z, Fan Y, Zhao D, Wang Y, Lv M, Qin X. Microbiome and metabolome reveal the metabolic and microbial variations induced by depression and constipation. Psychogeriatrics 2023; 23:319-336. [PMID: 36683263 DOI: 10.1111/psyg.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Depressed patients are often accompanied with constipation symptoms, and vice versa. However, the underlying mechanisms of such a bidirectional correlation have remained elusive. We aim to reveal the possible correlations between depression and constipation from the perspectives of gut microbiome and plasma metabolome. METHODS We constructed the depressed model and the constipated model of rats, respectively. First, we measured the locomotor activity status and the gastrointestinal functions of rats. And then, nuclear magnetic resonance plasma metabolomics was applied to reveal the shared and the unique metabolites of depression and constipation. In addition, 16 S ribosomal RNA gene sequencing was used to detect the impacts of constipation and depression on gut microbiota of rats. Finally, a multiscale and multifactorial network, that is, the 'phenotypes - differential metabolites - microbial biomarkers' integrated network, was constructed to visualise the mechanisms of connections between depression and constipation. RESULTS We found that spontaneous locomotor activity and gastrointestinal functions of both depressed rats and constipated rats significantly decreased. Further, eight metabolites and 14 metabolites were associated depression and constipation, respectively. Among them, seven metabolites and four metabolic pathways were shared by constipation and depression, mainly perturbing energy metabolism and amino acid metabolism. Additionally, depression and constipation significantly disordered the functions and the compositions of gut microbiota of rats, and decreased the ratio of Firmicutes to Bacteroidetes. CONCLUSION The current findings provide multiscale and multifactorial perspectives for understanding the correlations between depression and constipation, and demonstrate new mechanisms of comorbidity of depression and constipation.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Ziyu Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yuhui Fan
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Di Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yaze Wang
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Meng Lv
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| |
Collapse
|
12
|
Differential Effects of Oligosaccharides, Antioxidants, Amino Acids and PUFAs on Heat/Hypoxia-Induced Epithelial Injury in a Caco-2/HT-29 Co-Culture Model. Int J Mol Sci 2023; 24:ijms24021111. [PMID: 36674626 PMCID: PMC9861987 DOI: 10.3390/ijms24021111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. This study evaluated the effect of nine nutritional components, including non-digestible oligosaccharides (galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), chitosan oligosaccharides (COS)), antioxidants (α-lipoic acid (ALA), resveratrol (RES)), amino acids (l-glutamine (Glu), l-arginine (Arg)) and polyunsaturated fatty acids (PUFAs) (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)), on heat/hypoxia-induced epithelial injury. (2) Two human colonic cell lines, Caco-2 and HT-29, were co-cultured and pre-treated with the nutritional components for 48 h. After pre-treatment, the cells were exposed to heat/hypoxia (42 °C, 5% O2) for 2 h. Epithelial integrity was evaluated by measuring trans-epithelial electrical resistance (TEER), paracellular Lucifer Yellow (LY) permeability, and tight junction (TJ) protein expression. Heat stress and oxidative stress levels were evaluated by determining heat-shock protein-70 (HSP-70) expression and the concentration of the lipid peroxidation product malondialdehyde (MDA). (3) GOS, FOS, COS, ALA, RES, Arg, and EPA presented protective effects on epithelial damage in heat/hypoxia-exposed Caco-2/HT-29 cells by preventing the decrease in TEER, the increase in LY permeability, and/or decrease in TJ proteins zonula occludens-1 (ZO-1) and claudin-3 expression. COS, RES, and EPA demonstrated anti-oxidative stress effects by suppressing the heat/hypoxia-induced MDA production, while Arg further elevated the heat/hypoxia-induced increase in HSP-70 expression. (4) This study indicates that various nutritional components have the potential to counteract heat/hypoxia-induced intestinal injury and might be interesting candidates for future in vivo studies and clinical trials in gastrointestinal disorders related to heat stress and hypoxia.
Collapse
|
13
|
Rial Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers (Basel) 2022; 14:5442. [PMID: 36358860 PMCID: PMC9658570 DOI: 10.3390/cancers14215442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells hold enormous potential. However, a substantial proportion of patients receiving CAR T cells will not reach long-term full remission. One of the causes lies in their premature exhaustion, which also includes a metabolic anergy of adoptively transferred CAR T cells. T cell phenotypes that have been shown to be particularly well suited for CAR T cell therapy display certain metabolic characteristics; whereas T-stem cell memory (TSCM) cells, characterized by self-renewal and persistence, preferentially meet their energetic demands through oxidative phosphorylation (OXPHOS), effector T cells (TEFF) rely on glycolysis to support their cytotoxic function. Various parameters of CAR T cell design and manufacture co-determine the metabolic profile of the final cell product. A co-stimulatory 4-1BB domain promotes OXPHOS and formation of central memory T cells (TCM), while T cells expressing CARs with CD28 domains predominantly utilize aerobic glycolysis and differentiate into effector memory T cells (TEM). Therefore, modification of CAR co-stimulation represents one of the many strategies currently being investigated for improving CAR T cells' metabolic fitness and survivability within a hostile tumor microenvironment (TME). In this review, we will focus on the role of CAR T cell metabolism in therapeutic efficacy together with potential targets of intervention.
Collapse
Affiliation(s)
- Judit Rial Saborido
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Medical Center, Department of Hematology and Oncology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
14
|
Li J, Zhao M, Li J, Wang M, Zhao C. Combining fecal microbiome and metabolomics to reveal the disturbance of gut microbiota in liver injury and the therapeutic mechanism of shaoyao gancao decoction. Front Pharmacol 2022; 13:911356. [PMID: 36059945 PMCID: PMC9428823 DOI: 10.3389/fphar.2022.911356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Chemical liver injury is closely related to gut microbiota and its metabolites. In this study, we combined 16S rRNA gene sequencing, 1H NMR-based fecal metabolomics and GC-MS to evaluate the changes in gut microbiota, fecal metabolites and Short-chain fatty acids (SCFAs) in CCl4-induced liver injury in Sprague-Dawley rats, and the therapeutic effect of Shaoyao Gancao Decoction (SGD). The results showed that CCl4-induced liver injury overexpressed CYP2E1, enhanced oxidative stress, decreased antioxidant enzymes (SOD, GSH), increased peroxidative products MDA and inflammatory responses (IL-6, TNF-α), which were ameliorated by SGD treatment. H&E staining showed that SGD could alleviate liver tissue lesions, which was confirmed by the recovered liver index, ALT and AST. Correlation network analysis indicated that liver injury led to a decrease in microbiota correlation, while SGD helped restore it. In addition, fecal metabolomic confirmed the PICRUSt results that liver injury caused disturbances in amino acid metabolism, which were modulated by SGD. Spearman’s analysis showed that liver injury disrupted ammonia transport, urea cycle, intestinal barrier and energy metabolism. Moreover, the levels of SCFAs were also decreased, and the abundance of Lachnoclostridium, Blautia, Lachnospiraceae_NK4A136_group, UCG-005 and Turicibacter associated with SCFAs were altered. However, all this can be alleviated by SGD. More importantly, pseudo germ-free rats demonstrated that the absence of gut microbiota aggravated liver injury and affected the efficacy of SGD. Taken together, we speculate that the gut microbiota has a protective role in the pathogenesis of liver injury, and has a positive significance for the efficacy of SGD. Moreover, SGD can treat liver injury by modulating gut microbiota and its metabolites and SCFAs. This provides useful evidence for the study of the pathogenesis of liver injury and the clinical application of SGD.
