1
|
Sohal A, Kowdley KV. A Review of New Concepts in Iron Overload. Gastroenterol Hepatol (N Y) 2024; 20:98-107. [PMID: 38414914 PMCID: PMC10895914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Iron overload disorders are conditions that can lead to increased body iron stores and end-organ damage in affected organs. Increased iron deposition most commonly occurs in the liver, heart, endocrine system, joints, and pancreas. Iron overload disorders may be caused by genetic or acquired causes (transfusion, dyserythropoiesis, and chronic liver disease). The HFE gene C282Y homozygous mutation is the most common cause of hereditary hemochromatosis (HH). Other genes implicated in HH include TFR2, HAMP, HJV, and SLC40A1. In the past 2 decades, there have been major advances in the understanding of genetic iron overload disorders. Furthermore, new novel techniques to measure iron content in organs noninvasively, as well as new therapeutic options for the treatment of HH, are currently under development. This article focuses on the latest concepts in understanding, diagnosing, and managing genetic iron overload disorders, particularly HH.
Collapse
Affiliation(s)
- Aalam Sohal
- Liver Institute Northwest, Seattle, Washington
| | - Kris V Kowdley
- Liver Institute Northwest, Seattle, Washington
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington
| |
Collapse
|
2
|
Sivasubramaniam P, Stokes N, Patil A, Smith L, Hartley CP, Graham RP, Moreira RK. Digital Hepatic Iron Content: An Artificial Intelligence Model for Spatially Resolved Histologic Iron Quantitative Analysis in Liver Samples. J Transl Med 2023; 103:100200. [PMID: 37331629 DOI: 10.1016/j.labinv.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
Currently, the precise evaluation of tissue hepatic iron content (HIC) requires laboratory testing using tissue-destructive methods based on colorimetry or spectrophotometry. To maximize the use of routine histologic stains in this context, we developed an artificial intelligence (AI) model for the recognition and spatially resolved measurement of iron in liver samples. Our AI model was developed using a cloud-based, supervised deep learning platform (Aiforia Technologies). Using digitized Pearl Prussian blue iron stain whole slide images representing the full spectrum of changes seen in hepatic iron overload, our training set consisted of 59 cases, and our validation set consisted of 19 cases. The study group consisted of 98 liver samples from 5 different laboratories, for which tissue quantitative analysis using inductively coupled plasma mass spectrometry was available, collected between 2012 and 2022. The correlation between the AI model % iron area and HIC was Rs = 0.93 for needle core biopsy samples (n = 73) and Rs = 0.86 for all samples (n = 98). The digital hepatic iron index (HII) was highly correlated with HII > 1 (area under the curve [AUC] = 0.93) and HII > 1.9 (AUC = 0.94). The percentage area of iron within hepatocytes (vs Kupffer cells and portal tract iron) identified patients with any hereditary hemochromatosis-related mutations (either homozygous or heterozygous) (AUC = 0.65, P = .01) with at least similar accuracy than HIC, HII, and any histologic iron score. The correlation between the Deugnier and Turlin score and the AI model % iron area for all patients was Rs = 0.87 for total score, Rs = 0.82 for hepatocyte iron score, and Rs = 0.84 for Kupffer cell iron score. Iron quantitative analysis using our AI model was highly correlated with both detailed histologic scoring systems and tissue quantitative analysis using inductively coupled plasma mass spectrometry and offers advantages (related to the spatial resolution of iron analysis and the nontissue-destructive nature of the test) over standard quantitative methods.
Collapse
Affiliation(s)
| | - Nadarra Stokes
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ameya Patil
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lindsey Smith
- Aiforia Plc. Cambridge Innovation Center, Cambridge, Minnesota
| | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Roger K Moreira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Song H, Zhang S, Sun X, Liu J, Wu Y, Guo W, Wang F, Ou X, Cong M, Jin E, Li W, Liu S. Distinct Iron Deposition Profiles of Liver Zones in Various Models with Iron Homeostasis Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800866. [PMID: 30479929 PMCID: PMC6247051 DOI: 10.1002/advs.201800866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/19/2018] [Indexed: 06/09/2023]
Abstract
Determination of iron accumulation is crucial in diagnosing the occurrence and progression of many liver- and iron-related diseases. Thus far, little is known about the profiles of iron deposition in different liver zones, particularly under conditions with disordered iron homeostasis. Here, uneven iron distribution in livers of patients with hereditary hemochromatosis (HH) is uncovered, showing the region with the highest iron concentration near the entrance site of the portal vein and hepatic artery in contrast to the sites with the lowest iron concentration close to the distal edge. Distinct iron distribution profiles are also found throughout liver zones in wild-type mice and various mouse models with iron metabolism disorders, including hemochromatosis (Hfe-/- ), iron deficiency, and inflammation. Of note, similar findings observed in HH patients are further demonstrated in Hfe-/- mice. Moreover, the zones with greater iron accumulation appear to be more sensitive to iron changes, e.g., there is iron increase upon iron overload and iron loss in response to iron deficiency. Mechanistic investigation manifests that these differential iron changes in liver zones are subjected to the regulation by the hepcidin-ferroportin axis. Additionally, the data corroborate the reliability of magnetic resonance imaging (MRI) in recognizing the differential iron deposition profiles among liver zones.
