1
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
3
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
4
|
Guillard J, Schwörer S. Metabolic control of collagen synthesis. Matrix Biol 2024; 133:43-56. [PMID: 39084474 PMCID: PMC11402592 DOI: 10.1016/j.matbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The extracellular matrix (ECM) is present in all tissues and crucial in maintaining normal tissue homeostasis and function. Defects in ECM synthesis and remodeling can lead to various diseases, while overproduction of ECM components can cause severe conditions like organ fibrosis and influence cancer progression and therapy resistance. Collagens are the most abundant core ECM proteins in physiological and pathological conditions and are predominantly synthesized by fibroblasts. Previous efforts to target aberrant collagen synthesis in fibroblasts by inhibiting pro-fibrotic signaling cascades have been ineffective. More recently, metabolic rewiring downstream of pro-fibrotic signaling has emerged as a critical regulator of collagen synthesis in fibroblasts. Here, we propose that targeting the metabolic pathways involved in ECM biomass generation provides a novel avenue for treating conditions characterized by excessive collagen accumulation. This review summarizes the unique metabolic challenges collagen synthesis imposes on fibroblasts and discusses how underlying metabolic networks could be exploited to create therapeutic opportunities in cancer and fibrotic disease. Finally, we provide a perspective on open questions in the field and how conceptual and technical advances will help address them to unlock novel metabolic vulnerabilities of collagen synthesis in fibroblasts and beyond.
Collapse
Affiliation(s)
- Julien Guillard
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Simon Schwörer
- Section of Hematology/Oncology, Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA; Committee on Cancer Biology, Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Yang L, Qiao S, Zhang G, Lu A, Li F. Inflammatory Processes: Key Mediators of Oncogenesis and Progression in Pancreatic Ductal Adenocarcinoma (PDAC). Int J Mol Sci 2024; 25:10991. [PMID: 39456771 PMCID: PMC11506938 DOI: 10.3390/ijms252010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Associations between inflammation and cancer were first discovered approximately 160 years ago by Rudolf Virchow, who observed that tumors were infiltrated with inflammatory cells, and defined inflammation as a pathological condition. Inflammation has now emerged as one of the key mediators in oncogenesis and tumor progression, including pancreatic ductal adenocarcinoma (PDAC). However, the role of inflammatory processes in cancers is complicated and controversial, and the detailed regulatory mechanisms are still unclear. This review elucidates the dynamic interplay between inflammation and immune regulation, microenvironment alteration, metabolic reprogramming, and microbiome risk factors in PDAC, committing to exploring a deeper understanding of the role of crucial inflammatory pathways and molecules for providing insights into therapeutic strategies.
Collapse
Affiliation(s)
- Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
6
|
Ahmadi Jazi S, Tajik F, Rezagholizadeh F, Taha SR, Shariat Zadeh M, Bouzari B, Madjd Z. Higher Expression of Talin-1 is Associated With Less Aggressive Tumor Behavior in Pancreatic Cancer. Appl Immunohistochem Mol Morphol 2024; 32:425-435. [PMID: 39258796 DOI: 10.1097/pai.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Talin-1 is one of the major scaffold proteins in focal adhesions playing a vital role in cell migration, metastasis, and cancer progression. Although studies regarding the importance of Talin-1 in cancer have rapidly developed, its prognostic and diagnostic value still remain unsatisfying in pancreatic cancer (PC). Therefore, the present study aims to investigate the expression, clinical significance, as well as the prognostic and diagnostic value of Talin-1 in different types of PC. Bioinformatic analysis was applied to determine the clinical importance and biological role of Talin-1 expression in PC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of Talin-1 were evaluated in tissue microarrays (TMAs) of 190 PC samples including 170 pancreatic ductal adenocarcinoma (PDAC), and 20 pancreatic neuroendocrine tumors (PNET), along with 24 adjacent normal tissues using immunohistochemistry (IHC). The results indicated that the expression of Talin-1 was upregulated in tumor cells compared with adjacent normal tissues. A statistically significant association was observed between the higher cytoplasmic expression of Talin-1 and lower histologic grade ( P <0.001) in PDAC samples. Further, our findings indicated an inverse significant correlation between cytoplasmic expression of Talin-1 and recurrence ( P =0.014) in PNET samples. No significant association was observed between the cytoplasmic expression of Talin-1 and survival outcomes as well as diagnostic accuracy. In conclusion, our observations demonstrated that a higher cytoplasmic level of Talin-1 protein was significantly associated with less aggressive tumor behaviors in PC samples. Nevertheless, further investigations are required to explore the prognostic plus diagnostic value, and mechanism of action of Talin-1 in pancreatic cancer.
Collapse
Affiliation(s)
- Samira Ahmadi Jazi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences
| | | | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
9
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
10
|
Sato S, Mizutani Y, Abe M, Fukuda S, Higashiyama S, Inoue S. Naked mole-rat TMEM2 lacks physiological hyaluronan-degrading activity. Arch Biochem Biophys 2024; 759:110098. [PMID: 39009271 DOI: 10.1016/j.abb.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Mouse transmembrane protein 2 (mTMEM2) has been identified as a hyaluronidase, which has extracellularly G8 and GG domains and PbH1 repeats; however, our previously study showed that human TMEM2 (hTMEM2) is not a catalytic hyaluronidase due to the absence of the critical amino acid residues (His248/Ala303) in the GG domain. Naked mole-rats (NMRs) accumulate abundant high-molecular weight hyaluronan (HA) in their tissues, suggesting decreased HA degradation. Therefore, we aimed to evaluate the HA-degrading activity of NMR TMEM2 (nmrTMEM2) and compare it with those of mTMEM2 and hTMEM2. The amino acid residues of nmrTMEM2 (Asn247/Val302) are similar to Asn248/Phe303 of hTMEM2, and nmrTMEM2-expressing HEK293T cells showed negligible activity. We confirmed the significance of these amino acid residues using an inactive chimeric TMEM2 with the human GG domain, which acquired catalytic activity when Asn248/Phe303 was substituted with His248/Ala303. Semi-quantitative comparison of the activities of the membrane-fractions derived from m/h/nmrTMEM2-expressing HEK293T cells revealed that at least 20- and 14-fold higher amounts of nmr/hTMEM2 were required to degrade HA to the same extent as by mTMEM2. Thus, unlike mTMEM2, nmrTMEM2 is not a physiological hyaluronidase. The inability of nmrTMEM2 to degrade HA might partially account for the high-molecular-weight HA accumulation in NMR tissues.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan; TOA Inc., Nippon Life Yodoyabashi Bldg., 17F, 3-5-29, Kitahama, Chuo-ku, Osaka, 541-0041, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Minori Abe
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusaku, Nagoya, Aichi, 464-8650, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan; Department of Oncogenesis and Growth Regulation, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, Osaka, 541-8567, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
11
|
Tomasich E, Mühlbacher J, Wöran K, Hatziioannou T, Herac M, Kleinberger M, Berger JM, Dibon LK, Berchtold L, Heller G, Bergen ES, Macher-Beer A, Prager G, Schindl M, Preusser M, Berghoff AS. Immune cell distribution and DNA methylation signatures differ between tumor and stroma enriched compartment in pancreatic ductal adenocarcinoma. Transl Res 2024; 271:40-51. [PMID: 38734064 DOI: 10.1016/j.trsl.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The presence of abundant tumor stroma is a prominent characteristic of pancreatic ductal adenocarcinomas (PDAC) that potentially influences disease progression and therapy response. This study aims to investigate immune cell infiltration and epigenetic profiles in tumor cell enriched ("Tumor") and stroma cell enriched ("Stroma") regions within human PDAC tissue samples. By comparing those regions, we identified 25,410 differentially methylated positions (DMPs) distributed across 6,963 unique genes. Pathway enrichment analysis using the top 2,000 DMPs that were either hyper- or hypomethylated indicated that immune response pathways and the estrogen receptor pathway are epigenetically dysregulated in Tumor and Stroma regions, respectively. In terms of immune cell infiltration, we observed overall low levels of T cells in both regions. In Tumor regions however, occurrence of tumor-associated macrophages (TAMs) was higher than in Stroma regions (p = 0.02) concomitant with a dualistic distribution that stratifies PDAC patients into those with high and low TAM infiltration. By categorizing TAM levels into quartiles, our analysis revealed that PDAC patients with more than 1,515 TAMs per mm² exhibited significantly shorter overall survival (p = 0.036). Our data suggest that variations in inflammatory characteristics between the Tumor and Stroma defined compartments of PDAC may primarily stem from the presence of macrophages rather than lymphocytes. The abundance of TAMs within regions enriched with tumor cells correlates with patient survival, underscoring the potential significance of exploring therapeutic interventions targeting TAMs. Furthermore, directing attention towards the estrogen receptor pathway may represent a promising strategy to address the stroma cell component within the PDAC tumor microenvironment.