Collapse
Affiliation(s)
- Jingwei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianming Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Miao Wang, ; Chunjie Zhao,
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Miao Wang, ; Chunjie Zhao,
| |
Collapse
|
15
|
Zeng X, Yang Y, Wang J, Wang Z, Li J, Yin Y, Yang H. Dietary butyrate, lauric acid and stearic acid improve gut morphology and epithelial cell turnover in weaned piglets. ANIMAL NUTRITION 2022; 11:276-282. [PMID: 36263412 PMCID: PMC9556789 DOI: 10.1016/j.aninu.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
|
16
|
Boger KD, Sheridan AE, Ziegler AL, Blikslager AT. Mechanisms and modeling of wound repair in the intestinal epithelium. Tissue Barriers 2022; 11:2087454. [PMID: 35695206 PMCID: PMC10161961 DOI: 10.1080/21688370.2022.2087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The intestinal epithelial barrier is susceptible to injury from insults, such as ischemia or infectious disease. The epithelium's ability to repair wounded regions is critical to maintaining barrier integrity. Mechanisms of intestinal epithelial repair can be studied with models that recapitulate the in vivo environment. This review focuses on in vitro injury models and intestinal cell lines utilized in such systems. The formation of artificial wounds in a controlled environment allows for the exploration of reparative physiology in cell lines modeling diverse aspects of intestinal physiology. Specifically, the use of intestinal cell lines, IPEC-J2, Caco-2, T-84, HT-29, and IEC-6, to model intestinal epithelium is discussed. Understanding the unique systems available for creating intestinal injury and the differences in monolayers used for in vitro work is essential for designing studies that properly capture relevant physiology for the study of intestinal wound repair.
Collapse
Affiliation(s)
- Kasey D Boger
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ana E Sheridan
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Amanda L Ziegler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Anthony T Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
17
|
Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration? Cells 2022; 11:cells11111854. [PMID: 35681548 PMCID: PMC9180731 DOI: 10.3390/cells11111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CAR) has demonstrated striking efficacy for the treatment of several hematological malignancies, including B-cell lymphoma, leukemia, and multiple myeloma. However, many patients still do not respond to this therapy or eventually relapse after an initial remission. In most solid tumors for which CAR T-cell therapy has been tested, efficacy has been very limited. In this context, it is of paramount importance to understand the mechanisms of tumor resistance to CAR T cells. Possible factors contributing to such resistance have been identified, including inherent CAR T-cell dysfunction, the presence of an immunosuppressive tumor microenvironment, and tumor-intrinsic factors. To control tumor growth, CAR T cells have to migrate actively enabling a productive conjugate with their targets. To date, many cells and factors contained within the tumor microenvironment have been reported to negatively control the migration of T cells and their ability to reach cancer cells. Recent evidence suggests that additional determinants, such as immune checkpoint proteins, cellular metabolism, and adhesion molecules, may modulate the motility of CAR T cells in tumors. Here, we review the potential impact of these determinants on CAR T-cell motility, and we discuss possible strategies to restore intratumoral T-cell migration with a special emphasis on approaches targeting these determinants.
Collapse
|
18
|
Han Y, Liang C, Manthari RK, Yu Y, Zhang J, Wang J, Cao J. Distribution characteristics and regulation of amino acids and fatty acids in muscle and adipose tissues of sheep grown in natural grazing environment. Anim Sci J 2022; 93:e13769. [PMID: 36127314 DOI: 10.1111/asj.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022]
Abstract
The composition of amino acid and fatty acid has a vital function on meat quality and animal health. However, the underlying mechanism of amino acid and fatty acid metabolism in sheep during different grazing periods is still unclear. In this study, a total of 12 sheep were employed in different grazing periods. Our results showed that the composition of amino acids and fatty acids in muscle and adipose tissues was significantly altered between dry grass (DG) period and green grass (GG) period. Changes in the activities of the metabolism-related enzymes including BCKD, BCAT2, ACC, SCD, HSL, GSK3β, p-GSK3β, and FABP4 were observed in muscle and adipose during different grazing periods. In addition, the mRNA expression levels of ACC, FAS, SCD, HSL, LPL, and DGAT1 in muscle and adipose tissue were changed markedly in different grazing periods. Furthermore, the expression levels of mTOR and β-catenin/PPARγ/C/EBPα pathway-related proteins were predominantly altered in muscle and adipose among DG and GG. Taken together, all investigations simplified the process of amino acid and fatty acid metabolism disorders caused by different grazing periods, and the mTOR and β-catenin/PPARγ/C/EBPα play the essential role in this process, which provided an underlying mechanism of metabolism and meat quality.
Collapse
Affiliation(s)
- Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, India
| | - Yuxiang Yu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jinling Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China.,College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
19
|
Uyanga VA, Amevor FK, Liu M, Cui Z, Zhao X, Lin H. Potential Implications of Citrulline and Quercetin on Gut Functioning of Monogastric Animals and Humans: A Comprehensive Review. Nutrients 2021; 13:3782. [PMID: 34836037 PMCID: PMC8621968 DOI: 10.3390/nu13113782] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
The importance of gut health in animal welfare and wellbeing is undisputable. The intestinal microbiota plays an essential role in the metabolic, nutritional, physiological, and immunological processes of animals. Therefore, the rapid development of dietary supplements to improve gut functions and homeostasis is imminent. Recent studies have uncovered the beneficial effects of dietary supplements on the immune response, microbiota, gut homeostasis, and intestinal health. The application of citrulline (a functional gut biomarker) and quercetin (a known potent flavonoid) to promote gut functions has gained considerable interest as both bioactive substances possess anti-inflammatory, anti-oxidative, and immunomodulatory properties. Research has demonstrated that both citrulline and quercetin can mediate gut activities by combating disruptions to the intestinal integrity and alterations to the gut microbiota. In addition, citrulline and quercetin play crucial roles in maintaining intestinal immune tolerance and gut health. However, the synergistic benefits which these dietary supplements (citrulline and quercetin) may afford to simultaneously promote gut functions remain to be explored. Therefore, this review summarizes the modulatory effects of citrulline and quercetin on the intestinal integrity and gut microbiota, and further expounds on their potential synergistic roles to attenuate intestinal inflammation and promote gut health.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
| | - Felix Kwame Amevor
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| |
Collapse
|
20
|
Fu H, He M, Wu J, Zhou Y, Ke S, Chen Z, Liu Q, Liu M, Jiang H, Huang L, Chen C. Deep Investigating the Changes of Gut Microbiome and Its Correlation With the Shifts of Host Serum Metabolome Around Parturition in Sows. Front Microbiol 2021; 12:729039. [PMID: 34603257 PMCID: PMC8484970 DOI: 10.3389/fmicb.2021.729039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 01/14/2023] Open
Abstract
