1
|
Wang C, Feng Q, Shi S, Qin Y, Lu H, Zhang P, Liu J, Chen B. The Rational Engineered Bacteria Based Biohybrid Living System for Tumor Therapy. Adv Healthc Mater 2024; 13:e2401538. [PMID: 39051784 DOI: 10.1002/adhm.202401538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Living therapy based on bacterial cells has gained increasing attention for their applications in tumor treatments. Bacterial cells can naturally target to tumor sites and active the innate immunological responses. The intrinsic advantages of bacteria attribute to the development of biohybrid living carriers for targeting delivery toward hypoxic environments. The rationally engineered bacterial cells integrate various functions to enhance the tumor therapy and reduce toxic side effects. In this review, the antitumor effects of bacteria and their application are discussed as living therapeutic agents across multiple antitumor platforms. The various kinds of bacteria used for cancer therapy are first introduced and demonstrated the mechanism of antitumor effects as well as the immunological effects. Additionally, this study focused on the genetically modified bacteria for the production of antitumor agents as living delivery system to treat cancer. The combination of living bacterial cells with functional nanomaterials is then discussed in the cancer treatments. In brief, the rational design of living therapy based on bacterial cells highlighted a rapid development in tumor therapy and pointed out the potentials in clinical applications.
Collapse
Affiliation(s)
- Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Qiliner Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Si Shi
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yuxuan Qin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hongli Lu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
2
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and beneficial metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:367-409. [PMID: 39396841 DOI: 10.1016/bs.adgen.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. In recent years, the impact of the gut microbiota on the development of CRC has become clear. The gut microbiota is the community of microorganisms living in the gut symbiotic relationship with the host. These microorganisms contribute to the development of CRC through various mechanisms that are not yet fully understood. Increasing scientific evidence suggests that metabolites produced by the gut microbiota may influence CRC development by exerting protective and deleterious effects. This article reviews the metabolites produced by the gut microbiota, which are derived from the intake of complex carbohydrates, proteins, dairy products, and phytochemicals from plant foods and are associated with a reduced risk of CRC. These metabolites include short-chain fatty acids (SCFAs), indole and its derivatives, conjugated linoleic acid (CLA) and polyphenols. Each metabolite, its association with CRC risk, the possible mechanisms by which they exert anti-tumour functions and their relationship with the gut microbiota are described. In addition, other gut microbiota-derived metabolites that are gaining importance for their role as CRC suppressors are included.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
3
|
Kyriazi AA, Karaglani M, Agelaki S, Baritaki S. Intratumoral Microbiome: Foe or Friend in Reshaping the Tumor Microenvironment Landscape? Cells 2024; 13:1279. [PMID: 39120310 PMCID: PMC11312414 DOI: 10.3390/cells13151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The role of the microbiome in cancer and its crosstalk with the tumor microenvironment (TME) has been extensively studied and characterized. An emerging field in the cancer microbiome research is the concept of the intratumoral microbiome, which refers to the microbiome residing within the tumor. This microbiome primarily originates from the local microbiome of the tumor-bearing tissue or from translocating microbiome from distant sites, such as the gut. Despite the increasing number of studies on intratumoral microbiome, it remains unclear whether it is a driver or a bystander of oncogenesis and tumor progression. This review aims to elucidate the intricate role of the intratumoral microbiome in tumor development by exploring its effects on reshaping the multileveled ecosystem in which tumors thrive, the TME. To dissect the complexity and the multitude of layers within the TME, we distinguish six specialized tumor microenvironments, namely, the immune, metabolic, hypoxic, acidic, mechanical and innervated microenvironments. Accordingly, we attempt to decipher the effects of the intratumoral microbiome on each specialized microenvironment and ultimately decode its tumor-promoting or tumor-suppressive impact. Additionally, we portray the intratumoral microbiome as an orchestrator in the tumor milieu, fine-tuning the responses in distinct, specialized microenvironments and remodeling the TME in a multileveled and multifaceted manner.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
4
|
Dai Z, Deng KL, Wang XM, Yang DX, Tang CL, Zhou YP. Bidirectional effects of the tryptophan metabolite indole-3-acetaldehyde on colorectal cancer. World J Gastrointest Oncol 2024; 16:2697-2715. [PMID: 38994159 PMCID: PMC11236226 DOI: 10.4251/wjgo.v16.i6.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC. AIM To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC. METHODS The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines (HCT116 and DLD-1). Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests. Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide. Invasiveness was investigated using the transwell assay. Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor (AhR) downstream genes. The PharmMapper, SEA, and SWISS databases were used to screen for potential target proteins of IAAD, and the core proteins were identified through the String database. RESULTS IAAD reduced tumorigenesis in a syngeneic mouse model. In CRC cell lines HCT116 and DLD1, IAAD exhibited cytotoxicity starting at 24 h of treatment, while it reduced Ki67 expression in the nucleus. The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells, which may be related to the activation of AhR. IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells. At low concentrations (< 12.5 μmol/L), IAAD only exhibited cytotoxic effects without promoting cell invasion. In addition, predictions based on online databases, protein-protein interaction analysis, and molecular docking showed that IAAD can bind to matrix metalloproteinase-9 (MMP9), angiotensin converting enzyme (ACE), poly(ADP-ribose) polymerase-1 (PARP1), matrix metalloproteinase-2 (MMP2), and myeloperoxidase (MPO). CONCLUSION Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC; however, at high concentrations (≥ 25 μmol/L), it can also promote epithelial-mesenchymal transition and invasion in CRC cells. IAAD activates AhR and directly binds MMP9, ACE, PARP1, MMP2, and MPO, which partly reveals why it has a bidirectional effect.
Collapse
Affiliation(s)
- Ze Dai
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Kai-Li Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Mei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| | - Chun-Lan Tang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
5
|
Dai Z, Deng KL, Wang XM, Yang DX, Tang CL, Zhou YP. Bidirectional effects of the tryptophan metabolite indole-3-acetaldehyde on colorectal cancer. World J Gastrointest Oncol 2024; 16:2685-2703. [DOI: 10.4251/wjgo.v16.i6.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC.
AIM To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC.
METHODS The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines (HCT116 and DLD-1). Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests. Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide. Invasiveness was investigated using the transwell assay. Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor (AhR) downstream genes. The PharmMapper, SEA, and SWISS databases were used to screen for potential target proteins of IAAD, and the core proteins were identified through the String database.
RESULTS IAAD reduced tumorigenesis in a syngeneic mouse model. In CRC cell lines HCT116 and DLD1, IAAD exhibited cytotoxicity starting at 24 h of treatment, while it reduced Ki67 expression in the nucleus. The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells, which may be related to the activation of AhR. IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells. At low concentrations (< 12.5 μmol/L), IAAD only exhibited cytotoxic effects without promoting cell invasion. In addition, predictions based on online databases, protein-protein interaction analysis, and molecular docking showed that IAAD can bind to matrix metalloproteinase-9 (MMP9), angiotensin converting enzyme (ACE), poly(ADP-ribose) polymerase-1 (PARP1), matrix metalloproteinase-2 (MMP2), and myeloperoxidase (MPO).