Collapse
Affiliation(s)
- Erwin Tomasich
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Austria
| | - Jakob Mühlbacher
- Department of Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria
| | - Katharina Wöran
- Department of Pathology, Medical University of Vienna, Austria
| | - Teresa Hatziioannou
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Merima Herac
- Department of Pathology, Medical University of Vienna, Austria
| | - Markus Kleinberger
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Austria
| | - Julia Maria Berger
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Austria
| | - Lea Katharina Dibon
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Luzia Berchtold
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria; Institute of Medical Statistics, Center for Medical Data Science, Medical University of Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | | | | | - Gerald Prager
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Martin Schindl
- Department of Surgery, Division of Visceral Surgery, Medical University of Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Austria
| | - Anna Sophie Berghoff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Austria.
| |
Collapse
|
12
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
13
|
Liu D, Guo L, Waasdorp C, Meijer SL, Bootsma S, Oyarce C, Bijlsma MF, van Laarhoven HWM. Hyaluronidase improves the efficacy of nab-paclitaxel after prolonged angiogenesis inhibition in preclinical models for esophagogastric cancer. Biomed Pharmacother 2024; 178:117261. [PMID: 39106708 DOI: 10.1016/j.biopha.2024.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Long-term anti-angiogenesis leads to pruned vasculature, densely deposited extracellular matrix (ECM), and consequently reduced chemotherapy delivery in esophagogastric cancer (EGC). To address this issue, we evaluated the efficacy of adding a hyaluronidase or a NO-donor to the regimen of chemotherapy and anti-angiogenic drugs. METHODS A patient-derived EGC xenograft model was developed. Grafted mice were randomly assigned to four experimental groups and one control group. The experimental groups received DC101, a murine angiogenesis inhibitor, and nab-paclitaxel (NPTX), with the addition of hyaluronidase (PEGPH20), or NO-donor (nitroglycerine, NTG), or their combination, respectively. We compared tumor growth during 17 days of treatment. We performed immunohistochemistry for ECM components hyaluronan (HA) and collagen, CD31 for endothelial cells, and γH2AX for DNA damage. The positively stained areas were quantified, and vessel diameters were measured using QuPath software. RESULTS Prolonged DC101 treatment induced deposition of HA (p<0.01) and collagen (p<0.01). HA was effectively degraded by PEGPH20 (p<0.001), but not by NTG as expected. Both PEGPH20 (p<0.05) and NTG (p<0.01) dilated vessels collapsed in response to long-term DC101 treatment. However, only PEGPH20 (rather than NTG) was found to significantly inhibit tumor growth (p<0.05) in combination with NPTX and DC101. CONCLUSIONS These findings suggest that the mechanical barrier of HA is the major reason responsible for the resistance developed during prolonged anti-angiogenesis in EGC. Incorporating PEGPH20 into the existing treatment regimen is promising to improve outcomes for patients with EGC.
Collapse
Affiliation(s)
- Dajia Liu
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Lihui Guo
- Amsterdam UMC location University of Amsterdam, Department Experimental Immunology, Amsterdam Infection and Immunity Center, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Sybren L Meijer
- Amsterdam UMC Location University of Amsterdam, Department of Pathology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Cesar Oyarce
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Wei R, Zhou J, Bui B, Liu X. Glioma actively orchestrate a self-advantageous extracellular matrix to promote recurrence and progression. BMC Cancer 2024; 24:974. [PMID: 39118096 PMCID: PMC11308147 DOI: 10.1186/s12885-024-12751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The intricate interplay between cancer cells and their surrounding microenvironment has emerged as a critical factor driving the aggressive progression of various malignancies, including gliomas. Among the various components of this dynamic microenvironment, the extracellular matrix (ECM) holds particular significance. Gliomas, intrinsic brain tumors that originate from neuroglial progenitor cells, have the remarkable ability to actively reform the ECM, reshaping the structural and biochemical landscape to their advantage. This phenomenon underscores the adaptability and aggressiveness of gliomas, and highlights the intricate crosstalk between tumor cells and their surrounding matrix.In this review, we delve into how glioma actively regulates glioma ECM to organize a favorable microenvironment for its survival, invasion, progression and therapy resistance. By unraveling the intricacies of glioma-induced ECM remodeling, we gain valuable insights into potential therapeutic strategies aimed at disrupting this symbiotic relationship and curbing the relentless advance of gliomas within the brain.
Collapse
Affiliation(s)
- Ruolun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jiasheng Zhou
- Medical Laboratory Science, Nantong University, Nantong, Jiangsu, China
| | - Brandon Bui
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Human Biology, Stanford University, Stanford, CA, USA
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Chen K, Sun R, Guan Y, Fang T, Tao J, Li Z, Zhang B, Yu Z, Tian J, Teng Z, Wang J. Manganese-induced Photothermal-Ferroptosis for Synergistic Tumor Therapy. J Control Release 2024; 372:386-402. [PMID: 38909699 DOI: 10.1016/j.jconrel.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Ferroptosis-related tumor therapy based on nanomedicines has recently gained significant attention. However, the therapeutic performance is still hindered by the tumor's physical barriers such as the fibrotic tumor matrix and elevated interstitial fluid pressure, as well as chemical barriers like glutathione (GSH) overabundance. These physicochemical barriers impede the bioavailability of nanomedicines and compromise the therapeutic efficacy of lipid reactive oxygen species (ROS). Thus, this study pioneers a manganese-mediated overcoming of physicochemical barriers in the tumor microenvironment using organosilica-based nanomedicine (MMONs), which bolsters the synergy of photothermal-ferroptosis treatment. The MMONs display commendable proficiency in overcoming tumor physical barriers, due to their MnO2-mediated shape-morphing and softness-transformation ability, which facilitates augmented cellular internalization, enhanced tumor accumulation, and superior drug penetration. Also, the MMONs possess excellent capability in chemical barrier overcoming, including MnO2-mediated dual GSH clearance and enhanced ROS generation, which facilitates ferroptosis and heat shock protein inhibition. Notably, the resulting integration of physical and chemical barrier overcoming leads to amplified photothermal-ferroptosis synergistic tumor therapy both in vitro and in vivo. Accordingly, the comparative proteomic analysis has identified promoted ferroptosis with a transient inhibitory response observed in the mitochondria. This research aims to improve treatment strategies to better fight the complex defenses of tumors.