Parturition is a crucial event in the sow reproduction cycle, which accompanies by a series of physiological changes, including sex hormones, metabolism, and immunity. More and more studies have indicated the changes of the gut microbiota from pregnancy to parturition. However, what bacterial species and functional capacities of the gut microbiome are changed around parturition has been largely unknown, and the correlations between the changes of gut bacterial species and host metabolome were also uncovered. In this study, by combining 16S rRNA gene and shotgun metagenomic sequencing data, and the profiles of serum metabolome and fecal short-chain fatty acids (SCFAs), we investigated the changes of gut microbiome, serum metabolite features and fecal SCFAs from late pregnancy (LP) to postpartum (PO) stage. We found the significant changes of gut microbiota from LP to PO stage in both 16S rRNA gene sequencing and metagenomic sequencing analyses. The bacterial species from Lactobacillus, Streptococcus, and Clostridium were enriched at the LP stage, while the species from Bacteroides, Escherichia, and Campylobacter had higher abundances at the PO stage. Functional capacities of the gut microbiome were also significantly changed and associated with the shifts of gut bacteria. Untargeted metabolomic analyses revealed that the metabolite features related to taurine and hypotaurine metabolism, and arginine biosynthesis and metabolism were enriched at the LP stage, and positively associated with those bacterial species enriched at the LP stage, while the metabolite features associated with vitamin B6 and glycerophospholipid metabolism had higher abundances at the PO stage and were positively correlated with the bacteria enriched at the PO stage. Six kinds of SCFAs were measured in feces samples and showed higher concentrations at the LP stage. These results suggested that the changes of gut microbiome from LP to PO stage lead to the shifts of host lipid, amino acids and vitamin metabolism and SCFA production. The results from this study provided new insights for the changes of sow gut microbiome and host metabolism around parturition, and gave new knowledge for guiding the feeding and maternal care of sows from late pregnancy to lactation in the pig industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
21
|
Katada C, Fukazawa S, Sugawara M, Sakamoto Y, Takahashi K, Takahashi A, Watanabe A, Wada T, Ishido K, Furue Y, Harada H, Hosoda K, Yamashita K, Hiki N, Sato T, Ichikawa T, Shichiri M, Tanabe S, Koizumi W. Randomized study of prevention of gastrointestinal toxicities by nutritional support using an amino acid-rich elemental diet during chemotherapy in patients with esophageal cancer (KDOG 1101). Esophagus 2021; 18:296-305. [PMID: 33009977 DOI: 10.1007/s10388-020-00787-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND This randomized study was designed to evaluate the clinical effect of an elemental diet during chemotherapy in patients with esophageal cancer. METHODS The inclusion criteria were as follows: (1) esophageal squamous cell carcinoma, (2) stage IB-IV, (3) schedule to receive docetaxel, cisplatin, and 5-fluorouracil (DCF chemotherapy), (4) 20-80 years old, (5) performance status of 0-2, (6) oral intake ability, and (7) written informed consent. Patients were divided into two groups: the elemental supplementary group and the non-supplementary group. Patients received ELENTAL® (160 g/day) orally 9 weeks after the start of chemotherapy. Primary endpoint was the incidence of grade 2 or higher gastrointestinal toxicity according to the Common Terminology Criteria for Adverse Events, version 4.0. Secondary endpoints were the incidence of all adverse events and the evaluation of nutritional status. RESULTS Thirty-six patients in the elemental supplementary group and 35 patients in the non-supplementary group were included in the analysis. The incidence of grade 2 or higher gastrointestinal toxicity and all grade 3 or 4 adverse events did not differ significantly between the groups. In the elemental supplementary group, the body weight (p = 0.057), muscle mass (p = 0.056), and blood levels of transferrin (p = 0.009), total amino acids (p = 0.019), and essential amino acids (p = 0.006) tended to be maintained after chemotherapy. CONCLUSION Nutritional support provided by an amino acid-rich elemental diet was ineffective for reducing the incidence of adverse events caused by DCF chemotherapy in patients with esophageal cancer.
Collapse
Affiliation(s)
- Chikatoshi Katada
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan.
| | - Saeko Fukazawa
- Department of Nutrition, Kitasato University Hospital, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Mitsuhiro Sugawara
- Department of Pharmacy, Kitasato University Hospital, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Yasutoshi Sakamoto
- Kitasato Clinical Research Center, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Kaoru Takahashi
- Department of Nursing, Kitasato University Hospital, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Akiko Takahashi
- Department of Nursing, Kitasato University Hospital, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Akinori Watanabe
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Takuya Wada
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Kenji Ishido
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Yasuaki Furue
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Hiroki Harada
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Kei Hosoda
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Keishi Yamashita
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Teruko Sato
- Department of Nutrition, Kitasato University Hospital, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Takafumi Ichikawa
- Department of Pathological Biochemistry, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Satoshi Tanabe
- Department of Advanced Medicine Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, 1-15-1 Kitasato Minami, Sagamihara, 252-0374, Japan
| |
Collapse
|
22
|
Kong L, Wang Y, Wang H, Pan Q, Zuo R, Bai S, Zhang X, Lee WY, Kang Q, Li G. Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing. Stem Cell Res Ther 2021; 12:47. [PMID: 33419467 PMCID: PMC7792074 DOI: 10.1186/s13287-020-02074-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Paracrine signaling from endothelial progenitor cells (EPCs) is beneficial for angiogenesis and thus promotes tissue regeneration. Microgravity (MG) environment is found to facilitate the functional potentials of various stem or progenitor cells. The present study aimed to elucidate the effects of MG on pro-angiogenic properties and fracture repair capacities of conditioned media (CM) from EPCs. Methods Human peripheral blood-derived EPCs were cultured under MG or normal gravity (NG) followed by analysis for angiogenic gene expression. Furthermore, the serum-free CM under MG (MG-CM) or NG (NG-CM) were collected, and their pro-angiogenic properties were examined in human umbilical vein endothelial cells (HUVECs). In order to investigate the effects of MG-CM on fracture healing, they were injected into the fracture gaps of rat models, and radiography, histology, and mechanical test were performed to evaluate neovascularization and fracture healing outcomes. Results MG upregulated the expression of hypoxia-induced factor-1α (HIF-1α) and endothelial nitric oxide synthase (eNOS) and promoted NO release. Comparing to NG-CM, MG-CM significantly facilitated the proliferation, migration, and angiogenesis of HUVECs through NO-induced activation of FAK/Erk1/2-MAPK signaling pathway. In addition, MG-CM were verified to improve angiogenic activities in fracture area in a rat tibial fracture model, accelerate fracture healing, and well restore the biomechanical properties of fracture bone superior to NG-CM. Conclusion These findings provided insight into the use of MG bioreactor to enhance the angiogenic properties of EPCs’ paracrine signals via HIF-1α/eNOS/NO axis, and the administration of MG-CM favored bone fracture repair. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02074-y.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China.,Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Yan Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Rongtai Zuo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Wayne Yukwai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China. .,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC.
| |
Collapse
|
23
|
Deng Q, Wang Y, Wang X, Wang Q, Yi Z, Xia J, Hu Y, Zhang Y, Wang J, Wang L, Jiang S, Li R, Wan D, Yang H, Yin Y. Effects of dietary iron level on growth performance, hematological status, and intestinal function in growing-finishing pigs. J Anim Sci 2021; 99:skab002. [PMID: 33515478 PMCID: PMC7846194 DOI: 10.1093/jas/skab002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.
Collapse
Affiliation(s)
- Qingqing Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yancan Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhenfeng Yi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jun Xia
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yuyao Hu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yiming Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jingjing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shuzhong Jiang
- Hunan Jiuding Technology (Group) Co., Ltd. Yueyang, Hunan, China
| | - Rong Li
- Hunan Longhua Agriculture and Animal Husbandry Development Co., Ltd., TRS Group, Zhuzhou, Hunan, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
24
|
Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:167-187. [PMID: 34251644 DOI: 10.1007/978-3-030-74180-8_10] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.
