1
|
Thimme R, Bertoletti A, Iannacone M. Beyond exhaustion: the unique characteristics of CD8 + T cell dysfunction in chronic HBV infection. Nat Rev Immunol 2024; 24:775-776. [PMID: 39367087 DOI: 10.1038/s41577-024-01097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Antonio Bertoletti
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Wang L, Chen H, Yang Y, Huang Y, Chen W, Mu D. Optimization of culture conditions for HBV-specific T cell expansion in vitro from chronically infected patients. BMC Biotechnol 2024; 24:80. [PMID: 39402512 PMCID: PMC11476462 DOI: 10.1186/s12896-024-00908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) clearance depends on an effective adaptive immune response, especially HBV-specific T cell-mediated cellular immunity; however, it is difficult to produce enough HBV-specific T cells effectively. RESULTS In this work, we investigated the proportions of stimulated cells, serum, and culture media as the three primary factors to determine the most effective procedure and applied it to HLA-A2 (+) people. In parallel, we also examined the correlation between clinical parameters and HBV-specific immunity. Concerning amplification efficiency, 4 × 105 cells stimulation was superior to 2 × 106 cells stimulation, AIM-V medium outperformed 1640 medium, and fetal bovine serum (FBS) exceeded human AB serum under comparable conditions. As expected, this procedure is also suitable for developing HBV-specific CD8 + T cells in HLA-A2(+) individuals. Expanded HBV-specific T cell responses decreased with treatment time and were negatively correlated with HBV DNA and HBsAg. Furthermore, the number of HBV-specific IFN-γ + SFCs was strongly correlated with the ALT level and negatively correlated with the absolute lymphocyte count and the ALB concentration. CONCLUSIONS We confirm that stimulating 4 × 105 PBMCs in AIM-V medium supplemented with 10% FBS is the best approach and that HBeAg, HBsAg, and ALB are independent predictors of HBV-specific T-cell responses.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongjiao Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanqi Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Lopez-Scarim J, Mendoza D, Nambiar SM, Billerbeck E. CD4+ T cell help during early acute hepacivirus infection is critical for viral clearance and the generation of a liver-homing CD103+CD49a+ effector CD8+ T cell subset. PLoS Pathog 2024; 20:e1012615. [PMID: 39392861 PMCID: PMC11498735 DOI: 10.1371/journal.ppat.1012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/23/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
In hepatitis C virus (HCV) infection, CD4+ and CD8+ T cells are crucial for viral control. However, a detailed understanding of the kinetic of CD4+ T cell help and its role in the generation of different CD8+ T cell subsets during acute infection is lacking. The absence of a small HCV animal model has impeded mechanistic studies of hepatic antiviral T cell immunity and HCV vaccine development. In this study, we used a recently developed HCV-related rodent hepacivirus infection mouse model to investigate the impact of CD4+ T cell help on the hepatic CD8+ T cell response and viral clearance during hepacivirus infection in vivo. Our results revealed a specific kinetic of CD4+ T cell dependency during acute infection. Early CD4+ T cell help was essential for CD8+ T cell priming and viral clearance, while CD4+ T cells became dispensable during later stages of acute infection. Effector CD8+ T cells directly mediated timely hepacivirus clearance. An analysis of hepatic CD8+ T cells specific for two different viral epitopes revealed the induction of subsets of liver-homing CD103+CD49a+ and CD103-CD49a+ effector CD8+ T cells with elevated IFN-γ and TNF-α production. CD103+CD49a+ T cells further persisted as tissue-resident memory subsets. A lack of CD4+ T cell help and CD40L-CD40 interactions resulted in reduced effector functions and phenotypical changes in effector CD8+ T cells and a specific loss of the CD103+CD49a+ subset. In summary, our study shows that early CD4+ T cell help through CD40L signaling is essential for priming functional effector CD8+ T cell subsets, including unique liver-homing subsets, and hepacivirus clearance.
Collapse
Affiliation(s)
- Jarrett Lopez-Scarim
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dustyn Mendoza
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shashank M. Nambiar
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eva Billerbeck
- Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
4
|
Andreata F, Iannacone M. The hidden strength of CD8 + T cells in chronic hepatitis B. Nat Immunol 2024; 25:1515-1516. [PMID: 39198633 DOI: 10.1038/s41590-024-01939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Affiliation(s)
- Francesco Andreata
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
5
|
Heim K, Sagar, Sogukpinar Ö, Llewellyn-Lacey S, Price DA, Emmerich F, Kraft ARM, Cornberg M, Kielbassa S, Knolle P, Wohlleber D, Bengsch B, Boettler T, Neumann-Haefelin C, Thimme R, Hofmann M. Attenuated effector T cells are linked to control of chronic HBV infection. Nat Immunol 2024; 25:1650-1662. [PMID: 39198634 PMCID: PMC11362014 DOI: 10.1038/s41590-024-01928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
Hepatitis B virus (HBV)-specific CD8+ T cells play a dominant role during acute-resolving HBV infection but are functionally impaired during chronic HBV infection in humans. These functional deficits have been linked with metabolic and phenotypic heterogeneity, but it has remained unclear to what extent different subsets of HBV-specific CD8+ T cells still suppress viral replication. We addressed this issue by deep profiling, functional testing and perturbation of HBV-specific CD8+ T cells during different phases of chronic HBV infection. Our data revealed a mechanism of effector CD8+ T cell attenuation that emerges alongside classical CD8+ T cell exhaustion. Attenuated HBV-specific CD8+ T cells were characterized by cytotoxic properties and a dampened effector differentiation program, determined by antigen recognition and TGFβ signaling, and were associated with viral control during chronic HBV infection. These observations identify a distinct subset of CD8+ T cells linked with immune efficacy in the context of a chronic human viral infection with immunotherapeutic potential.
Collapse
Affiliation(s)
- Kathrin Heim
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Özlem Sogukpinar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Florian Emmerich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Sophie Kielbassa
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research, Munich, Germany
- Institute of Molecular Immunology, School of Life Science, TUM, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
7
|
Gehring AJ, Salimzadeh L. Current and future use of antibody-based passive immunity to prevent or control HBV/HDV infections. Antiviral Res 2024; 226:105893. [PMID: 38679166 DOI: 10.1016/j.antiviral.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.