CONCLUSION Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC; however, at high concentrations (≥ 25 μmol/L), it can also promote epithelial-mesenchymal transition and invasion in CRC cells. IAAD activates AhR and directly binds MMP9, ACE, PARP1, MMP2, and MPO, which partly reveals why it has a bidirectional effect.
Collapse
Affiliation(s)
- Ze Dai
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Kai-Li Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Mei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| | - Chun-Lan Tang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
6
|
Profir M, Roşu OA, Creţoiu SM, Gaspar BS. Friend or Foe: Exploring the Relationship between the Gut Microbiota and the Pathogenesis and Treatment of Digestive Cancers. Microorganisms 2024; 12:955. [PMID: 38792785 PMCID: PMC11124004 DOI: 10.3390/microorganisms12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Digestive cancers are among the leading causes of cancer death in the world. However, the mechanisms of cancer development and progression are not fully understood. Accumulating evidence in recent years pointing to the bidirectional interactions between gut dysbiosis and the development of a specific type of gastrointestinal cancer is shedding light on the importance of this "unseen organ"-the microbiota. This review focuses on the local role of the gut microbiota imbalance in different digestive tract organs and annexes related to the carcinogenic mechanisms. Microbiota modulation, either by probiotic administration or by dietary changes, plays an important role in the future therapies of various digestive cancers.
Collapse
Affiliation(s)
- Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
8
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
9
|
Dai R, Kelly BN, Ike A, Berger D, Chan A, Drew DA, Ljungman D, Mutiibwa D, Ricciardi R, Tumusiime G, Cusack JC. The Impact of the Gut Microbiome, Environment, and Diet in Early-Onset Colorectal Cancer Development. Cancers (Basel) 2024; 16:676. [PMID: 38339427 PMCID: PMC10854951 DOI: 10.3390/cancers16030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Traditionally considered a disease common in the older population, colorectal cancer is increasing in incidence among younger demographics. Evidence suggests that populational- and generational-level shifts in the composition of the human gut microbiome may be tied to the recent trends in gastrointestinal carcinogenesis. This review provides an overview of current research and putative mechanisms behind the rising incidence of colorectal cancer in the younger population, with insight into future interventions that may prevent or reverse the rate of early-onset colorectal carcinoma.
Collapse
Affiliation(s)
- Rui Dai
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
| | - Bridget N. Kelly
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - Amarachi Ike
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - David Berger
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - Andrew Chan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David A. Drew
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Ljungman
- Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - David Mutiibwa
- Department of Surgery, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda;
| | - Rocco Ricciardi
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - Gerald Tumusiime
- School of Medicine, Uganda Christian University, Mukono P.O. Box 4, Uganda;
| | - James C. Cusack
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| |
Collapse
|
10
|
Kumar A, Chinnathambi S, Kumar M, Pandian GN. Food Intake and Colorectal Cancer. Nutr Cancer 2023; 75:1710-1742. [PMID: 37572059 DOI: 10.1080/01635581.2023.2242103] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Colorectal cancer (CRC) accounts for considerable mortalities worldwide. Several modifiable risk factors, including a high intake of certain foods and beverages can cause CRC. This review summarized the latest findings on the intake of various foods, nutrients, ingredients, and beverages on CRC development, with the objective of classifying them as a risk or protective factor. High-risk food items include red meat, processed meat, eggs, high alcohol consumption, sugar-sweetened beverages, and chocolate candy. Food items that are protective include milk, cheese and other dairy products, fruits, vegetables (particularly cruciferous), whole grains, legumes (particularly soy beans), fish, tea (particularly green tea), coffee (particularly among Asians), chocolate, and moderate alcohol consumption (particularly wine). High-risk nutrients/ingredients include dietary fat from animal sources and industrial trans-fatty acids (semisolid/solid hydrogenated oils), synthetic food coloring, monosodium glutamate, titanium dioxide, and high-fructose corn sirup. Nutrients/ingredients that are protective include dietary fiber (particularly from cereals), fatty acids (medium-chain and odd-chain saturated fatty acids and highly unsaturated fatty acids, including omega-3 polyunsaturated fatty acids), calcium, polyphenols, curcumin, selenium, zinc, magnesium, and vitamins A, C, D, E, and B (particularly B6, B9, and B2). A combination of micronutrients and multi-vitamins also appears to be beneficial in reducing recurrent adenoma incidence.
Collapse
Affiliation(s)
- Akshaya Kumar
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | | | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
12
|
Dong S, Li W, Li X, Wang Z, Chen Z, Shi H, He R, Chen C, Zhou W. Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Front Immunol 2022; 13:1038650. [PMID: 36578477 PMCID: PMC9792100 DOI: 10.3389/fimmu.2022.1038650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Early and accurate diagnosis and treatment of pancreatic cancer (PC) remain challenging endeavors globally. Late diagnosis lag, high invasiveness, chemical resistance, and poor prognosis are unresolved issues of PC. The concept of metabolic reprogramming is a hallmark of cancer cells. Increasing evidence shows that PC cells alter metabolic processes such as glucose, amino acids, and lipids metabolism and require continuous nutrition for survival, proliferation, and invasion. Glucose metabolism, in particular, regulates the tumour microenvironment (TME). Furthermore, the link between glucose metabolism and TME also plays an important role in the targeted therapy, chemoresistance, radiotherapy ineffectiveness, and immunosuppression of PC. Altered metabolism with the TME has emerged as a key mechanism regulating PC progression. This review shed light on the relationship between TME, glucose metabolism, and various aspects of PC. The findings of this study provide a new direction in the development of PC therapy targeting the metabolism of cancer cells.
Collapse
Affiliation(s)
- Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ru He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
13
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
|
14
|
Muszyński D, Kudra A, Sobocki BK, Folwarski M, Vitale E, Filetti V, Dudzic W, Kaźmierczak-Siedlecka K, Połom K. Esophageal cancer and bacterial part of gut microbiota - A multidisciplinary point of view. Front Cell Infect Microbiol 2022; 12:1057668. [PMID: 36467733 PMCID: PMC9709273 DOI: 10.3389/fcimb.2022.1057668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
There is an urgent need to search for new screening methods that allow early detection of esophageal cancer and thus achieve better clinical outcomes. Nowadays, it is known that the esophagus is not a sterile part of the gastrointestinal tract. It is colonized with various microorganisms therefore a "healthy" esophageal microbiome exists. The dysbiotic changes of esophageal microbiome can lead to the development of esophageal diseases including esophageal cancer. There is a strong consensus in the literature that the intestinal microbiome may be involved in esophageal carcinogenesis. Recently, emphasis has also been placed on the relationship between the oral microbiome and the occurrence of esophageal cancer. According to recent studies, some of the bacteria present in the oral cavity, such as Tannerella forsythia, Streptococcus anginosus, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Fusobacterium nucleatum may contribute to the development of this cancer. Moreover, the oral microbiome of patients with esophageal cancer differs significantly from that of healthy individuals. This opens new insights into the search for a microbiome-associated marker for early identification of patients at high risk for developing this cancer.