Collapse
|
25
|
Zhang H, Zhao F, Peng A, Guo S, Wang M, Elsabagh M, Loor JJ, Wang H. l-Arginine Inhibits Apoptosis of Ovine Intestinal Epithelial Cells through the l-Arginine-Nitric Oxide Pathway. J Nutr 2020; 150:2051-2060. [PMID: 32412630 DOI: 10.1093/jn/nxaa133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In nonruminants, many of the biological roles of l-arginine (Arg) at the intestinal level are mediated through the Arg-nitric oxide (Arg-NO) pathway. Whether the Arg-NO pathway is involved in controlling the immune response and viability in ovine intestinal epithelial cells (IOECs) is unclear. OBJECTIVES The current study aimed to examine the role of the Arg-NO pathway in apoptosis, antioxidant capacity, and mitochondrial function of IOECs. METHODS The IOECs were incubated in Arg-free DMEM supplemented with 150 μM Arg (CON) or 300 μM Arg (ARG) alone or with 350 μM Nw-nitro-l-arginine methyl ester hydrochloride (l-NAME) (CON + NAME, ARG + NAME) for 24 h. The reactive oxygen species (ROS) concentration, antioxidant capacity, and cell apoptotic percentage were determined. RESULTS Arg supplementation decreased (P < 0.05) the ROS concentration (38.9% and 22.7%) and apoptotic cell percentage (57.2% and 54.8%) relative to the CON and CON + NAME groups, respectively. Relative to the CON and ARG treatments, the l-NAME administration decreased (P < 0.05) the mRNA abundance of superoxide dismutase 2 (32% and 21.3%, respectively) and epithelial NO synthase (36% and 29.1%, respectively). Arg supplementation decreased (P < 0.05) the protein abundance of apoptosis antigen 1 (FAS) (52.0% and 43.9%) but increased (P < 0.05) those of nuclear respiratory factor 1 (31.3% and 22.9%) and inducible NO synthase (35.2% and 41.8%) relative to the CON and CON + NAME groups, respectively. CONCLUSIONS The inhibition of apoptosis in IOECs due to the increased supply of Arg is associated with the mitochondria- and FAS-dependent pathways through the activity of the Arg-NO pathway. The findings help elucidate the role of the Arg-NO pathway in IOEC growth and apoptosis.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Along Peng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Shuang Guo
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey.,Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
26
|
Jankowski J, Ognik K, Konieczka P, Mikulski D. Effects of different levels of arginine and methionine in a high-lysine diet on the immune status, performance, and carcass traits of turkeys. Poult Sci 2020; 99:4730-4740. [PMID: 32988507 PMCID: PMC7598108 DOI: 10.1016/j.psj.2020.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 01/20/2023] Open
Abstract
We postulated that the use of appropriate levels and proportions of arginine (Arg) and methionine (Met) in compound feed with high lysine content (Lys) would make it possible to fully exploit the growth potential of modern fattening turkey crossbreds, without compromising their immune system. The aim of this study was to determine the effect of different ratios of Arg and Met in diets with high Lys content on the performance and immune status of turkeys. The turkeys were assigned to 6 groups with 8 replicates per group and 18 birds per replicate. Six feeding programs, with 3 dietary Arg levels (90, 100, and 110%) and 2 dietary Met levels (30 and 45%) relative to dietary Lys content, were compared. During each of 4 feeding phases (weeks 0–4, 5–8, 9–12, and 13–16), birds were fed ad libitum isocaloric diets containing high level of Lys, approximately 1.83, 1.67, 1.49, and 1.20%, respectively. The dietary treatments had no effect on daily feed intake or body weight at any stage of the study. The protein content of the breast meat was higher in the treatments with the highest Arg level (110%) compared with the lowest Arg level (90%). Similarly, protein content was higher in the treatments with the higher Met level compared with the lower Met level. Higher plasma levels of tumor necrosis factor, interleukin 6 (IL-6), and immunoglobulin Y were found in turkeys fed diets with the lowest Arg content. An increase in Met content resulted in a decrease in plasma content of IL-6. In growing turkeys fed diets high in Lys, an Arg level of 90% relative to Lys can be used without negatively affecting production results and immune system. Regardless of dietary Arg levels, an increase in Met content does not stimulate the immune defense system and shows no effect on growth performance of turkeys in current trial.
Collapse
Affiliation(s)
- Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland.
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
27
|
Al-Koussa H, El Mais N, Maalouf H, Abi-Habib R, El-Sibai M. Arginine deprivation: a potential therapeutic for cancer cell metastasis? A review. Cancer Cell Int 2020; 20:150. [PMID: 32390765 PMCID: PMC7201942 DOI: 10.1186/s12935-020-01232-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023] Open
Abstract
Arginine is a semi essential amino acid that is used in protein biosynthesis. It can be obtained from daily food intake or synthesized in the body through the urea cycle using l-citrulline as a substrate. Arginine has a versatile role in the body because it helps in cell division, wound healing, ammonia disposal, immune system, and hormone biosynthesis. It is noteworthy that l-arginine is the precursor for the biosynthesis of nitric oxide (NO) and polyamines. In the case of cancer cells, arginine de novo synthesis is not enough to compensate for their high nutritional needs, forcing them to rely on extracellular supply of arginine. In this review, we will go through the importance of arginine deprivation as a novel targeting therapy by discussing the different arginine deprivation agents and their mechanism of action. We will also focus on the factors that affect cell migration and on the influence of arginine on metastases through polyamine and NO.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Nour El Mais
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Ralph Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| |
Collapse
|
28
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|
29
|
Yi H, Xiong Y, Wu Q, Wang M, Liu S, Jiang Z, Wang L. Effects of dietary supplementation with l-arginine on the intestinal barrier function in finishing pigs with heat stress. J Anim Physiol Anim Nutr (Berl) 2019; 104:1134-1143. [PMID: 31879983 DOI: 10.1111/jpn.13277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022]
Abstract
Previous studies showed heat stress reduces body weight gain and feed intake associated with damaged intestinal barrier function, and l-arginine (L-Arg) enhanced intestinal barrier function in young animals under stress. The aim of this study was to evaluate effects of L-Arg on serum hormones, intestinal morphology, nutrients absorption and epithelial barrier functions in finishing pigs with heat stress. Forty-eight finishing pigs (Landrace) were balanced for sex and then randomly assigned to six groups: TN group, thermal neutral (22°C, ~80% humidity) with a basal diet; HS group, heat stress (cyclical 35°C for 12 hr and 22°C for 12 hr, ~80% humidity) with a basal diet; PF group, thermal neutral (22°C, ~80% humidity) and pair-fed with the HS; the TNA, HSA and PFA groups were the basal diet of TN group, HS group and PF group supplemented with 1% L-Arg. Results showed that HS decreased (p < .05) the thyroxine concentrations and increased (p < .05) the insulin concentrations in serum compared with the TN group, but 1% L-Arg had no significant effects on them. Both HS and PF significantly increased (p < .05) the mRNA expression of cationic amino acid transporters (CAT1 and CAT2) and decreased the mRNA expression of solute carrier family 5 member 10 (SGLT1) in the jejunum compared with the TN group. Compared with the TN group, HS reduced the expression of tight junction (TJ) protein zonula occluden-1 (ZO-1) and occludin, but PF only decreased ZO-1 expression in the jejunum. Results exhibited that dietary supplementation with 1% L-Arg improved the intestinal villous height, the ratio of villous height to crypt depth, and the expression of occludin and porcine beta-defensin 2 (pBD2) in the jejunum of intermittent heat-treated finishing pigs. In conclusion, dietary supplementation with 1% L-Arg could partly attenuate the intermittent heat-induced damages of intestinal morphology and epithelial barrier functions in finishing pigs.