Collapse
Affiliation(s)
- Kun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rui Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Yudong Guan
- Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Tao Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China.
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China.
| | - Jiahang Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jigang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
16
|
Zhang Z, Chen X, Gao S, Fang X, Ren S. 3D bioprinted tumor model: a prompt and convenient platform for overcoming immunotherapy resistance by recapitulating the tumor microenvironment. Cell Oncol (Dordr) 2024; 47:1113-1126. [PMID: 38520648 PMCID: PMC11322267 DOI: 10.1007/s13402-024-00935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cancer immunotherapy is receiving worldwide attention for its induction of an anti-tumor response. However, it has had limited efficacy in some patients who acquired resistance. The dynamic and sophisticated complexity of the tumor microenvironment (TME) is the leading contributor to this clinical dilemma. Through recapitulating the physiological features of the TME, 3D bioprinting is a promising research tool for cancer immunotherapy, which preserves in vivo malignant aggressiveness, heterogeneity, and the cell-cell/matrix interactions. It has been reported that application of 3D bioprinting holds potential to address the challenges of immunotherapy resistance and facilitate personalized medication. CONCLUSIONS AND PERSPECTIVES In this review, we briefly summarize the contributions of cellular and noncellular components of the TME in the development of immunotherapy resistance, and introduce recent advances in 3D bioprinted tumor models that served as platforms to study the interactions between tumor cells and the TME. By constructing multicellular 3D bioprinted tumor models, cellular and noncellular crosstalk is reproduced between tumor cells, immune cells, fibroblasts, adipocytes, and the extracellular matrix (ECM) within the TME. In the future, by quickly preparing 3D bioprinted tumor models with patient-derived components, information on tumor immunotherapy resistance can be obtained timely for clinical reference. The combined application with tumoroid or other 3D culture technologies will also help to better simulate the complexity and dynamics of tumor microenvironment in vitro. We aim to provide new perspectives for overcoming cancer immunotherapy resistance and inspire multidisciplinary research to improve the clinical application of 3D bioprinting technology.
Collapse
Affiliation(s)
- Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, 130021, China
| | - Xuebo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, NO. 126, Xiantai Street, Changchun, 130033, China
| | - Sujie Gao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, NO. 126, Xiantai Street, Changchun, 130033, China.
| | - Shengnan Ren
- Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, NO. 519, Kunzhou Street, Kunming, 650118, China.
| |
Collapse
|
17
|
Pratticò F, Garajová I. Focus on Pancreatic Cancer Microenvironment. Curr Oncol 2024; 31:4241-4260. [PMID: 39195299 DOI: 10.3390/curroncol31080316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to current anticancer treatments. Pancreatic cancer has a complex tumor microenvironment, characterized by an intricate crosstalk between cancer cells, cancer-associated fibroblasts and immune cells. The complex composition of the tumor microenvironment is also reflected in the diversity of its acellular components, such as the extracellular matrix, cytokines, growth factors and secreted ligands involved in signaling pathways. Desmoplasia, the hallmark of the pancreatic cancer microenvironment, contributes by creating a dense and hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance and suppresses anti-tumor immune invasion. We discuss the complex crosstalk among tumor microenvironment components and explore therapeutic strategies and opportunities in pancreatic cancer research. Better understanding of the tumor microenvironment and its influence on pancreatic cancer progression could lead to potential novel therapeutic options, such as integration of immunotherapy and cytokine-targeted treatments.
Collapse
Affiliation(s)
- Fabiana Pratticò
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy
| | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy
| |
Collapse
|
18
|
Pereira BA, Ritchie S, Chambers CR, Gordon KA, Magenau A, Murphy KJ, Nobis M, Tyma VM, Liew YF, Lucas MC, Naeini MM, Barkauskas DS, Chacon-Fajardo D, Howell AE, Parker AL, Warren SC, Reed DA, Lee V, Metcalf XL, Lee YK, O’Regan LP, Zhu J, Trpceski M, Fontaine ARM, Stoehr J, Rouet R, Lin X, Chitty JL, Porazinski S, Wu SZ, Filipe EC, Cadell AL, Holliday H, Yang J, Papanicolaou M, Lyons RJ, Zaratzian A, Tayao M, Da Silva A, Vennin C, Yin J, Dew AB, McMillan PJ, Goldstein LD, Deveson IW, Croucher DR, Samuel MS, Sim HW, Batten M, Chantrill L, Grimmond SM, Gill AJ, Samra J, Jeffry Evans TR, Sasaki T, Phan TG, Swarbrick A, Sansom OJ, Morton JP, Pajic M, Parker BL, Herrmann D, Cox TR, Timpson P. Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response. SCIENCE ADVANCES 2024; 10:eadl1197. [PMID: 38959305 PMCID: PMC11221519 DOI: 10.1126/sciadv.adl1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.
Collapse
Affiliation(s)
- Brooke A. Pereira
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Shona Ritchie
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Katie A. Gordon
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Astrid Magenau
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Kendelle J. Murphy
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Victoria M. Tyma
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ying Fei Liew
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C. Lucas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marjan M. Naeini
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Deborah S. Barkauskas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Diego Chacon-Fajardo
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anna E. Howell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Amelia L. Parker
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean C. Warren
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Victoria Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Xanthe L. Metcalf
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Young Kyung Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Luke P. O’Regan
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jessie Zhu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Trpceski
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Angela R. M. Fontaine
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Romain Rouet
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Xufeng Lin
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jessica L. Chitty
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean Porazinski
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sunny Z. Wu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genentech Inc., South San Francisco, CA, USA
| | - Elysse C. Filipe
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Antonia L. Cadell
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Holly Holliday
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jessica Yang
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Ruth J. Lyons
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew Da Silva
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Julia Yin
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Alysha B. Dew
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Paul J. McMillan
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Leonard D. Goldstein
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Ira W. Deveson
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R. Croucher
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Hao-Wen Sim
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Marcel Batten
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lorraine Chantrill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Department of Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Sean M. Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J. Gill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Thomas R. Jeffry Evans
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Tri G. Phan
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P. Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Marina Pajic
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Benjamin L. Parker
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
19
|
Pan X, Han T, Zhao Z, Wang X, Fang X. Emerging Nanotechnology in Preclinical Pancreatic Cancer Immunotherapy: Driving Towards Clinical Applications. Int J Nanomedicine 2024; 19:6619-6641. [PMID: 38975321 PMCID: PMC11227336 DOI: 10.2147/ijn.s466459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/16/2024] [Indexed: 07/09/2024] Open
Abstract
The high malignant degree and poor prognosis of pancreatic cancer (PC) pose severe challenges to the basic research and clinical translation of next-generation therapies. The rise of immunotherapy has improved the treatment of a variety of solid tumors, while the application in PC is highly restricted by the challenge of immunosuppressive tumor microenvironment. The latest progress of nanotechnology as drug delivery platform and immune adjuvant has improved drug delivery in a variety of disease backgrounds and enhanced tumor therapy based on immunotherapy. Based on the immune loop of PC and the status quo of clinical immunotherapy of tumors, this article discussed and critically analyzed the key transformation difficulties of immunotherapy adaptation to the treatment of PC, and then proposed the rational design strategies of new nanocarriers for drug delivery and immune regulation, especially the design of combined immunotherapy. This review also put forward prospective views on future research directions, so as to provide information for the new means of clinical treatment of PC combined with the next generation of nanotechnology and immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Ting Han
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Zixuan Zhao
- The Translational Research Institute for Neurological Disorders of Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Xiaoming Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Xiaosan Fang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| |
Collapse
|
20
|
Wu Q, Mao H, Jiang Z, Tang D. Tumour-associated neutrophils: Potential therapeutic targets in pancreatic cancer immunotherapy. Immunology 2024; 172:343-361. [PMID: 38402904 DOI: 10.1111/imm.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.
