1
|
Kotsari M, Dimopoulou V, Koskinas J, Armakolas A. Immune System and Hepatocellular Carcinoma (HCC): New Insights into HCC Progression. Int J Mol Sci 2023; 24:11471. [PMID: 37511228 PMCID: PMC10380581 DOI: 10.3390/ijms241411471] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
According to the WHO's recently released worldwide cancer data for 2020, liver cancer ranks sixth in morbidity and third in mortality among all malignancies. Hepatocellular carcinoma (HCC), the most common kind of liver cancer, accounts approximately for 80% of all primary liver malignancies and is one of the leading causes of death globally. The intractable tumor microenvironment plays an important role in the development and progression of HCC and is one of three major unresolved issues in clinical practice (cancer recurrence, fatal metastasis, and the refractory tumor microenvironment). Despite significant advances, improved molecular and cellular characterization of the tumor microenvironment is still required since it plays an important role in the genesis and progression of HCC. The purpose of this review is to present an overview of the HCC immune microenvironment, distinct cellular constituents, current therapies, and potential immunotherapy methods.
Collapse
Affiliation(s)
- Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki Dimopoulou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023; 77:1773-1796. [PMID: 35989535 PMCID: PMC9941399 DOI: 10.1002/hep.32740] [Citation(s) in RCA: 297] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 12/19/2022]
Abstract
The liver is the sixth most common site of primary cancer in humans and the fourth leading cause of cancer-related death in the world. Hepatocellular carcinoma (HCC) accounts for 90% of liver cancers. HCC is a prevalent disease with a progression that is modulated by the immune system. Half of the patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib, as a first-line therapy. In the last few years, immune-checkpoint inhibitors (ICIs) have revolutionized cancer therapy and have gained an increased interest in the treatment of HCC. In 2020, the combination of atezolizumab (anti-programmed death-ligand 1) and bevacizumab (anti-vascular endothelial growth factor) improved overall survival over sorafenib, resulting in Food and Drug Administration (FDA) approval as a first-line treatment for patients with advanced HCC. Despite these major advances, a better molecular and cellular characterization of the tumor microenvironment is still needed because it has a crucial role in the development and progression of HCC. Inflamed (hot) and noninflamed (cold) HCC tumors and genomic signatures have been associated with response to ICIs. However, there are no additional biomarkers to guide clinical decision-making. Other immune-targeting strategies, such as adoptive T-cell transfer, vaccination, and virotherapy, are currently under development. This review provides an overview on the HCC immune microenvironment, different cellular players, current available immunotherapies, and potential immunotherapy modalities.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
| | - Amaia Lujambio
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
- Graduate School of Biomedical Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
| |
Collapse
|
3
|
HCV p7 as a novel vaccine-target inducing multifunctional CD4 + and CD8 + T-cells targeting liver cells expressing the viral antigen. Sci Rep 2019; 9:14085. [PMID: 31575882 PMCID: PMC6773770 DOI: 10.1038/s41598-019-50365-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent treatment advances for chronic hepatitis C virus (HCV) infection, a vaccine is urgently needed for global control of this important liver pathogen. The lack of robust immunocompetent HCV infection models makes it challenging to identify correlates of protection and test vaccine efficacy. However, vigorous CD4+ and CD8+ T-cell responses are detected in patients that spontaneously resolve acute infection, whereas dysfunctional T-cell responses are a hallmark of chronic infection. The HCV p7 protein, forming ion-channels essential for viral assembly and release, has not previously been pursued as a vaccine antigen. Herein, we demonstrated that HCV p7 derived from genotype 1a and 1b sequences are highly immunogenic in mice when employed as overlapping peptides formulated as nanoparticles with the cross-priming adjuvant, CAF09. This approach induced multifunctional cytokine producing CD4+ and CD8+ T-cells targeting regions of p7 that are subject to immune pressure during HCV infection in chimpanzees and humans. Employing a surrogate in vivo challenge model of liver cells co-expressing HCV-p7 and GFP, we found that vaccinated mice cleared transgene expressing cells. This study affirms the potential of a T-cell inducing nanoparticle vaccine platform to target the liver and introduces HCV p7 as a potential target for HCV vaccine explorations.
Collapse
|
4
|
Levander S, Holmström F, Frelin L, Ahlén G, Rupp D, Long G, Bartenschlager R, Sällberg M. Immune-mediated effects targeting hepatitis C virus in a syngeneic replicon cell transplantation mouse model. Gut 2018; 67. [PMID: 28646094 PMCID: PMC6204962 DOI: 10.1136/gutjnl-2016-313579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE HCV is characterised by its ability to establish chronic infection in hepatocytes and to replicate in the presence of an inflammation. We mimicked this situation in vivo in immune-competent mice by syngeneic transplantation of HCV replicon-containing mouse hepatoma cells. DESIGN A total of 5 million H-2b positive Hep56.1D cells, carrying a subgenomic genotype (gt) 2a replicon (HCV replicon cells) or stably expressing comparable levels of the HCV NS3/4A protease/helicase complex (NS3/4A hepatoma cells), were injected subcutaneously into syngeneic H-2b-restricted mice. Kinetics of tumour growth, HCV RNA replication levels and HCV-specific immune responses were monitored. For immune monitoring, new H-2b-restricted cytotoxic T cell epitopes within the gt2a NS3/4A region were mapped. Immune mice were generated by DNA-based vaccination. RESULTS HCV replicon and NS3/4A hepatoma cells generated solid tumours in vivo. Similar to what is seen in human HCV infection did HCV RNA replicate in the presence of inflammation. NS3/4A-specific CD8+ T cells seemed to transiently reduce HCV RNA levels. Both CD4+ and CD8+ T cells were required for protection against tumour growth. Vaccine-induced NS3/4A(gt2a)-specific T cells protected against HCV replicon tumours in wild-type, but not in HCV NS3/4A(gt1a)-transgenic mice with dysfunctional HCV-specific T cells. Importantly, as in human HCV infection, HCV replicon cells neither primed nor boosted a strong NS3/4A-specific T cell response. CONCLUSION Syngeneic transplantation of mouse HCV replicon cells into immune-competent animals mirrors many in vivo events in humans. This system is versatile and can be applied to any genetically modified H-2b-restricted mouse strain.