Collapse
Affiliation(s)
- Hongbo Yi
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mengzhu Wang
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Liu
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
30
|
Wang H, Li QF, Chow HY, Choi SC, Leung YC. Arginine deprivation inhibits pancreatic cancer cell migration, invasion and EMT via the down regulation of Snail, Slug, Twist, and MMP1/9. J Physiol Biochem 2019; 76:73-83. [DOI: 10.1007/s13105-019-00716-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022]
|
31
|
Che D, Adams S, Zhao B, Qin G, Jiang H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr Protein Pept Sci 2019; 20:736-749. [PMID: 30678624 DOI: 10.2174/1389203720666190125104959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Seidu Adams
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Guixin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
32
|
Tristetraprolin targets Nos2 expression in the colonic epithelium. Sci Rep 2019; 9:14413. [PMID: 31595002 PMCID: PMC6783411 DOI: 10.1038/s41598-019-50957-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP), encoded by the Zfp36 gene, is a zinc-finger protein that regulates RNA stability primarily through association with 3′ untranslated regions (3′ UTRs) of target mRNAs. While TTP is expressed abundantly in the intestines, its function in intestinal epithelial cells (IECs) is unknown. Here we used a cre-lox system to remove Zfp36 in the mouse epithelium to uncover a role for TTP in IECs and to identify target genes in these cells. While TTP was largely dispensable for establishment and maintenance of the colonic epithelium, we found an expansion of the proliferative zone and an increase in goblet cell numbers in the colon crypts of Zfp36ΔIEC mice. Furthermore, through RNA-sequencing of transcripts isolated from the colons of Zfp36fl/fl and Zfp36ΔIEC mice, we found that expression of inducible nitric oxide synthase (iNos or Nos2) was elevated in TTP-knockout IECs. We demonstrate that TTP interacts with AU-rich elements in the Nos2 3′ UTR and suppresses Nos2 expression. In comparison to control Zfp36fl/fl mice, Zfp36ΔIEC mice were less susceptible to dextran sodium sulfate (DSS)-induced acute colitis. Together, these results demonstrate that TTP in IECs targets Nos2 expression and aggravates acute colitis.
Collapse
|
33
|
Liu B, Jiang X, Cai L, Zhao X, Dai Z, Wu G, Li X. Putrescine mitigates intestinal atrophy through suppressing inflammatory response in weanling piglets. J Anim Sci Biotechnol 2019; 10:69. [PMID: 31516701 PMCID: PMC6734277 DOI: 10.1186/s40104-019-0379-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Polyamines are essential for cell growth and beneficial for intestinal maturation. To evaluate the effects of putrescine on alleviating intestinal atrophy and underlying molecular mechanisms, both in vivo feeding trial and in vitro cell culture were conducted. Weanling pigs were fed a diet supplemented with 0, 0.1%, 0.2% or 0.3% putrescine dihydrochloride, whereas porcine intestinal epithelial cells (IPEC-J2) were challenged with lipopolysaccharide (LPS) in the presence of 200 μmol/L putrescine. Results Dietary supplementation with 0.2% putrescine dihydrochloride decreased the incidence of diarrhea with an improvement in intestinal integrity. Inhibition of ornithine decarboxylase activity decreased the proliferation and migration of IPEC-J2 cells, and this effect was alleviated by the supplementation with putrescine. The phosphorylation of extracellular signal regulated kinase and focal adhesion kinase was enhanced by putrescine. LPS increased the expression of inflammatory cytokines [tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-8], and inhibited cell proliferation and migration in IPEC-J2 cells. Adding exogenous putrescine suppressed the expression of TNF-α, IL-6 and IL-8, and recovered cell migration and proliferation in LPS-treated IPEC-J2 cells. Dietary putrescine supplementation also reduced the mRNA levels of TNF-α, IL-6 and IL-8 and their upstream regulator nuclear receptor kappa B p65 subunit in the jejunal mucosa of piglets. Conclusions Dietary supplementation with putrescine mitigated mucosal atrophy in weanling piglets through improving anti-inflammatory function and suppressing inflammatory response. Our results have important implications for nutritional management of intestinal integrity and health in weanling piglets and other neonates. Electronic supplementary material The online version of this article (10.1186/s40104-019-0379-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bangmin Liu
- 1Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081 China
| | - Xianren Jiang
- 1Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081 China
| | - Long Cai
- 1Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081 China
| | - Xuemei Zhao
- 1Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081 China
| | - Zhaolai Dai
- 2College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guoyao Wu
- 3Departments of Animal Science and of Medical Physiology, Texas A&M University, College Station, TX 77843 USA
| | - Xilong Li
- 1Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian district, Beijing, 100081 China
| |
Collapse
|
34
|
Zhang H, Peng A, Yu Y, Guo S, Wang M, Coleman DN, Loor JJ, Wang H. N-Carbamylglutamate and l-Arginine Promote Intestinal Absorption of Amino Acids by Regulating the mTOR Signaling Pathway and Amino Acid and Peptide Transporters in Suckling Lambs with Intrauterine Growth Restriction. J Nutr 2019; 149:923-932. [PMID: 31149712 DOI: 10.1093/jn/nxz016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies have revealed that dietary N-carbamylglutamate (NCG) and l-arginine (Arg) improve intestinal integrity, oxidative state, and immune function in Hu suckling lambs with intrauterine growth restriction (IUGR). Whether these treatments alter intestinal nutrient absorption is unknown. OBJECTIVE The aim of this study was to determine the influence of dietary NCG and Arg treatment during the suckling period on intestinal amino acid (AA) absorption, alterations in the mechanistic target of rapamycin (mTOR) signaling pathway, and the abundance of AA and peptide transporters in IUGR lambs. METHODS On day 7 after birth, 48 newborn Hu lambs were selected from a cohort of 424 twin lambs. Normal-birth-weight and IUGR Hu lambs were allocated randomly (n = 12/group) to a control (4.09 ± 0.12 kg), IUGR (3.52 ± 0.09 kg), IUGR + 0.1% NCG (3.49 ± 0.11 kg), or IUGR + 1% Arg (3.53 ± 0.10 kg). RESULTS At day 28, compared with the IUGR group, the IUGR groups receiving NCG and Arg had 7.4% and 7.2% greater (P < 0.05) body weight, respectively. Compared with the IUGR group, the serum concentration of insulin was greater (P < 0.05) and the cortisol was lower (P < 0.05) in the IUGR groups receiving NCG and Arg. Compared with the IUGR group, the IUGR groups receiving NCG and Arg had 13.2%-62.6% greater (P < 0.05) serum concentrations of arginine, cysteine, isoleucine, and proline. Dietary NCG or Arg to IUGR lambs resulted in greater protein abundance (P < 0.05) of peptide transporter 1 (41.9% or 38.2%) in the ileum compared with the unsupplemented IUGR lambs, respectively. Furthermore, dietary NCG or Arg treatment normalized the IUGR-induced variation (P < 0.05) in the ileal ratio of phosphorylated mTOR to total mTOR protein. CONCLUSION Both NCG and Arg can help mitigate the negative effect of IUGR on nutrient absorption in neonatal lambs.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Along Peng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yin Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuang Guo
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Danielle N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Histidine and arginine modulate intestinal cell restitution via transforming growth factor-β1. Eur J Pharmacol 2019; 850:35-42. [DOI: 10.1016/j.ejphar.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
|
36
|
Ale Saheb Fosoul SS, Azarfar A, Gheisari A, Khosravinia H. Performance and physiological responses of broiler chickens to supplemental guanidinoacetic acid in arginine-deficient diets. Br Poult Sci 2019; 60:161-168. [DOI: 10.1080/00071668.2018.1562156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S. S. Ale Saheb Fosoul
- Department of Animal Sciences, Agriculture Faculty, Lorestan University, Khoramabad, Iran
| | - A. Azarfar
- Department of Animal Sciences, Agriculture Faculty, Lorestan University, Khoramabad, Iran
| | - A. Gheisari
- Animal Science Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
| | - H. Khosravinia
- Department of Animal Sciences, Agriculture Faculty, Lorestan University, Khoramabad, Iran