Collapse
Affiliation(s)
- Damian Muszyński
- Scientific Circle 4.0 associated with Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Kudra
- Scientific Circle 4.0 associated with Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, Gdansk, Poland
| | - Ermanno Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Occupational Medicine, Catania, Italy
| | - Veronica Filetti
- Department of Clinical and Experimental Medicine, University of Catania, Occupational Medicine, Catania, Italy
| | - Wojciech Dudzic
- Department of General and Gastrointestinal Surgery and Nutrition, Copernicus Hospital Gdansk, Gdansk, Poland
| | | | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
15
|
Lu H, Xu X, Fu D, Gu Y, Fan R, Yi H, He X, Wang C, Ouyang B, Zhao P, Wang L, Xu P, Cheng S, Wang Z, Zou D, Han L, Zhao W. Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis. Cell Host Microbe 2022; 30:1139-1150.e7. [PMID: 35952646 DOI: 10.1016/j.chom.2022.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Microbiota-induced tumorigenesis is well established in solid tumors of the gastrointestinal tract but rarely explored in hematologic malignancies. To determine the role of gut microbiota in lymphoma progression, we performed metagenomic sequencing on human primary gastrointestinal B cell lymphomas. We identified a distinct microbiota profile of intestinal lymphoma, with significantly decreased symbiotic microbes, particularly the genus Eubacterium and notably butyrate-producing Eubacterium rectale. Transfer of E. rectale-deficit microbiota of intestinal lymphoma patients to mice caused inflammation and tumor necrosis factor (TNF) production. Conversely, E. rectale treatment reduced TNF levels and the incidence of lymphoma in sensitized Eμ-Myc mice. Moreover, lipopolysaccharide from the resident microbiota of lymphoma patients and mice synergizes with TNF signaling and reinforces the NF-κB pathway via the MyD88-dependent TLR4 signaling, amalgamating in enhanced intestinal B cell survival and proliferation. These findings reveal a mechanism of inflammation-associated lymphomagenesis and a potential clinical rationale for therapeutic targeting of gut microbiota.
Collapse
Affiliation(s)
- Haiyang Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
| | - Xiaoqiang Xu
- Department of Bioinformatics, 01life Institute, Shenzhen 518000, Guangdong, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
| | - Yubei Gu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiangyi He
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Binshen Ouyang
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Zhao
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhifeng Wang
- Department of Bioinformatics, 01life Institute, Shenzhen 518000, Guangdong, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lizhong Han
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Zhou X, Kandalai S, Hossain F, Zheng Q. Tumor microbiome metabolism: A game changer in cancer development and therapy. Front Oncol 2022; 12:933407. [PMID: 35936744 PMCID: PMC9351545 DOI: 10.3389/fonc.2022.933407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating recent evidence indicates that the human microbiome plays essential roles in pathophysiological states, including cancer. The tumor microbiome, an emerging concept that has not yet been clearly defined, has been proven to influence both cancer development and therapy through complex mechanisms. Small molecule metabolites produced by the tumor microbiome through unique biosynthetic pathways can easily diffuse into tissues and penetrate cell membranes through transporters or free diffusion, thus remodeling the signaling pathways of cancer and immune cells by interacting with biomacromolecules. Targeting tumor microbiome metabolism could offer a novel perspective for not only understanding cancer progression but also developing new strategies for the treatment of multiple cancer types. Here, we summarize recent advances regarding the role the tumor microbiome plays as a game changer in cancer biology. Specifically, the metabolites produced by the tumor microbiome and their potential effects on the cancer development therapy are discussed to understand the importance of the microbial metabolism in the tumor microenvironment. Finally, new anticancer therapeutic strategies that target tumor microbiome metabolism are reviewed and proposed to provide new insights in clinical applications.
Collapse
Affiliation(s)
- Xiaozhuang Zhou
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Role of a mixed probiotic product, VSL#3, in the prevention and treatment of colorectal cancer. Eur J Pharmacol 2022; 930:175152. [PMID: 35835181 DOI: 10.1016/j.ejphar.2022.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a multifactorial disease. The incidence of this type of cancer in younger patients has increased in recent years, and more strategies are needed to prevent and delay the progression of CRC. Probiotics play an adjunctive role in the prevention and treatment of CRC and can not only prevent the onset and delay the progression of disease but also reduce the side effects after the application of anti-cancer drugs. The anti-cancer effect of individual probiotics has been extensively studied, and the exact curative effect of various probiotics has been found, but the anti-cancer effect of mixed probiotics is still not well summarized. In this review, we discuss the positive effects of mixed probiotics on CRC and the related mechanisms of action, especially VSL#3 (VSL Pharmaceuticals, Inc., Gaithersburg, MD, USA), thus providing new ideas for the treatment of CRC. Moreover, we suggest the need to search for more therapeutic possibilities, especially via the research and application of synbiotics and postbiotics.
Collapse
|
18
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
19
|
Wang W, Xu Y, Wang X, Chu Y, Zhang H, Zhou L, Zhu H, Li J, Kuai R, Zhou F, Yang D, Peng H. Swimming Impedes Intestinal Microbiota and Lipid Metabolites of Tumorigenesis in Colitis-Associated Cancer. Front Oncol 2022; 12:929092. [PMID: 35847876 PMCID: PMC9285133 DOI: 10.3389/fonc.2022.929092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/09/2022] Open
Abstract
Background Accumulating data support that regular physical activity potentially inhibits chronic colitis, a risk factor for colitis-associated cancer (CAC). However, possible effects of physical activity on CAC and the underlying mechanisms remain poorly understood. Methods A pretreatment of swimming on azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CAC mice was implemented to determine its protective effect. Inflammation and tumorigenesis were assessed using colorectums from C57BL/6 mice. In order to determine how swimming alters colonic lipid metabolism and gene expression, a comparative analysis was conducted. Meanwhile, alterations in intestinal microbiota and short-chain fatty acids (SCFAs) were detected and analyzed. Finally, an integration analysis of colonic lipid metabolism with gene expression and intestinal microbiota was performed respectively. Result Swimming pretreatment relieved bowel inflammation and minimized tumor formation. We demonstrated that prostaglandin E2 (PGE2)/PGE2 receptor 2 subtype (EP2) signaling as a potential regulatory target for swimming induces colonic lipid metabolites. Swimming-induced genera, Erysipelatoclostridium, Parabacteroides, Bacteroides, and Rikenellaceae_RC9_gut_group, induced intestinal SCFAs and affected the function of colonic lipid metabolites enriched in glycerophospholipid metabolism and choline metabolism in cancer. Conclusion According to our experiments, swimming pretreatment can protect mice from CAC by intervention in the possible link between colonic lipid metabolites and PGE2/EP2 signaling. Further, swimming-induced genera and probiotics promoted glycerophospholipid metabolism and choline metabolism in cancer, the major constituents of colonic lipid metabolites, and increased SCFAs, which were also important mechanisms for the anti-inflammatory and anti-tumorigenic effects of swimming.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Daming Yang
- *Correspondence: Haixia Peng, ; Daming Yang,
| | - Haixia Peng
- *Correspondence: Haixia Peng, ; Daming Yang,
| |
Collapse
|
20
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
21
|
Chen Y, Chen YX. Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers (Basel) 2021; 13:4054. [PMID: 34439208 PMCID: PMC8394439 DOI: 10.3390/cancers13164054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.