Collapse
Affiliation(s)
- Sepideh Levander
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Gang Long
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,Unit of Virus Assembly and Host, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany,Division of Virus-AssociatedCarcinogenesis, German Cancer Research Center, Heidelberg, germany
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden,Karolinska University Laboratory, Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19:222-232. [PMID: 29379119 DOI: 10.1038/s41590-018-0044-z] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
In contrast to most other malignancies, hepatocellular carcinoma (HCC), which accounts for approximately 90% of primary liver cancers, arises almost exclusively in the setting of chronic inflammation. Irrespective of etiology, a typical sequence of chronic necroinflammation, compensatory liver regeneration, induction of liver fibrosis and subsequent cirrhosis often precedes hepatocarcinogenesis. The liver is a central immunomodulator that ensures organ and systemic protection while maintaining immunotolerance. Deregulation of this tightly controlled liver immunological network is a hallmark of chronic liver disease and HCC. Notably, immunotherapies have raised hope for the successful treatment of advanced HCC. Here we summarize the roles of specific immune cell subsets in chronic liver disease, with a focus on non-alcoholic steatohepatitis and HCC. We review new advances in immunotherapeutic approaches for the treatment of HCC and discuss the challenges posed by the immunotolerant hepatic environment and the dual roles of adaptive and innate immune cells in HCC.
Collapse
Affiliation(s)
- Marc Ringelhan
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Virology, Technical University of Munich/Helmholtz Zentrum Munich, Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Tracy O'Connor
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum Munich, Munich, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada and Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany. .,Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Luo H, Winkelmann E, Xie G, Fang R, Peng BH, Li L, Lazear HM, Paessler S, Diamond MS, Gale M, Barrett AD, Wang T. MAVS Is Essential for Primary CD4 + T Cell Immunity but Not for Recall T Cell Responses following an Attenuated West Nile Virus Infection. J Virol 2017; 91:e02097-16. [PMID: 28077630 PMCID: PMC5331791 DOI: 10.1128/jvi.02097-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022] Open
Abstract
The use of pathogen recognition receptor (PRR) agonists and the molecular mechanisms involved have been the major focus of research in individual vaccine development. West Nile virus (WNV) nonstructural (NS) 4B-P38G mutant has several features for an ideal vaccine candidate, including significantly reduced neuroinvasiveness, induction of strong adaptive immunity, and protection of mice from wild-type (WT) WNV infection. Here, we determined the role of mitochondrial antiviral signaling protein (MAVS), the adaptor protein for RIG-I-like receptor in regulating host immunity against the NS4B-P38G vaccine. We found that Mavs-/- mice were more susceptible to NS4B-P38G priming than WT mice. Mavs-/- mice had a transiently reduced production of antiviral cytokines and an impaired CD4+ T cell response in peripheral organs. However, antibody and CD8+ T cell responses were minimally affected. NS4B-P38G induced lower type I interferon (IFN), IFN-stimulating gene, and proinflammatory cytokine responses in Mavs-/- dendritic cells and subsequently compromised the antigen-presenting capacity for CD4+ T cells. Interestingly, Mavs-/- mice surviving NS4B-P38G priming were all protected from a lethal WT WNV challenge. NS4B-P38G-primed Mavs-/- mice exhibited equivalent levels of protective CD4+ T cell recall response, a modestly reduced WNV-specific IgM production, but more robust CD8+ T cell recall response. Taken together, our results suggest that MAVS is essential for boosting optimal primary CD4+ T cell responses upon NS4B-P38G vaccination and yet is dispensable for host protection and recall T cell responses during secondary WT WNV infection.IMPORTANCE The production of innate cytokines induced by the recognition of pathogen recognition receptors (PRRs) via their cognate ligands are critical for enhancing antigen-presenting cell functions and influencing T cell responses during microbial infection. The use of PRR agonists and the underlying molecular mechanisms have been the major focus in individual vaccine development. Here, we determined the role of mitochondrial antiviral-signaling protein (MAVS), the adaptor protein for RIG-I like receptor in regulating host immunity against the live attenuated West Nile virus (WNV) vaccine strain, the nonstructural (NS) 4B-P38G mutant. We found that MAVS is important for boosting optimal primary CD4+ T cell response during NS4B-P38G vaccination. However, MAVS is dispensable for memory T cell development and host protection during secondary wild-type WNV infection. Overall, these results may be utilized as a paradigm to aid in the rational development of other efficacious live attenuated flavivirus vaccines.
