1
|
Ismail OM, El-Omar OM, Said UN. Exploring the Role of Urocortin in Osteoporosis. Cureus 2023; 15:e38978. [PMID: 37313093 PMCID: PMC10259878 DOI: 10.7759/cureus.38978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/15/2023] Open
Abstract
Osteoporosis is a debilitating disease that affects over 200 million people worldwide. Overactive osteoclast activity leads to micro-architectural defects and low bone mass. This culminates in fragility fractures, such as femoral neck fractures. Treatments currently available either are not completely effective or have considerable side effects; thus, there is a need for more effective treatments. The urocortin (Ucn) family, composed of urocortin 1 (Ucn1), urocortin 2 (Ucn2), urocortin 3 (Ucn3), corticotropin-releasing factor (CRF) and corticotropin-releasing factor-binding protein (CRF-BP), exerts a wide range of effects throughout the body. Ucn1 has been shown to inhibit murine osteoclast activity. This review article will aim to bridge the gap between existing knowledge of Ucn and whether it can affect human osteoclasts.
Collapse
Affiliation(s)
- Omar M Ismail
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Omar M El-Omar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Umar N Said
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| |
Collapse
|
2
|
Kita T, Ashizuka S, Takeda T, Matsumoto T, Ohmiya N, Nakase H, Motoya S, Ohi H, Mitsuyama K, Hisamatsu T, Kanmura S, Kato N, Ishihara S, Nakamura M, Moriyama T, Saruta M, Nozaki R, Yamamoto S, Inatsu H, Watanabe K, Kitamura K. Adrenomedullin for biologic-resistant Crohn's disease: A randomized, double-blind, placebo-controlled phase 2a clinical trial. J Gastroenterol Hepatol 2022; 37:2051-2059. [PMID: 35840351 PMCID: PMC9796011 DOI: 10.1111/jgh.15945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Adrenomedullin is a bioactive peptide with many pleiotropic effects, including mucosal healing and immunomodulation. Adrenomedullin has shown beneficial effects in rodent models of inflammatory bowel disease and, more importantly, in clinical trials including patients with ulcerative colitis. We performed a successive clinical trial to investigate the efficacy and safety of adrenomedullin in patients with Crohn's disease (CD). METHODS This was a multicenter, double-blind, placebo-controlled phase 2a trial that evaluated 24 patients with biologic-resistant CD in Japan. Patients were randomly assigned to three groups and were given an infusion of 10 or 15 ng/kg/min of adrenomedullin or placebo for 8 h per day for 7 days. The primary endpoint was the change in the CD activity index (CDAI) at 8 weeks. The main secondary endpoints included changes in CDAI from week 4 to week 24. RESULTS No differences in the primary or secondary endpoints were observed between the three groups by the 8th week. Changes in CDAI in the placebo group gradually decreased and disappeared at 24 weeks, but those in the adrenomedullin-treated groups (10 or 15 ng/kg/min group) remained at steady levels for 24 weeks. Therefore, a significant difference was observed between the placebo and adrenomedullin-treated groups at 24 weeks (P = 0.043) in the mixed-effects model. We noted mild adverse events caused by the vasodilatory effect of adrenomedullin. CONCLUSION In this trial, we observed a long-lasting (24 weeks) decrease in CDAI in the adrenomedullin-treated groups. Adrenomedullin might be beneficial for biologic-resistant CD, but further research is needed.
Collapse
Affiliation(s)
- Toshihiro Kita
- Department of Projects Research, Frontier Science Research CenterUniversity of MiyazakiMiyazakiJapan
| | - Shinya Ashizuka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Teruyuki Takeda
- Department of GastroenterologyFukuoka University Chikushi HospitalFukuokaJapan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of MedicineIwate Medical UniversityMoriokaJapan
| | - Naoki Ohmiya
- Department of GastroenterologyFujita Health University School of MedicineToyoakeJapan
| | - Hiroshi Nakase
- Department of Gastroenterology and HepatologySapporo Medical University School of MedicineSapporoJapan
| | | | - Hidehisa Ohi
- Department of GastroenterologyIdzuro Imamura HospitalKagoshimaJapan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of MedicineKurume University School of MedicineKurumeJapan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and HepatologyKyorin University School of MedicineMitakaJapan
| | - Shuji Kanmura
- Digestive and Lifestyle DiseasesKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Shunji Ishihara
- Department of GastroenterologyShimane University HospitalIzumoJapan
| | - Masanao Nakamura
- Department of Gastroenterology and HepatologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | | | - Shojiro Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Haruhiko Inatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
| | - Koji Watanabe
- Department of Projects Research, Frontier Science Research CenterUniversity of MiyazakiMiyazakiJapan
| | - Kazuo Kitamura
- Department of Projects Research, Frontier Science Research CenterUniversity of MiyazakiMiyazakiJapan
| |
Collapse
|
3
|
Heuer JG, Meyer CM, Baker HE, Geiser A, Lucchesi J, Xu D, Hamang M, Martin JA, Hu C, Roth KD, Thirunavukkarasu K, Alsina-Fernandez J, Ma YL. Pharmacological Evaluation of a Pegylated Urocortin-1 Peptide in Experimental Autoimmune Disease Models. J Pharmacol Exp Ther 2022; 382:287-298. [PMID: 35688476 DOI: 10.1124/jpet.122.001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Urocortin-1 (UCN1) is a member of the corticotropin releasing hormone (CRH) family of peptides that acts through CRH-receptor 1 (CRHR1) and CRH-receptor 2 (CRHR2). UCN1 can induce adrenocorticotropin hormone (ACTH) and downstream glucocorticoids through CRHR1 and promote beneficial metabolic effects through CRHR2. UCN1 has a short half-life and has been shown to improve experimental autoimmune disease. A pegylated UCN1 peptide (PEG-hUCN1) was generated to extend half-life and was tested in multiple experimental autoimmune disease models and in healthy mice to determine effects on corticosterone induction, autoimmune disease, and glucocorticoid induced adverse effects. Cardiovascular effects were also assessed by telemetry. PEG-hUCN1 demonstrated a dose dependent 4-to-6-fold elevation of serum corticosterone and significantly improved autoimmune disease comparable to prednisolone in several experimental models. In healthy mice, PEG-hUCN1 showed less adverse effects compared to corticosterone treatment. PEG-hUCN1 peptide induced an initial 30% reduction in blood pressure that was followed by a gradual and sustained 30% increase in blood pressure at the highest dose. Additionally, an adeno-associated viral 8 (AAV8) UCN1 was used to assess adverse effects of chronic elevation of UCN1 in wild type and CRHR2 knockout mice. Chronic UCN1 expression by an AAV8 approach in wild type and CRHR2 knockout mice demonstrated an important role of CRHR2 in countering the adverse metabolic effects of elevated corticosterone from UCN1. Our findings demonstrate that PEG-hUCN1 shows profound effects in treating autoimmune disease with an improved safety profile relative to corticosterone and that CRHR2 activity is important in metabolic regulation. Significance Statement This study reports the generation and characterization of a pegylated UCN1 peptide and the role of CRHR2 in UCN1-induced metabolic effects. The potency/selectivity, pharmacokinetic properties, pharmacodynamic effects and efficacy in four autoimmune models and safety profiles are presented. This pegylated UCN1 shows potential for treating autoimmune diseases with reduced adverse effects compared to corticosterone treatment. Continuous exposure to UCN1 through an AAV8 approach demonstrates some glucocorticoid mediated adverse metabolic effects that are exacerbated in the absence of the CRHR2 receptor.
Collapse
Affiliation(s)
- Josef G Heuer
- Biotherapeutic Discovery Research, Eli Lilly and Company, United States
| | - Catalina M Meyer
- Biotherapeutic Discovery Research, Eli Lilly and Company, United States
| | - Hana E Baker
- Lilly Research Laboratories, Eli Lilly and Company, United States
| | - Andrea Geiser
- New Therapeutic Modalities, Eli Lilly and Company, United States
| | - Jonathan Lucchesi
- Biotechnology & Immunology Res, Eli Lilly and Company, United States
| | - Daniel Xu
- Biotechnology & Immunology Res, Eli Lilly and Company, United States
| | - Matthew Hamang
- Biotechnology & Immunology Res, Eli Lilly and Company, United States
| | | | - Charlie Hu
- Biotherapeutic Discovery Research, Eli Lilly and Company, United States
| | - Kenneth D Roth
- Molecular Pharmacology, Eli Lilly and Company, United States
| | | | | | - Yanfei L Ma
- Biotechnology & Immunology Res, Eli Lilly and Company, United States
| |
Collapse
|
4
|
Chronic Experimental Model of TNBS-Induced Colitis to Study Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23094739. [PMID: 35563130 PMCID: PMC9105049 DOI: 10.3390/ijms23094739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a world healthcare problem. In order to evaluate the effect of new pharmacological approaches for IBD, we aim to develop and validate chronic trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Methods: Experimental colitis was induced by the rectal administration of multiple doses of TNBS in female CD-1 mice. The protocol was performed with six experimental groups, depending on the TNBS administration frequency, and two control groups (sham and ethanol groups). Results: The survival rate was 73.3% in the first three weeks and, from week 4 until the end of the experimental protocol, the mice’s survival remained unaltered at 70.9%. Fecal hemoglobin presented a progressive increase until week 4 (5.8 ± 0.3 µmol Hg/g feces, p < 0.0001) compared with the ethanol group, with no statistical differences to week 6. The highest level of tumor necrosis factor-α was observed on week 3; however, after week 4, a slight decrease in tumor necrosis factor-α concentration was verified, and the level was maintained until week 6 (71.3 ± 3.3 pg/mL and 72.7 ± 3.6 pg/mL, respectively). Conclusions: These findings allowed the verification of a stable pattern of clinical and inflammation signs after week 4, suggesting that the chronic model of TNBS-induced colitis develops in 4 weeks.