Collapse
Affiliation(s)
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200001, China;
| |
Collapse
|
22
|
Samanta S. Potential Impacts of Prebiotics and Probiotics in Cancer Prevention. Anticancer Agents Med Chem 2020; 22:605-628. [PMID: 33305713 DOI: 10.2174/1871520621999201210220442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious problem throughout the world. The pathophysiology of cancer is multifactorial and is also related to gut microbiota. Intestinal microbes are the useful resident of the healthy human. They play various aspects of human health including nutritional biotransformation, flushing of the pathogens, toxin neutralization, immune response, and onco-suppression. Disruption in the interactions among the gut microbiota, intestinal epithelium, and the host immune system are associated with gastrointestinal disorders, neurodegenerative diseases, metabolic syndrome, and cancer. Probiotic bacteria (Lactobacillus spp., Bifidobacterium spp.) have been regarded as beneficial to health and shown to play a significant role in immunomodulation and displayed preventive role against obesity, diabetes, liver disease, inflammatory bowel disease, tumor progression, and cancer. OBJECTIVE The involvement of gut microorganisms in cancer development and prevention has been recognized as a balancing factor. The events of dysbiosis emphasize metabolic disorder and carcinogenesis. The gut flora potentiates immunomodulation and minimizes the limitations of usual chemotherapy. The significant role of prebiotics and probiotics on the improvement of immunomodulation and antitumor properties has been considered. METHODS I had reviewed the literature on the multidimensional activities of prebiotics and probiotics from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Google Scholar database to search relevant articles. Specifically, I had focused on the role of prebiotics and probiotics in immunomodulation and cancer prevention. RESULTS Prebiotics are the nondigestible fermentable sugars that selectively influence the growth of probiotic organisms that exert immunomodulation over the cancerous growth. The oncostatic properties of bacteria are mediated through the recruitment of cytotoxic T cells, natural killer cells, and oxidative stress-induced apoptosis in the tumor microenvironment. Moreover, approaches have also been taken to use probiotics as an adjuvant in cancer therapy. CONCLUSION The present review has indicated that dysbiosis is the crucial factor in many pathological situations including cancer. Applications of prebiotics and probiotics exhibit the immune-surveillance as oncostatic effects. These events increase the possibilities of new therapeutic strategies for cancer prevention.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur, 721101, West Bengal,. India
| |
Collapse
|
23
|
Xing PY, Pettersson S, Kundu P. Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics 2020; 20:e1800419. [PMID: 31994831 DOI: 10.1002/pmic.201800419] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota-derived signals and molecules influence another key player maintaining intestinal homeostasis-the intestinal stem cell niche, which regulates epithelial self-renewal. In this review, the literature on gut microbiota-host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.
Collapse
Affiliation(s)
- Peter Yuli Xing
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, South Spine, Level B3, Block S2-B3a, Singapore, 639798, Singapore
| | - Sven Pettersson
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, SE, 17 177, Stockholm, Sweden
| | - Parag Kundu
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,The Center for Microbes, Development and Health, Laboratory for Microbiota-Host Interactions, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building, Shanghai, 200031, China
| |
Collapse
|
24
|
Leman JKH, Munoz-Erazo L, Kemp RA. The Intestinal Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:1-22. [PMID: 32030672 DOI: 10.1007/978-3-030-36214-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumour microenvironment (TME) of intestinal tumours is highly complex and comprises a network of stromal cells, tumour cells, immune cells and fibroblasts, as well as microorganisms. The tumour location, environmental factors and the tumour cells themselves influence the cells within the TME. Immune cells can destroy tumour cells and are associated with better patient prognosis and response to therapy; however, immune cells are highly plastic and easily influenced to instead promote tumour growth. The interaction between local immune cells and the microbiome can lead to progression or regression of intestinal tumours. In this chapter, we will discuss how tumour development and progression can influence, and be influenced by, the microenvironment surrounding it, focusing on immune and fibroblastic cells, and the intestinal microbiota, particularly in the context of colorectal cancer.
Collapse
Affiliation(s)
- J K H Leman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - L Munoz-Erazo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand
| | - R A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
25
|
Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019; 16:690-704. [PMID: 31554963 DOI: 10.1038/s41575-019-0209-8] [Citation(s) in RCA: 689] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) accounts for about 10% of all new cancer cases globally. Located at close proximity to the colorectal epithelium, the gut microbiota comprises a large population of microorganisms that interact with host cells to regulate many physiological processes, such as energy harvest, metabolism and immune response. Sequencing studies have revealed microbial compositional and ecological changes in patients with CRC, whereas functional studies in animal models have pinpointed the roles of several bacteria in colorectal carcinogenesis, including Fusobacterium nucleatum and certain strains of Escherichia coli and Bacteroides fragilis. These findings give new opportunities to take advantage of our knowledge on the gut microbiota for clinical applications, such as gut microbiota analysis as screening, prognostic or predictive biomarkers, or modulating microorganisms to prevent cancer, augment therapies and reduce adverse effects of treatment. This Review aims to provide an overview and discussion of the gut microbiota in colorectal neoplasia, including relevant mechanisms in microbiota-related carcinogenesis, the potential of utilizing the microbiota as CRC biomarkers, and the prospect for modulating the microbiota for CRC prevention or treatment. These scientific findings will pave the way to clinically translate the use of gut microbiota for CRC in the near future.
Collapse
|
26
|
Swain SD, Grifka-Walk HN, Gripentrog J, Lehmann M, Deuling B, Jenkins B, Liss H, Blaseg N, Bimczok D, Kominsky DJ. Slug and Snail have differential effects in directing colonic epithelial wound healing and partially mediate the restitutive effects of butyrate. Am J Physiol Gastrointest Liver Physiol 2019; 317:G531-G544. [PMID: 31393789 PMCID: PMC6842986 DOI: 10.1152/ajpgi.00071.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Restitution of wounds in colonic epithelium is essential in the maintenance of health. Microbial products, such as the short-chain fatty acid butyrate, can have positive effects on wound healing. We used an in vitro model of T84 colonic epithelial cells to determine if the Snail genes Slug (SNAI2) and Snail (SNAI1), implemented in keratinocyte monolayer healing, are involved in butyrate-enhanced colonic epithelial wound healing. Using shRNA-mediated Slug/Snail knockdown, we found that knockdown of Slug (Slug-KD), but not Snail (Snail-KD), impairs wound healing in scratch assays with and without butyrate. Slug and Snail had differential effects on T84 monolayer barrier integrity, measured by transepithelial resistance, as Snail-KD impaired the barrier (with or without butyrate), whereas Slug-KD enhanced the barrier, again with or without butyrate. Targeted transcriptional analysis demonstrated differential expression of several tight junction genes, as well as focal adhesion genes. This included altered regulation of Annexin A2 and ITGB1 in Slug-KD, which was reflected in confocal microscopy, showing increased accumulation of B1-integrin protein in Slug-KD cells, which was previously shown to impair wound healing. Transcriptional analysis also indicated altered expression of genes associated with epithelial terminal differentiation, such that Slug-KD cells skewed toward overexpression of secretory cell pathway-associated genes. This included trefoil factors TFF1 and TFF3, which were expressed at lower than control levels in Snail-KD cells. Since TFFs can enhance the barrier in epithelial cells, this points to a potential mechanism of differential modulation by Snail genes. Although Snail genes are crucial in epithelial wound restitution, butyrate responses are mediated by other pathways as well.NEW & NOTEWORTHY Although butyrate can promote colonic mucosal healing, not all of its downstream pathways are understood. We show that the Snail genes Snail and Slug are mediators of butyrate responses. Furthermore, these genes, and Slug in particular, are necessary for efficient restitution of wounds and barriers in T84 epithelial cells even in the absence of butyrate. These effects are achieved in part through effects on regulation of β1 integrin and cellular differentiation state.