| |
Collapse
|
37
|
Varasteh S, Braber S, Kraneveld AD, Garssen J, Fink-Gremmels J. l-Arginine supplementation prevents intestinal epithelial barrier breakdown under heat stress conditions by promoting nitric oxide synthesis. Nutr Res 2018; 57:45-55. [DOI: 10.1016/j.nutres.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
|
38
|
Ziegler AL, Pridgen TA, Mills JK, Gonzalez LM, Van Landeghem L, Odle J, Blikslager AT. Epithelial restitution defect in neonatal jejunum is rescued by juvenile mucosal homogenate in a pig model of intestinal ischemic injury and repair. PLoS One 2018; 13:e0200674. [PMID: 30138372 PMCID: PMC6107120 DOI: 10.1371/journal.pone.0200674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Intestinal ischemic injury results sloughing of the mucosal epithelium leading to host sepsis and death unless the mucosal barrier is rapidly restored. Volvulus and neonatal necrotizing enterocolitis (NEC) in infants have been associated with intestinal ischemia, sepsis and high mortality rates. We have characterized intestinal ischemia/repair using a highly translatable porcine model in which juvenile (6-8-week-old) pigs completely and efficiently restore barrier function by way of rapid epithelial restitution and tight junction re-assembly. In contrast, separate studies showed that younger neonatal (2-week-old) pigs exhibited less robust recovery of barrier function, which may model an important cause of high mortality rates in human infants with ischemic intestinal disease. Therefore, we aimed to further refine our repair model and characterize defects in neonatal barrier repair. Here we examine the defect in neonatal mucosal repair that we hypothesize is associated with hypomaturity of the epithelial and subepithelial compartments. Following jejunal ischemia in neonatal and juvenile pigs, injured mucosa was stripped from seromuscular layers and recovered ex vivo while monitoring transepithelial electrical resistance (TEER) and 3H-mannitol flux as measures of barrier function. While ischemia-injured juvenile mucosa restored TEER above control levels, reduced flux over the recovery period and showed 93±4.7% wound closure, neonates exhibited no change in TEER, increased flux, and a 11±23.3% increase in epithelial wound size. Scanning electron microscopy revealed enterocytes at the wound margins of neonates failed to assume the restituting phenotype seen in restituting enterocytes of juveniles. To attempt rescue of injured neonatal mucosa, neonatal experiments were repeated with the addition of exogenous prostaglandins during ex vivo recovery, ex vivo recovery with full thickness intestine, in vivo recovery and direct application of injured mucosal homogenate from neonates or juveniles. Neither exogenous prostaglandins, intact seromuscular intestinal layers, nor in vivo recovery enhanced TEER or restitution in ischemia-injured neonatal mucosa. However, ex vivo exogenous application of injured juvenile mucosal homogenate produced a significant increase in TEER and enhanced histological restitution to 80±4.4% epithelial coverage in injured neonatal mucosa. Thus, neonatal mucosal repair can be rescued through direct contact with the cellular and non-cellular milieu of ischemia-injured mucosa from juvenile pigs. These findings support the hypothesis that a defect in mucosal repair in neonates is due to immature repair mechanisms within the mucosal compartment. Future studies to identify and rescue specific defects in neonatal intestinal repair mechanisms will drive development of novel clinical interventions to reduce mortality in infants affected by intestinal ischemic injury.
Collapse
Affiliation(s)
- Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tiffany A. Pridgen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Juliana K. Mills
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jack Odle
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
39
|
Miao LP, Yuan C, Dong XY, Zhang XY, Zhou MY, Zou XT. Effects of dietary L-arginine levels on small intestine protein turnover and the expression of genes related to protein synthesis and proteolysis of layers. Poult Sci 2018; 96:1800-1808. [PMID: 28340042 DOI: 10.3382/ps/pew471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to test the effects of dietary L-arginine (Arg) levels on protein turnover in the small intestine and the expression of genes related to protein synthesis and proteolysis of laying hens. Xinyang Black commercial laying hens (n = 864, aged 217 d) were randomly distributed to 6 treatments with 4 replicates of 36 birds. The dietary treatments were corn-corn gluten meal based diets containing 0.64, 0.86, 1.03, 1.27, 1.42 and 1.66% L-Arg, respectively. Fractional protein synthesis rate (FSR) and fractional protein gain rate (FGR) in the jejunum were the highest in the 1.27% L-Arg group. The mRNA expression of target of rapamycin (TOR), ribosomal protein S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in the duodenum reached the highest in the 1.27% L-Arg group, while the mRNA expression of 20S proteasome (20S) was the lowest in the 1.27% L-Arg group. The mRNA abundances of TOR and S6K1 in the jejunum were the highest in the 1.27% L-Arg group, while the mRNA expression of 20S was the lowest in the 1.27% L-Arg group, and the protein expression and phosphorylation levels of TOR in the 1.27% L-Arg group were higher than those in the 0.64% L-Arg group. These results indicate that the action of an appropriate level of dietary L-Arg to improve the protein synthesis of the small intestine involves up-regulating the protein expression and phosphorylation level of TOR in the jejunum accompanied by inhibiting the mRNA expression of 20S of laying hens.
Collapse
|
40
|
Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo. Exp Cell Res 2018; 368:236-247. [DOI: 10.1016/j.yexcr.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
|
41
|
Dietary arginine affects growth, gut morphology, oxidation resistance and immunity of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) juveniles. Br J Nutr 2018; 120:269-282. [DOI: 10.1017/s0007114518001022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractAn 8-week growth trial was conducted to evaluate the effects of dietary arginine (Arg) levels on growth, gut morphology, oxidation resistance and immunity of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) juveniles. Seven isoenergetic (1465 kJ (350 kcal)/100-g DM), isoproteic (53·5 % of DM) and isolipidic (7 % of DM) experimental diets were formulated to contain graded Arg levels ranging from 1·9 to 4·7 % (dry weight) at approximately 0·5 % increments. Each diet was randomly assigned to triplicate groups of 16 juvenile fish (average initial body weight: 11·7 (sd 0·1) g) and was administered twice daily (08.00 and 16.00 hours). After the growth trial, all remaining fish were fed their prescribed diets for 2 d and then exposed to 4·5 mg Cu2+/l water for 36 h. Results showed that growth performance and feed utilisation of experimental fish were significantly affected by different dietary Arg levels. Weight gain % (WG%) of fish was increased as dietary Arg increased, reaching a peak value at 3·8 % dietary Arg level, and when dietary Arg level increased to 4·7 % WG% was reduced. Fish fed 1·9 and 2·2 % dietary Arg levels had higher daily feed intake compared with fish fed other dietary Arg levels. Feed conversion ratios in fish fed 1·9, 2·2, 2·7 and 4·7 % dietary Arg levels were higher than those in fish fed 3·1, 3·8 and 4·1 % dietary Arg levels. Protein efficiency ratio and protein productive value (PPV) increased with an increase in dietary Arg, up to a peak value at 3·8 % dietary Arg level, above which these parameters declined. On the basis of quadratic regression analysis of weight gain % (WG%) or PPV against dietary Arg levels, the optimal dietary Arg requirement for hybrid grouper was estimated to be 3·65 %. Fish fed 3·8 % dietary Arg had higher whole-body and muscle protein contents compared with fish fed other dietary Arg levels. Fish fed 3·8 and 4·1 % dietary Arg levels had higher levels of mRNA for insulin-like growth factor-I and target of rapamycin in the liver compared with fish fed other dietary Arg levels. Hepatic S6 kinase 1 mRNA expression in fish fed 3·8 % dietary Arg level was higher than that in fish fed any of the other dietary Arg levels. Gut morphology, hepatic antioxidant indices and immune indices in serum and head kidney were significantly influenced by dietary Arg levels. In conclusion, the optimal dietary Arg requirement for hybrid grouper was estimated to be 3·65 %, and suitable dietary Arg supplementations improved gut morphology and oxidation resistance of hybrid grouper.