Collapse
Affiliation(s)
- Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Han Mao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
21
|
Knoll L, Hamm J, Stroebel P, Jovan T, Goetze R, Singh S, Hessmann E, Ellenrieder V, Ammer-Herrmenau C, Neesse A. Expression of gemcitabine metabolizing enzymes and stromal components reveal complexities of preclinical pancreatic cancer models for therapeutic testing. Neoplasia 2024; 53:101002. [PMID: 38744194 PMCID: PMC11109879 DOI: 10.1016/j.neo.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) poorly responds to antineoplastic agents. Discrepancies between preclinical success and clinical failure of compounds has been a continuous challenge and major obstacle in PDAC research. AIM To investigate the association of the tumor microenvironment (TME) composition and gemcitabine metabolizing enzyme (GME) expression in vitro and several in vivo models. METHODS mRNA expression and protein levels of GME (cytosolic 5'-nucleotidase 1 A; NT5C1A, cytidine deaminase; CDA, deoxycytidine kinase; DCK), gemcitabine transporters (ENT1, ENT2, RRM1, RRM2) and stromal components (hyaluroninc acid, podoplanin, masson trichrome, picrosirius) were assessed by qRT-PCR and immunohistochemistry in murine LSL-KrasG12D/+;LSL-Trp53R172 H/+; Pdx-1-Cre (KPC), orthotopically transplanted mice (OTM), human primary resected PDAC tissue (hPRT), corresponding patient-derived xenograft (PDX) mice, and KPC-SPARC-/- mice. mRNA expression of GME was analyzed in PDAC cell lines (Panc-1, MIA PaCa, BXPC3 and L3.6) upon incubation on collagen or pancreatic stellate cell (PSC) conditioned media by qRT-PCR. RESULTS Endogenous KPC tumors exhibited significantly higher levels of GME compared to OTM. However, GME levels did not differ between hPRT and corresponding PDX mice. Using Kendalls Tau correlation coefficient we did not show a significant correlation of GME and components of the TME except for NT5C1A and hyaluronic acid in PDX mice (p=0.029). GME were not significantly altered upon SPARC depletion in vivo, and upon treatment with PSC-conditioned media or incubation on collagen plated dishes in vitro. CONCLUSIONS Our findings suggest that the expression of GME is independent from the deposition of stromal components. KPC mice are most appropriate to study stromal composition whereas PDX mice maintain GME expression of the corresponding hPRT and could be best suited for pharmacokinetic studies.
Collapse
Affiliation(s)
- Lisa Knoll
- Department of Nephrology and Hypertension, University Hospital Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Jacob Hamm
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Philipp Stroebel
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Todorovic Jovan
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Robert Goetze
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
| | - Shiv Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
22
|
Herrera-Quintana L, Vázquez-Lorente H, Plaza-Diaz J. Breast Cancer: Extracellular Matrix and Microbiome Interactions. Int J Mol Sci 2024; 25:7226. [PMID: 39000333 PMCID: PMC11242809 DOI: 10.3390/ijms25137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
23
|
Henon C, Vibert J, Eychenne T, Gruel N, Colmet-Daage L, Ngo C, Garrido M, Dorvault N, Marques Da Costa ME, Marty V, Signolle N, Marchais A, Herbel N, Kawai-Kawachi A, Lenormand M, Astier C, Chabanon R, Verret B, Bahleda R, Le Cesne A, Mechta-Grigoriou F, Faron M, Honoré C, Delattre O, Waterfall JJ, Watson S, Postel-Vinay S. Single-cell multiomics profiling reveals heterogeneous transcriptional programs and microenvironment in DSRCTs. Cell Rep Med 2024; 5:101582. [PMID: 38781959 PMCID: PMC11228554 DOI: 10.1016/j.xcrm.2024.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive sarcoma driven by the EWSR1::WT1 chimeric transcription factor. Despite this unique oncogenic driver, DSRCT displays a polyphenotypic differentiation of unknown causality. Using single-cell multi-omics on 12 samples from five patients, we find that DSRCT tumor cells cluster into consistent subpopulations with partially overlapping lineage- and metabolism-related transcriptional programs. In vitro modeling shows that high EWSR1::WT1 DNA-binding activity associates with most lineage-related states, in contrast to glycolytic and profibrotic states. Single-cell chromatin accessibility analysis suggests that EWSR1::WT1 binding site variability may drive distinct lineage-related transcriptional programs, supporting some level of cell-intrinsic plasticity. Spatial transcriptomics reveals that glycolytic and profibrotic states specifically localize within hypoxic niches at the periphery of tumor cell islets, suggesting an additional role of tumor cell-extrinsic microenvironmental cues. We finally identify a single-cell transcriptomics-derived epithelial signature associated with improved patient survival, highlighting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Clémence Henon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Thomas Eychenne
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nadège Gruel
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Léo Colmet-Daage
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Carine Ngo
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pathology, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Nicolas Dorvault
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Maria Eugenia Marques Da Costa
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Virginie Marty
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Nicolas Signolle
- Experimental and Translational Pathology Platform (PETRA), AMMICa, INSERM US23/UAR3655, Gustave Roussy, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy, Paris Saclay University, Villejuif, France; Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Noé Herbel
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Asuka Kawai-Kawachi
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Madison Lenormand
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Clémence Astier
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Roman Chabanon
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Benjamin Verret
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Breast Cancer Translational Research Group, INSERM U981, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; International Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- INSERM U830, Equipe labellisée LNCC, Stress et Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Olivier Delattre
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sarah Watson
- INSERM U830, Équipe labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Sophie Postel-Vinay
- ATIP-Avenir INSERM and ERC StG Group, Equipe labellisée ARC Recherche Fondamentale, INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France; Drug Development Department, DITEP, Gustave Roussy, Villejuif, France; University College of London, Cancer Institute, London, UK.
| |
Collapse
|
24
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
26
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
27
|
Arias-Lorza AM, Costello JR, Hingorani SR, Von Hoff DD, Korn RL, Raghunand N. Magnetic resonance imaging of tumor response to stroma-modifying pegvorhyaluronidase alpha (PEGPH20) therapy in early-phase clinical trials. Sci Rep 2024; 14:11570. [PMID: 38773189 PMCID: PMC11109088 DOI: 10.1038/s41598-024-62470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Pre-clinical and clinical studies have shown that PEGPH20 depletes intratumoral hyaluronic acid (HA), which is linked to high interstitial fluid pressures and poor distribution of chemotherapies. 29 patients with metastatic advanced solid tumors received quantitative magnetic resonance imaging (qMRI) in 3 prospective clinical trials of PEGPH20: HALO-109-101 (NCT00834704), HALO-109-102 (NCT01170897), and HALO-109-201 (NCT01453153). Apparent Diffusion Coefficient of water (ADC), T1, ktrans, vp, ve, and iAUC maps were computed from qMRI acquired at baseline and ≥ 1 time point post-PEGPH20. Tumor ADC and T1 decreased, while iAUC, ktrans, vp, and ve increased, on day 1 post-PEGPH20 relative to baseline values. This is consistent with HA depletion leading to a decrease in tumor extracellular water content and an increase in perfusion, permeability, extracellular matrix space, and vascularity. Baseline parameter values predictive of pharmacodynamic responses were: ADC > 1.46 × 10-3 mm2/s (Balanced Accuracy (BA) = 72%, p < 0.01), T1 > 0.54 s (BA = 82%, p < 0.01), iAUC < 9.2 mM-s (BA = 76%, p < 0.05), ktrans < 0.07 min-1 (BA = 72%, p = 0.2), ve < 0.17 (BA = 68%, p < 0.01), and vp < 0.02 (BA = 60%, p < 0.01). A low ve at baseline was moderately predictive of response in any parameter (BA = 65.6%, p < 0.01 averaged across patients). These qMRI biomarkers are potentially useful for guiding patient pre-selection and post-treatment follow-up in future clinical studies of PEGPH20 and other tumor stroma-modifying anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel D Von Hoff
- Translational Genomics Research Institute (TGen), Scottsdale, AZ, USA
- HonorHealth Clinical Research Institute, Phoenix, AZ, USA
| | | | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, USA.
- Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
28
|
Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, Zhang Y, Bi W, Xu M, Li J. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene 2024; 907:148286. [PMID: 38367852 DOI: 10.1016/j.gene.2024.148286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Osteosarcoma (OS), with a peak incidence during the adolescent growth spurt, is correlated with poor prognosis for its high malignancy. The tumor microenvironment (TME) is highly complicated, with frequent interactions between tumor and stromal cells. The cancer-associated fibroblasts (CAFs) in the TME have been considered to actively involve in the progression, metastasis, and drug resistance of OS. This study aimed to characterize cellular heterogeneity and molecular characterization in CAFs subtypes and explore the potential targeting therapeutic strategies to improve the prognosis of OS patients. METHODS The single-cell atlas of human OS tumor lesions were constructed from the GEO database. Then significant marker genes and potential biological functions for each CAFs subtype were identified and explored using the Seurat R package. Next, by performing the survival analyses and constructing the risk scores for CAFs subtypes, we aimed to identify and characterize the prognostic values of specific marker genes and different CAFs subtypes. Furthermore, we explored the therapeutic targets and innovative drugs targeting different CAFs subtypes based on the GDSC database. Finally, prognoses related CAFs subtypes were further validated through immunohistochemistry (IHC) on clinical OS specimens. RESULTS Overall, nine main cell clusters and five subtypes of CAFs were identified. The differentially expressed marker genes for each CAFs clusters were then identified. Moreover, through Gene Ontology (GO) enrichment analysis, we defined the CAFs_2 (upregulated CXCL14 and C3), which was closely related to leukocyte migration and chemotaxis, as inflammatory CAFs (iCAFs). Likewise, we defined the CAFs_4 (upregulated CD74, HLA-DRA and HLA-DRB1), which was closely related to antigen process and presentation, as antigen-presenting CAFs (apCAFs). Furthermore, Kaplan-Meier analyses showed that CAFs_2 and CAFs_4 were correlated with poor clinical prognosis of OS patients. Meanwhile, therapeutic drugs targeting CAFs_2 and CAFs_4, such as 17-AAG/Docetaxel/Bleomycin and PHA-793887/NG-25/KIN001-102, were also explored, respectively. Finally, IHC assay confirmed the abundant CAFs_2 and CAFs_4 subtypes infiltration in the OS microenvironment compared with adjacent tissues. CONCLUSION Our study revealed the diversity, complexity, and heterogeneity of CAFs in OS, and complemented the single-cell atlas in OS TME.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, Yunnan, China; Chinese PLA Spinal Cord Injury Treatment Center, Kunming, Yunnan 650032, China
| | - Xinli Han
- School of Medicine, Nankai University, Tianjin 300074, China
| | - Yuchen Han
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyou Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanan Wu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Dongquan Xiang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yinglong Zhang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenzhi Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; School of Medicine, Nankai University, Tianjin 300074, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Meng Xu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Jianxiong Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
29
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
30
|
Rauth S, Malafa M, Ponnusamy MP, Batra SK. Emerging Trends in Gastrointestinal Cancer Targeted Therapies: Harnessing Tumor Microenvironment, Immune Factors, and Metabolomics Insights. Gastroenterology 2024:S0016-5085(24)04917-5. [PMID: 38759843 DOI: 10.1053/j.gastro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| |
Collapse
|
31
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
32
|
Yu KX, Yuan WJ, Wang HZ, Li YX. Extracellular matrix stiffness and tumor-associated macrophage polarization: new fields affecting immune exclusion. Cancer Immunol Immunother 2024; 73:115. [PMID: 38693304 PMCID: PMC11063025 DOI: 10.1007/s00262-024-03675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.
Collapse
Affiliation(s)
- Ke-Xun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei-Jie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
33
|
Xu X, Fang Y, Nowsheen S, Li YX, Lou Z, Deng M. Regulation of AMPK activation by extracellular matrix stiffness in pancreatic cancer. Genes Dis 2024; 11:101035. [PMID: 38292173 PMCID: PMC10825306 DOI: 10.1016/j.gendis.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 02/01/2024] Open
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) sits at a central node in the regulation of energy metabolism and tumor progression. AMPK is best known to sense high cellular ADP or AMP levels, which indicate the depletion of energy stores. Previous studies have shown that the low expression of phosphorylated AMPK is associated with a poor prognosis of pancreatic cancer. In this study, we report that AMPK is also highly sensitive to extracellular matrix (ECM) stiffness. We found that AMPK is activated in cells when cultured under low ECM stiffness conditions and is functionally required for the metabolic switch induced by ECM stiffness. This regulation of AMPK requires the Hippo kinases but not LKB1/CaMKKβ. Hippo kinases directly phosphorylate AMPKα at Thr172 to activate AMPK at low ECM stiffness. Furthermore, we found AMPK activity is inhibited in patients with pancreatic ductal adenocarcinoma (PDAC) with high ECM stiffness and is associated with a poor survival outcome. The activation of Hippo kinases by ROCK inhibitor Y-27632 in combination with the mitochondrial inhibitor metformin synergistically activates AMPK and dramatically inhibits PDAC growth. Together, these findings establish a novel model for AMPK regulation by the mechanical properties of ECMs and provide a rationale for simultaneously targeting the ECM stiffness-Hippo kinases-AMPK signaling and low glucose-LKB1-AMPK signaling pathways as an effective therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92093, USA
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
34
|
Brown NF, Murray ER, Cutmore LC, Howard P, Masterson L, Zammarchi F, Hartley JA, van Berkel PH, Marshall JF. Integrin-αvβ6 targeted peptide-toxin therapy in a novel αvβ6-expressing immunocompetent model of pancreatic cancer. Pancreatology 2024; 24:445-455. [PMID: 38519394 DOI: 10.1016/j.pan.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/24/2024]
Abstract
Previously we reported that a novel αvβ6-specific peptide-drug conjugate (SG3299) could eliminate established human pancreatic ductal adenocarcinoma (PDAC) xenografts. However the development of effective therapies for PDAC, which is an essential need, must show efficacy in relevant immunocompetent animals. Previously we reported that the KPC mouse transgenic PDAC model that closely recapitulates most stages of development of human PDAC, unlike in humans, failed to express αvβ6 on their tumours or metastases. In this study we have taken the KPC-derived PDAC line TB32043 and engineered a variant line (TB32043mb6S2) that expresses mouse integrin αvβ6. We report that orthotopic implantation of the αvβ6 over-expressing TB32043mb6S2 cells promotes shorter overall survival and increase in metastases. Moreover, systemic treatment of mice with established TB32043mb6S2 tumours in the pancreas with SG2399 lived significantly longer (p < 0.001; mean OS 48d) compared with PBS or control SG3511 (mean OS 25.5d and 26d, respectively). Thus SG3299 is confirmed as a promising candidate therapeutic for the therapy of PDAC.