Collapse
Affiliation(s)
- Steve D. Swain
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | | | - Jeannie Gripentrog
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Margaret Lehmann
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Benjamin Deuling
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Brittany Jenkins
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Hailey Liss
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Nathan Blaseg
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
27
|
The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol Cancer 2019; 18:97. [PMID: 31109338 PMCID: PMC6526613 DOI: 10.1186/s12943-019-1008-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Microbiota is just beginning to be recognized as an important player in carcinogenesis and the interplay among microbes is greater than expected. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease for which mortality closely parallels incidence. Early detection would provide the best opportunity to increase survival rates. Specific well-studied oral, gastrointestinal, and intrapancreatic microbes and some kinds of hepatotropic viruses and bactibilia may have potential etiological roles in pancreatic carcinogenesis, or modulating individual responses to oncotherapy. Concrete mechanisms mainly involve perpetuating inflammation, regulating the immune system-microbe-tumor axis, affecting metabolism, and altering the tumor microenvironment. The revolutionary technology of omics has generated insight into cancer microbiomes. A better understanding of the microbiota in PDAC might lead to the establishment of screening or early-stage diagnosis methods, implementation of cancer bacteriotherapy, adjustment of therapeutic efficacy even alleviating the adverse effects, creating new opportunities and fostering hope for desperate PDAC patients.
Collapse
|
28
|
Proquin H, Jetten MJ, Jonkhout MCM, Garduño-Balderas LG, Briedé JJ, de Kok TM, van Loveren H, Chirino YI. Transcriptomics analysis reveals new insights in E171-induced molecular alterations in a mouse model of colon cancer. Sci Rep 2018; 8:9738. [PMID: 29950665 PMCID: PMC6021444 DOI: 10.1038/s41598-018-28063-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Titanium dioxide as a food additive (E171) has been demonstrated to facilitate growth of chemically induced colorectal tumours in vivo and induce transcriptomic changes suggestive of an immune system impairment and cancer development. The present study aimed to investigate the molecular mechanisms behind the tumour stimulatory effects of E171 in combination with azoxymethane (AOM)/dextran sodium sulphate (DSS) and compare these results to a recent study performed under the same conditions with E171 only. BALB/c mice underwent exposure to 5 mg/kgbw/day of E171 by gavage for 2, 7, 14, and 21 days. Whole genome mRNA microarray analyses on the distal colon were performed. The results show that E171 induced a downregulation of genes involved in the innate and adaptive immune system, suggesting impairment of this system. In addition, over time, signalling genes involved in colorectal cancer and other types of cancers were modulated. In relation to cancer development, effects potentially associated with oxidative stress were observed through modulation of genes related to antioxidant production. E171 affected genes involved in biotransformation of xenobiotics which can form reactive intermediates resulting in toxicological effects. These transcriptomics data reflect the early biological responses induced by E171 which precede tumour formation in an AOM/DSS mouse model.
Collapse
Affiliation(s)
- Héloïse Proquin
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Marlon J Jetten
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Marloes C M Jonkhout
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | - Jacob J Briedé
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Henk van Loveren
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, FES-Iztacala, UNAM, Estado de México, Mexico.,IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, DE Düsseldorf, Germany
| |
Collapse
|
29
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
30
|
Mima K, Ogino S, Nakagawa S, Sawayama H, Kinoshita K, Krashima R, Ishimoto T, Imai K, Iwatsuki M, Hashimoto D, Baba Y, Sakamoto Y, Yamashita YI, Yoshida N, Chikamoto A, Ishiko T, Baba H. The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surg Oncol 2017; 26:368-376. [PMID: 29113654 DOI: 10.1016/j.suronc.2017.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/09/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
More than 100 trillion microorganisms inhabit the human intestinal tract and play important roles in health conditions and diseases, including cancer. Accumulating evidence demonstrates that specific bacteria and bacterial dysbiosis in the gastrointestinal tract can potentiate the development and progression of gastrointestinal tract neoplasms by damaging DNA, activating oncogenic signaling pathways, producing tumor-promoting metabolites such as secondary bile acids, and suppressing antitumor immunity. Other bacterial species have been shown to produce short-chain fatty acids such as butyrate, which can suppress inflammation and carcinogenesis in the gastrointestinal tract. Consistent with these lines of evidence, clinical studies using metagenomic analyses have shown associations of specific bacteria and bacterial dysbiosis with gastrointestinal tract cancers, including esophageal, gastric, and colorectal cancers. Emerging data demonstrate that intestinal bacteria can modulate the efficacy of cancer chemotherapies and novel targeted immunotherapies such as anti-CTLA4 and anti-CD274 therapies, the process of absorption, and the occurrence of complications after gastrointestinal surgery. A better understanding of the mechanisms by which the gut microbiota influence tumor development and progression in the intestine would provide opportunities to develop new prevention and treatment strategies for patients with gastrointestinal tract cancers by targeting the intestinal microflora.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shuji Ogino
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Koichi Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Ryuichi Krashima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Daisuke Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Ishiko
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
31
|
Xu S, Liu CX, Xu W, Huang L, Zhao JY, Zhao SM. Butyrate induces apoptosis by activating PDC and inhibiting complex I through SIRT3 inactivation. Signal Transduct Target Ther 2017; 2:16035. [PMID: 29263907 PMCID: PMC5661613 DOI: 10.1038/sigtrans.2016.35] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023] Open
Abstract
The underlying anticancer effects of butyrate, an end-product of the intestinal microbial fermentation of dietary fiber, remain elusive. Here, we report that butyrate promotes cancer cell apoptosis by acting as a SIRT3 inhibitor. Butyrate inhibits SIRT3 both in cultured cells and in vitro. Butyrate-induced PDHA1 hyperacetylation relieves the inhibitory phosphorylation of PDHA1 at serine 293, thereby activating an influx of glycolytic intermediates into the tricarboxylic acid (TCA) cycle and reversing the Warburg effect. Meanwhile, butyrate-induced hyperacetylation inactivates complex I of the electron transfer chain and prevents the utilization of TCA cycle intermediates. These metabolic stresses promote apoptosis in hyperglycolytic cancer cells, such as HCT116p53-/- cells. SIRT3 deacetylates both PDHA1 and complex I. Genetic ablation of Sirt3 in mouse hepatocytes abrogated the ability of butyrate to induce apoptosis. Our results identify a butyrate-mediated anti-tumor mechanism and indicate that the combined activation of PDC and inhibition of complex I is a novel tumor treatment strategy.