Collapse
Affiliation(s)
- Adam J Gehring
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Hatje K, Kam-Thong T, Giroud N, Saviano A, Simo-Noumbissie P, Kumpesa N, Nilsson T, Habersetzer F, Baumert TF, Pelletier N, Forkel M. Single-cell RNA-sequencing of virus-specific cellular immune responses in chronic hepatitis B patients. Sci Data 2024; 11:355. [PMID: 38589415 PMCID: PMC11001867 DOI: 10.1038/s41597-024-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic hepatitis B (CHB) is a major global health challenge. CHB can be controlled by antivirals but a therapeutic cure is lacking. CHB is characterized by limited HBV-specific T cell reactivity and functionality and expression of inhibitory receptors. The mechanisms driving these T cell phenotypes are only partially understood. Here, we created a single-cell RNA-sequencing dataset of HBV immune responses in patients to contribute to a better understanding of the dysregulated immunity. Blood samples of a well-defined cohort of 21 CHB and 10 healthy controls, including a subset of 5 matched liver biopsies, were collected. scRNA-seq data of total immune cells (55,825) plus sorted HBV-specific (1,963), non-naive (32,773) and PD1+ T cells (96,631) was generated using the 10X Genomics platform (186,123 cells) or the full-length Smart-seq2 protocol (1,069 cells). The shared transcript count matrices of single-cells serve as a valuable resource describing transcriptional changes underlying dysfunctional HBV-related T cell responses in blood and liver tissue and offers the opportunity to identify targets or biomarkers for HBV-related immune exhaustion.
Collapse
Affiliation(s)
- Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| | - Tony Kam-Thong
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Nicolas Giroud
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Antonio Saviano
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR_S1110, University of Strasbourg, Strasbourg, France.
| | - Pauline Simo-Noumbissie
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadine Kumpesa
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Nilsson
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - François Habersetzer
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Nadege Pelletier
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Marianne Forkel
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Wang LT, Chen YH, Cheng Y, Fan HL, Chen TW, Shih YL, Hsieh TY, Huang WY, Huang WC. Clinical implications of hepatitis B virus core antigen-mediated immunopathologic T cell responses in chronic hepatitis B. J Med Virol 2024; 96:e29515. [PMID: 38469923 DOI: 10.1002/jmv.29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Hepatitis B virus (HBV) infection significantly impacts Asian populations. The influences of continuous HBV antigen and inflammatory stimulation to T cells in chronic hepatitis B (CHB) remain unclear. In this study, we first conducted bioinformatics analysis to assess T-cell signaling pathways in CHB patients. In a Taiwanese cohort, we examined the phenotypic features of HBVcore -specific T cells and their correlation with clinical parameters. We used core protein overlapping peptides from the Taiwan prevalent genotype B HBV to investigate the antiviral response and the functional implication of HBV-specific T cells. In line with Taiwanese dominant HLA-alleles, we also evaluated ex vivo HBVcore -specific T cells by pMHC-tetramers targeting epitopes within HBV core protein. Compared to healthy subjects, we disclosed CD8 T cells from CHB patients had higher activation marker CD38 levels but showed an upregulation in the inhibitory receptor PD-1. Our parallel study showed HBV-specific CD8 T cells were more activated with greater PD-1 expression than CMV-specific subset and bulk CD8 T cells. Moreover, our longitudinal study demonstrated a correlation between the PD-1 fluctuation pattern of HBVcore -specific CD8 T cells and liver inflammation in CHB patients. Our research reveals the HBV core antigen-mediated immunopathologic profile of CD8 T cells in chronic HBV infection. Our findings suggest the PD-1 levels of HBVcore -specific CD8 T cells can be used as a valuable indicator of personal immune response for clinical application in hepatitis management.
Collapse
Affiliation(s)
- Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hong Chen
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yang Cheng
- Division of Infectious Disease & Immunology, Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Lung Fan
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chen Huang
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
10
|
Wang Z, Liu N, Yang Y, Tu Z. The novel mechanism facilitating chronic hepatitis B infection: immunometabolism and epigenetic modification reprogramming. Front Immunol 2024; 15:1349867. [PMID: 38288308 PMCID: PMC10822934 DOI: 10.3389/fimmu.2024.1349867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Hepatitis B Virus (HBV) infections pose a global public health challenge. Despite extensive research on this disease, the intricate mechanisms underlying persistent HBV infection require further in-depth elucidation. Recent studies have revealed the pivotal roles of immunometabolism and epigenetic reprogramming in chronic HBV infection. Immunometabolism have identified as the process, which link cell metabolic status with innate immunity functions in response to HBV infection, ultimately contributing to the immune system's inability to resolve Chronic Hepatitis B (CHB). Within hepatocytes, HBV replication leads to a stable viral covalently closed circular DNA (cccDNA) minichromosome located in the nucleus, and epigenetic modifications in cccDNA enable persistence of infection. Additionally, the accumulation or depletion of metabolites not only directly affects the function and homeostasis of immune cells but also serves as a substrate for regulating epigenetic modifications, subsequently influencing the expression of antiviral immune genes and facilitating the occurrence of sustained HBV infection. The interaction between immunometabolism and epigenetic modifications has led to a new research field, known as metabolic epigenomics, which may form a mutually reinforcing relationship with CHB. Herein, we review the recent studies on immunometabolism and epigenetic reprogramming in CHB infection and discuss the potential mechanisms of persistent HBV infection. A deeper understanding of these mechanisms will offer novel insights and targets for intervention strategies against chronic HBV infection, thereby providing new hope for the treatment of related diseases.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Liu
- Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengkun Tu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Pan B, Wang Z, Chen R, Zhang X, Qiu J, Wu X, Yao Y, Luo Y, Wang X, Tang N. Single-cell atlas reveals characteristic changes in intrahepatic HBV-specific leukocytes. Microbiol Spectr 2024; 12:e0286023. [PMID: 38032223 PMCID: PMC10782979 DOI: 10.1128/spectrum.02860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Hepatitis B virus (HBV)-specific CD8+ T cells play a central role in the clearance of virus and HBV-related liver injury. Acute infection with HBV induces a vigorous, multifunctional CD8+ T cell response, whereas chronic one exhibits a weaker response. Our study elucidated HBV-specific T cell responses in terms of viral abundance rather than the timing of infection. We showed that in the premalignant stage, the degree of impaired T cell function was not synchronized with the viral surface antigen, which was attributed the liver's tolerance to the virus. However, after the development of hepatocellular carcinoma, T cell exhaustion was inevitable, and it was marked by the exhaustion of the signature transcription factor TOX.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Rui Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yue Luo
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Heim K, Hofmann M, Thimme R. Peptide-Loaded HLA Class I Tetramer-Associated Magnetic Bead-Based Enrichment of HBV-Specific CD8+ T Cells. Methods Mol Biol 2024; 2837:219-226. [PMID: 39044088 DOI: 10.1007/978-1-0716-4027-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
HBV-specific CD8+ T cells are only present at the low frequency during chronic infection. Thus, they are often undetectable by conventional ex vivo staining methods using peptide-loaded HLA class I tetramers. Detection sensitivity can be increased by magnetic bead-based enrichment strategies following staining with peptide-loaded HLA class I tetramers. Additionally, some downstream applications like e.g., single cell RNA sequencing of virus-specific CD8+ T cells may also require a pre-enrichment step to increase the frequency of the cells of interest. For this, peptide-loaded HLA class I tetramers-associated magnetic bead-based enrichment is also a suitable method.