Collapse
Affiliation(s)
- Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Evandro Winkelmann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Guorui Xie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bi-Hung Peng
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Li Li
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael S Diamond
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alan D Barrett
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
7
|
Holmström F, Chen M, Balasiddaiah A, Sällberg M, Ahlén G, Frelin L. Functional differences in hepatitis C virus nonstructural (NS) 3/4A- and 5A-specific T cell responses. Sci Rep 2016; 6:24991. [PMID: 27141891 PMCID: PMC4855235 DOI: 10.1038/srep24991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus nonstructural (NS) 3/4A and NS5A proteins are major targets for the new direct-acting antiviral compounds. Both viral proteins have been suggested as modulators of the response to the host cell. We have shown that NS3/4A- and NS5A-specific T cell receptors confer different effector functions, and that killing of NS3/4A-expressing hepatocytes is highly dependent on IFN-γ. We here characterize the functional differences in the T cell responses to NS3/4A and NS5A. NS3/4A- and NS5A-specific T cells could be induced at various frequencies in wild-type-, NS3/4A-, and NS5A-transgenic mice. Priming of NS5A-specific T cells required a high DNA dose, and was unlike NS3/4A dependent on both CD4+ and CD8+ T cells, but less influenced by CD25+/GITR+ regulatory T cells. The presence of IL-12 greatly improved specific CD8+ T cell priming by NS3/4A but not by NS5A, suggesting a less dependence of IFN-γ for NS5A. This notion was supported by the observation that NS5A-specific T cells could eliminate NS5A-expressing hepatocytes also in the absence of IFN-γ-receptor-2. This supports that NS3/4A- and NS5A-specific T cells become activated and eliminate antigen expressing, or infected hepatocytes, by distinct mechanisms, and that NS5A-specific T cells show an overall less dependence of IFN-γ.
Collapse
Affiliation(s)
- Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Anangi Balasiddaiah
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
8
|
Levander S, Sällberg M, Ahlén G, Frelin L. A non-human hepadnaviral adjuvant for hepatitis C virus-based genetic vaccines. Vaccine 2016; 34:2821-33. [PMID: 27109565 DOI: 10.1016/j.vaccine.2016.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
Human hepatitis B virus (HBV) core antigen (HBcAg) can act as an adjuvant in hepatitis C virus (HCV)-based DNA vaccines. Since two billion people are, or have been, in contact with HBV, one may question the use of human HBV sequences as adjuvant. We herein evaluated non-human stork hepatitis B virus core gene-sequences from stork as DNA vaccine adjuvants. Full-length and fragmented stork HBcAg gene-sequences were added to an HCV non-structural (NS) 3/4A gene (NS3/4A-stork-HBcAg). This resulted in an enhanced priming of HCV-specific IFN-γ and IL-2 responses in both wild-type (wt)- and NS3/4A-transgenic (Tg) mice, the latter with dysfunctional NS3/4A-specific T cells. The NS3/4A-stork-HBcAg vaccine primed NS3/4A-specific T cells in hepatitis B e antigen (HBeAg)-Tg mice with dysfunctional T cells to HBcAg and HBeAg. Repeated immunizations boosted expansion of IFN-γ and IL-2-producing NS3/4A-specific T cells in wt- and NS3/4A-Tg mice. Importantly, NS3/4A-stork-HBcAg-DNA induced in vivo long-term functional memory T cell responses, whose maintenance required CD4(+) T cells. Thus, avian HBcAg gene-sequences from stork can effectively act as a DNA vaccine adjuvant. This technology can most likely be universally expanded to other genetic vaccine antigens, as this completely avoids the use of sequences from a human virus where a pre-existing immunity may interfere with its adjuvant effect.