Collapse
Affiliation(s)
- Sha Xu
- The Obstetrics & Gynecology Hospital of Fudan University, School of Life Sciences, Shanghai, P.R. China
- Institute of Biomedical Science, Fudan University, Shanghai, P.R. China
| | - Cai-Xia Liu
- The Obstetrics & Gynecology Hospital of Fudan University, School of Life Sciences, Shanghai, P.R. China
- Institute of Biomedical Science, Fudan University, Shanghai, P.R. China
| | - Wei Xu
- The Obstetrics & Gynecology Hospital of Fudan University, School of Life Sciences, Shanghai, P.R. China
- Institute of Biomedical Science, Fudan University, Shanghai, P.R. China
| | - Lei Huang
- The Obstetrics & Gynecology Hospital of Fudan University, School of Life Sciences, Shanghai, P.R. China
- Institute of Biomedical Science, Fudan University, Shanghai, P.R. China
| | - Jian-Yuan Zhao
- The Obstetrics & Gynecology Hospital of Fudan University, School of Life Sciences, Shanghai, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shi-Min Zhao
- The Obstetrics & Gynecology Hospital of Fudan University, School of Life Sciences, Shanghai, P.R. China
- Institute of Biomedical Science, Fudan University, Shanghai, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
32
|
Aw W, Fukuda S. An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases. Diseases 2015; 3:341-359. [PMID: 28943629 PMCID: PMC5548254 DOI: 10.3390/diseases3040341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Recently, metagenomics and metabolomics are the two most rapidly advancing “omics” technologies. Metagenomics seeks to characterize the composition of microbial communities, their operations, and their dynamically co-evolving relationships with the habitats they occupy, whereas metabolomics studies unique chemical endpoints (metabolites) that specific cellular processes leave behind. Remarkable progress in DNA sequencing and mass spectrometry technologies has enabled the comprehensive collection of information on the gut microbiome and its metabolome in order to assess the influence of the gut microbiota on host physiology on a whole-systems level. Our gut microbiota, which consists of prokaryotic cells together with its metabolites, creates a unique gut ecosystem together with the host eukaryotic cells. In this review, we will highlight the detailed relationships between gut microbiota and its metabolites on host health and the pathogenesis of various intestinal diseases such as inflammatory bowel disease and colorectal cancer. Therapeutic interventions such as probiotic and prebiotic administrations and fecal microbiota transplantations will also be discussed. We would like to promote this unique biology-wide approach of incorporating metagenome and metabolome information as we believe that this can help us understand the intricate interplay between gut microbiota and host metabolism to a greater extent. This novel integration of microbiome, metatranscriptome, and metabolome information will help us have an improved holistic understanding of the complex mammalian superorganism, thereby allowing us to gain new and unprecedented insights to providing exciting novel therapeutic approaches for optimal intestinal health.
Collapse
Affiliation(s)
- Wanping Aw
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
33
|
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12:661-72. [PMID: 25198138 DOI: 10.1038/nrmicro3344] [Citation(s) in RCA: 1799] [Impact Index Per Article: 179.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that the human intestinal microbiota contributes to the aetiology of colorectal cancer (CRC), not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the wider microbial community, particularly its metabolome. Recent data have shown that the short-chain fatty acids acetate, propionate and butyrate function in the suppression of inflammation and cancer, whereas other microbial metabolites, such as secondary bile acids, promote carcinogenesis. In this Review, we discuss the relationship between diet, microbial metabolism and CRC and argue that the cumulative effects of microbial metabolites should be considered in order to better predict and prevent cancer progression.
Collapse
Affiliation(s)
- Petra Louis
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Georgina L Hold
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
34
|
Fauser J, Matthews G, Cummins A, Howarth G. Induction of Apoptosis by the Medium-Chain Length Fatty Acid Lauric Acid in Colon Cancer Cells due to Induction of Oxidative Stress. Chemotherapy 2013; 59:214-24. [DOI: 10.1159/000356067] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
|
35
|
Buda A, Jepson MA, Pignatelli M. Regulatory function of trefoil peptides (TFF) on intestinal cell junctional complexes. ACTA ACUST UNITED AC 2012. [PMID: 23181544 DOI: 10.3109/15419061.2012.748326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract Trefoil peptides (TFF) are constitutively expressed in the gastrointestinal tract and are involved in gastrointestinal defence and repair by promoting epithelial restitution. Although there is a general consensus regarding the pro-motogenic activity of trefoil peptides, the cellular mechanisms through which they mediate these processes are not completely understood. Pertubation of the E-cadherin/catenin complex at intercellular junctions appears to be a functional pathway through which TFF2 and TFF3 promote cell migration. Tight junction complexes seal the paracellular spaces between cells and contribute to epithelial barrier function. TFF3 peptide stimulation stabilises these junctions through upregulation of the tightening protein claudin-1 and redistribution of ZO-1 from the cytoplasm to the intercellular membrane with an increase in binding to occludin. Modulation of the functional activity and subcellular localisation of epithelial junctional adhesion molecules represent important mechanisms by which trefoil peptides may promote migration of intestinal epithelial cells in vitro and healing of mucosal damage in vivo.
Collapse
Affiliation(s)
- Andrea Buda
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
36
|
Minelli R, Serpe L, Pettazzoni P, Minero V, Barrera G, Gigliotti C, Mesturini R, Rosa AC, Gasco P, Vivenza N, Muntoni E, Fantozzi R, Dianzani U, Zara GP, Dianzani C. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells. Br J Pharmacol 2012; 166:587-601. [PMID: 22049973 DOI: 10.1111/j.1476-5381.2011.01768.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch 'wound-healing' assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon-rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate.
Collapse
Affiliation(s)
- R Minelli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ischemia-induced apoptosis of intestinal epithelial cells correlates with altered integrin distribution and disassembly of F-actin triggered by calcium overload. J Biomed Biotechnol 2012; 2012:617539. [PMID: 22701305 PMCID: PMC3369571 DOI: 10.1155/2012/617539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/23/2012] [Indexed: 12/18/2022] Open
Abstract
The present study examined intestinal epithelial cell (IEC) integrin distribution and disassembly of actin cytoskeleton in response to ischemia-anoxia. Protective effects of calcium channel blocker(CCB) were further examined to explore underlying mechanisms of cellular injury. Materials and Methods. Primary cultures of rat IECs and an in vitro model of ischemia/anoxia were established. IECs were exposed to ischemia/anoxia in the presence and absence of verapamil. The extent of exfoliation was determined using light microscopy while apoptosis rate was measured using flow cytometry. Changes in intracellular calcium, the distribution of integrins and the morphology of F-actin were assessed by confocal microscopy. Results. Detachment and apoptosis of IECs increased following ischemia/anoxia-induced injury. Treatment with verapamil inhibited the detachment and apoptosis. Under control conditions, the strongest fluorescent staining for integrins appeared on the basal surface of IECs while this re-distributed to the apical membrane in response to ischemic injury. Depolymerization of F-actin was also observed in the injured cells. Verapamil attenuated both changes of integrins and F-actin. Conclusions. Redistribution of integrins and disruption of F-actin under ischemia/anoxia injury is associated with IEC detachment and increased apoptosis. These events appeared to be triggered by an increase in Ca2+i suggesting a potential use for CCB in prevention and treatment of intestinal injury.