Collapse
Affiliation(s)
- Kathrin Heim
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Targeting virus-specific CD8+ T cells for treatment of chronic viral hepatitis: from bench to bedside. Expert Opin Biol Ther 2024; 24:77-89. [PMID: 38290716 DOI: 10.1080/14712598.2024.2313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION More than 350 million people worldwide live with chronic viral hepatitis and are thus at risk for severe complications like liver cirrhosis and hepatocellular carcinoma (HCC). To meet the goals of the World Health Organization (WHO) global hepatitis strategy, there is an urgent need for new immunotherapeutic approaches. These are particularly required for chronic hepatitis B virus infection and - B/D coinfection. AREAS COVERED This review summarizes data on mechanisms of CD8+ T cells failure in chronic hepatitis B, D, C and E virus infection. The relative contribution of the different concepts (viral escape, CD8+ T cell exhaustion, defective priming) will be discussed. On this basis, examples for future therapeutic approaches targeting virus-specific CD8+ T cells for the individual hepatitis viruses will be discussed. EXPERT OPINION Immunotherapeutic approaches targeting virus-specific CD8+ T cells have the potential to change clinical practice, especially in chronic hepatitis B virus infection. Further clinical development, however, requires a more detailed understanding of T cell immunology in chronic viral hepatitis. Some important conceptual questions remain to be addressed, e.g. regarding heterogeneity of exhausted virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
- IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Elkoshi Z. The Eradication of Carcinogenic Viruses in Established Solid Cancers. J Inflamm Res 2023; 16:6227-6239. [PMID: 38145011 PMCID: PMC10749098 DOI: 10.2147/jir.s430315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Carcinogenic viruses (oncoviruses) can initiate cancer, but their impact on established cancer varies. Some of these viruses prolong survival while others shorten it. This study classifies oncoviruses into two categories: viruses which induce a strong CD8+T cell reaction in non-cancerous tissues, and viruses which induce a weak CD8+ T cell reaction in non-cancerous tissues. The classification proves useful in predicting the effect of oncoviruses on the prognosis of solid cancers. Therefore, while eliminating carcinogenic viruses in healthy individuals (for example by immunization) may be important for cancer prevention, this study suggests that only viruses which induce a weak CD8+ T cell reaction should be eradicated in established solid tumors. The model correctly predicts the effect of oncoviruses on survival for six out of seven known oncoviruses, indicating that immune modulation by oncoviruses has a prominent effect on prognosis. It seems that CD8+ T cell response to oncoviruses observed in infected benign tissues is retained in infected tumors. Clinical significance: the effect of oncoviruses on solid cancer prognosis can be predicted with confidence based on immunological responses when clinical data are unavailable.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
15
|
Chua C, Salimzadeh L, Ma AT, Adeyi OA, Seo H, Boukhaled GM, Mehrotra A, Patel A, Ferrando-Martinez S, Robbins SH, La D, Wong D, Janssen HL, Brooks DG, Feld JJ, Gehring AJ. IL-2 produced by HBV-specific T cells as a biomarker of viral control and predictor of response to PD-1 therapy across clinical phases of chronic hepatitis B. Hepatol Commun 2023; 7:e0337. [PMID: 38055623 PMCID: PMC10984660 DOI: 10.1097/hc9.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND There are no immunological biomarkers that predict control of chronic hepatitis B (CHB). The lack of immune biomarkers raises concerns for therapies targeting PD-1/PD-L1 because they have the potential for immune-related adverse events. Defining specific immune functions associated with control of HBV replication could identify patients likely to respond to anti-PD-1/PD-L1 therapies and achieve a durable functional cure. METHODS We enrolled immunotolerant, HBeAg+ immune-active (IA+), HBeAg- immune-active (IA-), inactive carriers, and functionally cured patients to test ex vivo PD-1 blockade on HBV-specific T cell functionality. Peripheral blood mononuclear cells were stimulated with overlapping peptides covering HBV proteins +/-α-PD-1 blockade. Functional T cells were measured using a 2-color FluoroSpot assay for interferon-γ and IL-2. Ex vivo functional restoration was compared to the interferon response capacity assay, which predicts overall survival in cancer patients receiving checkpoint inhibitors. RESULTS Ex vivo interferon-γ+ responses did not differ across clinical phases. IL-2+ responses were significantly higher in patients with better viral control and preferentially restored with PD-1 blockade. Inactive carrier patients displayed the greatest increase in IL-2 production, which was dominated by CD4 T cell and response to the HBcAg. The interferon response capacity assay significantly correlated with the degree of HBV-specific T cell restoration. CONCLUSIONS IL-2 production was associated with better HBV control and superior to interferon-γ as a marker of T cell restoration following ex vivo PD-1 blockade. Our study suggests that responsiveness to ex vivo PD-1 blockade, or the interferon response capacity assay, may support stratification for α-PD-1 therapies.
Collapse
Affiliation(s)
- Conan Chua
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Loghman Salimzadeh
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ann T. Ma
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Oyedele A. Adeyi
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hobin Seo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Giselle M. Boukhaled
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anjali Patel
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Scott H. Robbins
- Late Stage Oncology Development, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Danie La
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Wong
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Harry L.A. Janssen
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David G. Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan J. Feld
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam J. Gehring
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Nasser N, Tonnerre P, Mansouri A, Asselah T. Hepatitis-B virus: replication cycle, targets, and antiviral approaches. Curr Opin Virol 2023; 63:101360. [PMID: 37696687 DOI: 10.1016/j.coviro.2023.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
An estimated 257 million people are chronic carriers of hepatitis-B virus (HBV) infection, which resulted in around 1 million deaths, mainly due to hepatocellular carcinoma (HCC). Long-term nucleotide analog treatment of HBV infection is associated with favorable prognosis, no disease progression, and a reduction of HCC risk, but lifelong treatments are required. A better understanding of HBV replication cycle and the host immune response will likely improve the identification of new targets for drug development. Studies are ongoing to determine if it is possible to successfully combine direct-acting antivirals (DAA) with an immunomodulatory therapy to allow increased cure rates. This review will start with summarizing the HBV replication cycle, recall current treatments, and then discuss potential targets and antiviral approaches in development to optimistically reach the HBV cure.