Collapse
Affiliation(s)
- Haoyang Song
- Anhui Province Key Laboratory of Embryo Development and Reproductive RegulationAnhui Province Key Laboratory of Environmental Hormone and ReproductionFuyang Normal UniversityFuyang236037China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Shuping Zhang
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Xia Sun
- Radiology DepartmentBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Jing Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
| | - Yakun Wu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenli Guo
- College of FisheriesHenan Normal UniversityXinxiang453007China
- QIMR Berghofer Medical Research InstituteBrisbane4029Australia
| | - Fudi Wang
- Department of NutritionNutrition Discovery Innovation CenterInstitute of Nutrition and Food SafetySchool of Public HealthSchool of MedicineZhejiang UniversityHangzhou310085China
| | - Xiaojuan Ou
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Min Cong
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Erhu Jin
- Radiology DepartmentBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Wenyong Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive RegulationAnhui Province Key Laboratory of Environmental Hormone and ReproductionFuyang Normal UniversityFuyang236037China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Layoun A, Samba-Mondonga M, Fragoso G, Calvé A, Santos MM. MyD88 Adaptor Protein Is Required for Appropriate Hepcidin Induction in Response to Dietary Iron Overload in Mice. Front Physiol 2018; 9:159. [PMID: 29556203 PMCID: PMC5845127 DOI: 10.3389/fphys.2018.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
Iron homeostasis is tightly regulated to provide virtually all cells in the body, particularly red blood cells, with this essential element while defending against its toxicity. The peptide hormone hepcidin is central to the control of the amount of iron absorbed from the diet and iron recycling from macrophages. Previously, we have shown that hepcidin induction in macrophages following Toll-like receptor (TLR) stimulation depends on the presence of myeloid differentiation primary response gene 88 (MyD88). In this study, we analyzed the regulation of iron metabolism in MyD88−/− mice to further investigate MyD88 involvement in iron sensing and hepcidin induction. We show that mice lacking MyD88 accumulate significantly more iron in their livers than wild-type counterparts in response to dietary iron loading as they are unable to appropriately control hepcidin levels. The defect was associated with inappropriately low levels of Smad4 protein and Smad1/5/8 phosphorylation in liver samples found in the MyD88−/− mice compared to wild-type mice. In conclusion, our results reveal a previously unknown link between MyD88 and iron homeostasis, and provide new insights into the regulation of hepcidin through the iron-sensing pathway.
Collapse
Affiliation(s)
- Antonio Layoun
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Macha Samba-Mondonga
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Abstract
Iron participates in oxygen transport, energetic, metabolic, and immunologic processes. There are 2 main causes of iron overload: hereditary hemochromatosis which is a primary cause, is a metabolic disorder caused by mutations of genes that control iron metabolism and secondary hemochromatosis caused by multitransfusions, chronic hemolysis, and intake of iron rich food. The most common type of hereditary hemochromatosis is caused by HFE gene mutation. In this study, we analyzed iron metabolism in 100 healthy Polish children in relation to their HFE gene status. The wild-type HFE gene was predominant being observed in 60 children (60%). Twenty-five children (25%), presented with heterozygotic H63D mutation, and 15 children (15%), presented with other mutations (heterozygotic C282Y and S65C mutation, compound heterozygotes C282Y/S65C, C282Y/H63D, H63D homozygote). The mean concentration of iron, the level of ferritin, and transferrin saturation were statistically higher in the group of HFE variants compared with the wild-type group. H63D carriers presented with higher mean concentration of iron, ferritin levels, and transferrin saturation compared with the wild-type group. Male HFE carriers presented with higher iron concentration, transferrin saturation, and ferritin levels than females. This preliminary investigation demonstrates allelic impact on potential disease progression from childhood.
Collapse
|
6
|
The impact of H63D HFE gene carriage on hemoglobin and iron status in children. Ann Hematol 2016; 95:2043-2048. [PMID: 27553379 PMCID: PMC5093215 DOI: 10.1007/s00277-016-2792-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
The molecular mechanism that regulates iron homeostasis is based on a network of signals, which reflect on the iron requirements of the body. Hereditary hemochromatosis is a heterogenic metabolic syndrome which is due to unchecked transfer of iron into the bloodstream and its toxic effects on parenchymatous organs. It is caused by the mutation of genes that encode proteins that help hepcidin to monitor serum iron. These proteins include the human hemochromatosis protein -HFE, transferrin-receptor 2, hemojuvelin in rare instances, and ferroportin. HFE-related hemochromatosis is the most frequent form of the disease. Interestingly, the low penetrance of polymorphic HFE genes results in rare clinical presentation of the disease, predominantly in middle-aged males. Taking into account the wide dispersion of HFE mutation in our population and also its unknown role in heterozygotes, we analyzed the impact of H63D HFE carriage in the developmental age, with respect to gender, on the iron status and hemoglobin concentration of carriers in comparison to those of wild-type HFE gene (12.7 ± 3.07 years, 42 boys and 41 girls). H63D carriers presented higher blood iron, transferrin saturation, and ferritin concentration than wild-type probands (p < 0.05.) Interestingly, male H63D carriers showed higher hemoglobin concentration than the unburdened children. Moreover, in the H63D carrier group, a positive correlation between iron and hemoglobin was noted. In conclusion, this study demonstrates that changes in iron metabolism occur at a young age in HFE heterozygotes.