Collapse
|
5
|
Naringenin Improves Ovalbumin-Induced Allergic Asthma in Rats through Antioxidant and Anti-Inflammatory Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9110798. [PMID: 35419072 PMCID: PMC9001106 DOI: 10.1155/2022/9110798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Asthma is a chronic disease with eosinophilic inflammation and oxidative damages leading to airway obstruction. Naringenin is a phytochemical possessing strong antioxidant and anti-inflammatory activities against chronic destructive conditions. The current study is devoted to evaluating naringenin's effects on the attenuation of inflammation and oxidative stress in lung tissue in a rat model of ovalbumin-induced asthma. Male Wistar rats were allocated to five groups of six: normal control (NC, receiving 1 ml/day of normal saline, orally), asthmatic (AS, receiving ovalbumin (1 mg/mL), and alum (1 mg/mL in saline) on days 0 and 14. Then, on days 21, 22, and 23, they were sensitized with the inhalation of ovalbumin), AS treated with dexamethasone (AS, 1 mg/kg/day, orally) [AS + D1], AS treated with naringenin (20 mg/kg/day, orally) [AS + N20], and AS treated with naringenin (40 mg/kg/day, orally) [AS + N40]. All the groups received associated drugs/agents for 28 days. Finally, bronchoalveolar lavage fluid (BALF) and lung tissue samples were taken off from the animals. The eosinophil count in BALF and malondialdehyde (MDA), glutathione (GSH), interleukin-13 and -4 (IL-13 and IL-4) levels were measured. Besides, the expression of urocortin (UCN) and surfactant protein-D (SP-D) were evaluated in the lung tissue using immunohistochemistry (IHC) and western blotting methods, respectively. Hematoxylin and eosin (H&E) staining were utilized to conduct histopathological analysis. Naringenin treatment significantly reduced MDA, remarkably increased GSH, and meaningfully reduced IL-4 and IL-13 levels in lung tissue. The count of eosinophils in the BALF of AS + N20 and AS + N40 was significantly reduced in comparison with the AS group. The UCN and SP-D protein levels were significantly decreased in the AS + N20 and AS + N40 groups compared to the AS group, using the IHC and western blot methods, respectively. Histopathological analysis data also confirm the results. Naringenin improves the symptoms of allergic asthma through antioxidant and anti-inflammatory effects.
Collapse
|
6
|
Pereira G, Gillies H, Chanda S, Corbett M, Vernon SD, Milani T, Bateman L. Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Syst Neurosci 2021; 15:698240. [PMID: 34539356 PMCID: PMC8441022 DOI: 10.3389/fnsys.2021.698240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2. Materials and Methods This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 μg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms. Results ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 μg/kg/h, mean TDSS improved by -7.5 ± 1.9 (or -25.7%, p = 0.009), with all monitored symptoms improving. Conclusion The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03613129.
Collapse
Affiliation(s)
| | | | | | | | | | - Tina Milani
- Bateman Horne Center, Salt Lake City, UT, United States
| | | |
Collapse
|
7
|
Adrenomedullin: A Novel Therapeutic for the Treatment of Inflammatory Bowel Disease. Biomedicines 2021; 9:biomedicines9081068. [PMID: 34440272 PMCID: PMC8391925 DOI: 10.3390/biomedicines9081068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Adrenomedullin (AM) is a bioactive peptide with various physiological functions, including vasodilation, angiogenesis, anti-inflammation, organ protection, and tissue repair. AM suppresses inflammatory cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function, mucosal epithelial repair, and immune function in the intestinal bacteria of animal models with intestinal inflammation. We have been promoting translational research to develop novel therapeutic agents for inflammatory bowel disease (IBD) using AM and have started clinical research for IBD patients since 2010. A multicenter clinical trial is currently underway in Japan for patients with refractory ulcerative colitis and Crohn’s disease. Moreover, since current AM administration is limited to continuous intravenous infusion, the development of a subcutaneous formulation using long-acting AM is underway for outpatient treatment.
Collapse
|
8
|
Donnini EK, Walugembe M, Rothschild MF, Jergens AE, Allenspach K. An initial genome-wide investigation of protein-losing enteropathy in Gordon setters: Exploratory observations. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:51-60. [PMID: 33390653 PMCID: PMC7747665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/14/2020] [Indexed: 06/12/2023]
Abstract
The objective of this preliminary study was to identify genomic regions that may predispose Gordon setters from the United Kingdom to familial protein-losing enteropathy (PLE) at a young age. A total of 106 related Gordon setters was used, including 6 affected dogs from an affected litter, 6 case controls from the same litter, 10 related/affected dogs, and 84 related/unaffected dogs. Genomic DNA was collected from each Gordon setter and extracted from buccal mucosal swabs. Genotyping of affected and unaffected dogs was carried out using the Canine Illumina HD SNP array and data generated were analyzed with PLINK software, using fixation index (Fst) and runs of homozygosity (ROH) methods. Pairwise Fst analyses between the affected and unaffected Gordon setter dogs identified various regions of differentiation on chromosomes 10, 18, 21, and 23 that contained several important genes. These regions revealed 5 candidate genes, including RARB, TTC7A, SOCS5, PIGF, and RHOD, that are associated with human inflammatory bowel disease (IBD) and could potentially be associated with PLE in Gordon setters. Run of homozygosity (ROH) analyses revealed additional unique regions on chromosomes 15 and 17. These regions contained genes SYT1, UCN, and FNDC that could also be potential candidates for PLE in Gordon setters. The biological functions of the identified genes provided initial insights into the pathophysiology of PLE. Further large-scale studies are warranted to investigate the possible causality of these genomic regions and any possible genetic markers that could be used in predicting susceptibility to PLE syndrome.
Collapse
Affiliation(s)
- Elle K Donnini
- Department of Veterinary Clinical Sciences (Donnini, Jergens, Allenspach), College of Veterinary Medicine, 1809 South Riverside Drive, Iowa State University, Ames, Iowa 50010, USA; Department of Animal Science (Walugembe, Rothschild), College of Agriculture and Life Sciences, 2255 H. Kildee Hall, Iowa State University, Ames, Iowa 20011, USA
| | - Muhammed Walugembe
- Department of Veterinary Clinical Sciences (Donnini, Jergens, Allenspach), College of Veterinary Medicine, 1809 South Riverside Drive, Iowa State University, Ames, Iowa 50010, USA; Department of Animal Science (Walugembe, Rothschild), College of Agriculture and Life Sciences, 2255 H. Kildee Hall, Iowa State University, Ames, Iowa 20011, USA
| | - Max F Rothschild
- Department of Veterinary Clinical Sciences (Donnini, Jergens, Allenspach), College of Veterinary Medicine, 1809 South Riverside Drive, Iowa State University, Ames, Iowa 50010, USA; Department of Animal Science (Walugembe, Rothschild), College of Agriculture and Life Sciences, 2255 H. Kildee Hall, Iowa State University, Ames, Iowa 20011, USA
| | - Albert E Jergens
- Department of Veterinary Clinical Sciences (Donnini, Jergens, Allenspach), College of Veterinary Medicine, 1809 South Riverside Drive, Iowa State University, Ames, Iowa 50010, USA; Department of Animal Science (Walugembe, Rothschild), College of Agriculture and Life Sciences, 2255 H. Kildee Hall, Iowa State University, Ames, Iowa 20011, USA
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences (Donnini, Jergens, Allenspach), College of Veterinary Medicine, 1809 South Riverside Drive, Iowa State University, Ames, Iowa 50010, USA; Department of Animal Science (Walugembe, Rothschild), College of Agriculture and Life Sciences, 2255 H. Kildee Hall, Iowa State University, Ames, Iowa 20011, USA
| |
Collapse
|
9
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
10
|
Kita T, Ashizuka S, Ohmiya N, Yamamoto T, Kanai T, Motoya S, Hirai F, Nakase H, Moriyama T, Nakamura M, Suzuki Y, Kanmura S, Kobayashi T, Ohi H, Nozaki R, Mitsuyama K, Yamamoto S, Inatsu H, Watanabe K, Hibi T, Kitamura K. Adrenomedullin for steroid-resistant ulcerative colitis: a randomized, double-blind, placebo-controlled phase-2a clinical trial. J Gastroenterol 2021; 56:147-157. [PMID: 33140199 PMCID: PMC7862507 DOI: 10.1007/s00535-020-01741-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/18/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Adrenomedullin (AM) is a bioactive peptide having many pleiotropic effects, including mucosal healing and immunomodulation. AM has shown beneficial effects in rodent models and in preliminary study for patients with ulcerative colitis (UC). We performed a clinical trial to investigate the efficacy and safety of AM in patients with UC. METHODS This was a multi-center, double-blind, placebo-controlled phase-2a trial evaluating 28 patients in Japan with steroid-resistant UC. Patients were randomly assigned to four groups and given an infusion of 5, 10, 15 ng/kg/min of AM or placebo for 8 h per day for 14 days. The primary endpoint was the change in Mayo scores at 2 weeks. Main secondary endpoints included the change in Mayo scores and the rate of clinical remission at 8 weeks, defined as a Mayo score 0. RESULTS No differences in the primary or secondary endpoints were observed among the four groups at 2 weeks. Despite the insufficient tracking rate, the Mayo score at 8 weeks was only significantly decreased in the high-dose AM group (15 ng/kg/min) compared with the placebo group (- 9.3 ± 1.2 vs. - 3.0 ± 2.8, P = 0.035), with its rate of clinical remission at 8 weeks being significantly higher (3/3, 100% vs. 0/2, 0%, P = 0.025). We noted mild but no serious adverse events caused by the vasodilatory effect of AM. CONCLUSIONS In this double-blind randomized trial, we observed the complete remission at 8 weeks in patients with steroid-resistant UC receiving a high dose of AM. CLINICAL TRIAL REGISTRY JAPIC clinical trials information; Japic CTI-205255 (200410115290). https://www.clinicaltrials.jp/cti-user/trial/Search.jsp .