Collapse
Affiliation(s)
- Nour Nasser
- Université Paris-Cité, Centre de recherche sur l'inflammation, Inserm U1149, Paris, France; Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Pierre Tonnerre
- Université Paris-Cité, Inserm UMR 976, Human Immunology, Pathophysiology and Immunotherapy (HIPI), team ATIP-Avenir, Paris, France
| | - Abdellah Mansouri
- Université Paris-Cité, Centre de recherche sur l'inflammation, Inserm U1149, Paris, France; Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Université Paris-Cité, Centre de recherche sur l'inflammation, Inserm U1149, Paris, France; Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France.
| |
Collapse
|
18
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Cargill T, Cicconi P, Brown A, Holland L, Karanth B, Rutkowski K, Ashwin E, Mehta R, Chinnakannan S, Sebastian S, Bussey L, Sorensen H, Klenerman P, Evans T, Barnes E. HBV001: Phase I study evaluating the safety and immunogenicity of the therapeutic vaccine ChAdOx1-HBV. JHEP Rep 2023; 5:100885. [PMID: 37791379 PMCID: PMC10543776 DOI: 10.1016/j.jhepr.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 07/22/2023] [Indexed: 10/05/2023] Open
Abstract
Background & Aims Millions of people worldwide are infected chronically with HBV, which results in significant morbidity and mortality. Therapeutic vaccination is a strategy that aims to induce functional cure by restoring cellular immunity to HBV. Previously we have shown the candidate HBV immunotherapeutic vaccine ChAdOx1-HBV, encoding all major HBV antigens and a genetic adjuvant (shark invariant chain), is highly immunogenic in mice. Methods Here we report the results of HBV001, a first-in-human, phase I, non-randomised, dose-escalation trial of ChAdOx1-HBV assessed in healthy volunteers and patients with chronic HBV (CHB). Results Vaccination with a single dose of ChAdOx1-HBV was safe and well tolerated in both healthy and CHB cohorts. Vaccination induced high magnitude HBV-specific T cell responses against all major HBV antigens (core, polymerase, and surface) in healthy volunteers. Responses were detected but lower in patients with CHB. T cells generated by vaccination were cross-reactive between HBV C and D genotypes. Conclusions ChAdOx1-HBV is safe and immunogenic in healthy volunteers and patients with CHB. In further studies, ChAdOx1-HBV will be used in combination with other therapeutic strategies with an aim to overcome the attenuated immunogenicity in patients with CHB. Impact and implications Therapeutic vaccine ChAdOx1-HBV, a novel treatment for chronic hepatitis B infection (CHB), has been shown to be immunogenic in preclinical studies. In HBV001, a first-in-human phase I study, we show vaccination with ChAdOx1-HBV is safe and generates high magnitude T cell responses in healthy volunteers and lower levels of responses in patients with CHB. This is an important first step in the development of ChAdOx1-HBV as part of a wider therapeutic strategy to induce hepatitis B functional cure, and is of great interest to patients CHB and clinicians treating the condition. Clinical Trials Registration This study is registered at ClinicalTrials.gov (NCT04297917).
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paola Cicconi
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Louise Holland
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | | | - Emily Ashwin
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Senthil Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, The Joint Research Office, OUH Cowley, Oxford, UK
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, The Joint Research Office, OUH Cowley, Oxford, UK
| |
Collapse
|
20
|
Bertoletti A, Le Bert N. Quest for immunological biomarkers in the management of CHB patients. Gut 2023; 72:2012-2014. [PMID: 36922017 DOI: 10.1136/gutjnl-2023-329437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
21
|
Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Penna A, Montali I, Daffis S, Fletcher SP, Gaggar A, Medley J, Graupe M, Lad L, Loglio A, Soffredini R, Borghi M, Pollicino T, Musolino C, Alfieri A, Brillo F, Laccabue D, Massari M, Boarini C, Abbati G, Pedrazzi G, Missale G, Lampertico P, Ferrari C, Boni C. Phenotypic CD8 T cell profiling in chronic hepatitis B to predict HBV-specific CD8 T cell susceptibility to functional restoration in vitro. Gut 2023; 72:2123-2137. [PMID: 36717219 PMCID: PMC10579518 DOI: 10.1136/gutjnl-2022-327202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Exhausted hepatitis B virus (HBV)-specific CD8 T cells in chronic HBV infection are broadly heterogeneous. Characterisation of their functional impairment may allow to distinguish patients with different capacity to control infection and reconstitute antiviral function. DESIGN HBV dextramer+CD8 T cells were analysed ex vivo for coexpression of checkpoint/differentiation markers, transcription factors and cytokines in 35 patients with HLA-A2+chronic hepatitis B (CHB) and in 29 control HBsAg negative CHB patients who seroconverted after NUC treatment or spontaneously. Cytokine production was also evaluated in HBV peptide-stimulated T cell cultures, in the presence or absence of antioxidant, polyphenolic, PD-1/PD-L1 inhibitor and TLR-8 agonist compounds and the effect on HBV-specific responses was further validated on additional 24 HLA-A2 negative CHB patients. RESULTS Severely exhausted HBV-specific CD8 T cell subsets with high expression of inhibitory receptors, such as PD-1, TOX and CD39, were detected only in a subgroup of chronic viraemic patients. Conversely, a large predominance of functionally more efficient HBV-specific CD8 T cell subsets with lower expression of coinhibitory molecules and better response to in vitro immune modulation, typically detected after resolution of infection, was also observed in a proportion of chronic viraemic HBV patients. Importantly, the same subset of patients who responded more efficiently to in vitro immune modulation identified by HBV-specific CD8 T cell analysis were also identified by staining total CD8 T cells with PD-1, TOX, CD127 and Bcl-2. CONCLUSIONS The possibility to distinguish patient cohorts with different capacity to respond to immune modulatory compounds in vitro by a simple analysis of the phenotypic CD8 T cell exhaustion profile deserves evaluation of its clinical applicability.