Collapse
|
7
|
Mehta K, Busbridge M, Renshaw D, Evans RW, Farnaud S, Patel VB. Characterization of hepcidin response to holotransferrin in novel recombinant TfR1 HepG2 cells. Blood Cells Mol Dis 2016; 61:37-45. [PMID: 27667164 DOI: 10.1016/j.bcmd.2016.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Hepcidin is the key regulator of systemic iron homeostasis. The iron-sensing mechanisms and the role of intracellular iron in modulating hepatic hepcidin secretion are unclear. Therefore, we created a novel cell line, recombinant-TfR1 HepG2, expressing iron-response-element-independent TFRC mRNA to promote cellular iron-overload and examined the effect of excess holotransferrin (5g/L) on cell-surface TfR1, iron content, hepcidin secretion and mRNA expressions of TFRC, HAMP, SLC40A1, HFE and TFR2. Results showed that the recombinant cells exceeded levels of cell-surface TfR1 in wild-type cells under basal (2.8-fold; p<0.03) and holotransferrin-supplemented conditions for 24h and 48h (4.4- and 7.5-fold, respectively; p<0.01). Also, these cells showed higher intracellular iron content than wild-type cells under basal (3-fold; p<0.03) and holotransferrin-supplemented conditions (6.6-fold at 4h; p<0.01). However, hepcidin secretion was not higher than wild-type cells. Moreover, holotransferrin treatment to recombinant cells did not elevate HAMP responses compared to untreated or wild-type cells. In conclusion, increased intracellular iron content in recombinant cells did not increase hepcidin responses compared to wild-type cells, resembling hemochromatosis. Furthermore, TFR2 expression altered within 4h of treatment, while HFE expression altered later at 24h and 48h, suggesting that TFR2 may function prior to HFE in HAMP regulation.
Collapse
Affiliation(s)
- Kosha Mehta
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Mark Busbridge
- Department of Clinical Biochemistry, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Derek Renshaw
- Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| | - Robert W Evans
- School of Engineering and Design, Brunel University, London, UK
| | | | - Vinood B Patel
- Department of Biomedical Sciences, University of Westminster, London, UK.
| |
Collapse
|
8
|
Farrell CP, Parker CJ, Phillips JD. Exome sequencing for molecular characterization of non-HFE hereditary hemochromatosis. Blood Cells Mol Dis 2015; 55:101-3. [PMID: 26142323 PMCID: PMC4491409 DOI: 10.1016/j.bcmd.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/29/2023]
Abstract
Diagnostic genetic testing for hereditary hemochromatosis is readily available for clinically relevant HFE variants (i.e., those that generate the C282Y, H63D and S65C HFE polymorphisms); however, genetic testing for other known causes of iron overload, including mutations affecting genes encoding hemojuvelin, transferrin receptor 2, HAMP, and ferroportin is not. As an alternative to conventional genetic testing we propose diagnostic use of whole exome sequencing for characterization of non-HFE hemochromatosis. To illustrate the effectiveness of whole exome sequencing as a diagnostic tool, we present the case of an 18-year-old female with a probable case of juvenile hemochromatosis, who was referred for specialty care after testing negative for commonly occurring HFE variants. Whole exome sequencing offered complete coverage of target genes and is a fast, cost effective diagnostic tool for characterization of non-HFE hemochromatosis.
Collapse
Affiliation(s)
- Colin P Farrell
- University of Utah School of Medicine, Hematology Division, 30North 1900 East, Salt Lake City, UT 84132, United States
| | - Charles J Parker
- University of Utah School of Medicine, Hematology Division, 30North 1900 East, Salt Lake City, UT 84132, United States
| | - John D Phillips
- University of Utah School of Medicine, Hematology Division, 30North 1900 East, Salt Lake City, UT 84132, United States.
| |
Collapse
|
9
|
Renda MC, Renda D, Piazza A, Calvaruso G, Fecarotta E, Giangreco A, Maggio A. Role of Iron Metabolism Genetic Determinants in Response to Chelation Therapy in a Cohort of β-Thalassemia and Sickle Cell Syndromes Italian Patients. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In patients with β-thalassemia and sickle cell syndromes there is an important secondary iron overload due to regular blood transfusions and increased duodenal iron absorption. As in genetic hemochromatosis, also the secondary iron storage leads to tissue injury that involves all the major organs: liver, heart, kidney, endocrine glands. At present, in patients with β-thalassemia and sickle cell syndrome, iron chelation therapy is widely used for the treatment of secondary hemochromatosis, to limit the toxic effects of iron overload. In order to maintain the correct homeostasis, several genes are involved in the metabolic pathways of iron, including HFE, FPN (ferroportin) and TF (transferrin). In this study we analyzed the genes HFE, FPN and TF, to assess their possible effects on response to therapy with deferasirox and deferiprone, either as monotherapy or in combination therapy in a cohort of patients with β-thalassemia and sickle cell syndromes.
Collapse
|
10
|
Assi TB, Baz E. Current applications of therapeutic phlebotomy. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 12 Suppl 1:s75-83. [PMID: 24120605 PMCID: PMC3934278 DOI: 10.2450/2013.0299-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Tarek Bou Assi
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Elizabeth Baz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Centre, Beirut, Lebanon
| |
Collapse
|
11
|
Bagu ET, Layoun A, Calvé A, Santos MM. Friend of GATA and GATA-6 modulate the transcriptional up-regulation of hepcidin in hepatocytes during inflammation. Biometals 2013; 26:1051-65. [PMID: 24179092 DOI: 10.1007/s10534-013-9683-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 10/19/2013] [Indexed: 01/15/2023]
Abstract
Hepcidin is an antimicrobial peptide hormone that plays a central role in the metabolism of iron and its expression in the liver can be induced through two major pathways: the inflammatory pathway, mainly via IL-6; and the iron-sensing pathway, mediated by BMP-6. GATA-proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif-WGATAR-in the promoter region. In hepatoma cells, GATA-proteins 4 and 6 in conjunction with the co-factor friend of GATA (FOG) were shown to modulate the transcription of HAMP. However, it is unclear as to which of the GATA-proteins drive the expression of HAMP in vivo. In this study, using in vitro and in vivo approaches, we investigated the relevance of GATA and FOG proteins in the expression of hepcidin following treatment with IL-6 and BMP-6. We found that treatment of Huh7 cells with either IL-6 or BMP-6 increased the HAMP promoter activity. The HAMP promoter activity following treatment with IL-6 or BMP-6 was further increased by co-transfection of the promoter with GATA proteins 4 and 6. However, co-transfection of the HAMP promoter with FOG proteins 1 or 2 repressed the promoter response to treatments with either IL-6 or BMP-6. The effects of both GATA and FOG proteins on the promoter activity in response to IL-6 or BMP-6 treatment were abrogated by mutation of the GATA response element-TTATCT-in the HAMP promoter region -103/-98. In vivo, treatment of mice with lipopolysaccharide led to a transient increase of Gata-6 expression in the liver that was positively correlated with the expression of hepcidin. Our results indicate that during inflammation GATA-6 is up-regulated in concert with hepcidin while GATA-4 and FOG (1 and 2) are repressed.