Collapse
|
42
|
Xiao H, Zeng L, Shao F, Huang B, Wu M, Tan B, Yin Y. The role of nitric oxide pathway in arginine transport and growth of IPEC-1 cells. Oncotarget 2018; 8:29976-29983. [PMID: 28415785 PMCID: PMC5444718 DOI: 10.18632/oncotarget.16267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
L-Arginine itself and its metabolite-nitric oxide play great roles in intestinal physiology. However, the molecular mechanism underlying nitric oxide pathway regulating L-Arginine transport and cell growth is not yet fully understood. We report that inhibition of nitric oxide synthase (NOS) significantly induced cell apoptosis (p < 0.05), and promoted the rate of Arginine uptake and the expressions of protein for CAT-2 and y+LAT-1 (p < 0.05), while reduced protein expression of CAT-1. And NOS inhibition markedly decreased the activation of mammalian target of rapamycin (mTOR) and PI3K-Akt pathways by Arginine in the IPEC-1 cells (p < 0.05). Taken together, these data suggest that inhibition of NO pathway by L-NAME induces a negative feedback increasing of Arginine uptake and CAT-2 and y+LAT-1 protein expression, but promotes cell apoptosis which involved inhibiting the activation of mTOR and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Hao Xiao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Liming Zeng
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,Science College of Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fangyuan Shao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bo Huang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Wu
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Bie Tan
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China.,College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
43
|
|
44
|
Rossi G, Cerquetella M, Scarpona S, Pengo G, Fettucciari K, Bassotti G, Jergens AE, Suchodolski JS. Effects of probiotic bacteria on mucosal polyamines levels in dogs with IBD and colonic polyps: a preliminary study. Benef Microbes 2017; 9:247-255. [PMID: 29022381 DOI: 10.3920/bm2017.0024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spermine (SPM) and its precursor putrescine (PUT), regulated by ornithine decarboxylase (ODC) and diamino-oxidase (DAO), are polyamines required for cell growth and proliferation. Only a few studies have investigated the anti-inflammatory and tumour inhibitory properties of probiotics on mucosal polyamine levels. We investigated the effects of a high concentration multistrain probiotic for human use on colonic polyamine biosynthesis in dogs. Histological sections (inflammatory bowel disease, n=10; polyposis, n=5) were assessed after receiving 112 to 225×109 lyophilised bacteria daily for 60 days at baseline (T0) and 30 days after treatment end (T90). Histology scores, expression of PUT, SPM, ODC and DAO, and a clinical activity index (CIBDAI) were compared at T0 and T90. In polyps, cellular proliferation (Ki-67 expression), and apoptosis (caspase-3 protein expression) were also evaluated. After treatment, in inflammatory bowel disease significant decreases were observed for CIBDAI (P=0.006) and histology scores (P<0.001); PUT, SPM and ODC expression increased (P<0.01). In polyps, a significant decrease in polyamine levels, ODC activity, and Ki-67, and a significant increase in caspase-3 positivity and DAO expression (P=0.005) was noted. Our results suggest potential anti-proliferative and anti-inflammatory effects of the probiotic mixture in polyps and inflammation, associated with reduced mucosal infiltration and up-regulation of PUT, SPM, and ODC levels.
Collapse
Affiliation(s)
- G Rossi
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - M Cerquetella
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - S Scarpona
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Macerata (MC), Italy
| | - G Pengo
- 2 Clinic 'St. Antonio', Strada Statale 415, km 38,50, 26020 Madignano (CR), Italy
| | - K Fettucciari
- 3 Department of Experimental Medicine, University of Perugia School of Medicine, Piazzale Lucio Severi 1-8, 06123 Perugia, Italy
| | - G Bassotti
- 4 Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia School of Medicine, Santa Maria della Misericordia Hospital, Piazzale Menghini 1, 06156 San Sisto, Italy
| | - A E Jergens
- 5 College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr., Ames, IA 50010, USA
| | - J S Suchodolski
- 6 Gastrointestinal Laboratory, Texas A&M University, 4474 TAMU, College Station, TX 77843, USA
| |
Collapse
|
45
|
Bae YK, Macabenta F, Curtis HL, Stathopoulos A. Comparative analysis of gene expression profiles for several migrating cell types identifies cell migration regulators. Mech Dev 2017; 148:40-55. [PMID: 28428068 DOI: 10.1016/j.mod.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/11/2023]
Abstract
Cell migration is an instrumental process that ensures cells are properly positioned to support the specification of distinct tissue types during development. To provide insight, we used fluorescence activated cell sorting (FACS) to isolate two migrating cell types from the Drosophila embryo: caudal visceral mesoderm (CVM) cells, precursors of longitudinal muscles of the gut, and hemocytes (HCs), the Drosophila equivalent of blood cells. ~350 genes were identified from each of the sorted samples using RNA-seq, and in situ hybridization was used to confirm expression within each cell type or, alternatively, within other interacting, co-sorted cell types. To start, the two gene expression profiling datasets were compared to identify cell migration regulators that are potentially generally-acting. 73 genes were present in both CVM cell and HC gene expression profiles, including the transcription factor zinc finger homeodomain-1 (zfh1). Comparisons with gene expression profiles of Drosophila border cells that migrate during oogenesis had a more limited overlap, with only the genes neyo (neo) and singed (sn) found to be expressed in border cells as well as CVM cells and HCs, respectively. Neo encodes a protein with Zona pellucida domain linked to cell polarity, while sn encodes an actin binding protein. Tissue specific RNAi expression coupled with live in vivo imaging was used to confirm cell-autonomous roles for zfh1 and neo in supporting CVM cell migration, whereas previous studies had demonstrated a role for Sn in supporting HC migration. In addition, comparisons were made to migrating cells from vertebrates. Seven genes were found expressed by chick neural crest cells, CVM cells, and HCs including extracellular matrix (ECM) proteins and proteases. In summary, we show that genes shared in common between CVM cells, HCs, and other migrating cell types can help identify regulators of cell migration. Our analyses show that neo in addition to zfh1 and sn studied previously impact cell migration. This study also suggests that modification of the extracellular milieu may be a fundamental requirement for cells that undergo cell streaming migratory behaviors.
Collapse
Affiliation(s)
- Young-Kyung Bae
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States; Korea Research Institute of Standards and Science, Center for Bio-Analysis, Yuseung-gu, Gajung-ro 267, Daejeon, Republic of Korea
| | - Frank Macabenta
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States
| | - Heather Leigh Curtis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| |
Collapse
|
46
|
Xia M, Ye L, Hou Q, Yu Q. Effects of arginine on intestinal epithelial cell integrity and nutrient uptake. Br J Nutr 2016; 116:1-7. [PMID: 27839528 DOI: 10.1017/s000711451600386x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Arginine is a multifaceted amino acid that is critical to the normal physiology of the gastrointestinal tract. Oral arginine administration has been shown to improve mucosal recovery following intestinal injury. The present study investigated the influence of extracellular arginine concentrations on epithelial cell barrier regulation and nutrition uptake by porcine small intestinal epithelial cell line (IPEC-J2). The results show that reducing arginine concentration from 0·7 to 0·2 mm did not affect the transepithelial electrical resistance value, tight-junction proteins (claudin-1, occludin, E-cadherin), phosphorylated extracellular signal-regulated protein kinases (p-ERK) and mucin-1 expression. Furthermore, reducing arginine concentration stimulated greater expression of cationic amino acid transporter (CAT1), excitatory amino acid transporter (EAAT3) and alanine/serine/cysteine transporter (ASCT1) mRNA by IPEC-J2 cells, which was verified by elevated efficiency of amino acid uptake. Glucose consumption by IPEC-J2 cells treated with 0·2 mm-arginine remained at the same physiological level to guarantee energy supply and to maintain the cell barrier. This experiment implied that reducing arginine concentration is feasible in IPEC-J2 cells guaranteed by nutrient uptake and cell barrier function.