Collapse
Affiliation(s)
- Sepideh Levander
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| |
Collapse
|
9
|
Ahlén G, Frelin L, Holmström F, Smetham G, Augustyn S, Sällberg M. A targeted controlled force injection of genetic material in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16016. [PMID: 27069951 PMCID: PMC4813609 DOI: 10.1038/mtm.2016.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
A general limitation in gene delivery is the cellular uptake in lager animals including humans. Several approaches have been tested including liposomes, micro-needles, in vivo electro-transfer, ballistic delivery, and needle-free delivery. All these techniques have individual limitations. One approach reproducibly delivering genetic material in muscle tissue in nonhuman primates is hydrodynamic injection, a forced injection of a volume equaling the volume of the tissue to be transfected thereby causing an increased local pressure resulting in an improved uptake of genetic material. We transferred the principle of hydrodynamic injection to a device, where a small injection volume can be delivered to a targeted tissue volume, termed in vivo intracellular injection (IVIN). The device is based on needle(s) with apertures along the needle shafts, where multiple needles can fix the tissue volume to be transfected. The apertures direct the injection from a central needle outward or inward to the centroid of a geometric arrangement thereby targeting the tissue to be transfected. With a controlled force, this results in a targeted injection with increased transfection efficiency. We here show that the IVIN technology reproducibly improved plasmid uptake and expression and the immunogenicity. The IVIN technology can be generally applied to a targeted delivery of genetic materials.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | | | | | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| |
Collapse
|
10
|
A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice. J Virol 2015; 89:7991-8002. [PMID: 26018154 DOI: 10.1128/jvi.00803-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Collapse
|
11
|
Control of hepatitis C virus replication in mouse liver-derived cells by MAVS-dependent production of type I and type III interferons. J Virol 2015; 89:3833-45. [PMID: 25609814 DOI: 10.1128/jvi.03129-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) efficiently infects only humans and chimpanzees. Although the detailed mechanisms responsible for this narrow species tropism remain elusive, recent evidence has shown that murine innate immune responses efficiently suppress HCV replication. Therefore, poor adaptation of HCV to evade and/or counteract innate immune responses may prevent HCV replication in mice. The HCV NS3-4A protease cleaves human MAVS, a key cellular adaptor protein required for RIG-I-like receptor (RLR)-dependent innate immune signaling. However, it is unclear if HCV interferes with mouse MAVS function equally well. Moreover, MAVS-dependent signaling events that restrict HCV replication in mouse cells were incompletely defined. Thus, we quantified the ability of HCV NS3-4A to counteract mouse and human MAVS. HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Moreover, replicon-encoded protease cleaved a similar fraction of both MAVS variants. Finally, FLAG-tagged MAVS proteins repressed HCV replication to similar degrees. Depending on MAVS expression, HCV replication in mouse liver cells triggered not only type I but also type III IFNs, which cooperatively repressed HCV replication. Mouse liver cells lacking both type I and III IFN receptors were refractory to MAVS-dependent antiviral effects, indicating that the HCV-induced MAVS-dependent antiviral state depends on both type I and III IFN receptor signaling. IMPORTANCE In this study, we found that HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Therefore, it is unlikely that ineffective cleavage of mouse MAVS per se precludes HCV propagation in immunocompetent mouse liver cells. Hence, approaches to reinforce HCV replication in mouse liver cells (e.g., by expression of essential human replication cofactors) should not be thwarted by the poor ability of HCV to counteract MAVS-dependent antiviral signaling. In addition, we show that mouse MAVS induces both type I and type III IFNs, which together control HCV replication. Characterization of type I or type III-dependent interferon-stimulated genes in these cells should help to identify key murine restriction factors that preclude HCV propagation in immunocompetent mouse liver cells.
Collapse
|
12
|
Establishment of a novel triple-transgenic mouse: conditionally and liver-specifically expressing hepatitis C virus NS3/4A protease. Mol Biol Rep 2014; 41:7349-59. [PMID: 25200433 DOI: 10.1007/s11033-014-3621-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 01/29/2014] [Indexed: 01/29/2023]
Abstract
It is well known that NS3/4A protein plays crucial roles in the hepatitis C virus (HCV) replication. NS3/4A protein also results to virus-mediated immune evasion and persistence of infection through the interaction with host proteins. However, the lack of a suitable animal model hampers studies of HCV NS3/4A protein interaction with host proteins, which impacts immunopathology due to infection. Here, transgenic vector containing transcriptional regulation and Fluc reporter gene was constructed to conditionally express NS3/4A protein under the dual control of Tet-On regulatory system and Cre/LoxP gene-knockout system. NS3/4A transgenic founder mice were continuously crossed with Lap transgenic mice expressing reverse tetracycline-controlled transcriptional activator (rtTA), the NS3/4A/Lap double transgenic mouse lines with liver-specifically and conditionally expressing reporter (luciferase Fluc) under control of Tet-On system were established. The NS3/4A/Lap double transgenic mouse are mated with Lap/LC-1 double transgenic mouse with liver-specifically and conditionally expressing Cre recombinase under control of Tet-On system, NS3/4A/Lap/LC-1 triple transgenic mouse were generated. In vivo bioluminescent imaging, western blotting and immunohistochemical staining (IHS) was used to confirm that NS3/4A protein was strictly expressed in the liver of Doxycycline-induced triple transgenic mice. The results show that we established a triple-transgenic mouse model conditionally expressing the HCV NS3/4A protein under strict control of the Tet-On regulatory system and Cre/loxP system. This novel transgenic mouse model expressing NS3/4A in a temporally and spatially-specific manner will be useful for studying interactions between HCV NS3/4A protein and the host, also for evaluating NS3/4A protease inhibitors.
Collapse
|
13
|
Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination. Gene Ther 2014; 21:739-50. [PMID: 24871581 PMCID: PMC4126484 DOI: 10.1038/gt.2014.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022]
Abstract
We have investigated the ability of hepatitis C virus non-structural (NS) 3/4A-DNA-based vaccines to activate long-term cell-mediated immune responses in mice. Wild-type and synthetic codon optimized (co) NS3/4A DNA vaccines have previously been shown to be immunogenic in mice, rabbits and humans, although we have very poor knowledge about the longevity of the immune responses primed. We therefore analyzed the functionality of primed NS3/4A-specific immune responses in BALB/c (H-2d) and/or C57BL/6J (H-2b) mice 1, 2, 3, 4, 6, 12 and 16 months after the last immunization. Mice were immunized one, two, three or four times using gene gun delivery to the skin or by intramuscular administration. Immunological responses after immunization were monitored by protection against in vivo challenge of NS3/4A-expressing syngeneic tumor cells. In addition, functionality of the NS3/4A-specific T cells was analyzed by a standard cytotoxicity assay. First, we identified a new unique murine H-2d-restricted NS3/4A cytotoxic T lymphocyte (CTL) epitope, which enabled us to study the epitope-specific immune responses. Our results show that the coNS3/4A vaccine was highly immunogenic by determination of interferon-γ/tumor necrosis factor-α production and lytic cytotoxic T cells, which could efficiently inhibit in vivo tumor growth. Importantly, we showed that one to four monthly immunizations protected mice from tumor development when challenged up to 16 months after the last immunization. When determining the functionality of NS3/4A-specific T cells in vitro, we showed detectable lytic activity up to 12 months after the last immunization. Thus, NS3/4A-based DNA vaccines activate potent cellular immune responses that are present and function in both BALB/c and C57BL/6J mice up to 12–16 months after the last immunization. The induction of long-term immunity after NS3/4A DNA immunization has not been shown previously and supports the use of NS3/4A in hepatitis C virus vaccine compositions.