Collapse
Affiliation(s)
- Nicholas F Brown
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Elizabeth R Murray
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Lauren C Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Philip Howard
- Spirogen, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Luke Masterson
- Spirogen, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Francesca Zammarchi
- ADC Therapeutics (UK) Ltd, Translation & Innovation Hub Building, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Patrick H van Berkel
- ADC Therapeutics (UK) Ltd, Translation & Innovation Hub Building, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
35
|
Wasko UN, Jiang J, Dalton TC, Curiel-Garcia A, Edwards AC, Wang Y, Lee B, Orlen M, Tian S, Stalnecker CA, Drizyte-Miller K, Menard M, Dilly J, Sastra SA, Palermo CF, Hasselluhn MC, Decker-Farrell AR, Chang S, Jiang L, Wei X, Yang YC, Helland C, Courtney H, Gindin Y, Muonio K, Zhao R, Kemp SB, Clendenin C, Sor R, Vostrejs WP, Hibshman PS, Amparo AM, Hennessey C, Rees MG, Ronan MM, Roth JA, Brodbeck J, Tomassoni L, Bakir B, Socci ND, Herring LE, Barker NK, Wang J, Cleary JM, Wolpin BM, Chabot JA, Kluger MD, Manji GA, Tsai KY, Sekulic M, Lagana SM, Califano A, Quintana E, Wang Z, Smith JAM, Holderfield M, Wildes D, Lowe SW, Badgley MA, Aguirre AJ, Vonderheide RH, Stanger BZ, Baslan T, Der CJ, Singh M, Olive KP. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer. Nature 2024; 629:927-936. [PMID: 38588697 PMCID: PMC11111406 DOI: 10.1038/s41586-024-07379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- DNA Copy Number Variations
- Drug Resistance, Neoplasm/drug effects
- Genes, myc
- Guanosine Triphosphate/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors
- Treatment Outcome
- Xenograft Model Antitumor Assays
- Mutation
Collapse
Affiliation(s)
- Urszula N Wasko
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tanner C Dalton
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alvaro Curiel-Garcia
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - A Cole Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bianca Lee
- Revolution Medicines, Redwood City, CA, USA
| | - Margo Orlen
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Sha Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephen A Sastra
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmine F Palermo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Marie C Hasselluhn
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda R Decker-Farrell
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Xing Wei
- Revolution Medicines, Redwood City, CA, USA
| | - Yu C Yang
- Revolution Medicines, Redwood City, CA, USA
| | | | | | | | | | | | - Samantha B Kemp
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Cynthia Clendenin
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Rina Sor
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - William P Vostrejs
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Priya S Hibshman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber M Amparo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Rees
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | | | - Lorenzo Tomassoni
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Basil Bakir
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura E Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K Barker
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John A Chabot
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael D Kluger
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gulam A Manji
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Y Tsai
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- J. P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | | | | | | | | | | | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Badgley
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert H Vonderheide
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Ben Z Stanger
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenneth P Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
36
|
Gaebler D, Hachey SJ, Hughes CCW. Microphysiological systems as models for immunologically 'cold' tumors. Front Cell Dev Biol 2024; 12:1389012. [PMID: 38711620 PMCID: PMC11070549 DOI: 10.3389/fcell.2024.1389012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The tumor microenvironment (TME) is a diverse milieu of cells including cancerous and non-cancerous cells such as fibroblasts, pericytes, endothelial cells and immune cells. The intricate cellular interactions within the TME hold a central role in shaping the dynamics of cancer progression, influencing pivotal aspects such as tumor initiation, growth, invasion, response to therapeutic interventions, and the emergence of drug resistance. In immunologically 'cold' tumors, the TME is marked by a scarcity of infiltrating immune cells, limited antigen presentation in the absence of potent immune-stimulating signals, and an abundance of immunosuppressive factors. While strategies targeting the TME as a therapeutic avenue in 'cold' tumors have emerged, there is a pressing need for novel approaches that faithfully replicate the complex cellular and non-cellular interactions in order to develop targeted therapies that can effectively stimulate immune responses and improve therapeutic outcomes in patients. Microfluidic devices offer distinct advantages over traditional in vitro 3D co-culture models and in vivo animal models, as they better recapitulate key characteristics of the TME and allow for precise, controlled insights into the dynamic interplay between various immune, stromal and cancerous cell types at any timepoint. This review aims to underscore the pivotal role of microfluidic systems in advancing our understanding of the TME and presents current microfluidic model systems that aim to dissect tumor-stromal, tumor-immune and immune-stromal cellular interactions in various 'cold' tumors. Understanding the intricacies of the TME in 'cold' tumors is crucial for devising effective targeted therapies to reinvigorate immune responses and overcome the challenges of current immunotherapy approaches.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
37
|
Picozzi VJ. Pancreatic cancer: new approaches to drug therapy. Int J Surg 2024; 110:01279778-990000000-01297. [PMID: 38573111 PMCID: PMC11486970 DOI: 10.1097/js9.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/22/2023] [Indexed: 04/05/2024]
Abstract
Outcomes in pancreatic ductal adenocarcinoma (PDAC) remain poor due to a variety of biological, clinical, and societal factors. However, in recent years, PDAC has seen 1) increased precision of initial evaluation, 2) increased emphasis on supportive care, 3) deeper understanding of the translation biology of PDAC, especially as pertains to genomic alterations, and 4) foundational combination chemotherapy clinical trials across all disease stages. These advances have led to a wide range of new approaches to drug therapy for PDAC. Currently available drugs are showing added benefit, both by resequencing them with each other and also with respect to other therapeutic modalities. Molecular strategies are being developed to predict response to known therapeutic agents and to identify others. Additionally, a wide range of new drugs for PDAC are under development, including drugs which inhibit critical molecular pathways, drugs which attempt to capitalize on homologous repair deficiencies, immunotherapeutic approaches, antimetabolic agents, and drugs which attack the extracellular matrix which supports PDAC growth. These new approaches offer the promise of improved survival for future PDAC patients.
Collapse
|
38
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
39
|
Huang T, Wen X, Liang Y, Liu X, Zhao J, Long X. Irreversible Electroporation-Induced Inflammation Facilitates Neutrophil-Mediated Drug Delivery to Enhance Pancreatic Cancer Therapy. Mol Pharm 2024; 21:1998-2011. [PMID: 38412284 DOI: 10.1021/acs.molpharmaceut.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer is a deadly disease with a five-year overall survival rate of around 11%. Chemotherapy is a cornerstone in the treatment of this malignancy, but the intratumoral delivery of chemotherapy drugs is impaired by the highly fibrotic tumor-associated stroma. Irreversible electroporation (IRE) is an ablative technique for treating locally advanced pancreatic cancer. During a typical IRE procedure, high-intensity electric pulses are released to kill tumor cells through the irreversible disruption of the cytoplasm membranes. IRE also induces rapid tumor infiltration by neutrophils and offers an opportunity for neutrophil-mediated drug delivery. We herein showed that the IRE-induced neutrophil trafficking was facilitated by the upregulation of neutrophil chemotaxis and migration as well as the release of several chemoattractants. Doxorubicin-loaded bovine serum albumin nanoparticles were prepared and loaded into neutrophils at a ratio of 9.9 ± 1.2 to 11.7 ± 2.0 pg of doxorubicin per cell. The resultant formulation (NP@NEs) efficiently accumulated in the IRE-treated KPC-A377 murine pancreatic tumors with an uptake value of 10.7 ± 1.5 (percent of injected dose per gram of tissue, abbreviated as %ID/g) at 48 h after intravenous injection. In both Panc02 and KPC-A377 murine pancreatic tumor models, the combination of IRE + NP@NEs inhibited tumor growth more effectively than either monotherapy. The tumors treated with the combination also exhibited the lowest frequency of Ki67+ proliferating cells and the highest abundance of terminal deoxynucleotidyl transferase dUTP nick end labeling+ (TUNEL+) apoptotic cells among the experiment groups. Minimal treatment-associated toxicity was observed. Our findings suggest that neutrophil-mediated delivery of chemotherapy drugs is a useful tool to enhance the response of pancreatic cancer to IRE.