Collapse
Affiliation(s)
- Mi Xia
- Veterinary College,Nanjing Agricultural University,Weigang 1,Nanjing,Jiangsu 210095,People's Republic of China
| | - Lulu Ye
- Veterinary College,Nanjing Agricultural University,Weigang 1,Nanjing,Jiangsu 210095,People's Republic of China
| | - Qihang Hou
- Veterinary College,Nanjing Agricultural University,Weigang 1,Nanjing,Jiangsu 210095,People's Republic of China
| | - Qinghua Yu
- Veterinary College,Nanjing Agricultural University,Weigang 1,Nanjing,Jiangsu 210095,People's Republic of China
| |
Collapse
|
47
|
Moonen RM, Cavallaro G, Huizing MJ, González-Luis GE, Mosca F, Villamor E. Association between the p.Thr1406Asn polymorphism of the carbamoyl-phosphate synthetase 1 gene and necrotizing enterocolitis: A prospective multicenter study. Sci Rep 2016; 6:36999. [PMID: 27833157 PMCID: PMC5105130 DOI: 10.1038/srep36999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/20/2016] [Indexed: 12/04/2022] Open
Abstract
The p.Thr1406Asn (rs1047891) polymorphism of the carbamoyl-phosphate synthetase 1 (CPS1) gene has been linked to functional consequences affecting the downstream availability of the nitric oxide precursor L-arginine. L-arginine concentrations are decreased in preterm infants with necrotizing enterocolitis (NEC). In this multicenter prospective study, we investigated the association of the p.Thr1406Asn polymorphism with NEC in 477 preterm infants (36 cases of NEC) from 4 European neonatal intensive care units (Maastricht, Las Palmas de Gran Canaria, Mantova, and Milan). Allele and genotype frequencies of the p.Thr1406Asn polymorphism did not significantly differ between the infants with and without NEC. In contrast, the minor A-allele was significantly less frequent in the group of 64 infants with the combined outcome NEC or death before 34 weeks of corrected gestational age than in the infants without the outcome (0.20 vs. 0.31, P = 0.03). In addition, a significant negative association of the A-allele with the combined outcome NEC or death was found using the dominant (adjusted odds ratio, aOR: 0.54, 95% CI 0.29–0.99) and the additive (aOR 0.58, 95% CI 0.36–0.93) genetic models. In conclusion, our study provides further evidence that a functional variant of the CPS1 gene may contribute to NEC susceptibility.
Collapse
Affiliation(s)
- Rob M Moonen
- Department of Pediatrics, Zuyderland Medical Center Heerlen, 6130 MB, The Netherlands.,Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, 6202 AZ, The Netherlands
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, 20122, Italy
| | - Maurice J Huizing
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, 6202 AZ, The Netherlands
| | - Gema E González-Luis
- Department of Pediatrics, Hospital Universitario Materno-Infantil de Canarias, Las Palmas de Gran Canaria, 35016, Spain
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, 20122, Italy
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
48
|
Xie C, Wu X, Long C, Wang Q, Fan Z, Li S, Yin Y. Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Vet Res 2016; 12:243. [PMID: 27806719 PMCID: PMC5094001 DOI: 10.1186/s12917-016-0872-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chitosan oligosaccharide (COS) is widely consumed as a functional food due to its multiple health effects, but few studies about COS supplement on placental antioxidant and nutrition transport capacity were reported. Taken pregnant sow as a model, we aimed to investigate the effects of dietary COS supplementation during late gestation on placental amino acids transport and antioxidant defense capacity of sows. From day (d) 85 of gestation to parturition, sixteen pregnant sows were divided into a control group (basal diet without COS supplementation) and a COS group (30 mg COS/kg basal diet). Plasma sample of sow was collected on d 110 of gestation, and placenta tissue was obtained during parturition. Then plasma antioxidant enzyme's activities, the relative level of oxidant stress related genes, amino acids transport related genes and mTOR pathway molecules in placenta were determined. RESULTS Results showed that maternal dietary supplementation with COS increased (P < 0.05) plasma total SOD, caused a downtrend in plasma MDA (0.05 < P < 0.10) on d 110 of gestation. Interestingly, the mRNA expression of some antioxidant genes in the placenta were increased (P < 0.05) and pro-inflammatory cytokines were reduced (P < 0.05) by COS supplement, whereas no significant difference was observed in the activities of placental total SOD and CAT between two groups. Additionally, further study demonstrated that COS feeding stimulated mTOR signaling pathway, increased amino acids transporters expression in placenta. CONCLUSIONS These observations suggested that COS supplement in sow's diet during late gestation enhanced antioxidant defense capacity of sows, promoted placental amino acids transport, which may contribute to the health of sows and development of fetus during gestation.
Collapse
Affiliation(s)
- Chunyan Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China.
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Agricultural University, Changsha, 410128, China.
| | - Cimin Long
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China
| | - Qinhua Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Agricultural University, Changsha, 410128, China
| | - Zhiyong Fan
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Agricultural University, Changsha, 410128, China
| | - Siming Li
- Institute of Animal Science, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China.
| |
Collapse
|
49
|
Glover LE, Lee JS, Colgan SP. Oxygen metabolism and barrier regulation in the intestinal mucosa. J Clin Invest 2016; 126:3680-3688. [PMID: 27500494 DOI: 10.1172/jci84429] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells and provide an important barrier to the flux of antigens from the outside. This barrier is provided at a number of levels, including epithelial junctional complexes, mucus production, and mucosa-derived antimicrobials. Tissue metabolism is central to the maintenance of homeostasis in the mucosa. In the intestine, for example, baseline pO2 levels are uniquely low due to counter-current blood flow and the presence of large numbers of bacteria. As such, hypoxia and HIF signaling predominates normal intestinal metabolism and barrier regulation during both homeostasis and active inflammation. Contributing factors that elicit important adaptive responses within the mucosa include the transcriptional regulation of tight junction proteins, metabolic regulation of barrier components, and changes in autophagic flux. Here, we review recent literature around the topic of hypoxia and barrier function in health and during disease.
Collapse
|
50
|
Van Arsdall M, Haque I, Liu Y, Rhoads JM. Is There a Role for the Enteral Administration of Serum-Derived Immunoglobulins in Human Gastrointestinal Disease and Pediatric Critical Care Nutrition? Adv Nutr 2016; 7:535-43. [PMID: 27184280 PMCID: PMC4863275 DOI: 10.3945/an.115.011924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Twenty years ago, there was profound, international interest in developing oral human, bovine, or chicken egg-derived immunoglobulin (Ig) for the prevention and nutritional treatment of childhood malnutrition and gastrointestinal disease, including acute diarrhea and necrotizing enterocolitis. Although such Ig products were shown to be effective, with both nutritional and antidiarrheal benefits, interest waned because of their cost and because of the perceived risk of bovine serum encephalitis (BSE). BSE is no longer considered a barrier to use of oral Ig, because the WHO has declared the United States to be BSE-free since the early 2000s. Low-cost bovine-derived products with high Ig content have been developed and are regulated as medical foods. These new products, called serum bovine Igs (SBIs), facilitate the management of chronic or severe gastrointestinal disturbances in both children and adults and are regulated by the US Food and Drug Administration. Well-established applications for use of SBIs include human immunodeficiency virus (HIV)-associated enteropathy and diarrhea-predominant irritable bowel syndrome. However, SBIs and other similar products could potentially become important components of the treatment regimen for other conditions, such as inflammatory bowel disease, by aiding in disease control without immunosuppressive side effects. In addition, SBIs may be helpful in conditions associated with the depletion of circulating and luminal Igs and could potentially play an important role in critical care nutrition. The rationale for their use is to facilitate intraluminal microbial antibody coating, an essential process in immune recognition in the gut which is disturbed in these conditions, thereby leading to intestinal inflammation. Thus, oral Ig may emerge as an important "add-on" therapy for a variety of gastrointestinal and nutritional problems during the next decade.
Collapse
|