Collapse
Affiliation(s)
- Edward T Bagu
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, (ICM), University of Montreal, Pavillon De Sève Porte Y-5625, 2099 rue Alexandre De Sève, Montreal, QC, H2L 4M1, Canada,
| | | | | | | |
Collapse
|
12
|
A late presentation of a fatal disease: juvenile hemochromatosis. Case Rep Med 2013; 2013:875093. [PMID: 24106505 PMCID: PMC3784272 DOI: 10.1155/2013/875093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/13/2013] [Indexed: 12/13/2022] Open
Abstract
Juvenile hemochromatosis is a rare and severe form of hereditary hemochromatosis. We report the case of a 39-year-old female who presented with heart failure and cirrhosis from previously unrecognized juvenile hemochromatosis. This is the latest presentation described in the literature. An important clue to the diagnosis was a history of amenorrhea since the age of 20 that had never been investigated. The patient died of intractable heart failure two months after the initial presentation. Juvenile hemochromatosis should be suspected in a young patient with endocrine or cardiac manifestations. Early diagnosis is crucial since phlebotomy can improve the prognosis and delay or prevent progression to heart failure and cirrhosis.
Collapse
|
13
|
Abstract
Hereditary hemochromatosis is an inherited iron overload disorder caused by inappropriately low hepcidin secretion leading to increased duodenal absorption of dietary iron, most commonly in C282Y homozygous individuals. This can result in elevated serum ferritin, iron deposition in various organs and ultimately end-organ damage, although there is incomplete biochemical and clinical penetrance and variable phenotypic expression of the HFE mutation in hereditary hemochromatosis. An elevated SF >1000 mg/l [corrected] is associated with an increased risk of cirrhosis and mortality in C282Y homozygotes.Conversely, a SF <1000 µg/l is associated with a very low likelihood of cirrhosis, making liver biopsy unnecessary among C282Y homozygotes in the absence of concomitant risk factors for liver disease. Phlebotomy remains the mainstay of treatment and new treatments being studied include erythrocytapheresis and 'mini-hepcidins'. Iron overload is being recognized to play a carcinogenic role in hepatocellular carcinoma and other cancers, possibly supporting iron depletion in these patients.
Collapse
Affiliation(s)
- Pushpjeet Kanwar
- Liver Center for Excellence, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, WA, USA
| | | |
Collapse
|
14
|
Toll-like receptor signal adaptor protein MyD88 is required for sustained endotoxin-induced acute hypoferremic response in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2340-50. [PMID: 22497726 DOI: 10.1016/j.ajpath.2012.01.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/24/2012] [Accepted: 01/30/2012] [Indexed: 12/24/2022]
Abstract
Hypoferremia, associated with immune system activation, involves a marked reduction in the levels of circulating iron, coupled with iron sequestration within macrophages. Toll-like receptor (TLR) signaling plays an important role in the development of the hypoferremic response, but how downstream signaling events affect genes involved in iron metabolism is incompletely understood. We investigated the involvement of MyD88-dependent (MyD88) and MyD88-independent (TRIF) TLR signaling in the development of hypoferremia. Using MyD88-deficient and TRIF-deficient mice, we show that MyD88 and TRIF signaling pathways are critical for up-regulation by lipopolysaccharide (LPS) of the iron regulator hepcidin. In addition, MyD88 signaling is required for the induction of lipocalin 2 secretion and iron sequestration in the spleen. Activation of TLR4 and TLR3 signaling through LPS and polyinosinic:polycytidylic acid [poly(I:C)] treatments resulted in rapid down-regulation of HFE protein [encoded by the hemochromatosis gene (Hfe)] and ferroportin [encoded by solute carrier family 40 (iron-regulated transporter), member 1 (Slc40a1)] expression in the spleen, independent of MyD88 or TRIF signaling and proinflammatory cytokine production. However, lack of MyD88 signaling significantly impaired the hypoferremic response triggered by LPS, indicating that ferroportin and HFE protein down-regulation alone are insufficient to maintain hypoferremia. The extent of the hypoferremic response was found to be limited by initial, basal iron levels. Together, these results suggest that targeting specific TLR signaling pathways by affecting the function of adaptor molecules may provide new strategies to counteract iron sequestration within macrophages during inflammation.