Collapse
Affiliation(s)
- Teng Huang
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 36100, China
- Department of Interventional Radiology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuxuan Liang
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiao Liu
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Long
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
40
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
41
|
Hu J, Jiang J, Xu B, Li Y, Wang B, He S, Ren X, Shi B, Zhang X, Zheng H, Hua B, Liu R. Bioinformatics analyses of infiltrating immune cell participation on pancreatic ductal adenocarcinoma progression and in vivo experiment of the therapeutic effect of Shuangshen granules. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117590. [PMID: 38113986 DOI: 10.1016/j.jep.2023.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangshen granules (SSG), a nationally patented Chinese medicinal formula, including Panax quinquefolium L., Panax notoginseng (Burkill) F. H. Chen, and Cordyceps sinensis (Berk.) Sacc., has demonstrated remarkable therapeutic effects on pancreatic cancer in clinical treatment for nearly 10 years. Previous pharmacological researches have found that its main components, including ginsenosides and cordycepin have anticancer or preventive effects on pancreatic ductal adenocarcinoma (PDAC), which may be associated with immune metabolism. However, the underlying pharmacological mechanism of SSG in the truncation effect of PDAC progression is still unclear. AIM OF THE STUDY To comprehensively understand the infiltrating immune cells during the different stages of the PDAC development chain and search for immune-related biomarkers that could potentially serve as drug targets through bioinformatic analysis. Meanwhile, the truncation effect of SSG on PDAC progression was also investigated. MATERIALS AND METHODS The gene expression profiles at different PDAC developmental stages, including normal pancreas, pancreatic intraepithelial neoplasia (PanIN), and PDAC, were retrieved from the GEO database. The GEO2R tool was used to identify differentially expressed genes among the three groups. Functional enrichment analysis was performed with the GSEA software and Metascape platform. The CIBERSORT algorithm evaluated immune cell infiltration in the three groups, and immune-related biomarkers were identified. Correlation analysis was employed to examine the association between immune cells and the biomarkers. One of these biomarkers was selected for immunohistochemistry validation in human samples. Lastly, the effectiveness of SSG against PDAC progression and the influence on the selected biomarker were validated in vivo. The underlying pharmacological mechanisms were also explored. RESULTS One dataset was obtained, where the functional enrichment of DEGs primarily involved immune effector processes and cytokine production of immune cells. The differential immune cells reflected during the progression from PanIN to PDAC were B memory cells, monocytes, M2 macrophages, and activated dendritic cells. The upregulation of ACTA2 was closely associated with M2 macrophage regulation. The immunohistochemistry on human samples validated significant differences in ACTA2 expression levels as the PDAC progressed. Moreover, animal experiments revealed that the national patented drug SSG ameliorated the pathological changes, decreased the expression of ACTA2 and its functional protein α-smooth muscle actin during PDAC progression. The underlying pharmacological mechanism was related to the regulation of macrophage polarization and downregulation of TGF-β/Smad signaling pathway. CONCLUSIONS The immunosuppressive environment changes during the PDAC progression. ACTA2 is a potential immuned-target for drug prevention of PDAC, while SSG could be a promising drug candidate.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bei Wang
- China-Japan Friendship Hospital, Beijing, China
| | - Shulin He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoling Ren
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
42
|
Lv Y, Luo X, Xie Z, Qiu J, Yang J, Deng Y, Long R, Tang G, Zhang C, Zuo J. Prospects and challenges of CAR-T cell therapy combined with ICIs. Front Oncol 2024; 14:1368732. [PMID: 38571495 PMCID: PMC10989075 DOI: 10.3389/fonc.2024.1368732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Immune checkpoint molecules are a group of molecules expressed on the surface of immune cells that primarily regulate their immune homeostasis. Chimeric antigen receptor (CAR) T cell therapy is an immunotherapeutic technology that realizes tumor-targeted killing by constructing synthetic T cells expressing specific antigens through biotechnology. Currently, CAR-T cell therapy has achieved good efficacy in non-solid tumors, but its treatment of solid tumors has not yielded the desired results. Immune checkpoint inhibitors (ICIs) combined with CAR-T cell therapy is a novel combination therapy with high expectations to defeat solid tumors. This review addresses the challenges and expectations of this combination therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Yufan Lv
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinyu Luo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhuoyi Xie
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jieya Qiu
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinsai Yang
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqi Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rou Long
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guiyang Tang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chaohui Zhang
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianhong Zuo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
43
|
Wang S, Li Y, Xu C, Dong J, Wei J. An oncolytic vaccinia virus encoding hyaluronidase reshapes the extracellular matrix to enhance cancer chemotherapy and immunotherapy. J Immunother Cancer 2024; 12:e008431. [PMID: 38458640 PMCID: PMC10921532 DOI: 10.1136/jitc-2023-008431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND The redundant extracellular matrix (ECM) within tumor microenvironment (TME) such as hyaluronic acid (HA) often impairs intratumoral dissemination of antitumor drugs. Oncolytic viruses (OVs) are being studied extensively for cancer therapy either alone or in conjunction with chemotherapy and immunotherapy. Here, we designed a novel recombinant vaccinia virus encoding a soluble version of hyaluronidase Hyal1 (OVV-Hyal1) to degrade the HA and investigated its antitumor effects in combination with chemo drugs, polypeptide, immune cells, and antibodies. METHODS We constructed a recombinant oncolytic vaccinia virus encoding the hyaluronidase, and investigated its function in remodeling the ECM of the TME, the antitumor efficacy both in vitro and in several murine solid tumors either alone, or in combination with chemo drugs including doxorubicin and gemcitabine, with polypeptide liraglutide, with immune therapeutics such as PD-L1/PD-1 blockade, CD47 antibody, and with CAR-T cells. RESULTS Compared with control OVV, intratumoral injection of OVV-Hyal1 showed superior antitumor efficacies in a series of mouse subcutaneous tumor models. Moreover, HA degradation by OVV-Hyal1 resulted in increased intratumoral dissemination of chemo drugs, infiltration of T cells, NK cells, macrophages, and activation of CD8+ T cells. When OVV-Hyal1 was combined with some antitumor therapeutics, for example, doxorubicin, gemcitabine, liraglutide, anti-PD-1, anti-CD47 blockade, or CAR-T cells, more profound therapeutic outcomes were obtained. CONCLUSIONS OVV-Hyal1 effectively degrades HA to reshape the TME, therefore overcoming some major hurdles in current cancer therapy, such as limited OVs spread, unfavored dissemination of chemo drugs, polypeptides, antibodies, and insufficient infiltration of effector immune cells. OVV-Hyal1 holds the promise to improve the antitumor outcomes of current cancer therapeutics.