Collapse
|
14
|
Zhang DM, Li JJ, Yan P, Hu JT. Establishment and identification of induced pluripotent stem cells in liver cancer patients. ASIAN PAC J TROP MED 2014; 7:253-6. [PMID: 24507670 DOI: 10.1016/s1995-7645(14)60032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/15/2014] [Accepted: 03/15/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To induce pluripotent stem (IPS) cells from fibrocytes that are separated from liver cancer patients. METHODS The fibrocytes were reprogrammed to IPS cells by lentiviral vector, stained and identified by immunohistochemistry. RESULTS The IPS cells were successfully established from fibrocytes after infection, and IPS cell clones formed in round shape under a microscopy. The induction rate was 0.013%±0.007%. No tumor formed at the back of nude mice within 8 weeks after the inoculation of cell clones. However, tetatoma appeared in nude mice within 1 week after IPS inoculation. A few tumors formed in nude mice within 4 weeks after the inoculation of cell clones. However, subcutaneous tumors formed within 1 week after IPS inoculation. The induced IPS cells showed three germ layers in tetatoma. Nanog and OCT4 in the induced IPS cells showed hypomethylation. SSEA-A, TRA-1-6-, TRA-1-81 and Nanog were highly expressed in the induced IPS cells, indicating the IPS cells possessed the similar ability as the stem cells. CONCLUSIONS The IPS cells of liver cancer patients can be established effectively from fibrocytes and can be cultured stably in vitro, which provides an approach for the treatment of intermediate or advanced stage liver cancer.
Collapse
Affiliation(s)
- Da-Ming Zhang
- Department of Laparoscopic Surgery, People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Jian-Jun Li
- Department of Laparoscopic Surgery, People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Peng Yan
- Department of Laparoscopic Surgery, People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Jian-Ting Hu
- Department of Laparoscopic Surgery, People's Hospital of Zhengzhou, Zhengzhou 450003, China.
| |
Collapse
|
15
|
Brenndörfer ED, Brass A, Karthe J, Ahlén G, Bode JG, Sällberg M. Cleavage of the T cell protein tyrosine phosphatase by the hepatitis C virus nonstructural 3/4A protease induces a Th1 to Th2 shift reversible by ribavirin therapy. THE JOURNAL OF IMMUNOLOGY 2014; 192:1671-80. [PMID: 24442435 DOI: 10.4049/jimmunol.1301077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ribavirin has proven to be a key component of hepatitis C therapies both involving IFNs and new direct-acting antivirals. The hepatitis C virus-mediated interference with intrahepatic immunity by cleavage of mitochondrial antiviral signaling protein (MAVS) and T cell protein tyrosine phosphatase (TCPTP) suggests an avenue for compounds that may counteract these effects. We therefore studied the effects of ribavirin, with or without inhibition of the nonstructural (NS)3/4A protease, on intrahepatic immunity. The intrahepatic immunity of wild-type and NS3/4A-transgenic mice was determined by Western blot, ELISA, flow cytometry, and survival analysis. Various MAVS or TCPTP constructs were injected hydrodynamically to study their relevance. Ribavirin pretreatment was performed in mice expressing a functional or inhibited NS3/4A protease to analyze its effect on NS3/4A-mediated changes. Intrahepatic NS3/4A expression made mice resistant to TNF-α-induced liver damage and caused an alteration of the intrahepatic cytokine (IFN-γ and IL-10) and chemokine (CCL3, CCL17, CCL22, CXCL9, and CXCL11) profiles toward an anti-inflammatory state. Consistent with this, the number of intrahepatic Th1 cells and IFN-γ(+) T cells in NS3/4A-transgenic mice decreased, whereas the amount of Th2 cells increased. These effects could be reversed by injection of uncleavable TCPTP but not uncleavable MAVS and were absent in a mouse expressing a nonfunctional NS3/4A protease. Importantly, the NS3/4A-mediated effects were reversed by ribavirin treatment. Thus, cleavage of TCPTP by NS3/4A induces a shift of the intrahepatic immune response toward a nonantiviral Th2-dominated immunity. These effects are reversed by ribavirin, supporting that ribavirin complements the effects of direct-acting antivirals as an immunomodulatory compound.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm S-141 86, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Frentzen A, Anggakusuma, Gürlevik E, Hueging K, Knocke S, Ginkel C, Brown RJP, Heim M, Dill MT, Kröger A, Kalinke U, Kaderali L, Kuehnel F, Pietschmann T. Cell entry, efficient RNA replication, and production of infectious hepatitis C virus progeny in mouse liver-derived cells. Hepatology 2014; 59:78-88. [PMID: 23873628 DOI: 10.1002/hep.26626] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Only humans and chimpanzees are susceptible to chronic infection by hepatitis C virus (HCV). The restricted species tropism of HCV is determined by distinct host factor requirements at different steps of the viral life cycle. In addition, effective innate immune targeting precludes efficient propagation of HCV in nonhuman cells. Species-specificity of HCV host factor usage for cell entry and virus release has been explored. However, the reason for inefficient HCV RNA replication efficiency in mouse liver cells remains elusive. To address this, we generated novel mouse liver-derived