Collapse
|
15
|
Siddique A, Kowdley KV. Review article: the iron overload syndromes. Aliment Pharmacol Ther 2012; 35:876-93. [PMID: 22385471 DOI: 10.1111/j.1365-2036.2012.05051.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 06/26/2011] [Accepted: 02/08/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Iron overload syndromes encompass a wide range of hereditary and acquired conditions. Major developments in the field of genetics and the discovery of hepcidin as a central regulator of iron homeostasis have greatly increased our understanding of the pathophysiology of iron overload syndromes. AIM To review advances in iron regulation and iron overload syndrome with special emphasis on hereditary haemochromatosis, the prototype iron overload syndrome. METHODS A PubMed search using words such as 'iron overload', 'hemochromatosis', 'HFE', 'Non-HFE', 'secondary iron overload' was undertaken. RESULTS Iron overload is associated with significant morbidity and mortality. Sensitive diagnostic tests and effective therapy are widely available and can prevent complications associated with iron accumulation in end- organs. Therapeutic phlebotomy remains the cornerstone of therapy for removal of excess body iron, but novel therapeutic agents including oral iron chelators have been developed for iron overload associated with anaemia. CONCLUSIONS Iron overload disorders are common. Inexpensive screening tests as well as confirmatory diagnostic tests are widely available. Increased awareness of the causes and importance of early diagnosis and knowledge of the appropriate use of genetic testing are encouraged. The availability of novel treatments should increase therapeutic options for patients with iron overload disorders.
Collapse
Affiliation(s)
- A Siddique
- Department of Hepatology, Virginia Mason Medical Center, Seattle, WA, USA.
| | | |
Collapse
|
16
|
DeDent A, Kim HK, Missiakas D, Schneewind O. Exploring Staphylococcus aureus pathways to disease for vaccine development. Semin Immunopathol 2012; 34:317-33. [PMID: 22130613 PMCID: PMC3539746 DOI: 10.1007/s00281-011-0299-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is a commensal of the human skin or nares and a pathogen that frequently causes skin and soft tissue infections as well as bacteremia and sepsis. Recent efforts in understanding the molecular mechanisms of pathogenesis revealed key virulence strategies of S. aureus in host tissues: bacterial scavenging of iron, induction of coagulation pathways to promote staphylococcal agglutination in the vasculature, and suppression of innate and adaptive immune responses. Advances in all three areas have been explored for opportunities in vaccine design in an effort to identify the critical protective antigens of S. aureus. Human clinical trials with specific subunit vaccines have failed, yet provide important insights for the design of future trials that must address the current epidemic of S. aureus infections with drug-resistant isolates (MRSA, methicillin-resistant S. aureus).
Collapse
Affiliation(s)
- Andrea DeDent
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
17
|
Molecular diagnostic and pathogenesis of hereditary hemochromatosis. Int J Mol Sci 2012; 13:1497-1511. [PMID: 22408404 PMCID: PMC3291973 DOI: 10.3390/ijms13021497] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/15/2022] Open
Abstract
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by enhanced intestinal absorption of dietary iron. Without therapeutic intervention, iron overload leads to multiple organ damage such as liver cirrhosis, cardiomyopathy, diabetes, arthritis, hypogonadism and skin pigmentation. Most HH patients carry HFE mutant genotypes: homozygosity for p.Cys282Tyr or p.Cys282Tyr/p.His63Asp compound heterozygosity. In addition to HFE gene, mutations in the genes that encode hemojuvelin (HJV), hepcidin (HAMP), transferrin receptor 2 (TFR2) and ferroportin (SLC40A1) have been associated with regulation of iron homeostasis and development of HH. The aim of this review was to identify the main gene mutations involved in the pathogenesis of type 1, 2, 3 and 4 HH and their genetic testing indication. HFE testing for the two main mutations (p.Cys282Tyr and p.His63Asp) should be performed in all patients with primary iron overload and unexplained increased transferrin saturation and/or serum ferritin values. The evaluation of the HJV p.Gly320Val mutation must be the molecular test of choice in suspected patients with juvenile hemochromatosis with less than 30 years and cardiac or endocrine manifestations. In conclusion, HH is an example that genetic testing can, in addition to performing the differential diagnostic with secondary iron overload, lead to more adequate and faster treatment.
Collapse
|
18
|
Bagu ET, Santos MM. Friend of GATA suppresses the GATA-induced transcription of hepcidin in hepatocytes through a GATA-regulatory element in the HAMP promoter. J Mol Endocrinol 2011; 47:299-313. [PMID: 21971825 PMCID: PMC3307792 DOI: 10.1530/jme-11-0060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepcidin is an antimicrobial peptide hormone involved in the metabolism of iron, encoded for by the HAMP gene mainly in hepatocytes. It's expressed at lower levels in other cells such as the macrophages. The mechanisms that determine tissue-specific expression of hepcidin remain unclear. GATA- and its co-factor Friend of GATA (FOG) modulate the tissue-specific transcription of other genes involved in the metabolism of iron. GATA proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif -WGATAR- in the promoter. We characterized a 1.3 kb fragment of the 5'-flanking sequence of the HAMP gene in Huh7 cells, which express HAMP. Transfection of 5'-deletions of the HAMP promoter in Huh7 cells revealed two regions, -932/-878 and -155/-96, that when deleted decreased promoter activity. Using site-directed mutations in the HAMP promoter region -155/-96 we identified two subregions, -138/-125 and -103/-98, which when mutated suppressed promoter activity by 70 and 90% respectively. Site -103/-98 with a sequence -TTATCT- to which endogenous GATA proteins 4 and 6 bind and transactivate HAMP is a GATA-regulatory element (RE). Mutation of the GATA-RE abrogated binding of GATA proteins 4 and 6 to the promoter and blunted the GATA transactivation of HAMP. FOG proteins 1 and 2 suppressed the endogenous and exogenous GATA activation of the HAMP promoter. We concluded that the GATA-RE, -TTATCT- in the HAMP promoter region -103/-98 is crucial for the GATA-4 and GATA-6 driven transcription of hepcidin in Huh7 cells and that FOG proteins moderate the transcription by suppressing the GATA transactivation of HAMP.