Collapse
Affiliation(s)
- Toshihiro Kita
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki, Miyazaki, 889-1692, Japan.
| | - Sinya Ashizuka
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki, Miyazaki, 889-1692, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | | | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Motoya
- IBD Center, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Fumihito Hirai
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuo Suzuki
- Department of Gastroenterology, Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Hidehisa Ohi
- Department of Gastroenterology, Idzuro Imamura Hospital, Kagoshima, Japan
| | | | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shojiro Yamamoto
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Haruhiko Inatsu
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki, Miyazaki, 889-1692, Japan
| | - Koji Watanabe
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki, Miyazaki, 889-1692, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Kazuo Kitamura
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
11
|
Kita T, Kaji Y, Kitamura K. Safety, Tolerability, and Pharmacokinetics of Adrenomedullin in Healthy Males: A Randomized, Double-Blind, Phase 1 Clinical Trial. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1-11. [PMID: 32021087 PMCID: PMC6955635 DOI: 10.2147/dddt.s225220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
Abstract
Background Adrenomedullin (AM), an endogenous vasodilative peptide, has immunomodulative effects and acts as an accelerator of mucosal regeneration in the digestive tract. AM has shown beneficial effects in rodent models of inflammatory bowel disease and patients with ulcerative colitis. The present study aimed to evaluate the pharmacodynamic properties and safety of AM in healthy male adults in a phase 1 clinical trial. Methods This phase 1, randomized, double-blind, single-center study was conducted on healthy males aged 20–65 years. Subjects received either a placebo, 3 ng/kg/min AM, 9 ng/kg/min AM, or 15 ng/kg/min AM via continuous 12-h intravenous infusion. Other subjects received either placebo or 15 ng/kg/min AM for 8 h per day for 7 days. Adverse events (AEs), vital signs, physical examinations, laboratory tests, electrocardiograms (ECG), and pharmacokinetics were assessed. Findings All 24 subjects in the single-dose test completed the study. Of the 12 subjects in multiple dosing test, one from the AM group withdrew owing to a headache. No serious AEs were reported. Hemodynamic parameters were well maintained in all subjects. Slight ECG abnormalities were observed in the single-dose test. The plasma concentration of AM progressively increased in a dose-dependent manner and reached Cmax at the end of administration. Plasma AM rapidly returned to baseline concentrations after termination, with a T1/2 of under 60 min. Interpretation This is the first phase 1 trial in healthy men evaluating the safety of AM. Our results demonstrate the safety and tolerability of AM for subsequent Phase 2 trials.
Collapse
Affiliation(s)
- Toshihiro Kita
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | - Kazuo Kitamura
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
12
|
Baritaki S, de Bree E, Chatzaki E, Pothoulakis C. Chronic Stress, Inflammation, and Colon Cancer: A CRH System-Driven Molecular Crosstalk. J Clin Med 2019; 8:E1669. [PMID: 31614860 PMCID: PMC6833069 DOI: 10.3390/jcm8101669] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is thought to be involved in the occurrence and progression of multiple diseases, via mechanisms that still remain largely unknown. Interestingly, key regulators of the stress response, such as members of the corticotropin-releasing-hormone (CRH) family of neuropeptides and receptors, are now known to be implicated in the regulation of chronic inflammation, one of the predisposing factors for oncogenesis and disease progression. However, an interrelationship between stress, inflammation, and malignancy, at least at the molecular level, still remains unclear. Here, we attempt to summarize the current knowledge that supports the inseparable link between chronic stress, inflammation, and colorectal cancer (CRC), by modulation of a cascade of molecular signaling pathways, which are under the regulation of CRH-family members expressed in the brain and periphery. The understanding of the molecular basis of the link among these processes may provide a step forward towards personalized medicine in terms of CRC diagnosis, prognosis and therapeutic targeting.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Eelco de Bree
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Charalabos Pothoulakis
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 10833, USA.
| |
Collapse
|
13
|
Silva I, Pinto R, Mateus V. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis. J Clin Med 2019; 8:jcm8101574. [PMID: 31581545 PMCID: PMC6832474 DOI: 10.3390/jcm8101574] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
The preclinical studies in vivo provide means of characterizing physiologic interactions when our understanding of such processes is insufficient to allow replacement with in vitro systems and play a pivotal role in the development of a novel therapeutic drug cure. Chemically induced colitis models are relatively easy and rapid to develop. The 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis model is one of the main models in the experimental studies of inflammatory bowel disease (IBD) since inflammation induced by TNBS mimics several features of Crohn’s disease. This review aims to summarize the existing literature and discuss different protocols for the induction of chronic model of TNBS-induced colitis. We searched MEDLINE via Pubmed platform for studies published through December 2018, using MeSH terms (Crohn Disease.kw) OR (Inflammatory Bowel Diseases.kw) OR (Colitis, Ulcerative.kw) AND (trinitrobenzenesulfonic acid.kw) AND (disease models, animal.kw) AND (mice.all). The inclusion criteria were original articles, preclinical studies in vivo using mice, chronic model of colitis, and TNBS as the inducer of colitis and articles published in English. Chronic TNBS-induced colitis is made with multiple TNBS intrarectal administrations in an average dose of 1.2 mg using a volume lower than 150 μL in 50% ethanol. The strains mostly used are Balb/c and C57BL/6 with 5–6 weeks. To characterize the preclinical model the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers like interferon (IFN)-γ, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of the inflammation. Experimental chronic colitis is induced by multiple rectal instillations of TNBS increasing doses in ethanol using Balb/c and C57BL/6 mice.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-218-980-400; Fax: +351-218-980-460
| |
Collapse
|
14
|
Ashizuka S, Kuroishi N, Nakashima K, Inatsu H, Kita T, Kitamura K. Adrenomedullin: A Novel Therapy for Intractable Crohn's Disease with a Loss of Response to Infliximab. Intern Med 2019; 58:1573-1576. [PMID: 30713309 PMCID: PMC6599938 DOI: 10.2169/internalmedicine.1791-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A 35-year-old man with refractory Crohn's disease showed a loss of response to infliximab after requiring treatment with infliximab at 10 mg/kg together with steroid to maintain remission. His symptoms recurred, and colonoscopy showed extensive active ulcers in the colon. Adrenomedullin therapy was started in addition to the conventional infliximab therapy. A few days after, his symptoms went into remission. Endoscopy at 2 and 7 weeks revealed significant mucosal remission without steroid therapy. Adrenomedullin promoted mucosal healing and led to the re-induction of remission in Crohn's disease in a patient with a loss of response to infliximab.
Collapse
Affiliation(s)
- Shinya Ashizuka
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Nobuko Kuroishi
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Koji Nakashima
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Haruhiko Inatsu
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Toshihiro Kita
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazuo Kitamura
- Division of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
15
|
Subcutaneously administered adrenomedullin exerts a potent therapeutic effect in a murine model of ulcerative colitis. Hum Cell 2018; 32:12-21. [PMID: 30306504 DOI: 10.1007/s13577-018-0219-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/30/2018] [Indexed: 01/01/2023]
Abstract
Adrenomedullin (AM) exerts a potent anti-inflammatory effect. Intrarectal or consecutive intravenous administrations of AM reduce pathological manifestations in rodent colitis models. However, in clinical applications, a safer administration route that provides stronger alleviation of patient burden is preferred. We investigated whether subcutaneously administered AM is effective against dextran sulfate sodium (DSS)-induced colitis. C57BL/6J mice were administered 1% DSS in drinking water and received AM at 8, 40 or 80 nmol/kg subcutaneously once a day for 7 consecutive days. Subcutaneously administered AM significantly and dose-dependently ameliorated body weight loss, diarrhea, and histological severity of colonic inflammation in DSS-treated mice. The AM therapeutic effect was associated with the upregulation of the production of autocrine AM, and expression of cAMP, c-fos, KLF4, and downregulation of STAT3 and NF-κB p65 phosphorylation, as well as a decrease in proinflammatory cytokine expression in the colon. Subcutaneous AM treatment potently attenuated DSS-induced colitis, which suggests that AM administered subcutaneously in ulcerative colitis (UC) patients may decrease diseases burden and improve quality of life.
Collapse
|
16
|
Endo M, Hori M, Ozaki H, Oikawa T, Odaguchi H, Hanawa T. Possible anti-inflammatory role of Zingiberis processum rhizoma, one component of the Kampo formula daikenchuto, against neutrophil infiltration through muscarinic acetylcholine receptor activation. J Pharmacol Sci 2018; 137:379-386. [PMID: 30145033 DOI: 10.1016/j.jphs.2018.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Zingiberis processum rhizoma (ZPR) is a major active component of daikenchuto (DKT), which induces anti-inflammatory action by inhibiting macrophage infiltration. However, it is unclear whether ZPR is related to DKT-induced anti-inflammatory action via a reduction of neutrophil infiltration against postoperative ileus (POI). In this study, we orally administered individual herbal components of DKT to mice four times before and after intestinal manipulation (IM). The anti-inflammatory action of each crude drug was evaluated by histochemical analysis of relevant molecules. The results showed that treatment with all herbal components of DKT significantly inhibits neutrophil infiltration. This inhibition of neutrophil infiltration by ZPR was significantly reduced in 5-hydroxytryptamine receptor 4 (5-HT4R) knockout (KO) mice but not in alpha-7 nicotinic acetylcholine receptor (α7nAChR) KO mice. Also, transient receptor potential ankyrin 1 (TRPA1) and muscarinic acetylcholine receptor (mAChR) antagonists partly and significantly inhibited the amelioration of neutrophil infiltration by ZPR. Therefore, DKT-induced anti-inflammatory action, mediated by inhibition of neutrophil infiltration in POI, depends, in part, on the effects of ZPR. ZPR activates TRPA1 channels, possibly in enterochromaffin (EC) cells, to release 5-HT. This 5-HT stimulates 5-HT4R in the myenteric plexus neurons to release acetylcholine, which, in turn, activates mAChR to inhibit inflammation in POI.
Collapse
Affiliation(s)
- Mari Endo
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Japan.
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan.