cell lines with specific lesions in mitochondrial antiviral signaling protein (MAVS), interferon regulatory factor 3 (IRF3), or Interferon-α/β receptor (IFNAR) by in vivo immortalization. Blunted innate immune responses in these cells modestly increased HCV RNA replication. However, ectopic expression of liver-specific human microRNA 122 (miR-122) further boosted RNA replication in all knockout cell lines. Remarkably, MAVS(-/-) miR-122 cells sustained vigorous HCV RNA replication, attaining levels comparable to the highly permissive human hepatoma cell line Huh-7.5. RNA replication was dependent on mouse cyclophilin and phosphatidylinositol-4 kinase III alpha (PI4KIIIα) and was also observed after transfection of full-length viral RNA. Additionally, ectopic expression of either human or mouse apolipoprotein E (ApoE) was sufficient to permit release of infectious particles. Finally, expression of human entry cofactors rendered these cells permissive to HCV infection, thus confirming that all steps of the HCV replication cycle can be reconstituted in mouse liver-derived cells. CONCLUSION Blunted innate immunity, abundant miR-122, and HCV entry factor expression permits propagation of HCV in mouse liver-derived cell lines.
Collapse
Affiliation(s)
- Anne Frentzen
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nandakumar R, Finsterbusch K, Lipps C, Neumann B, Grashoff M, Nair S, Hochnadel I, Lienenklaus S, Wappler I, Steinmann E, Hauser H, Pietschmann T, Kröger A. Hepatitis C virus replication in mouse cells is restricted by IFN-dependent and -independent mechanisms. Gastroenterology 2013; 145:1414-23.e1. [PMID: 23973921 DOI: 10.1053/j.gastro.2013.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Current treatment strategies for hepatitis C virus (HCV) infection include pegylated interferon (IFN)-alfa and ribavirin. Approximately 50% of patients control HCV infection after treatment, but the broad range of patients' outcomes and responses to treatment, among all genotypes, indicates a role for host factors. Although the IFN system is important in limiting HCV replication, the virus has evolved mechanisms to circumvent the IFN response. However, direct, IFN-independent antiviral processes also might help control HCV replication. We examined the role of IFN-independent responses against HCV replication. METHODS We analyzed replication of the subgenomic JFH1 replicon in embryonic fibroblasts and primary hepatocytes from mice with disruptions in genes encoding factors in the IFN-dependent and alternative antiviral pathways (signal transducers and activators of transcription 1 [STAT1], protein kinase R, interferon regulatory factors (IRF) IRF-1, IRF-3, IRF-5, IRF-7, mitochondrial antiviral signaling molecule [MAVS], and IFN receptor [IFNAR]). We also assessed the effects of expression of these factors by mouse primary hepatocytes on HCV replication. RESULTS In addition to IRF-3- and IFN-mediated antiviral responses, IFN-independent, but IRF-1- and IRF-5-dependent mechanisms, restrict HCV replication in mouse embryonic fibroblasts. In primary hepatocytes these IFN-independent require MAVS and IRF-1. CONCLUSIONS HCV replication is limited by interferon-mediated pathways as well pathways that are independent of type I IFNs. IRF1 and IRF5 control IFN-independent signaling events that lead to antiviral responses. We observed antiviral roles of IRF1 and IRF5 that were IFN-independent and cell-type specific. These mechanisms are important in controlling viruses that interfere with the IFN signaling because cells retain the ability to induce functional but local antiviral states through expression of interferon-stimulated genes.
Collapse
Affiliation(s)
- Ramya Nandakumar
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Billerbeck E, de Jong Y, Dorner M, de la Fuente C, Ploss A. Animal models for hepatitis C. Curr Top Microbiol Immunol 2013; 369:49-86. [PMID: 23463197 DOI: 10.1007/978-3-642-27340-7_3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis C remains a global epidemic. Approximately 3 % of the world's population suffers from chronic hepatitis C, which is caused by hepatitis C virus (HCV)-a positive sense, single-stranded RNA virus of the Flaviviridae family. HCV has a high propensity for establishing a chronic infection. If untreated chronic HCV carriers can develop severe liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Antiviral treatment is only partially effective, costly, and poorly tolerated. A prophylactic or therapeutic vaccine for HCV does not exist. Mechanistic studies of virus-host interactions, HCV immunity, and pathogenesis as well as the development of more effective therapies have been hampered by the lack of a suitable small animal model. Besides humans, chimpanzees are the only species that is naturally susceptible to HCV infection. While experimentation in these large primates has yielded valuable insights, ethical considerations, limited availability, genetic heterogeneity, and cost limit their utility. In search for more tractable small animal models, numerous experimental approaches have been taken to recapitulate parts of the viral life cycle and/or aspects of viral pathogenesis that will be discussed in this review. Exciting new models and improvements in established models hold promise to further elucidate our understanding of chronic HCV infection.