Collapse
Affiliation(s)
- Edward T Bagu
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
19
|
Hereditary hemochromatosis: Mutations in genes involved in iron homeostasis in Brazilian patients. Blood Cells Mol Dis 2011; 46:302-7. [DOI: 10.1016/j.bcmd.2011.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 12/29/2022]
|
20
|
Abstract
Iron and its homeostasis are intimately tied to the inflammatory response. The adaptation to iron deficiency, which confers resistance to infection and improves the inflammatory condition, underlies what is probably the most obvious link: the anemia of inflammation or chronic disease. A large number of stimulatory inputs must be integrated to tightly control iron homeostasis during the inflammatory response. In order to understand the pathways of iron trafficking and how they are regulated, this article presents a brief overview of iron homeostasis. A major focus is on the regulation of the peptide hormone hepcidin during the inflammatory response and how its function contributes to the process of iron withdrawal. The review also summarizes new and emerging information about other iron metabolic regulators and effectors that contribute to the inflammatory response. Potential benefits of treatment to ameliorate the hypoferremic condition promoted by inflammation are also considered.
Collapse
Affiliation(s)
- Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
21
|
HFE gene mutations in patients with primary iron overload: is there a significant improvement in molecular diagnosis yield with HFE sequencing? Blood Cells Mol Dis 2010; 45:302-7. [PMID: 20843714 DOI: 10.1016/j.bcmd.2010.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/23/2022]
Abstract
Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation>50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n=11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and β2-microglobulin (β2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations.
Collapse
|
22
|
Norris S, White M, Mankan AK, Lawless MW. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression. Int J Immunogenet 2010; 37:125-33. [PMID: 20193033 DOI: 10.1111/j.1744-313x.2010.00904.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.
Collapse
Affiliation(s)
- S Norris
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
23
|
Höblinger A, Erdmann C, Strassburg CP, Sauerbruch T, Lammert F. Coinheritance of hereditary spherocytosis and reversibility of cirrhosis in a young female patient with hereditary hemochromatosis. Eur J Med Res 2009; 14:182-4. [PMID: 19380292 PMCID: PMC3401009 DOI: 10.1186/2047-783x-14-4-182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here we report a 33-years-old woman with hereditary spherocytosis and hemochromatosis due to homozygosity for the C282Y mutation of the HFE gene. The coinheritance of both conditions led to severe iron overload and liver cirrhosis at young age. The patient was treated by repeated phlebotomy, and reversibility of cirrhosis was documented by transient elastography. This report discusses the pathophysiology of iron accumulation in patients with hemolytic anemia combined with HFE C282Y homozygosity. The case indicates that patients with hematological disorders characterized by increased erythropoetic activity should be screened for HFE mutations.
Collapse
Affiliation(s)
- A Höblinger
- Department of Internal Medicine I, University Hospital Bonn, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
| | | | | | | | | |
Collapse
|
24
|
Iron availability and infection. Biochim Biophys Acta Gen Subj 2008; 1790:600-5. [PMID: 18675317 DOI: 10.1016/j.bbagen.2008.07.002] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/24/2008] [Accepted: 07/07/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND To successfully sustain an infection, nearly all bacteria, fungi and protozoa require a continuous supply of host iron. METHODS Literature review. RESULTS Mechanisms of microbial iron acquisition are determinants for the kinds of cells, tissues and hosts in which pathogens can flourish. As a corollary, hosts possess an array of iron withholding devices whereby they can suppress or abort microbial invasions. GENERAL SIGNIFICANCE Awareness of environmental and behavioral methods that can prevent iron loading plus development of pharmaceutical agents that can block microbial access to iron may help to reduce our dependence on antibiotics.
Collapse
|
25
|
Hutchinson C, Conway RE, Bomford A, Hider RC, Powell JJ, Geissler CA. Post-prandial iron absorption in humans: comparison between HFE genotypes and iron deficiency anaemia. Clin Nutr 2008; 27:258-63. [PMID: 18276042 DOI: 10.1016/j.clnu.2007.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/11/2007] [Accepted: 12/14/2007] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Measurement of serum iron increase after ingestion of a meal could be an efficient method of comparing post-prandial iron absorption between groups of individuals. We determined whether the rise in post-prandial serum iron is increased in fully treated patients with hereditary haemochromatosis (HFE C282Y+/+; HH) compared to iron deficiency anaemia (IDA), iron-replete heterozygous subjects (HFE C282Y+/-) and iron-replete controls (HFE C282Y-/-). METHODS Serum iron increase was measured over 4h after a meal containing 13.1 mg non-haem iron. RESULTS Post-prandial increase in serum iron was similar in treated HH versus IDA (P=0.54), but greater than control subjects (P<0.0001). In five HH patients, using (58)Fe as a tracer, the rate of iron absorption was increased (P<0.05) and serum non-transferrin bound iron showed a tendency to increase (P=0.06). Serum iron curves did not differ for heterozygous subjects and controls (P=0.65). CONCLUSIONS Using the serum iron method we found a comparable increase in post-prandial iron absorption in treated HH and IDA compared with controls. While post-prandial iron absorption in the group heterozygous for the C282Y mutation was modestly increased relative to controls, this difference was not statistically significant.