Collapse
Affiliation(s)
- Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Anuj Gaggar
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | - Latesh Lad
- Gilead Sciences Inc, Foster City, California, USA
| | - Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Roberta Soffredini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marta Borghi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Teresa Pollicino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Arianna Alfieri
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Federica Brillo
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Massari
- Unit of Infectious Diseases, IRCCS, Reggio Emilia, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milano, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
22
|
Boni C, Rossi M, Montali I, Tiezzi C, Vecchi A, Penna A, Doselli S, Reverberi V, Ceccatelli Berti C, Montali A, Schivazappa S, Laccabue D, Missale G, Fisicaro P. What Is the Current Status of Hepatitis B Virus Viro-Immunology? Clin Liver Dis 2023; 27:819-836. [PMID: 37778772 DOI: 10.1016/j.cld.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The natural history of hepatitis B virus (HBV) infection is closely dependent on the dynamic interplay between the host immune response and viral replication. Spontaneous HBV clearance in acute self-limited infection is the result of an adequate and efficient antiviral immune response. Instead, it is widely recognized that in chronic HBV infection, immunologic dysfunction contributes to viral persistence. Long-lasting exposure to high viral antigens, upregulation of multiple co-inhibitory receptors, dysfunctional intracellular signaling pathways and metabolic alterations, and intrahepatic regulatory mechanisms have been described as features ultimately leading to a hierarchical loss of effector functions up to full T-cell exhaustion.
Collapse
Affiliation(s)
- Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sara Doselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Schivazappa
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
23
|
Takahama S, Yoshio S, Masuta Y, Murakami H, Sakamori R, Kaneko S, Honda T, Murakawa M, Sugiyama M, Kurosaki M, Asahina Y, Takehara T, Appay V, Kanto T, Yamamoto T. Hepatitis B surface antigen reduction is associated with hepatitis B core-specific CD8 + T cell quality. Front Immunol 2023; 14:1257113. [PMID: 37920475 PMCID: PMC10619684 DOI: 10.3389/fimmu.2023.1257113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023] Open
Abstract
Despite treatment, hepatitis B surface antigen (HBsAg) persists in patients with chronic hepatitis B (CHB), suggesting the likely presence of the virus in the body. CD8+ T cell responses are essential for managing viral replication, but their effect on HBsAg levels remains unclear. We studied the traits of activated CD8+ T cells and HBV-specific CD8+ T cells in the blood of CHB patients undergoing nucleos(t)ide analog (NUC) therapy. For the transcriptome profiling of activated CD8+ T cells in peripheral blood mononuclear cells (PBMCs), CD69+ CD8+ T cells were sorted from six donors, and single-cell RNA sequencing (scRNA-seq) analysis was performed. To detect HBV-specific CD8+ T cells, we stimulated PBMCs from 26 donors with overlapping peptides covering the HBs, HBcore, and HBpol regions of genotype A/B/C viruses, cultured for 10 days, and analyzed via multicolor flow cytometry. scRNA-seq data revealed that CD8+ T cell clusters harboring the transcripts involved in the cytolytic functions were frequently observed in donors with high HBsAg levels. Polyfunctional analysis of HBV-specific CD8+ T cells utilized by IFN-γ/TNFα/CD107A/CD137 revealed that HBcore-specific cells exhibited greater polyfunctionality, suggesting that the quality of HBV-specific CD8+ T cells varies among antigens. Moreover, a subset of HBcore-specific CD8+ T cells with lower cytolytic potential was inversely correlated with HBsAg level. Our results revealed a stimulant-dependent qualitative difference in HBV-specific CD8+ T cells in patients with CHB undergoing NUC therapy. Hence, the induction of HBcore-specific CD8+ T cells with lower cytolytic potential could be a new target for reducing HBsAg levels.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hirotomo Murakami
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Victor Appay
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Université de Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Tatsuya Kanto
- Department of Liver Diseases, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, Japan
- The Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Fu YL, Zhou SN, Hu W, Li J, Zhou MJ, Li XY, Wang YY, Zhang P, Chen SY, Fan X, Song JW, Jiao YM, Xu R, Zhang JY, Zhen C, Zhou CB, Yuan JH, Shi M, Wang FS, Zhang C. Metabolic interventions improve HBV envelope-specific T-cell responses in patients with chronic hepatitis B. Hepatol Int 2023; 17:1125-1138. [PMID: 36976426 PMCID: PMC10522531 DOI: 10.1007/s12072-023-10490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Restoration of HBV-specific T cell immunity is a promising approach for the functional cure of chronic Hepatitis B (CHB), necessitating the development of valid assays to boost and monitor HBV-specific T cell responses in patients with CHB. METHODS We analyzed hepatitis B virus (HBV) core- and envelope (env)-specific T cell responses using in vitro expanded peripheral blood mononuclear cells (PBMCs) from patients with CHB exhibiting different immunological phases, including immune tolerance (IT), immune activation (IA), inactive carrier (IC), and HBeAg-negative hepatitis (ENEG). Additionally, we evaluated the effects of metabolic interventions, including mitochondria-targeted antioxidants (MTA), polyphenolic compounds, and ACAT inhibitors (iACAT), on HBV-specific T-cell functionality. RESULTS We found that HBV core- and env-specific T cell responses were finely coordinated and more profound in IC and ENEG than in the IT and IA stages. HBV env-specific T cells were more dysfunctional but prone to respond to metabolic interventions using MTA, iACAT, and polyphenolic compounds than HBV core-specific T-cells. The responsiveness of HBV env-specific T cells to metabolic interventions can be predicted by the eosinophil (EO) count and the coefficient of variation of red blood cell distribution width (RDW-CV). CONCLUSION These findings may provide valuable information for metabolically invigorating HBV-specific T-cells to treat CHB.