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | - Tetsuro Oikawa
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Japan
| | - Hiroshi Odaguchi
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Japan
| | - Toshihiko Hanawa
- Department of Clinical Research, Oriental Medicine Research Center, Kitasato University, Japan; Department of Oriental Medicine Research, Research and Development Center for Medical Education, Kitasato University School of Medicine, Japan; Department of Oriental Medicine, Doctoral Program of Medical Science, Kitasato University Graduate School, Japan
| |
Collapse
|
17
|
Martínez-Herrero S, Larrayoz IM, Narro-Íñiguez J, Rubio-Mediavilla S, Martínez A. Lack of Adrenomedullin Aggravates Acute TNBS-Induced Colitis Symptoms in Mice, Especially in Females. Front Physiol 2017; 8:1058. [PMID: 29311984 PMCID: PMC5742153 DOI: 10.3389/fphys.2017.01058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Adrenomedullin (AM) is a biologically active peptide which has been tested as a new therapy for inflammatory bowel disease (IBD) in animal models and in patients with severe ulcerative colitis. We used an inducible knockout (KO) mouse model for AM to evaluate the effects of endogenous levels of this peptide on the development and degree of pathogenesis of IBD. Acute colitis was induced in mice of both sexes by rectal instillation of 3 mg 2,4,6-trinitrobenzenesulfonic acid (TNBS) in 100 μL of 50% ethanol. Control mice received the same volume of saline in 50% ethanol. During the following 5 days, the weight and the disease severity index of all animals were recorded. After sacrifice, the inflammatory response was macroscopically assessed by analyzing the weight of the colon; by histomorphometrical analysis on histological sections; and by qRT-PCR determination of different inflammatory, adhesion, and regeneration molecules. TNBS administration caused a significantly more severe colitis in KO mice, and especially in females, when compared to wild type (WT) animals. Abrogation of the AM gene caused more severe diarrhea, accompanied by rectal bleeding, anorexia, and a significant increase of colon weight. Histological analysis of TNBS-treated KO mice showed large areas of lymphocyte infiltrates in the mucosa and submucosa, with loss of tissue architecture. No alterations were observed in the expression levels of inflammatory cytokines at the time of sacrifice; meanwhile lack of AM resulted in lower levels of some adhesion molecules and regeneration markers. Taken together, these results support the protective role of endogenous AM against the development of acute colitis, and that its effects are particularly beneficial on females.
Collapse
Affiliation(s)
| | - Ignacio M Larrayoz
- Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| | | | | | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| |
Collapse
|
18
|
Protective Effect of Daikenchuto on Dextran Sulfate Sodium-Induced Colitis in Mice. Gastroenterol Res Pract 2017; 2017:1298263. [PMID: 28210268 PMCID: PMC5292124 DOI: 10.1155/2017/1298263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/17/2023] Open
Abstract
Aim. To investigate the effect of daikenchuto (TJ-100; DKT) for ulcerative colitis (UC) model mouse and assess its anti-inflammatory mechanisms. Methods. We evaluated the effects of DKT on dextran sulfate sodium- (DSS-) induced experimental colitis. First, we assessed the short-term effects of DKT using two groups: 5% DSS group and 5% DSS with DKT group. Colon length; histological scores; and interleukin- (IL-) 10, IL-1β, and tumor necrosis factor-α mRNA expression profiles were analyzed using real-time PCR. Second, we assessed the long-term effects of DKT, by comparing survival time between 2% DSS and 2% DSS with DKT groups. Results. After 7 days, the colon lengths of DSS + DKT group were longer than those of the DSS group (mean values: 6.11 versus 5.69 cm, p < 0.05). Furthermore, compared to DSS group, the DSS + DKT group maintained significantly higher levels of serum hemoglobin (13.1 versus 10.7 g/dL, p < 0.05) and exhibited significantly higher expression levels of IL-10 (p < 0.05). The 2% DSS + DKT group exhibited significantly longer survival time than the 2% DSS group (70 versus 44 days, p < 0.01). Conclusion. Our results indicate that DKT prevented inflammation in the colon, indicating its potential as a new therapeutic agent for UC.
Collapse
|
19
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|
20
|
Vitale SG, Laganà AS, Rapisarda AMC, Scarale MG, Corrado F, Cignini P, Butticè S, Rossetti D. Role of urocortin in pregnancy: An update and future perspectives. World J Clin Cases 2016; 4:165-171. [PMID: 27458591 PMCID: PMC4945586 DOI: 10.12998/wjcc.v4.i7.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/09/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
The activities of corticotropin-releasing factor (CRF) and related peptides are mediated a number of receptors with seven transmembrane domains that are coupled to the Gs and Gq proteins. These receptors are known as CRF-Rs. In vitro studies have evidenced that urocortin (UCN) and CRF provoke an increase in the contractility of the uterus which is induced by endometrial prostaglandin F2a. Furthermore, through trophoblasts, it stimulates the secretion of adrenocorticotropic hormone (ACTH) and prostaglandin PGE2 and has a vasodilatory effect on the placenta. While it is well known that the placenta produces considerable quantities of CRF, several studies have, however, excluded that the placenta can generate significant quantities of UCN. In the short term, the human fetal adrenal gland produces more cortisol and dehydroepiandrosterone sulfate. The gestational tissues express UCN3 and UCN2 mRNA in cytotrophoblast and syncytiotrophoblast cells, while UCN2 is only to be found in the maternal and fetal vessels and amniotic cells. Nevertheless, gestational tissues express UCN2 and UCN3 differentially and do not stimulate placental ACTH secretion. In term pregnancies, maternal plasma levels of CRF and UCN are lower than at the beginning of pregnancy and are correlated to labor onset. Conversely, they do not decrease in post-term pregnancies. This evidence would seem to indicate that the fine-regulated expression of these neuropeptides is important in determining the duration of human gestation. In this scenario, low concentrations of UCN in the amniotic fluid at mid-term may be considered a sign of predisposition to preterm birth.
Collapse
|
21
|
Kominato K, Yamasaki H, Mitsuyama K, Takedatsu H, Yoshioka S, Kuwaki K, Kobayashi T, Yamauchi R, Fukunaga S, Tsuruta O, Torimura T. Increased levels of circulating adrenomedullin following treatment with TU-100 in patients with Crohn's disease. Mol Med Rep 2016; 14:2264-8. [DOI: 10.3892/mmr.2016.5488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/27/2016] [Indexed: 11/05/2022] Open
|
22
|
Adrenomedullin: A potential therapeutic target for retinochoroidal disease. Prog Retin Eye Res 2016; 52:112-29. [DOI: 10.1016/j.preteyeres.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
23
|
Hasdemir B, Mhaske P, Paruthiyil S, Garnett EA, Heyman MB, Matloubian M, Bhargava A. Sex- and corticotropin-releasing factor receptor 2- dependent actions of urocortin 1 during inflammation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1244-57. [PMID: 27053649 DOI: 10.1152/ajpregu.00445.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/25/2016] [Indexed: 12/20/2022]
Abstract
We investigated whether corticotropin-releasing factor receptor 2 (CRF2) and its high-affinity agonist urocortin 1 (Ucn1) mediate sex-specific signaling and immune responses. Intrarectal trinitrobenzene sulfonic acid was used to induce experimental colitis in wild-type, CRF2 knockout (CRF2KO), and heterozygous (CRF2Ht) mice of both sexes. Changes in plasma extravasation, organ weight, survival, immune cell numbers, inflammatory cytokines, and the MAPK signaling pathway were assessed. Stored intestinal biopsies from patients with Crohn's disease (CD) and age- and sex-matched individuals without inflammatory bowel disease (IBD) were examined by immunofluorescence and confocal microscopy to characterize Ucn1 and CRF receptor expression. CRF2Ht mice of both sexes showed decreased survival during colitis compared with other genotypes. Ucn1 improved survival in male mice alone. Ucn1 restored colon length and spleen and adrenal weight and decreased colonic TNF-α, IL-6, and IL-1β levels in male CRF2Ht mice alone. CRF2Ht mice of both sexes showed decreased phosphorylation of MAPK p38 and heat shock protein 27 (Hsp27) levels. Ucn1 restored p-Hsp27 levels in male CRF2Ht mice alone. Expression of the chaperone protein Hsp90 decreased during colitis, except in male CRF2Ht mice. Taken together, our data indicate that sex shows significant interaction with genotype and Ucn1 during colitis. Human duodenal and colonic biopsies revealed that sex-specific differences exist in levels of CRF receptors and Ucn1 expression in patients with CD compared with the matched non-IBD subjects. To conclude, Ucn1 mediates sex-specific immune and cellular signaling responses via CRF2, emphasizing the need for inclusion of females in preclinical studies.
Collapse
Affiliation(s)
- Burcu Hasdemir
- Department of Surgery, University of California, San Francisco; The Osher Center for Integrative Medicine, University of California, San Francisco
| | - Pallavi Mhaske
- Department of Surgery, University of California, San Francisco
| | | | | | - Melvin B Heyman
- Department of Pediatrics, University of California, San Francisco
| | - Mehrdad Matloubian
- Division of Rheumatology and Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, University of California, San Francisco
| | - Aditi Bhargava
- Department of Surgery, University of California, San Francisco; The Osher Center for Integrative Medicine, University of California, San Francisco;
| |
Collapse
|
24
|
Ashizuka S, Inatsu H, Kita T, Kitamura K. Adrenomedullin Therapy in Patients with Refractory Ulcerative Colitis: A Case Series. Dig Dis Sci 2016; 61:872-80. [PMID: 26470867 PMCID: PMC4761007 DOI: 10.1007/s10620-015-3917-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/02/2015] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Adrenomedullin (AM) is a multifunctional biologically active peptide that has an ameliorative effect against inflammatory bowel disease in several experimental models. We reported the first case where AM infusion dramatically improved symptoms and colonoscopy findings in patients with refractory ulcerative colitis (UC). To confirm the reproducibility of the efficacy and safety of AM infusion, this pilot study evaluated the clinical feasibility of intravenous administration of AM in patients with refractory UC. METHODS Seven patients with active refractory UC participated and received intravenous infusion of AM (1.5 pmol/kg/min) for 8 h daily for 14 days, and their Disease Activity Index (DAI) were evaluated before and 2 and 12 weeks after beginning AM administration. RESULTS DAI were improved in all patients after AM administration. Within 2 weeks, marked declines in DAI (≥ 3 points and ≥ 30%) were observed in six patients (85.7%), while a more modest decline was observed in one patient (14.3%). Overall mean DAI improved from 9.3 ± 0.6 at baseline to 4.6 ± 0.8 at 2 weeks, and then to 1.2 ± 0.5 at 12 weeks. Endoscopic examination revealed substantial amelioration of ulcers, with mucosal healing and scarring. Four patients remained in clinical remission 12 months after AM treatment. AM administration produced significant increases in plasma AM concentrations (approximately 2.5-fold) that had a mild effect on blood pressure and heart rate, but with no serious adverse effects. CONCLUSION AM is a potentially useful agent that acts via a novel mechanism to safely induce mucosal healing and clinical remission in patients with refractory UC.