Collapse
|
38
|
De Simone C, Ferranti P, Picariello G, Scognamiglio I, Dicitore A, Addeo F, Chianese L, Stiuso P. Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Mol Nutr Food Res 2010; 55:229-38. [DOI: 10.1002/mnfr.201000074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/03/2010] [Accepted: 06/02/2010] [Indexed: 01/08/2023]
|
39
|
El Emir E, Qureshi U, Dearling JL, Boxer GM, Clatworthy I, Folarin AA, Robson MP, Nagl S, Konerding MA, Pedley RB. Predicting Response to Radioimmunotherapy from the Tumor Microenvironment of Colorectal Carcinomas. Cancer Res 2007; 67:11896-905. [DOI: 10.1158/0008-5472.can-07-2967] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Banu N, Buda A, Chell S, Elder D, Moorghen M, Paraskeva C, Qualtrough D, Pignatelli M. Inhibition of COX-2 with NS-398 decreases colon cancer cell motility through blocking epidermal growth factor receptor transactivation: possibilities for combination therapy. Cell Prolif 2007; 40:768-79. [PMID: 17877615 PMCID: PMC6496834 DOI: 10.1111/j.1365-2184.2007.00459.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The use of non-steroidal anti-inflammatory drugs has proved of great interest in the prevention and treatment of colorectal cancer, although their precise mechanisms of action remain unclear. Overexpression of cyclooxygenase-2 (COX-2) and subsequent prostaglandin production promote metastasis and have been shown to increase cell motility in vitro. OBJECTIVE We have aimed to elucidate whether specific inhibition of COX-2 with NS-398 (NS-398 is a selective inhibitor of COX-2) would be able to inhibit motility of colorectal cancer cells and whether this was modulated through epidermal growth factor receptor (EGFR) transactivation. MATERIALS AND METHODS A transwell filter assay was used to study cell motility. Expression of COX-2, EGFR phosphorylation and prostaglandin E(2) (PGE(2)) receptors were assessed by Western blot analysis and reverse transcriptase-polymerase chain reaction. PGE(2) concentrations after NS-398 treatment were estimated by enzyme immunoassay. RESULTS Treatment with NS-398 significantly reduced PGE(2) levels and reduced cell migration in the HT29 and HCA7 colorectal carcinoma cell lines and this effect was rescued by addition of PGE(2). Furthermore, specific inhibition of COX-2 with NS-398 reduced EGFR phosphorylation in colorectal cancer cells. Direct inhibition of EGFR activity with AG1478 reduced PGE(2)-stimulated motility, clearly demonstrating that PGE(2 )acts via the EGFR-signalling pathway. The novel combination of NS-398 and AG1478 dramatically reduced migration of colorectal cancer cells. CONCLUSION The data presented indicate that the use of NS-398 in chemoprevention and adjuvant therapy for colorectal cancer may work in part, through the inhibition of cell motility. Furthermore, our data suggest that the combined use of non-steroidal anti-inflammatory drugs with EGFR antagonists could be explored further for future use in the clinic.
Collapse
Affiliation(s)
- N Banu
- Division of Histopathology, Department of Cellular and Molecular Medicine, School of Medical Sciences and Bristol Royal Infirmary, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Karna E, Miltyk W, Pałka JA. Butyrate-induced collagen biosynthesis in cultured fibroblasts is independent on alpha2beta1 integrin signalling and undergoes through IGF-I receptor cascade. Mol Cell Biochem 2006; 286:147-52. [PMID: 16541197 DOI: 10.1007/s11010-005-9106-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 12/08/2005] [Indexed: 10/24/2022]
Abstract
The potential role of butyrate to modulate cellular metabolism through integrin receptor led to evaluation of its effect on collagen biosynthesis in cultured fibroblasts. Confluent human dermal fibroblasts were treated with 2 mM and 4 mM of sodium butyrate (NaB) for 48 h. It was found that butyrate induced collagen biosynthesis and prolidase activity independently of alpha2beta1 integrin signaling. The expressions of both alpha2 and beta1 integrin subunits as well as integrin-induced activation of focal adhesion kinase (FAK) were not affected in the cells treated with NaB. Since insulin-like growth factor-I (IGF-I) is the most potent stimulator of collagen biosynthesis in fibroblasts, the effect of butyrate on IGF-I receptor (IGF-IR) expression was evaluated. It was found that the exposure of the cells to 4 mM butyrate contributed to a distinct increase in IGF-IR. It was accompanied by a parallel increase in the expression of Sos protein and MAP-kinases (ERK1, ERK2). The data suggests that butyrate-dependent stimulation of collagen biosynthesis in cultured human skin fibroblasts undergoes through IGF-IR signaling.
Collapse
Affiliation(s)
- Ewa Karna
- Department of Medicinal Chemistry, Medical University in Białystok, Kilińskiego 1, 15-089 Białystok, Poland
| | | | | |
Collapse
|
42
|
Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H, Manabe T. Integrin-linked kinase activity is associated with interleukin-1α-induced progressive behavior of pancreatic cancer and poor patient survival. Oncogene 2006; 25:3237-46. [PMID: 16407822 DOI: 10.1038/sj.onc.1209356] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cancer cell adhesion and invasion into extracellular matrix are regulated by integrin-linked kinase (ILK) activity in a phosphatidylinositol 3-kinase (PI3-K)-dependent manner. In this study, we demonstrated that ILK and beta(1)-integrin play important roles in interleukin (IL)-1alpha-induced enhancement of adhesion and invasion of pancreatic cancer cells through p38 mitogen-activated protein kinase (MAPK) signaling pathway and activator protein-1 (AP-1) activation. Alteration of ILK kinase activity controlled IL-1alpha-induced p38 MAPK phosphorylation and its downstream AP-1 activation with subsequent regulation of pancreatic cancer cell adhesion and invasion. Overexpressed ILK enhances the IL-1alpha-induced p38 MAPK phosphorylation more strongly through glycogen synthase kinase 3 (GSK-3) activation, and subsequently induces AP-1 activation, which promotes aggressive capabilities of pancreatic cancer cells. In contrast, knockdown of ILK kinase activity inhibits the IL-1alpha-induced activation of MAPK/AP-1 pathway via inhibition of GSK-3 phosphorylation. In immunohistochemical analysis, statistically significant association between strong expression of ILK and poor prognosis of pancreatic cancer patients were observed, and strong expression of ILK in cancerous tissues can be a significant prognostic indicator of pancreatic cancer patients. Our results suggest that ILK is involved with aggressive capability in pancreatic cancer and that these regulations can be helpful to understand biological processes for a better translational treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- H Sawai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H, Manabe T. Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol Cancer 2005; 4:37. [PMID: 16209712 PMCID: PMC1266395 DOI: 10.1186/1476-4598-4-37] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/06/2005] [Indexed: 02/02/2023] Open
Abstract
Background Interaction with integrin and focal adhesion kinase (FAK) regulates the cancer cell adhesion and invasion into extracellular matrix (ECM). In addition, phosphorylation of FAK correlates with the increase of cell motility and invasion. Adhesion and spreading of cancer cells on a variety of ECM proteins, including collagen type IV (Coll IV), leads to an increase in tyrosine phosphorylation and activation of FAK. In this study, we investigated the mechanism of activation of FAK and its downstream extracellular signal-regulated kinase (ERK)-1/2 signaling following stimulation by interleukin (IL)-1α and adhesion to ECM with subsequent enhancement of pancreatic cancer cell adhesion and invasion. Results In immunoblotting analysis, all three pancreatic cancer cell lines (AsPC-1, BxPC-3, and Capan-2) expressed the protein of FAK and β1 integrin. Enhancement of FAK protein association with β1 integrin when cells were plated on Coll IV was more increased by stimulation with IL-1α. Preincubation with anti-β1 integrin antibody and FAK siRNA transfection inhibited the association of FAK with β1 integrin of pancreatic cancer cells. FAK phosphorylation was observed by adhesion to Coll IV, furthermore, stronger FAK phosphorylation was observed by stimulation with IL-1α of pancreatic cancer cells adhered to Coll IV in time-dependent manner. Genistein, a tyrosine kinase inhibitor, markedly inhibited the FAK phosphorylation. IL-1α stimulation and Coll IV adhesion enhanced the activation of Ras, as evidenced by the increased Ras-GTP levels in pancreatic cancer cells. Activation of Ras correlated with the phosphorylation of ERK. While not statistical affecting the apoptosis of pancreatic cancer cells, IL-1α-induced adhesion and invasion on Coll IV were inhibited with FAK gene silencing by siRNA, β1 integrin blocking, and inhibition of FAK phosphorylation. PD98059, a MEK inhibitor, also inhibited IL-1α-induced enhancement of adhesion and invasion in pancreatic cancer cells. Conclusion
Our results demonstrated that activation of FAK is involved with the aggressive capability in pancreatic cancer through Ras/ERK signaling pathway. Based on our results, we suggest that the modification of IL-1, FAK, and integrins functions might be a novel therapeutic approach to aggressive spread of pancreatic cancer.