Collapse
Affiliation(s)
- Yu-Long Fu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yu Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - You-Yuan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
25
|
Le Bert N, Fisicaro P. Enolase: a metabolic checkpoint behind diverse exhaustion stages of CD8+ T cells in chronic HBV and HCV. Gut 2023; 72:1814-1815. [PMID: 37673656 DOI: 10.1136/gutjnl-2023-330541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
26
|
Jansen DTSL, de Beijer MTA, Luijten RJ, Kwappenberg K, Wiekmeijer AS, Kessler AL, Pieterman RFA, Bouzid R, Krebber WJ, de Man RA, Melief CJM, Buschow SI. Induction of broad multifunctional CD8+ and CD4+ T cells by hepatitis B virus antigen-based synthetic long peptides ex vivo. Front Immunol 2023; 14:1163118. [PMID: 37781393 PMCID: PMC10534072 DOI: 10.3389/fimmu.2023.1163118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Therapeutic vaccination based on synthetic long peptides (SLP®) containing both CD4+ and CD8+ T cell epitopes is a promising treatment strategy for chronic hepatitis B infection (cHBV). Methods We designed SLPs for three HBV proteins, HBcAg and the non-secreted proteins polymerase and X, and investigated their ability to induce T cell responses ex vivo. A set of 17 SLPs was constructed based on viral protein conservation, functionality, predicted and validated binders for prevalent human leukocyte antigen (HLA) supertypes, validated HLA I epitopes, and chemical producibility. Results All 17 SLPs were capable of inducing interferon gamma (IFNɣ) production in samples from four or more donors that had resolved an HBV infection in the past (resolver). Further analysis of the best performing SLPs demonstrated activation of both CD8+ and CD4+ multi-functional T cells in one or more resolver and patient sample(s). When investigating which SLP could activate HBV-specific T cells, the responses could be traced back to different peptides for each patient or resolver. Discussion This indicates that a large population of subjects with different HLA types can be covered by selecting a suitable mix of SLPs for therapeutic vaccine design. In conclusion, we designed a set of SLPs capable of inducing multifunctional CD8+ and CD4+ T cells ex vivo that create important components for a novel therapeutic vaccine to cure cHBV.
Collapse
Affiliation(s)
- Diahann T. S. L. Jansen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Monique T. A. de Beijer
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robbie J. Luijten
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Amy L. Kessler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roel F. A. Pieterman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rachid Bouzid
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
27
|
Li Y, Wen C, Gu S, Wang W, Guo L, Li CK, Yi X, Zhou Y, Dong Z, Fu X, Zhong S, Wang Y, Huang K, Yin J, Zhong C, Liang X, Fan R, Chen H, Jiang D, Zhang X, Sun J, Tang L, Peng J, Hou J. Differential response of HBV envelope-specific CD4 + T cells is related to HBsAg loss after stopping nucleos(t)ide analogue therapy. Hepatology 2023; 78:592-606. [PMID: 36896974 PMCID: PMC10344436 DOI: 10.1097/hep.0000000000000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIM Long-term maintenance of viral control, even HBsAg loss, remains a challenge for chronic hepatitis B (CHB) patients undergoing nucleos(t)ide analogue (NA) discontinuation. This study aimed to investigate the relationship between HBV-specific T-cell responses targeting peptides spanning the whole proteome and clinical outcomes in CHB patients after NA discontinuation. APPROACH AND RESULTS Eighty-eight CHB patients undergoing NA discontinuation were classified as responders (remained relapse-free up to 96 weeks) or relapsers (relapsed patients who underwent NA retreatment for up to 48 weeks and reachieved stable viral control). HBV-specific T-cell responses were detected at baseline and longitudinally throughout the follow-up. We found responders had a greater magnitude of HBV polymerase (Pol)-specific T-cell responses than relapsers at baseline. After long-term NA discontinuation, simultaneously enhanced HBV Core-induced and Pol-induced responses were observed in responders. Particularly, responders with HBsAg loss possessed enhanced HBV Envelope (Env)-induced responses after short-term and long-term follow-up. Notably, CD4 + T cells accounted for the predominance of HBV-specific T-cell responses. Correspondingly, CD4-deficient mice showed attenuated HBV-specific CD8 + T-cell responses, reduced HBsAb-producing B cells, and delayed HBsAg loss; in contrast, in vitro addition of CD4 + T cells promoted HBsAb production by B cells. Besides, IL-9, rather than PD-1 blockade, enhanced HBV Pol-specific CD4 + T-cell responses. CONCLUSION HBV-specific CD4 + T-cell responses induced by the targeted peptide possess specificities for long-term viral control and HBsAg loss in CHB patients undergoing NA discontinuation, indicating that CD4 + T cells specific to distinct HBV antigens may endow with divergent antiviral potential.
Collapse
Affiliation(s)
- Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chris Kafai Li
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheyu Dong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Fu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kuiyuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhua Yin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiu Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xieer Liang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Li X, Zheng A, Liu J, Shi M, Liao B, Xie S, Yan R, Gan Y, Zuo X, Gong M, Wu H, Wang Z. Assessing the chronic hepatitis B adaptive immune response by profiling specific T-cell receptor repertoire. Antiviral Res 2023; 214:105608. [PMID: 37084955 DOI: 10.1016/j.antiviral.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Challenges in assessing hepatitis B virus (HBV)-specific T cell immunity as an immunological biomarker still remain in chronic hepatitis B (CHB), such as the requirement of large quantities of cells. This study aims to conveniently assess HBV-specific T cells immunity in chronic HBV infected patients. We obtained T cell receptor β chains (TCRβs) from public databases and six acute hepatitis B patients to establish an HBV-specific TCRβs dataset. For some TCRs from one AHB patient, their specificities and epitopes were verified. The potential HBV-specific TCRβs from CHB patients were analyzed using GLIPH2 and established dataset. By analyzing two antiviral therapy cohorts including 42 CHB patients, we showed that individuals with better therapy response may depend more on newly emerging potential HBV-specific TCRβs. In a cross-sectional study containing 207 chronic HBV infected patients, the results exhibited that the characteristics of potential HBV-specific clusters were divergent between CHB and hepatocellular carcinoma patients. Our strategy could profile potential HBV-specific TCRβ repertoire using a small blood sample, which will complement traditional methods for assessing the HBV-specific T cell immunity.