Collapse
Affiliation(s)
- Shinya Ashizuka
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692 Japan
| | - Haruhiko Inatsu
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692 Japan
| | - Toshihiro Kita
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692 Japan
| | - Kazuo Kitamura
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692 Japan
| |
Collapse
|
25
|
Kato J, Kitamura K. Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol 2015; 764:140-148. [PMID: 26144371 DOI: 10.1016/j.ejphar.2015.06.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
The bioactive peptide adrenomedullin (AM) exerts pleiotropic actions in various organs and tissues. In the heart, AM has an inhibitory effect on ventricular remodeling, suppressing cardiomyocyte hypertrophy and the proliferation of cardiac fibroblasts. This pharmacological property was shown not only in rat models of acute myocardial infarction, but also clinically in patients with this cardiac disease. An originally characterized feature of AM was a potent vasodilatory effect, but this peptide was found to be important for vascular integrity and angiogenesis. AM-induced angiogenesis is involved in tumor growth, while AM inhibits apoptosis of some types of tumor cell. A unique pharmacological property is anti-inflammatory activity, which has been characterized in sepsis and inflammatory bowel diseases; thus, there is an ongoing clinical trial to test the efficacy of AM for patients with intractable ulcerative colitis. These activities are assumed to be mediated via the specific receptor formed by calcitonin receptor-like receptor and receptor activity-modifying protein 2 or 3, while some questions remain to be answered about the molecular mechanisms of this signal transduction system. Taking these findings together, AM is a bioactive peptide with pleiotropic effects, with potential as a therapeutic tool for a wide range of human diseases from myocardial infarction to malignant tumors or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Johji Kato
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | - Kazuo Kitamura
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
26
|
Yi Z, Fan H, Liu X, Tang Q, Zuo D, Yang J. Adrenomedullin improves intestinal epithelial barrier function by downregulating myosin light chain phosphorylation in ulcerative colitis rats. Mol Med Rep 2015; 12:3615-3620. [PMID: 26043783 DOI: 10.3892/mmr.2015.3887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/08/2015] [Indexed: 11/06/2022] Open
Abstract
Adrenomedullin (AM) is a pivotal endogenous vasoactive peptide, which can maintain epithelial barrier function in inflammatory bowel disease. Myosin light chain kinase (MLCK)‑dependent phosphorylated myosin light chain kinase (p‑MLC) is a key regulator of intestinal barrier function. The aim of the present study was to investigate the effect and mechanism of AM on the intestinal epithelial barrier in a rat model of ulcerative colitis (UC) induced by 2,4,6‑trinitro‑benzene‑sulfonic acid (TNBS). A total of 21 male Sprague‑Dawley rats were randomly divided into the following three groups and administered different agents for 7 days: The normal group (water and saline), model group (TNBS and saline) and the AM group (TNBS and AM; 1.0 µg). The weight of rats was recorded every day. Serum tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6) levels were detected using ELISA kits. Colon tissue was collected for the assessment of histological alterations. The protein expression of MLCK, p‑MLC and zonula occludens‑1 (ZO‑1) was examined by western blot analysis. Intestinal epithelial tight junctions were examined using transmission electron microscopy. The results demonstrated that in colitis model rats, the expression of TNF‑α, IL‑6, MLCK and p‑MLC significantly increased compared with normal rats. In addition, the expression of ZO‑1 decreased (P<0.05) and intestinal epithelial cell permeability increased. Following AM administration, TNF‑α, IL‑6, MLCK and p‑MLC expression significantly decreased compared with the model rats, the expression of ZO‑1 increased (P<0.05) and intestinal epithelial cell permeability reduced. These data indicate a protective effect of AM on intestinal epithelial barrier dysfunction via suppression of inflammatory cytokines and downregulation of MLCK‑p‑MLC in TNBS‑induced UC. In conclusion, AM/MLCK‑p‑MLC may be an important signaling pathway in the occurrence and development of UC.
Collapse
Affiliation(s)
- Zaifeng Yi
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qing Tang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dongmei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
27
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
28
|
Im E. Multi-facets of Corticotropin-releasing Factor in Modulating Inflammation and Angiogenesis. J Neurogastroenterol Motil 2015; 21:25-32. [PMID: 25540945 PMCID: PMC4288099 DOI: 10.5056/jnm14076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/20/2022] Open
Abstract
The family of corticotropin-releasing factor (CRF) composed of 4 ligands including CRF, urocortin (Ucn) 1, Ucn2, and Ucn3 is expressed both in the central nervous system and the periphery including the gastrointestinal tract. Two different forms of G protein coupled receptors, CRF1 and CRF2, differentially recognize CRF family members, mediating various biological functions. A large body of evidence suggests that the CRF family plays an important role in regulating inflammation and angiogenesis. Of particular interest is a contrasting role of the CRF family during inflammatory processes. The CRF family can exert both pro-and anti-inflammatory functions depending on the type of receptors, the tissues, and the disease phases. In addition, there has been a growing interest in a possible role of the CRF family in angiogenesis. Regulation of angiogenesis by the CRF family has been shown to modulate endogenous blood vessel formation, inflammatory neovascularization and cardiovascular function. This review outlines the effect of the CRF family and its receptors on 2 major biological events: inflammation and angiogenesis, and provides a possibility of their application for the treatment of inflammatory vascular diseases.
Collapse
Affiliation(s)
- Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
29
|
Mahajan S, Liao M, Barkan P, Takahashi K, Bhargava A. Urocortin 3 expression at baseline and during inflammation in the colon: corticotropin releasing factor receptors cross-talk. Peptides 2014; 54:58-66. [PMID: 24462512 PMCID: PMC4006935 DOI: 10.1016/j.peptides.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 02/07/2023]
Abstract
Urocortins (Ucn1-3), members of the corticotropin-releasing factor (CRF) family of neuropeptides, are emerging as potent immunomodulators. Localized, cellular expression of Ucn1 and Ucn2, but not Ucn3, has been demonstrated during inflammation. Here, we investigated the role of Ucn3 in a rat model of Crohn's colitis and the relative contribution of CRF receptors (CRF1 and CRF2) in regulating Ucn3 expression at baseline and during inflammation. Ucn3 mRNA and peptide were ubiquitously expressed throughout the GI tract in naïve rats. Ucn3 immunoreactivity was seen in epithelial cells and myenteric neurons. On day 1 of colitis, Ucn3 mRNA levels decreased by 80% and did not recover to baseline even by day 9. Next, we ascertained pro- or anti-inflammatory actions of Ucn3 during colitis. Surprisingly, unlike observed anti-inflammatory actions of Ucn1, exogenous Ucn3 did not alter histopathological outcomes during colitis and neither did it alter levels of pro-inflammatory cytokines IL-6 and TNF-α. At baseline, colon-specific knockdown of CRF1, but not CRF2 decreased Ucn3 mRNA by 78%, whereas during colitis, Ucn3 mRNA levels increased after CRF1 knockdown. In cultured cells, co-expression of CRF1+CRF2 attenuated Ucn3-stimulated intracellular Ca(2+) peak by 48% as compared to cells expressing CRF2 alone. Phosphorylation of p38 kinase increased by 250% during colitis and was significantly attenuated after Ucn3 administration. Thus, our results suggest that a balanced and coordinated expression of CRF receptors is required for proper regulation of Ucn3 at baseline and during inflammation.
Collapse
Affiliation(s)
- Shilpi Mahajan
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Min Liao
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paris Barkan
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA(1)
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Aditi Bhargava
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Pedreño M, Morell M, Robledo G, Souza-Moreira L, Forte-Lago I, Caro M, O'Valle F, Ganea D, Gonzalez-Rey E. Adrenomedullin protects from experimental autoimmune encephalomyelitis at multiple levels. Brain Behav Immun 2014; 37:152-63. [PMID: 24321213 PMCID: PMC3951662 DOI: 10.1016/j.bbi.2013.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
Adrenomedullin is a neuropeptide known for its cardiovascular activities and anti-inflammatory effects. Here, we investigated the effect of adrenomedullin in a model of experimental autoimmune encephalomyelitis (EAE) that mirrors chronic progressive multiple sclerosis. A short-term systemic treatment with adrenomedullin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord and the subsequent demyelination and axonal damage. This effect was exerted at multiple levels affecting both early and late events of the disease. Adrenomedullin decreased the presence/activation of encephalitogenic Th1 and Th17 cells and down-regulated several inflammatory mediators in peripheral lymphoid organs and central nervous system. Noteworthy, adrenomedullin inhibited the production by encephalitogenic cells of osteopontin and of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF), two critical cytokines in the development of EAE. At the same time, adrenomedullin increased the number of IL-10-producing regulatory T cells with suppressive effects on the progression of EAE. Furthermore, adrenomedullin generated dendritic cells with a semi-mature phenotype that impaired encephalitogenic responses in vitro and in vivo. Finally, adrenomedullin regulated glial activity and favored an active program of neuroprotection/regeneration. Therefore, the use of adrenomedullin emerges as a novel multimodal therapeutic approach to treat chronic progressive multiple sclerosis.