Collapse
Affiliation(s)
- Eva Billerbeck
- Center for the Study of Hepatitis C, The Rockefeller University, NY, USA
| | | | | | | | | |
Collapse
|
19
|
Holmström F, Pasetto A, Nähr V, Brass A, Kriegs M, Hildt E, Broderick KE, Chen M, Ahlén G, Frelin L. A synthetic codon-optimized hepatitis C virus nonstructural 5A DNA vaccine primes polyfunctional CD8+ T cell responses in wild-type and NS5A-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:1113-24. [PMID: 23284053 DOI: 10.4049/jimmunol.1201497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.
Collapse
Affiliation(s)
- Fredrik Holmström
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Starodubova E, Krotova O, Hallengärd D, Kuzmenko Y, Engström G, Legzdina D, Latyshev O, Eliseeva O, Maltais AK, Tunitskaya V, Karpov V, Bråve A, Isaguliants M. Cellular Immunogenicity of Novel Gene Immunogens in Mice Monitored by in Vivo Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizaveta Starodubova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olga Krotova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - David Hallengärd
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Yulia Kuzmenko
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Gunnel Engström
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Diana Legzdina
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Oleg Latyshev
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olesja Eliseeva
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Anna Karin Maltais
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vera Tunitskaya
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vadim Karpov
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Andreas Bråve
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Maria Isaguliants
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| |
Collapse
|
21
|
Hallengärd D, Bråve A, Isaguliants M, Blomberg P, Enger J, Stout R, King A, Wahren B. A combination of intradermal jet-injection and electroporation overcomes in vivo dose restriction of DNA vaccines. GENETIC VACCINES AND THERAPY 2012; 10:5. [PMID: 22873174 PMCID: PMC3532290 DOI: 10.1186/1479-0556-10-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/12/2012] [Indexed: 01/04/2023]
Abstract
Background The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. Methods Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). Results Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of DNA. After division of a defined DNA dose into multiple skin sites, the humoral response was particularly enhanced by Biojector while cellular responses were particularly enhanced by EP. Furthermore, a close correlation between in vivo antigen expression and cell-mediated as well as humoral immune responses was observed. Conclusions These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.
Collapse
Affiliation(s)
- David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, 171 77, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou Y, Yan SD, Jia SZ, Wang HP, Fu QX, Du J, Wang XH, Liang SQ, Zhang JG, Zhan LS. Noninvasive molecular imaging of interferon beta activation in mouse liver. Liver Int 2012; 32:383-91. [PMID: 22221924 DOI: 10.1111/j.1478-3231.2011.02733.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 11/29/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Interferon beta (IFN-β) is the priming cytokine in the interferons (IFNs) response that plays essential roles in innate immune system. Only very few studies on IFN activation in animals have been reported before, therefore, we embarked to develop a novel method to dynamically examine IFN-β activation in mouse liver by noninvasive molecular imaging. METHODS Interferon beta promoter-directed firefly luciferase gene was integrated into chromosomes of hepatocytes by hydrodynamic injection. Mouse hepatitis virus type 3 (MHV-3) and polyinosinic-polycytidylic acid [poly(I:C)] were used to stimulate the activation of IFN-β. Luciferase activity was used as an indicator of the IFN-β promoter activity in vitro and in vivo. The expression level of IFN-β in the sera and firefly luciferase in the liver was assessed by ELISA and bioluminescence imaging respectively. Western blot was used for detecting proteins expression. RESULTS A rapid and elevated luciferase expression in the mouse liver induced by poly (I:C) and MHV-3 was detected by bioluminescence imaging. The detectable level of IFN-β in the sera was not induced by MHV-3. Moreover, IFN-β activation was significantly inhibited by the hepatitis C virus (HCV) NS3/4A protease in mouse liver. These results were consistent with IFN-β production in the sera. Therefore, a novel visual method to monitor IFN-β promoter activity was established in the current study. CONCLUSION This novel sensitive method can be used for not only assessing IFN-β activation or inhibition in the liver under different conditions, but also screening drug candidates of stimulating or inhibiting of IFN-β production.
Collapse
Affiliation(s)
- Yong Zhou
- Beijing Institute of Transfusion Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Malik IR, Chen A, Brass A, Ahlén G, Rahman M, Sällberg M, Qureshi JA, Frelin L. A bi-functional hepatitis B virus core antigen (HBcAg) chimera activates HBcAg-specific T cells and preS1-specific antibodies. ACTA ACUST UNITED AC 2011; 44:55-9. [DOI: 10.3109/00365548.2011.608711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Xue HL, Feng GH, Dou XG. New advances in the development of experimental models of hepatitis C virus infection. Shijie Huaren Xiaohua Zazhi 2011; 19:1269-1274. [DOI: 10.11569/wcjd.v19.i12.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is another common cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma after hepatitis B virus. It is very difficult to study the variety and replication of HCV and interplay between HCV and the host and to develop new antiviral drugs and vaccines against HCV infection because of lack of susceptible hosts and stable and convenient experimental models of HCV infection. In this paper, we review recent advances in the development of experimental models of HCV infection.