Collapse
Affiliation(s)
- Carol Hutchinson
- The Iron Metabolism Interdisciplinary Research Group, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
26
|
Graham RM, Reutens GM, Herbison CE, Delima RD, Chua ACG, Olynyk JK, Trinder D. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron. J Hepatol 2008; 48:327-34. [PMID: 18083267 DOI: 10.1016/j.jhep.2007.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 09/07/2007] [Accepted: 10/12/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Transferrin receptor 2 appears to have dual roles in iron metabolism; one is signalling, the other is iron transport. It is sensitive to high levels of diferric transferrin, which is associated with disorders of iron overload. Also present in these disorders are increased levels of plasma non-transferrin-bound iron. This study sought to clarify the role of transferrin receptor 2 in the uptake of transferrin-bound and non-transferrin-bound iron. METHODS Variant Chinese Hamster Ovary (CHO) cells, transfected with transferrin receptor 2, were incubated with radio-labelled transferrin-bound or non-transferrin-bound iron. Competition studies were performed in the presence of unlabelled dimetallic transferrin; knockdown was performed using specific siRNA. RESULTS Cells expressing transferrin receptor 2 bound and internalised transferrin and transferrin-bound iron. Transferrin recycling occurred with an average cycling time of 11-15 min. Interestingly, the presence of transferrin receptor 2 was also associated with uptake of non-transferrin-bound iron which was inhibited by unlabelled transferrin-bound metals. Knockdown reduced transferrin-bound and non-transferrin-bound iron uptake by approximately 60%. CONCLUSIONS Transferrin receptor 2 mediates transferrin-bound iron uptake by receptor-mediated endocytosis. It is also involved in the uptake of non-transferrin-bound iron and the inhibition of non-transferrin-bound iron uptake by diferric transferrin in CHO cells.
Collapse
Affiliation(s)
- Ross M Graham
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle Hospital, P.O. Box 480, Fremantle, WA 6959, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Flatiron mice provide the first genetic model that fully recapitulates the iron-loading disorder ferroportin disease. Unlike the other known genetic causes of hemochromatosis, missense mutations in the ferroportin gene are autosomal dominant. These new findings show that ferroportin disease results from dominant negative effects rather than haplo-insufficiency.
Collapse
Affiliation(s)
- Erin E Johnson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Aguilar-Martinez P. Surcharges en fer héréditaires non liées au gène HFE. Presse Med 2007; 36:1279-91. [PMID: 17540536 DOI: 10.1016/j.lpm.2007.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/22/2007] [Accepted: 01/24/2007] [Indexed: 10/22/2022] Open
Abstract
Hereditary iron overload is mainly due to mutations of the HFE gene, implicated in most cases of hereditary hemochromatosis. Non-HFE-related hereditary iron overload is rare. It includes hereditary hemochromatosis related to mutations of other genes, ferroportin disease (also known as hemochromatosis type 4), and entities associated with specific clinical manifestations. Four genes have been implicated in hereditary hemochromatosis: HFE and TFR2 (which codes for the second transferrin receptor), both involved in adult forms of hereditary hemochromatosis, and HAMP and HJV, which code for hepcidin and hemojuvelin, respectively, and are responsible for juvenile hemochromatosis. All types of hereditary hemochromatosis share common clinical and biological characteristics, including an autosomal recessive inheritance pattern, elevation of transferrin saturation as the initial manifestation, hepatic parenchymal iron overload, and sensitivity to therapeutic phlebotomy. They are due to hyperabsorption of dietary iron and are linked to a deficit of hepcidin, the principal iron regulator in the body. Ferroportin disease is a special dominantly inherited clinical form of iron overload due to mutations of the SLC40A1 gene. Its expression differs significantly from that of hereditary hemochromatosis, and its mechanism is related to impairment of iron release from reticuloendothelial cells. Other causes of non-HFE-related hereditary iron overload are usually associated with recognizable clinical manifestations, such as anemia or neurological disorders.
Collapse
|
29
|
Crypt cell hypothesis: technical knock-out. Blood 2007. [DOI: 10.1182/blood-2007-03-075838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Ioannou GN, Weiss NS, Kowdley KV. Relationship between transferrin-iron saturation, alcohol consumption, and the incidence of cirrhosis and liver cancer. Clin Gastroenterol Hepatol 2007; 5:624-9. [PMID: 17478349 DOI: 10.1016/j.cgh.2007.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Excessive alcohol consumption and iron overload might act in synergy to promote hepatic fibrogenesis and carcinogenesis. We examined the relation between baseline serum transferrin-iron saturation (TS) and the incidence of hospitalizations or deaths related to cirrhosis and liver cancer as well as the influence of alcohol consumption on this relationship. METHODS Participants included 8767 persons aged 25-74 years without evidence of cirrhosis at entry into the study or during the first 5 years of follow-up who were subsequently followed for a mean of 13.3 years as part of the first National Health and Nutrition Examination Survey. RESULTS During 116,656 person-years of follow-up, 115 participants were hospitalized for or died of cirrhosis and 4 more of liver cancer. Compared with persons with low TS (<40%) and low alcohol consumption (</=1 drink/day) who had an incidence of cirrhosis/liver cancer of 70/100,000 person-years, the incidence was increased in persons with elevated TS (>/=40%) and low alcohol consumption (154/100,000; adjusted hazard ratio, 2.2; 95% confidence interval, 1.3-3.8) and in persons with low TS and elevated (>1 drink/day) alcohol consumption (198/100,000; adjusted hazard ratio, 2.9; 95% confidence interval, 1.7-5.0). The incidence of cirrhosis/liver cancer was particularly high among persons with both elevated TS and elevated alcohol consumption (480/100,000; adjusted hazard ratio, 6.8; 95% confidence interval, 3.6-12.9), exceeding the rate predicted by the addition of the separate attributable risks associated with drinking and elevated serum TS. CONCLUSIONS Elevated serum TS is associated with an increased incidence of cirrhosis or liver cancer particularly in the presence of elevated alcohol consumption.