Collapse
Affiliation(s)
- Marta Pedreño
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Maria Morell
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Gema Robledo
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | | | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Francisco O'Valle
- Dept. Pathological Anatomy, Granada University School of Medicine, Granada, Spain
| | - Doina Ganea
- Dept. Immunology and Microbiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain.
| |
Collapse
|
31
|
Preventive Effect of TU-100 on a Type-2 Model of Colitis in Mice: Possible Involvement of Enhancing Adrenomedullin in Intestinal Epithelial Cells. Gastroenterol Res Pract 2013; 2013:384057. [PMID: 24348533 PMCID: PMC3852085 DOI: 10.1155/2013/384057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/29/2022] Open
Abstract
Purpose. Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel disease (IBD), have histopathologically and immunologically different characteristics. We previously reported that a traditional Japanese medicine, daikenchuto (TU-100), ameliorated a trinitrobenzenesulfonic acid- (TNBS-) induced type-1 model colitis exhibiting histopathological features of CD through adrenomedullin (ADM) enhancement. Our current aims were to examine whether TU-100 ameliorates a type-2 model colitis that histologically resembles UC and identify the active ingredients. Methods. TU-100 was administered orally to mice with oxazolone- (OXN-) induced type-2 model colitis. The morbidity was evaluated by body weight loss and the macroscopic score of colonic lesions. ADM was quantified using an EIA kit. Results. TU-100 prevented weight loss and colon ulceration. ADM production by intestinal epithelial cells was increased by TU-100 addition. Screening to identify active ingredients showed that [6]-shogaol and hydroxy α -sanshool enhanced ADM production. Conclusions. TU-100 exerted a protective effect in OXN-induced type-2 model colitis, indicating that TU-100 may be a beneficial agent for treatment of UC.
Collapse
|
32
|
Campos-Salinas J, Caro M, Cavazzuti A, Forte-Lago I, Beverley SM, O'Valle F, Gonzalez-Rey E. Protective role of the neuropeptide urocortin II against experimental sepsis and leishmaniasis by direct killing of pathogens. THE JOURNAL OF IMMUNOLOGY 2013; 191:6040-51. [PMID: 24249730 DOI: 10.4049/jimmunol.1301921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We currently face an alarming resurgence in infectious diseases characterized by antimicrobial resistance and therapeutic failure. This has generated the urgent need of developing new therapeutic approaches that include agents with nontraditional modes of action. A recent interest focused on approaches based on our natural immune defenses, especially on peptides that combine innate antimicrobial activity against diverse pathogens and immunoregulatory functions. In this study, to our knowledge, we describe for the first time the antimicrobial activity of the neuropeptide urocortin II (UCNII) against a panel of Gram-positive and Gram-negative bacteria and tropical parasites of the genus Leishmania. Importantly, this cytotoxicity was selective for pathogens, because UCNII did not affect mammalian cell viability. Structurally, UCNII has a cationic and amphipathic design that resembles antimicrobial peptides. Using mutants and UCNII fragments, we determined the structural requirements for the interaction between the peptide and the surface of pathogen. Following its binding to pathogen, UCNII caused cell death through different membrane-disrupting mechanisms that involve aggregation and membrane depolarization in bacteria and pore formation in Leishmania. Noteworthily, UCNII killed the infective form of Leishmania major even inside the infected macrophages. Consequently, UCNII prevented mortality caused by polymicrobial sepsis and ameliorated pathological signs of cutaneous leishmaniasis. Besides its presence in body physical and mucosal barriers, we found that innate immune cells produce UCNII in response to infections. Therefore, UCNII could be considered as an ancient highly-conserved host peptide involved in the natural antimicrobial defense and emerge as an attractive alternative to current treatments for microbial disorders with associated drug resistances.
Collapse
Affiliation(s)
- Jenny Campos-Salinas
- Institute of Parasitology and Biomedicine "López-Neyra," Spanish National Research Council, Granada 18016, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Kanazawa A, Sako M, Takazoe M, Tadami T, Kawaguchi T, Yoshimura N, Okamoto K, Yamana T, Sahara R. Daikenchuto, a traditional Japanese herbal medicine, for the maintenance of surgically induced remission in patients with Crohn's disease: a retrospective analysis of 258 patients. Surg Today 2013; 44:1506-12. [PMID: 24129965 PMCID: PMC4097200 DOI: 10.1007/s00595-013-0747-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 08/07/2013] [Indexed: 12/31/2022]
Abstract
Purpose Despite numerous studies, the best postoperative therapy for Crohn’s disease is still undefined. We retrospectively evaluated the effects of postoperative maintenance therapy with daikenchuto, a traditional Japanese Kampo medicine, on the reoperation rate at 3 years in patients with Crohn’s disease. Methods A total of 258 patients who underwent surgery for Crohn’s disease were identified for the study. For the prevention of postoperative recurrence, patients were stratified to receive 5-aminosalicylic acid, azathioprine or daikenchuto, and their effects on preventing reoperation at 3 years were evaluated. Results Of the 258 patients, 44 required reoperation with intestinal resection within 3 years due to disease recurrence. The 3-year reoperation rate was significantly lower in the postoperative daikenchuto group than in the non-daikenchuto group (11.3 vs. 24.5 %, P = 0.01), and was similarly significantly lower in the postoperative 5-aminosalicylic acid group than in the non-5-aminosalicylic acid group (14.8 vs. 29.6 %, P = 0.0049). A multivariate Cox analysis showed that postoperative daikenchuto (P = 0.035) and postoperative 5-aminosalicylic acid (P = 0.022) were significantly and independently associated with the rate of reoperation at 3 years in patients with Crohn’s disease. Conclusion We propose that continuous daikenchuto therapy is a clinically useful and feasible maintenance therapy for the prevention of postoperative reoperation in patients with Crohn’s disease.
Collapse
Affiliation(s)
- Amane Kanazawa
- Department of Coloproctology, Social Health Insurance Medical Center, 3-22-1 Hyakunincho, Shinjuku-ku, Tokyo, 169-0073, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kubat E, Mahajan S, Liao M, Ackerman L, Ohara PT, Grady EF, Bhargava A. Corticotropin-releasing factor receptor 2 mediates sex-specific cellular stress responses. Mol Med 2013; 19:212-22. [PMID: 23835907 DOI: 10.2119/molmed.2013.00036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 01/11/2023] Open
Abstract
Although females suffer twice as much as males from stress-related disorders, sex-specific participating and pathogenic cellular stress mechanisms remain uncharacterized. Using corticotropin-releasing factor receptor 2-deficient (Crhr2-/-) and wild-type (WT) mice, we show that CRF receptor type 2 (CRF2) and its high-affinity ligand, urocortin 1 (Ucn1), are key mediators of the endoplasmic reticulum (ER) stress response in a murine model of acute pancreatic inflammation. Ucn1 was expressed de novo in acinar cells of male, but not female WT mice during acute inflammation. Upon insult, acinar Ucn1 induction was markedly attenuated in male but not female Crhr2-/- mice. Crhr2-/- mice of both sexes show exacerbated acinar cell inflammation and necrosis. Electron microscopy showed mild ER damage in WT male mice and markedly distorted ER structure in Crhr2-/- male mice during pancreatitis. WT and Crhr2-/- female mice showed similarly distorted ER ultrastructure that was less severe than distortion seen in Crhr2-/- male mice. Damage in ER structure was accompanied by increased ubiquitination, peIF2, and mistargeted localization of vimentin in WT mice that was further exacerbated in Crhr2-/- mice of both sexes during pancreatitis. Exogenous Ucn1 rescued many aspects of histological damage and cellular stress response, including restoration of ER structure in male WT and Crhr2-/- mice, but not in females. Instead, females often showed increased damage. Thus, specific cellular pathways involved in coping and resolution seem to be distinct to each sex. Our results demonstrate the importance of identifying sex-specific pathogenic mechanisms and their value in designing effective therapeutics.
Collapse
Affiliation(s)
- Eric Kubat
- Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Chatzaki E, Anton PA, Million M, Lambropoulou M, Constantinidis T, Kolios G, Taché Y, Grigoriadis DE. Corticotropin-releasing factor receptor subtype 2 in human colonic mucosa: Down-regulation in ulcerative colitis. World J Gastroenterol 2013; 19:1416-1423. [PMID: 23539366 PMCID: PMC3602501 DOI: 10.3748/wjg.v19.i9.1416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/05/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess corticotropin-releasing factor receptor 2 (CRF2) expression in the colon of healthy subjects and patients with ulcerative colitis (UC).
METHODS: We examined CRF2 gene and protein expression in the distal/sigmoid colonic mucosal biopsies from healthy subjects and patients with UC (active or disease in remission), human immunodeficiency virus (HIV) and functional bowel disease (FBD) by reverse transcription-polymerase chain reaction and immunofluorescence.
RESULTS: Gene expression of CRF2 was demonstrated in the normal human colonic biopsies, but not in the human colorectal adenocarcinoma cell line Caco2. Receptor protein localization showed immunoreactive CRF2 receptors in the lamina propria and in the epithelial cells of the distal/sigmoid biopsy samples. Interestingly, CRF2 immunoreactivity was no longer observed in epithelial cells of patients with mild-moderately active UC and disease in remission, while receptor protein expression did not change in the lamina propria. No differences in CRF2 expression profile were observed in distal/sigmoid intestinal biopsies from HIV infection and FBD patients, showing no signs of inflammation.
CONCLUSION: The down-regulation of the CRF2 receptor in the distal/sigmoid biopsies of UC patients is indicative of change in CRF2 signalling associated with the process of inflammation.
Collapse
|
36
|
Kono T, Kaneko A, Omiya Y, Ohbuchi K, Ohno N, Yamamoto M. Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine. Am J Physiol Gastrointest Liver Physiol 2013; 304:G428-36. [PMID: 23275609 PMCID: PMC3566615 DOI: 10.1152/ajpgi.00356.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The functional roles of transient receptor potential (TRP) channels in the gastrointestinal tract have garnered considerable attention in recent years. We previously reported that daikenchuto (TU-100), a traditional Japanese herbal medicine, increased intestinal blood flow (IBF) via adrenomedullin (ADM) release from intestinal epithelial (IE) cells (Kono T et al. J Crohns Colitis 4: 161-170, 2010). TU-100 contains multiple TRP activators. In the present study, therefore, we examined the involvement of TRP channels in the ADM-mediated vasodilatatory effect of TU-100. Rats were treated intraduodenally with the TRP vanilloid type 1 (TRPV1) agonist capsaicin (CAP), the TRP ankyrin 1 (TRPA1) agonist allyl-isothiocyanate (AITC), or TU-100, and jejunum IBF was evaluated using laser-Doppler blood flowmetry. All three compounds resulted in vasodilatation, and the vasodilatory effect of TU-100 was abolished by a TRPA1 antagonist but not by a TRPV1 antagonist. Vasodilatation induced by AITC and TU-100 was abrogated by anti-ADM antibody treatment. RT-PCR and flow cytometry revealed that an IEC-6 cell line originated from the small intestine and purified IE cells expressed ADM and TRPA1 but not TRPV1. AITC increased ADM release in IEC cells remarkably, while CAP had no effect. TU-100 and its ingredient 6-shogaol (6SG) increased ADM release dose-dependently, and the effects were abrogated by a TRPA1 antagonist. 6SG showed similar TRPA1-dependent vasodilatation in vivo. These results indicate that TRPA1 in IE cells may play an important role in controlling bowel microcirculation via ADM release. Epithelial TRPA1 appears to be a promising target for the development of novel strategies for the treatment of various gastrointestinal disorders.