Collapse
Affiliation(s)
- Xueying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiabang Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengfen Shi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baolin Liao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Gan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zuo
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingxing Gong
- Department of Infectious Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
Wen C, Zhou Y, Zhou Y, Wang Y, Dong Z, Gu S, Wang W, Guo L, Jin Z, Zhong S, Tang L, Li Y. HBV Core-specific CD4 + T cells correlate with sustained viral control upon off-treatment in HBeAg-positive chronic hepatitis B patients. Antiviral Res 2023; 213:105585. [PMID: 36963665 DOI: 10.1016/j.antiviral.2023.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND & AIMS Treatment with nucleos(t)ide analogue (NA) efficiently suppresses viral replication in patients with chronic HBV infection, yet HBV relapse frequently upon NA withdrawal; the detailed immunomodulatory compounds for sustained viral control of HBV upon NA interruption have yet to be fully clarified. This study aimed to elucidate the role of T cells specific for distinct HBV peptides in sustained response upon discontinuation of antiviral treatment. METHODS A total of 48 patients with HBeAg-positive chronic hepatitis B receiving NA treatment and withdrawal were included longitudinally in a retrospective and prospective cohort. Enzyme-linked immunosorbent spot (ELISpot) and intracellular cytokine staining (ICS) assays were performed to detect IFN-γ producing HBV-specific T cells following stimulation with overlapping peptides covering the whole HBV genome after 10 days of in vitro expansion. RESULTS ICS assays revealed that T cells specific for HBV Core and Polymerase induced more robust IFN-γ responses compared to envelope and HBx. Notably, at the time of NA discontinuation, the intensity and breadth of HBV Core peptides-induced responses, predominately targeted by CD4+ T cells but not CD8+ T cells, were associated with sustained viral control upon off-treatment. Further exploration of longitudinal features in patients with sustained viral control revealed that the breadth of HBV-specific T cell responses does not increase following treatment cessation. CONCLUSION This report emphasizes the essential role of HBV Core-specific CD4+ T cells in sustained response after therapy withdrawal, indicating it is a potential candidate for immunotherapeutic approaches in chronic HBV patients.
Collapse
Affiliation(s)
- Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyue Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheyu Dong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Guo
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zihan Jin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Stephan AS, Kosinska AD, Mück-Häusl M, Muschaweckh A, Jäger C, Röder N, Heikenwälder M, Dembek C, Protzer U. Evaluation of the Effect of CD70 Co-Expression on CD8 T Cell Response in Protein-Prime MVA-Boost Vaccination in Mice. Vaccines (Basel) 2023; 11:vaccines11020245. [PMID: 36851121 PMCID: PMC9966001 DOI: 10.3390/vaccines11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Here, we investigate the potential of CD70 co-expression during viral vector boost vaccination to improve an antigen-specific T cell response. To determine the chance of activating antigen-specific T cells by CD70, we used the HBV core antigen as a model antigen in a heterologous protein-prime, Modified Vaccinia virus Ankara (MVA) boost vaccination scheme. Both the HBV core and a CD70 expression cassette were co-expressed upon delivery by an MVA vector under the same promoter linked by a P2A site. To compare immunogenicity with and without CD70 co-expression, HBV-naïve, C57BL/6 (wt) mice and HBV-transgenic mice were prime-vaccinated using recombinant HBV core antigen followed by the MVA vector boost. Co-expression of CD70 increased the number of vaccine-induced HBV core-specific CD8 T cells by >2-fold and improved their effector functions in HBV-naïve mice. In vaccinated HBV1.3tg mice, the number and functionality of HBV core-specific CD8 T cells was slightly increased upon CD70 co-expression in low-viremic, but not in high-viremic animals. CD70 co-expression did not impact liver damage as indicated by ALT levels in the serum, but increased the number of vaccine-induced, proliferative T cell clusters in the liver. Overall, this study indicates that orchestrated co-expression of CD70 and a vaccine antigen may be an interesting and safe means of enhancing antigen-specific CD8 T cell responses using vector-based vaccines, although in our study it was not sufficient to break immune tolerance.
Collapse
Affiliation(s)
- Ann-Sophie Stephan
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Anna D. Kosinska
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Martin Mück-Häusl
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, 81675 Munich, Germany
| | - Clemens Jäger
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Natalie Röder
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
| | - Mathias Heikenwälder
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany
| | - Claudia Dembek
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Correspondence: (C.D.); (U.P.); Tel.: +49-89-4140-6821 (U.P.)
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich, Helmholtz Zentrum München, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Correspondence: (C.D.); (U.P.); Tel.: +49-89-4140-6821 (U.P.)
| |
Collapse
|
32
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
33
|
Luxenburger H, Neumann-Haefelin C. Liver-resident CD8+ T cells in viral hepatitis: not always good guys. J Clin Invest 2023; 133:e165033. [PMID: 36594469 PMCID: PMC9797333 DOI: 10.1172/jci165033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
More than twenty years ago, non-HBV-specific CD8+ T cells were found to contribute to liver immunopathology in chronic HBV infection, while HBV-specific CD8+ T cells were noted to contribute to viral control. The role of HBV-specific CD8+ T cells in viral control and the mechanisms of their failure in persistent infection have been intensively studied during the last two decades, but the exact nature of nonspecific bystander CD8+ T cells that contribute to immunopathology has remained elusive. In this issue of the JCI, Nkongolo et al. report on their application of two methodological advances, liver sampling by fine-needle aspiration (FNA) and single-cell RNA sequencing (scRNA-Seq), to define a liver-resident CD8+ T cell population that was not virus specific but associated with liver damage, thus representing hepatotoxic bystander CD8+ T cells.
Collapse
|
34
|
Nkongolo S, Mahamed D, Kuipery A, Sanchez Vasquez JD, Kim SC, Mehrotra A, Patel A, Hu C, McGilvray I, Feld JJ, Fung S, Chen D, Wallin JJ, Gaggar A, Janssen HL, Gehring AJ. Longitudinal liver sampling in patients with chronic hepatitis B starting antiviral therapy reveals hepatotoxic CD8+ T cells. J Clin Invest 2023; 133:158903. [PMID: 36594467 PMCID: PMC9797343 DOI: 10.1172/jci158903] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Accumulation of activated immune cells results in nonspecific hepatocyte killing in chronic hepatitis B (CHB), leading to fibrosis and cirrhosis. This study aims to understand the underlying mechanisms in humans and to define whether these are driven by widespread activation or a subpopulation of immune cells. We enrolled CHB patients with active liver damage to receive antiviral therapy and performed longitudinal liver sampling using fine-needle aspiration to investigate mechanisms of CHB pathogenesis in the human liver. Single-cell sequencing of total liver cells revealed a distinct liver-resident, polyclonal CD8+ T cell population that was enriched at baseline and displayed a highly activated immune signature during liver damage. Cytokine combinations, identified by in silico prediction of ligand-receptor interaction, induced the activated phenotype in healthy liver CD8+ T cells, resulting in nonspecific Fas ligand-mediated killing of target cells. These results define a CD8+ T cell population in the human liver that can drive pathogenesis and a key pathway involved in their function in CHB patients.