Collapse
Affiliation(s)
- Hirozumi Sawai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Yuji Okada
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Hitoshi Funahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Hiromitsu Takeyama
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| | - Tadao Manabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 4678601, Japan
| |
Collapse
|
44
|
Li X, Mikkelsen IM, Mortensen B, Winberg JO, Huseby NE. Butyrate reduces liver metastasis of rat colon carcinoma cells in vivo and resistance to oxidative stress in vitro. Clin Exp Metastasis 2004; 21:331-8. [PMID: 15554389 DOI: 10.1023/b:clin.0000046134.80393.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Injection of the rat colon carcinoma cell line CC531 into spleen of syngeneic rats results in considerable amounts of liver metastases within 14 days. We investigated whether preincubation of the cells with butyrate reduced their metastatic ability in vivo and whether this was accompanied by reduction in related properties such as secretion of metalloproteinases and their ability to withstand oxidative stress. Butyrate incubation reduced cell growth rate and initiated apoptosis in a dose- and time-related manner, but proliferation was retrieved when cultivation was continued in medium without butyrate. Splenic injection of butyrate treated, proliferating cells resulted in significantly reduced amounts of tumor mass compared to untreated cells. The butyrate treated cells were more susceptible to oxidative stress than control cells, as demonstrated by increased number of apoptotic cells and reduced cell growth after exposure to menadione. A reduction in cellular glutathione was found after prolonged incubation with butyrate. Butyrate appeared not to alter the secretion of active metalloproteinases from the cells although an apparent increase in proforms was demonstrated. Neither did butyrate alter the synthesis of metalloproteinase inhibitors. Lastly, a reduced adhesion of the tumor cells to collagen coated matrix was found after butyrate treatment. Thus, the inhibitory effects of butyrate on tumor malignancy are caused by a diversity of mechanisms.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- A J M Watson
- Department Medicine, University of Liverpool Medical School, Daulby St, Liverpool L69 3GA, UK.
| |
Collapse
|
46
|
Abstract
Nutrients may be involved in the modulation of the immune response through at least three different mechanisms. First, the intestinal ecosystem plays a pivotal role in the pathogenesis of inflammatory bowel disease, triggering the uncontrolled inflammatory response in genetically predisposed individuals. Nutrients, together with bacteria, are major components of, and can therefore influence, the intestinal environment. Second, as components of cell membranes, nutrients can mediate the expression of proteins involved in the immune response, such as cytokines, adhesion molecules and nitric oxide synthase. The composition of lipids in the cell membrane is modified by dietary changes and can influence cellular responses. Indeed, various epidemiological, experimental and clinical data suggest that the immune response may be sensitive to changes in dietary composition. Finally, suboptimal levels of micronutrients are often found in both children and adults with inflammatory bowel disease, although, with the exception of iron and folate, it is unusual to discover symptoms attributable to these deficits. However, subclinical deficits may have a pathophysiological significance, as they may favour the self-perpetuation of the disease (due to defects in the mechanisms of tissue repair), cause defective defence against damage produced by oxygen free radicals and facilitate lipid peroxidation. These events can occur even in clinically inactive or mildly active disease, as well as in the development of dysplasia in the intestinal mucosa. Some dietary manipulations have been attempted as primary treatment for rheumatoid arthritis, and specially formulated diets for enteral nutrition have proved to be an effective treatment for Crohn's disease. Most trials, although lacking sufficient patient numbers, have demonstrated a role for dietary manipulation as primary therapy for inflammatory disease. Dietary lipids are one of the most active nutritional substrates modulating the immune response. Recently, it has been demonstrated that lipids may be a key factor explaining the therapeutic effect of clinical nutrition in Crohn's disease.
Collapse
Affiliation(s)
- M A Gassull
- Department of Gastroenterology and Hepatology, Hospital Universitari Germans, Trias i Pujol, Catalonia, Spain.
| |
Collapse
|
47
|
Pons V, Pérès C, Teulié JM, Nauze M, Mus M, Rolland C, Collet X, Perret B, Gassama-Diagne A, Hullin-Matsuda F. Enterophilin-1 Interacts with Focal Adhesion Kinase and Decreases β1 Integrins in Intestinal Caco-2 Cells. J Biol Chem 2004; 279:9270-7. [PMID: 14630935 DOI: 10.1074/jbc.m309764200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intestinal cell growth and differentiation are tightly regulated by growth factors and extracellular matrix components along the crypt-villus axis. We previously described enterophilin-1 (Ent-1) as a new intestinal protein associated with growth arrest and enterocyte differentiation. Ent-1 interacted with sorting nexin 1 and decreased cell surface epidermal growth factor receptor. Because beta(1) integrins are mostly found in vivo in the proliferative crypt cells, we investigated the role of Ent-1 in the fate of beta(1) integrin subunits. In undifferentiated intestinal Caco-2 cells, overexpression of Ent-1 induces a marked decrease of alpha(5)beta(1) integrin pools, whereas alpha(2)beta(1) integrin is weakly affected. Conversely, overexpression of sorting nexin 1 has no effect on integrin levels despite its ability to interact with Ent-1. Interestingly, we identified focal adhesion kinase as a new Ent-1 partner using yeast two-hybrid screening and co-precipitation experiments. Furthermore by confocal microscopy, we observed that Ent-1 and beta(1) integrins partly co-localize on vesicular structures, suggesting a role for Ent-1 in integrin trafficking. Because focal adhesion kinase is able to bind both Ent-1 and beta(1) integrins, the kinase might act as a molecular bridge between the two proteins. Altogether, these results support a role of Ent-1 in regulating beta(1) integrin expression that could favor intestinal differentiation.
Collapse
Affiliation(s)
- Véronique Pons
- Institut Fédératif de Recherche Claude de Préval, IFR30, INSERM Unité 563, Département Lipoprotéines et Médiateurs Lipidiques, Hôpital Purpan, 31059 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|