Collapse
Affiliation(s)
- Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Hisgashi Tokushukai Hospital, Hokkaido, Japan.
| | - Atsushi Kaneko
- 2Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Hokkaido, Japan; and ,3Tsumura Research Laboratories, Tsumura and Co., Ibaraki, Japan
| | - Yuji Omiya
- 2Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Hokkaido, Japan; and ,3Tsumura Research Laboratories, Tsumura and Co., Ibaraki, Japan
| | - Katsuya Ohbuchi
- 3Tsumura Research Laboratories, Tsumura and Co., Ibaraki, Japan
| | - Nagisa Ohno
- 3Tsumura Research Laboratories, Tsumura and Co., Ibaraki, Japan
| | | |
Collapse
|
37
|
Ashizuka S, Kita T, Inatsu H, Kitamura K. Adrenomedullin: a novel therapy for intractable ulcerative colitis. Inflamm Bowel Dis 2013; 19:E26-7. [PMID: 22294498 DOI: 10.1002/ibd.22891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
38
|
Jiménez P, Cordoba-Diaz D, Cabrero P, Aracil M, Gayoso MJ, Garrosa M, Cordoba-Diaz M, Girbés T. Plasma Accumulations of Vitamin B6 from an Oral Dose in a New Reversible Model for Mouse Gut Injury and Regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.49118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology 2013; 144:36-49. [PMID: 23063970 DOI: 10.1053/j.gastro.2012.10.003] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/23/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022]
Abstract
Psycho-neuro-endocrine-immune modulation through the brain-gut axis likely has a key role in the pathogenesis of inflammatory bowel disease (IBD). The brain-gut axis involves interactions among the neural components, including (1) the autonomic nervous system, (2) the central nervous system, (3) the stress system (hypothalamic-pituitary-adrenal axis), (4) the (gastrointestinal) corticotropin-releasing factor system, and (5) the intestinal response (including the intestinal barrier, the luminal microbiota, and the intestinal immune response). Animal models suggest that the cholinergic anti-inflammatory pathway through an anti-tumor necrosis factor effect of the efferent vagus nerve could be a therapeutic target in IBD through a pharmacologic, nutritional, or neurostimulation approach. In addition, the psychophysiological vulnerability of patients with IBD, secondary to the potential presence of any mood disorders, distress, increased perceived stress, or maladaptive coping strategies, underscores the psychological needs of patients with IBD. Clinicians need to address these issues with patients because there is emerging evidence that stress or other negative psychological attributes may have an effect on the disease course. Future research may include exploration of markers of brain-gut interactions, including serum/salivary cortisol (as a marker of the hypothalamic-pituitary-adrenal axis), heart rate variability (as a marker of the sympathovagal balance), or brain imaging studies. The widespread use and potential impact of complementary and alternative medicine and the positive response to placebo (in clinical trials) is further evidence that exploring other psycho-interventions may be important therapeutic adjuncts to the conventional therapeutic approach in IBD.
Collapse
Affiliation(s)
- Bruno L Bonaz
- Stress et Interactions Neuro-Digestives, Grenoble Institut des Neurosciences, Centre de Recherche INSERM 836 UJF-CEA-CHU, Grenoble, France.
| | | |
Collapse
|
40
|
Hayashi Y, Narumi K, Tsuji S, Tsubokawa T, Nakaya MA, Wakayama T, Zuka M, Ohshima T, Yamagishi M, Okada T. Impact of adrenomedullin on dextran sulfate sodium-induced inflammatory colitis in mice: insights from in vitro and in vivo experimental studies. Int J Colorectal Dis 2011; 26:1453-62. [PMID: 21674139 DOI: 10.1007/s00384-011-1254-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although adrenomedullin (AM) is known to ameliorate inflammatory processes, few data exist regarding the effect of AM on inflammatory colitis. Therefore, we examined the effect of AM on inflammatory response in vitro and in vivo colitis model. METHODS In mice experimental colitis induced by 3% dextran sulfate sodium (DSS) in drinking water for 7 days, AM with 225-900 μg/kg in 0.5 ml of saline or saline alone were given intraperitoneally once a day. In the in vitro experiment, we determined the cytokine response in THP-1 cell activated by lipopolysaccharide with or without AM of 10 nM. Additionally, we performed wound healing assay in Caco-2 cell interfered by DSS with or without AM of 100 nM. RESULTS In the colitis model, AM significantly reduced the disease activity index, histological score, and local production of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in accordance with reduction of serum amyloid A levels. Secretion of TNF-α in lipopolysaccharide-stimulated THP-1 cells was significantly reduced in the presence of AM. The distance of wound healing interfered by 0.25% DSS was significantly improved in the presence of AM of 100 nM. CONCLUSIONS These results demonstrate that AM could ameliorate DSS-induced experimental colitis possibly through suppression of systemic and local production of cytokines such as TNF-α, associated with acceleration of ulcer reepithelialization and colon tissue regeneration.
Collapse
Affiliation(s)
- Yoshiaki Hayashi
- Department of Internal Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Talero E, Alvarez de Sotomayor M, Sánchez-Fidalgo S, Motilva V. Vascular contribution of adrenomedullin to microcirculatory improvement in experimental colitis. Eur J Pharmacol 2011; 670:601-7. [PMID: 21958875 DOI: 10.1016/j.ejphar.2011.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 01/14/2023]
Abstract
The effect of adrenomedullin (AM), a peptide that has demonstrated vasodilatory activity, was studied in the colon and small mesenteric arteries of rats in a chronic model of inflammatory bowel disease. AM (50 ng/kg/day) was administered i.p. daily, starting 24h after trinitrobenzensulfonic acid (TNBS, 30 mg) instillation. After 14 days, rats were sacrificed, colons were macroscopically analyzed and biochemical parameters (myeloperoxidase activity, cytokines, cyclooxygenase-2 (COX-2) as well as inducible nitric oxide synthase (iNOS) expression) were determined. Vascular function of small mesenteric arteries was assessed by addition of phenylephrine (10⁻⁸ to 10⁻⁴ mol/L) and participation of COX and NOS pathways was also evaluated by using different inhibitors: indomethacin, NS-398, L-NNA, and 1400 w. Chronic AM treatment significantly reduced colonic macroscopic damage and inflammation markers. TNBS instillation induced COX-2 and iNOS expressions in colon and small mesenteric arteries; AM treatment decreased COX-2 expression only in microvessels from rats with colitis. An attenuation of phenylephrine-induced contraction was detected in small mesenteric arteries from both TNBS and AM-treated rats. COX and NOS inhibitors altered the contractile ability of phenylephrine in small mesenteric arteries from TNBS rats, suggesting the involvement of COX-2 and iNOS derived factors in the deleterious effect of TNBS on vascular reactivity; AM administration was able to reduce such alteration. Finally, treatment with the peptide significantly reduced colonic nitric oxide (NO) levels, without affecting plasma concentration. In conclusion, AM showed beneficial effects in the restoration of vascular function through the regulation of vasoactive products derived from COX-2 and iNOS.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, School of Pharmacy, University of Seville, Spain.
| | | | | | | |
Collapse
|
42
|
Chang J, Adams MR, Clifton MS, Liao M, Brooks JH, Hasdemir B, Bhargava A. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol 2011; 300:G884-94. [PMID: 21330446 PMCID: PMC3094137 DOI: 10.1152/ajpgi.00319.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.
Collapse
Affiliation(s)
- Jen Chang
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Melanie R. Adams
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Matthew S. Clifton
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Min Liao
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Julia H. Brooks
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Burcu Hasdemir
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Aditi Bhargava
- Department of Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
43
|
Buckinx R, Adriaensen D, Nassauw LV, Timmermans JP. Corticotrophin-releasing factor, related peptides, and receptors in the normal and inflamed gastrointestinal tract. Front Neurosci 2011; 5:54. [PMID: 21541251 PMCID: PMC3082851 DOI: 10.3389/fnins.2011.00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/01/2011] [Indexed: 12/13/2022] Open
Abstract
Corticotrophin-releasing factor (CRF) is mainly known for its role in the stress response in the hypothalamic–pituitary–adrenal axis. However, increasing evidence has revealed that CRF receptor signaling has additional peripheral effects. For instance, activation of CRF receptors in the gastrointestinal tract influences intestinal permeability and motility. These receptors, CRF1 and CRF2, do not only bind CRF, but are also activated by urocortins. Most interestingly, CRF-related signaling also assumes an important role in inflammatory bowel diseases in that it influences inflammatory processes, such as cytokine secretion and immune cell activation. These effects are characterized by an often contrasting function of CRF1 and CRF2. We will review the current data on the expression of CRF and related peptides in the different regions of the gastrointestinal tract, both in normal and inflamed conditions. We next discuss the possible functional roles of CRF signaling in inflammation. The available data clearly indicate that CRF signaling significantly influences inflammatory processes although there are important species and inflammation model differences. Although further research is necessary to elucidate this apparently delicately balanced system, it can be concluded that CRF-related peptides and receptors are (certainly) important candidates in the modulation of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, University of Antwerp Antwerp, Belgium
| | | | | | | |
Collapse
|
44
|
Corticotropin-releasing factor family and its receptors: pro-inflammatory or anti-inflammatory targets in the periphery? Inflamm Res 2011; 60:715-21. [DOI: 10.1007/s00011-011-0329-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 02/21/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022] Open
|
45
|
Talero E, Sánchez-Fidalgo S, Villegas I, de la Lastra CA, Illanes M, Motilva V. Role of different inflammatory and tumor biomarkers in the development of ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis 2011; 17:696-710. [PMID: 20722052 DOI: 10.1002/ibd.21420] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most severe complication in inflammatory bowel disease (IBD). In the present study we investigated different mechanistic links between chronic colonic inflammation and its progression to adenocarcinoma. Along these lines, given that adrenomedullin (AM) has been implicated in carcinogenesis, we also analyzed changes in its colonic expression. METHODS Mice were exposed to 5, 10, and 15 cycles of dextran sulfate sodium (DSS); each cycle consisted of 0.7% DSS for 1 week followed by distilled water for 10 days. After each period, macroscopic and histological studies, as well as characterization of inflammatory and tumor biomarkers, were carried out. RESULTS The disease activity index (DAI) showed that the disease was present from the third cycle and it gradually increased during the course of DSS treatment. Macroscopic tumors were only seen after 15 cycles, and microscopic study showed that inflammation, dysplasia, and adenocarcinomas correlated with DSS cycles. β-Catenin and proliferating cell nuclear antigen expressions progressively increased in animals treated with the different cycles of DSS. TNF-α and IFN-γ showed the highest production at the tenth cycle. COX-2, mPGES-1, and iNOS levels were also appreciably higher at the fifth and tenth cycles. Moreover, we observed a progressive enhancement in AM expression and changes in its intracellular location during the progression of the disease. CONCLUSIONS Our results show an early induction of proinflammatory factors, which may contribute to the development of colon cancer, as well as demonstrate, for the first time, the expression of AM in IBD-derived CRC.