Collapse
Affiliation(s)
- Shibing Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuxin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chuning Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
45
|
Hasselluhn MC, Decker-Farrell AR, Vlahos L, Thomas DH, Curiel-Garcia A, Maurer HC, Wasko UN, Tomassoni L, Sastra SA, Palermo CF, Dalton TC, Ma A, Li F, Tolosa EJ, Hibshoosh H, Fernandez-Zapico ME, Muir A, Califano A, Olive KP. Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression. Cancer Discov 2024; 14:348-361. [PMID: 37966260 PMCID: PMC10922937 DOI: 10.1158/2159-8290.cd-23-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The sparse vascularity of pancreatic ductal adenocarcinoma (PDAC) presents a mystery: What prevents this aggressive malignancy from undergoing neoangiogenesis to counteract hypoxia and better support growth? An incidental finding from prior work on paracrine communication between malignant PDAC cells and fibroblasts revealed that inhibition of the Hedgehog (HH) pathway partially relieved angiosuppression, increasing tumor vascularity through unknown mechanisms. Initial efforts to study this phenotype were hindered by difficulties replicating the complex interactions of multiple cell types in vitro. Here we identify a cascade of paracrine signals between multiple cell types that act sequentially to suppress angiogenesis in PDAC. Malignant epithelial cells promote HH signaling in fibroblasts, leading to inhibition of noncanonical WNT signaling in fibroblasts and epithelial cells, thereby limiting VEGFR2-dependent activation of endothelial hypersprouting. This cascade was elucidated using human and murine PDAC explant models, which effectively retain the complex cellular interactions of native tumor tissues. SIGNIFICANCE We present a key mechanism of tumor angiosuppression, a process that sculpts the physiologic, cellular, and metabolic environment of PDAC. We further present a computational and experimental framework for the dissection of complex signaling cascades that propagate among multiple cell types in the tissue environment. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Marie C. Hasselluhn
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Amanda R. Decker-Farrell
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Lukas Vlahos
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Alvaro Curiel-Garcia
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - H. Carlo Maurer
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Urszula N. Wasko
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Lorenzo Tomassoni
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | - Stephen A. Sastra
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Carmine F. Palermo
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Tanner C. Dalton
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Alice Ma
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Fangda Li
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Pathology, Columbia University Irving Medical Center, New York, NY
| | | | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY
- Department of Biomedical Informatics, Columbia University, New York, NY
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Kenneth P. Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
46
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
47
|
Francescone R, Crawford HC, Vendramini-Costa DB. Rethinking the Roles of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2024; 17:737-743. [PMID: 38316215 PMCID: PMC10966284 DOI: 10.1016/j.jcmgh.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Bearing a dismal 5-year survival rate, pancreatic ductal adenocarcinoma (PDAC) is a challenging disease that features a unique fibroinflammatory tumor microenvironment. As major components of the PDAC tumor microenvironment, cancer-associated fibroblasts are still poorly understood and their contribution to the several hallmarks of PDAC, such as resistance to therapies, immunosuppression, and high incidence of metastasis, is likely underestimated. There have been encouraging advances in the understanding of these fascinating cells, but many controversies remain, leaving the field still actively exploring the full scope of their contributions in PDAC progression. Here we pose several important considerations regarding PDAC cancer-associated fibroblast functions. We posit that transcriptomic analyses be interpreted with caution, when aiming to uncover the functional contributions of these cells. Moreover, we propose that normalizing these functions, rather than eliminating them, will provide the opportunity to enhance therapeutic response. Finally, we propose that cancer-associated fibroblasts should not be studied in isolation, but in conjunction with its extracellular matrix, because their respective functions are coordinated and concordant.
Collapse
Affiliation(s)
- Ralph Francescone
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Howard C Crawford
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Debora Barbosa Vendramini-Costa
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan.
| |
Collapse
|
48
|
Ashida R, Kawabata KI, Asami R, Kitano M. Novel treatment system using endoscopic ultrasound-guided high-intensity focused ultrasound: A proof-of-concept study. Pancreatology 2024; 24:88-92. [PMID: 38036413 DOI: 10.1016/j.pan.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
AIM High-intensity focused ultrasound (HIFU) is a novel minimally invasive local treatment of solid tumors. Endoscopic ultrasound-guided HIFU (EUS-HIFU) using mechanical effects would have potential benefits, including precise detection of target lesions and enhance drug delivery. The aim of this study is to develop EUS-HIFU device and to prove our concept in porcine model using a locally injected phase change nano droplet (PCND) as the sensitizer. METHOD A phospholipid PCND contained volatile perfluoro-carbon liquids. The prototype HIFU apparatus comprised a small (20 × 20 mm) transducer with center frequency of 2.1 MHz, attachable to a linear EUS transducer. Under general anesthetic, a single porcine received EUS-guided injection of PCND. The HIFU transducer was placed laparotomically in the stomach, and the liver was ablated through the gastric wall. RESULTS PCND was injected successfully and a distinct lesion was generated at the HIFU transducer focus only in injected areas that received HIFU exposure at 4.7 kW/cm2 at a duty cycle of 5 % (mean temporal intensity, 0.245 kW/cm2) for 30 s. The generated lesions were mechanically fractionated in macroscopic view. CONCLUSION The concept of transluminal HIFU ablation using novel EUS-HIFU system was proved in a porcine animal model. This novel treatment system has great potential for future cancer treatment although further investigation in more animals and different organs are warranted.
Collapse
Affiliation(s)
- Reiko Ashida
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | - Rei Asami
- Imaging Technology Center, FUJIFILM Corporation, Tokyo, Japan
| | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
49
|
Liu D, Wang L, Li H, Li D, Zhou J, Wang J, Zhang Q, Cai D. Co-Delivery of Gemcitabine and Honokiol by Lipid Bilayer-Coated Mesoporous Silica Nanoparticles Enhances Pancreatic Cancer Therapy via Targeting Depletion of Tumor Stroma. Molecules 2024; 29:675. [PMID: 38338418 PMCID: PMC10856273 DOI: 10.3390/molecules29030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Syndecan-1 (SDC1) modified lipid bilayer (LB)-coated mesoporous silica nanoparticles (MSN) to co-deliver gemcitabine (GEM) and honokiol (HNK) were prepared for the targeting treatment of pancreatic cancer. The encapsulation efficiencies of GEM and HNK in SDC1-LB-MSN-GEM/HNK were determined to be 60.3 ± 3.2% and 73.0 ± 1.1%. The targeting efficiency of SDC1-LB-MSN-GEM/HNK was investigated in BxPC-3 cells in vitro. The fluorescence intensity in the cells treated with SDC1-LB-MSN-Cou6 was 2-fold of LB-MSN-Cou6-treated cells, which was caused by SDC1/IGF1R-mediated endocytosis. As anticipated, its cytotoxicity was significantly increased. Furthermore, the mechanism was verified that SDC1-LB-MSN-HNK induced tumor cell apoptosis through the mitochondrial apoptosis pathway. Finally, the biodistribution, tumor growth inhibition, and preliminary safety studies were performed on BALB/c nude mice bearing BxPC-3 tumor models. The tumor growth inhibition index of SDC1-LB-MSN-GEM/HNK was 56.19%, which was 1.45-fold and 1.33-fold higher than that of the free GEM/HNK and LB-MSN-GEM/HNK treatment groups, respectively. As a result, SDC1-LB-MSN-GEM/HNK combined advantages of both GEM and HNK and simultaneously targeted and eliminated pancreatic cancerous and cancer-associated stromal cells. In summary, the present study demonstrated a new strategy of synergistic GEM and HNK to enhance the therapeutic effect of pancreatic cancer via the targeting depletion of tumor stroma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar 161006, China; (D.L.); (L.W.); (H.L.); (D.L.); (J.Z.); (J.W.)
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar 161006, China; (D.L.); (L.W.); (H.L.); (D.L.); (J.Z.); (J.W.)
| |
Collapse
|
50
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|