Collapse
Affiliation(s)
- George N Ioannou
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
31
|
Sartori M, Andorno S, Pagliarulo M, Rigamonti C, Bozzola C, Pergolini P, Rolla R, Suno A, Boldorini R, Bellomo G, Albano E. Heterozygous beta-globin gene mutations as a risk factor for iron accumulation and liver fibrosis in chronic hepatitis C. Gut 2007; 56:693-8. [PMID: 17135308 PMCID: PMC1942129 DOI: 10.1136/gut.2006.106641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/03/2006] [Accepted: 10/10/2006] [Indexed: 01/08/2023]
Abstract
BACKGROUND Iron accumulation is a well-known risk factor for the progression of chronic hepatitis C (CHC) to fibrosis. However, the profibrogenic role of the genes controlling iron homeostasis is still controversial. AIM To evaluate the relative role of haemachromatosis (HFE), ferroportin and beta-globin gene mutations in promoting iron accumulation and fibrosis in patients with CHC. METHODS Genetic analysis was performed together with the assessment of hepatic iron content and histology in 100 consecutive HIV-antibody and hepatitis B surface antigen-negative patients with biopsy-proven CHC. RESULTS Among the patients investigated, 12 were heterozygous for various beta-globin gene mutations (39[C-->T], IVS1.1[G-->A], 22 7 bp deletion and IVS1.6[T-->C]) and 29 carried HFE (C282Y, H63D and S65C) gene mutations. One further patient was heterozygous for both HFE (H63D) and beta-globin (39[C-->T]) variants, whereas 58 had the wild-type alleles of both the genes. Hepatic iron concentration (HIC) and hepatic stainable iron were significantly higher (p<0.05) in patients with CHC carrying beta-globin mutations than in those with HFE mutations or the wild-type alleles. Multivariate analysis confirmed that the presence of beta-globin mutations was independently associated with both HIC (p = 0.008) and hepatic-stainable iron (odds ratio (OR) 6.11; 95% CI 1.56 to 23.92; p = 0.009). Moderate/severe fibrosis or cirrhosis (Ishak's score >2) was observed in 48 of 100 patients. Logistic regression demonstrated that age (OR 1.05; 95% CI 1.02 to 1.09; p<0.005) and beta-globin mutations (OR 4.99; 95% CI 1.22 to 20.3; p = 0.025) were independent predictors of the severity of fibrosis. CONCLUSIONS Heterozygosis for beta-globin mutations is a novel risk factor for both hepatic iron accumulation and the progression to fibrosis in patients with CHC.
Collapse
Affiliation(s)
- Massimo Sartori
- Gastroenterology Units, Ospedale Maggiore della Carità, Novara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Hereditary hemochromatosis is a condition affecting many organs, as reflected by the fact that it is managed variably by hematologists, gastroenterologists, rheumatologists and endocrinologists, depending on local preferences. A potential pitfall of this approach is that certain aspects of diagnosis and management may be overlooked, particularly if they fall beyond the normal scope of practice of the specialist physician concerned. The purpose of this article is to review the nature of the endocrine complications of hereditary hemochromatosis, which have changed dramatically since the condition was first described over 100 years ago.
Collapse
Affiliation(s)
- Eoin P O'Sullivan
- a South Infirmary Victoria University Hospital, Specialist Registrar in Diabetes and Endocrinology, Department of Endocrinology, Old Blackrock Road, Cork, Ireland.
| | - C Howel Walsh
- b South Infirmary Victoria University Hospital, Consultant Endocrinologist, Department of Endocrinology, Old Blackrock Road, Cork, Ireland.
| |
Collapse
|
33
|
Milward E, Johnstone D, Trinder D, Ramm G, Olynyk J. The nexus of iron and inflammation in hepcidin regulation: SMADs, STATs, and ECSIT. Hepatology 2007; 45:253-6. [PMID: 17187402 DOI: 10.1002/hep.21526] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hereditary hemochromatosis, characterized by iron overload in multiple organs, is one of the most common genetic disorders among Caucasians. Hepcidin, which is synthesized in the liver, plays important roles in iron overload syndromes. Here, we show that a Cre-loxP-mediated liver-specific disruption of SMAD4 results in markedly decreased hepcidin expression and accumulation of iron in many organs, which is most pronounced in liver, kidney, and pancreas. Transcript levels of genes involved in intestinal iron absorption, including Dcytb, DMT1, and ferroportin, are significantly elevated in the absence of hepcidin. We demonstrate that ectopic overexpression of SMAD4 activates the hepcidin promoter and is associated with epigenetic modification of histone H3 to a transcriptionally active form. Moreover, transcriptional activation of hepcidin is abrogated in SMAD4-deficient hepatocytes in response to iron overload, TGF-beta, BMP, or IL-6. Our study uncovers a novel role of TGF-beta/SMAD4 in regulating hepcidin expression and thus intestinal iron transport and iron homeostasis [corrected]
Collapse
Affiliation(s)
- Elizabeth Milward
- University of Newcastle, School of Biomedical Science, Hunter Medical Research Institute Callaghan, NSW, Australia
| | | | | | | | | |
Collapse
|
34
|
Abstract
Epidemiological data strongly support a role for dietary and haem iron in colorectal carcinogenesis through multiple pathways
Collapse
Affiliation(s)
- J R Butterworth
- Department of Gastroenterology, Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, Shropshire SY3 8XQ, UK.
| |
Collapse
|