Collapse
|
25
|
Frentzen A, Hüging K, Bitzegeio J, Friesland M, Haid S, Gentzsch J, Hoffmann M, Lindemann D, Zimmer G, Zielecki F, Weber F, Steinmann E, Pietschmann T. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines. PLoS Pathog 2011; 7:e1002029. [PMID: 21552323 PMCID: PMC3084199 DOI: 10.1371/journal.ppat.1002029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 02/25/2011] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model. The barriers preventing viral transmission across species are only incompletely understood. On one hand, narrow tropism reflects dependence of viruses on host cell factors and their species-specific utilization. On the other hand, host cellular antiviral factors can preclude virus replication. These may be constitutively expressed or induced by interferon triggered upon viral infection. Although viruses have evolved strategies to cope with these “restriction factors” in their natural hosts, these mechanisms often fail in alternative host species. Consequently, restriction factors pose an important barrier to cross-species viral transmission. We investigated if virus-induced or constitutively expressed dominant restriction factors preclude HCV propagation in non-liver tissue and in non-human cells. Using cell fusions between human and mouse cells we show that HCV completes its replication cycle in these heterokaryons. Moreover, we show that the mouse cells analyzed by us are able to sense viral infection and to respond to exogenous interferon. These results rule out that constitutive or virus-induced dominant restriction factors preclude HCV propagation in these cells. These findings have implications for HCV tissue and species tropism and they raise hopes for development of immunocompetent small models for HCV by transgenesis of essential human factors and without manipulation of innate immune mechanisms.
Collapse
Affiliation(s)
- Anne Frentzen
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Kathrin Hüging
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Julia Bitzegeio
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Martina Friesland
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Sibylle Haid
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Juliane Gentzsch
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Markus Hoffmann
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Dirk Lindemann
- Institute of Virology, Carl Gustav Carus Medical Facility, Technical University Dresden, Dresden, Germany
| | - Gert Zimmer
- Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
| | - Florian Zielecki
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Friedemann Weber
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Eike Steinmann
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- * E-mail: (TP); (ES)
| | - Thomas Pietschmann
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- * E-mail: (TP); (ES)
| |
Collapse
|
26
|
Chen A, Ahlén G, Brenndörfer ED, Brass A, Holmström F, Chen M, Söderholm J, Milich DR, Frelin L, Sällberg M. Heterologous T Cells Can Help Restore Function in Dysfunctional Hepatitis C Virus Nonstructural 3/4A-Specific T Cells during Therapeutic Vaccination. THE JOURNAL OF IMMUNOLOGY 2011; 186:5107-18. [DOI: 10.4049/jimmunol.1001790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Hallengärd D, Haller BK, Petersson S, Boberg A, Maltais AK, Isaguliants M, Wahren B, Bråve A. Increased expression and immunogenicity of HIV-1 protease following inactivation of the enzymatic activity. Vaccine 2010; 29:839-48. [PMID: 21109032 DOI: 10.1016/j.vaccine.2010.10.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
HIV-1 protease is an important target for anti-HIV therapy but has not received much attention as a vaccine antigen. To investigate the immunogenic properties of HIV-1 protease, we designed DNA plasmids encoding variants of the protease gene. Mutations resulting in enzymatic inactivation (D25N) and resistance to standard antiretroviral drugs (V82F/I84V) were introduced in order to examine the impact of the enzymatic activity on immunogenicity and the possibility to induce immune responses against drug resistant protease, respectively. The enzymatic inactivation of protease resulted in significantly increased in vitro expression as well as in vivo immunogenicity. The inactivated protease was highly immunogenic in both BALB/c and HLA-A0201 transgenic C57Bl/6 mice, and the immunogenicity was retained when the gene was delivered as a part of a multigene HIV-1 DNA vaccine. The drug resistance mutations hampered both the cellular and humoral immune responses, as the mutations also affect both CD4 and CD8 T cell epitopes. Taken together, our data demonstrates the possibility to drastically increase the immunogenicity of HIV-1 protease.
Collapse
Affiliation(s)
- David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute and Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sällberg M, Frelin L, Weiland O. DNA vaccine therapy for chronic hepatitis C virus (HCV) infection: immune control of a moving target. Expert Opin Biol Ther 2009; 9:805-15. [PMID: 19527105 DOI: 10.1517/14712590902988444] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of DNA plasmids for DNA vaccination was first described in the early 1990 s. DNA vaccinations were successful in small animal models but in larger animals and humans problems appeared. One major obstacle, effective delivery, has been partly overcome by new delivery techniques, such as transdermal delivery with the gene gun, and in vivo electroporation. We are entering a new era of DNA vaccination, where such techniques can be tested in humans. DNA vaccination may be a useful therapy for chronic hepatitis C virus (HCV) infections. Patients with these infections have a reduced T cell response to the invading virus. The genetic variability of HCV, its immunomodulatory properties and high replication rate contribute to chronicity. By providing the correct stimulus T cells may be activated to clear the infection. The vaccination is intended to induce a coordinated immune-based attack on the continuously moving HCV target. If effective, this should help in clearing the infection.
Collapse
Affiliation(s)
- Matti Sällberg
- Karolinska Institutet at Karolinska University Hospital Huddinge, Division of Clinical Microbiology, F68, Department of Laboratory Medicine, S-141 86 Stockholm, Sweden.
| | | | | |
Collapse
|