Collapse
Affiliation(s)
- E Talero
- Department of Pharmacology, School of Pharmacy, University of Seville, Seville, Spain.
| | | | | | | | | | | |
Collapse
|
46
|
MacManus CF, Campbell EL, Keely S, Burgess A, Kominsky DJ, Colgan SP. Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization. FASEB J 2011; 25:1856-64. [PMID: 21350119 DOI: 10.1096/fj.10-170316] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In intact mucosal tissues, epithelial cells are anatomically positioned in proximity to a number of subepithelial cell types, including endothelia. A number of recent studies have suggested that imbalances between energy supply and demand can result in "inflammatory hypoxia." Given these associations, we hypothesized that endothelial-derived, hypoxia-inducible mediators might influence epithelial function. Guided by cDNA microarray analysis of human microvascular endothelial cells (HMEC-1 line) subjected to hypoxia (pO(2) 20 torr, 8 h), we identified adrenomedullin (ADM) as a prominent hypoxia-inducible factor (HIF) that acts on epithelial cells through cell surface receptors. We assessed the functional ability for exogenous ADM to signal in human intestinal Caco2 cells in vitro by demonstrating a dose-dependent induction of Erk1/2phosphorylation. Further analysis revealed that ADM deneddylates cullin-2 (Cul2), whose action has been demonstrated to control the activity of HIF. Caco2 cells stably expressing a hypoxic response element (HRE)-driven luciferase promoter confirmed that ADM activates the HIF signaling pathway. Extensions of these studies revealed an increase in canonical HIF-1-dependent genes following stimulation with ADM. To define physiological relevance, we investigated the effect of ADM in a DSS model of murine colitis. Administration of ADM resulted in reduced inflammatory indices and less severe histological inflammation compared to vehicle controls. Analysis of tissue and serum cytokines showed a marked and significant inhibition of colitis-associated TNF-α, IL-1β, and KC. Analysis of circulating ADM demonstrated an increase in serum ADM in murine models of colitis. Taken together, these results identify ADM as an endogenously generated vascular mediator that functions as a mucosal protective factor through fine tuning of HIF activity.
Collapse
Affiliation(s)
- Christopher F MacManus
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | | | | | | | | | | |
Collapse
|
47
|
Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E. Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology 2011; 94:89-100. [PMID: 21734355 DOI: 10.1159/000328636] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/17/2011] [Indexed: 01/14/2023]
Abstract
Although necessary to eliminate pathogens, inflammation can lead to serious deleterious effects in the host if left unchecked. During the inflammatory response, further damage may arise from potential autoimmune responses occurring when the immune cells and molecules that respond to pathogen-derived antigens also react to self-antigens. In this sense, the identification of endogenous factors that control exacerbated immune responses is a key goal for the development of new therapeutic approaches for inflammatory and autoimmune diseases. Some neuropeptides that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that could collaborate in tuning the balanced steady state of the immune system. These neuropeptides participate in maintaining immune tolerance through two distinct mechanisms: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T cell effectors. Indeed, a functioning neuropeptide system contributes to general health, and alterations in the levels of these neuropeptides and/or their receptors lead to changes in susceptibility to inflammatory and autoimmune diseases. Recently, we found that some neuropeptides also have antimicrobial and antiparasitic actions, suggesting that they could act as primary mediators of innate defense, even in the most primitive organisms. In this review, we use the vasoactive intestinal peptide as example of an immunomodulatory neuropeptide to summarize the most relevant data found for other neuropeptides with similar characteristics, including adrenomedullin, urocortin, cortistatin and ghrelin.
Collapse
Affiliation(s)
- Luciana Souza-Moreira
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | | | | | | |
Collapse
|
48
|
Abstract
Borrelia burgdorferi stimulates a strong inflammatory response during infection of a mammalian host. To understand the mechanisms of immune regulation employed by the host to control this inflammatory response, we focused our studies on adrenomedullin, a peptide produced in response to bacterial stimuli that exhibits antimicrobial activity and regulates inflammatory responses by modulating the expression of inflammatory cytokines. Specifically, we investigated the effect of B. burgdorferi on the expression of adrenomedullin as well as the ability of adrenomedullin to dampen host inflammatory responses to the spirochete. The concentration of adrenomedullin in the synovial fluid of untreated Lyme arthritis patients was elevated compared with that in control osteoarthritis patient samples. In addition, coculture with B. burgdorferi significantly increased the expression of adrenomedullin in RAW264.7 macrophages through MyD88-, phosphatidylinositol 3-kinase (PI3-K)-, and p38-dependent signaling cascades. Furthermore, the addition of exogenous adrenomedullin to B. burgdorferi-stimulated RAW264.7 macrophages resulted in a significant decrease in the induction of proinflammatory cytokines. Taken together, these results suggest that B. burgdorferi increases the production of adrenomedullin, which in turn negatively regulates the B. burgdorferi-stimulated inflammatory response.
Collapse
|
49
|
Hurtado O, Serrano J, Sobrado M, Fernández AP, Lizasoain I, Martínez-Murillo R, Moro MA, Martínez A. Lack of adrenomedullin, but not complement factor H, results in larger infarct size and more extensive brain damage in a focal ischemia model. Neuroscience 2010; 171:885-92. [PMID: 20854881 DOI: 10.1016/j.neuroscience.2010.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
Abstract
Adrenomedullin (AM) and its binding protein, complement factor H (FH), are expressed throughout the brain. In this study we used a brain-specific conditional knockout for AM and a complete knockout for FH to investigate the effect of these molecules on the pathophysiology of stroke. Following 48 h of middle cerebral artery permanent occlusion, there was a statistically significant infarct size increase in animals lacking AM when compared to their wild type littermates. In contrast, lack of FH did not affect infarct volume. To investigate some of the mechanisms by which lack of AM may augment brain damage, markers of nitrosative stress, apoptosis, and autophagy were studied at the mRNA and protein levels. There was a significant increase of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP9), fractin, and Beclin-1 in the peri-infarct area of AM-deficient mice when compared to their wild type counterparts and to contralateral and sham-operated controls. These data suggest that AM exerts a neuroprotective action in the brain and that this protection may be mediated by regulation of iNOS, matrix metalloproteases, and inflammatory mediators. In the future, substances that increase AM actions in the central nervous system may be used as potential neuroprotective agents in stroke.
Collapse
Affiliation(s)
- O Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kono T, Kaneko A, Hira Y, Suzuki T, Chisato N, Ohtake N, Miura N, Watanabe T. Anti-colitis and -adhesion effects of daikenchuto via endogenous adrenomedullin enhancement in Crohn's disease mouse model. J Crohns Colitis 2010; 4:161-70. [PMID: 21122500 DOI: 10.1016/j.crohns.2009.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/28/2009] [Accepted: 09/19/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Adrenomedullin (ADM) is a member of the calcitonin family of regulatory peptides, and is reported to have anti-inflammatory effects in animal models of Crohn's disease (CD). We investigated the therapeutic effects of daikenchuto (DKT), an extracted Japanese herbal medicine, on the regulation of endogenous ADM in the gastrointestinal tract in a CD mouse model. METHODS Colitis was induced in mice by intrarectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS); afterwards, DKT was given orally. Colonic damage was assessed on day 3 by macroscopic and microscopic observation, enzyme immunoassays of proinflammatory cytokines in the colonic mucosa, and serum amyloid A (SAA), a hepatic acute-phase protein. To determine the involvement of ADM, an ADM antagonist was instilled intrarectally before DKT administration. The effect of DKT on ADM production by intestinal epithelial cells was evaluated by enzyme immunoassay and real-time PCR. RESULTS DKT significantly attenuated mucosal damage and colonic inflammatory adhesions, and inhibited elevations of SAA in plasma and the proinflammatory cytokines TNFα and IFNγ in the colon. Small and large intestinal epithelial cells produced higher levels of ADM after DKT stimulation. A DKT-treated IEC-6 cell line also showed enhanced ADM production at protein and mRNA levels. Abolition of this effect by pretreatment with an ADM antagonist shows that DKT appears to exert its anti-colitis effect via up-regulation of endogenous ADM in the intestinal tract. CONCLUSION DKT exerts beneficial effects in a CD mouse model through endogenous release and production of ADM. Endogenous ADM may be a therapeutic target for CD.
Collapse
Affiliation(s)
- Toru Kono
- Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical College, Hokkaido 078-8510, Japan.
| | | | | | | | | | | | | | | |
Collapse
|