Collapse
Affiliation(s)
- Shirin Nkongolo
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Deeqa Mahamed
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adrian Kuipery
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan D. Sanchez Vasquez
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Aman Mehrotra
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anjali Patel
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Christine Hu
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ian McGilvray
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jordan J. Feld
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Diana Chen
- Gilead Sciences, Foster City, California, USA
| | | | - Anuj Gaggar
- Gilead Sciences, Foster City, California, USA
| | - Harry L.A. Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam J. Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Wu C, Zhang J, Wang H, Zhang W, Liu J, Zhou N, Chen K, Wang Y, Peng S, Fu L. TRAF2 as a key candidate gene in clinical hepatitis B-associated liver fibrosis. Front Mol Biosci 2023; 10:1168250. [PMID: 37091870 PMCID: PMC10113534 DOI: 10.3389/fmolb.2023.1168250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Objectives: Approximately 240 million individuals are infected with chronic hepatitis B virus (HBV) worldwide. HBV infection can develop into liver fibrosis. The mechanism of HBV-related liver fibrosis has not been fully understood, and there are few effective treatment options. The goal of this study was to use transcriptomics in conjunction with experimental validation to identify new targets to treat HBV-related liver fibrosis. Methods: To identify differentially expressed genes (DEGs), five liver tissues were collected from both healthy individuals and patients with chronic hepatitis B. NovoMagic and Java GSEA were used to screen DEGs and key genes, respectively. Immunocell infiltration analysis of RNA-seq data was, and the results were confirmed by Western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry. Results: We evaluated 1,105 genes with differential expression, and 462 and 643 genes showed down- and upregulation, respectively. The essential genes, such as tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2), were screened out of DEGs. TRAF2 expression was abnormally high in hepatic fibrosis in patients with hepatitis B compared with healthy controls. The degree of hepatic fibrosis and serum levels of glutamate transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) were positively linked with TRAF2 expression. TRAF2 may be crucial in controlling T lymphocyte-mediated liver fibrosis. Conclusion: Our findings imply that TRAF2 is essential for HBV-induced liver fibrosis progression, and it may potentially be a promising target for the treatment of hepatic fibrosis in hepatitis B.
Collapse
Affiliation(s)
- Cichun Wu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jingqing Liu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Keyu Chen
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| |
Collapse
|
36
|
Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol 2022; 13:1075916. [PMID: 36466821 PMCID: PMC9714500 DOI: 10.3389/fimmu.2022.1075916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus, which damage to hepatocytes is not direct, but through the immune system. HBV specific CD4+ T cells can induce HBV specific B cells and CD8+ T cells. HBV specific B cells produce antibodies to control HBV infection, while HBV specific CD8+ T cells destroy infected hepatocytes. One of the reasons for the chronicity of HBV infection is that it cannot effectively activate adoptive immunity and the function of virus specific immune cells is exhausted. Among them, virus antigens (including HBV surface antigen, e antigen, core antigen, etc.) can inhibit the function of immune cells and induce immune tolerance. Long term nucleos(t)ide analogues (NAs) treatment and inactive HBsAg carriers with low HBsAg level may "wake up" immune cells with abnormal function due to the decrease of viral antigen level in blood and liver, and the specific immune function of HBV will recover to a certain extent, thus becoming the "dominant population" for functional cure. In turn, the functional cure will further promote the recovery of HBV specific immune function, which is also the theoretical basis for complete cure of hepatitis B. In the future, the complete cure of chronic HBV infection must be the combination of three drugs: inhibiting virus replication, reducing surface antigen levels and specific immune regulation, among which specific immunotherapy is indispensable. Here we review the relationship, mechanism and clinical significance between the cure of hepatitis B and immune system.
Collapse
Affiliation(s)
| | | | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing, China
| |
Collapse
|
37
|
Walker A, Schwarz T, Brinkmann-Paulukat J, Wisskirchen K, Menne C, Alizei ES, Kefalakes H, Theissen M, Hoffmann D, Schulze zur Wiesch J, Maini MK, Cornberg M, Kraft ARM, Keitel V, Bock HH, Horn PA, Thimme R, Wedemeyer H, Heinemann FM, Luedde T, Neumann-Haefelin C, Protzer U, Timm J. Immune escape pathways from the HBV core 18-27 CD8 T cell response are driven by individual HLA class I alleles. Front Immunol 2022; 13:1045498. [PMID: 36439181 PMCID: PMC9686862 DOI: 10.3389/fimmu.2022.1045498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background and aims There is growing interest in T cell-based immune therapies for a functional cure of chronic HBV infection including check-point inhibition, T cell-targeted vaccines or TCR-grafted effector cells. All these approaches depend on recognition of HLA class I-presented viral peptides. The HBV core region 18-27 is an immunodominant target of CD8+ T cells and represents the prime target for T cell-based therapies. Here, a high-resolution analysis of the core18-27 specific CD8+ T cell and the selected escape pathways was performed. Methods HLA class I typing and viral sequence analyses were performed for 464 patients with chronic HBV infection. HBV-specific CD8+ T-cell responses against the prototype and epitope variants were characterized by flow cytometry. Results Consistent with promiscuous presentation of the core18-27 epitope, antigen-specific T cells were detected in patients carrying HLA-A*02:01, HLA-B*35:01, HLA-B*35:03 or HLA-B*51:01. Sequence analysis confirmed reproducible selection pressure on the core18-27 epitope in the context of these alleles. Interestingly, the selected immune escape pathways depend on the presenting HLA-class I-molecule. Although cross-reactive T cells were observed, some epitope variants achieved functional escape by impaired TCR-interaction or disturbed antigen processing. Of note, selection of epitope variants was exclusively observed in HBeAg negative HBV infection and here, detection of variants associated with significantly greater magnitude of the CD8 T cell response compared to absence of variants. Conclusion The core18-27 epitope is highly variable and under heavy selection pressure in the context of different HLA class I-molecules. Some epitope variants showed evidence for impaired antigen processing and reduced presentation. Viruses carrying such escape substitutions will be less susceptible to CD8+ T cell responses and should be considered for T cell-based therapy strategies.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tatjana Schwarz
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Janine Brinkmann-Paulukat
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Wisskirchen
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helenie Kefalakes
- Institute of Virology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Martin Theissen
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Julian Schulze zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg, Hamburg, Germany
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Anke RM Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans H. Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Falko M. Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
38
|
Immunopeptidome of hepatocytes isolated from patients with HBV infection and hepatocellular carcinoma. JHEP Rep 2022; 4:100576. [PMID: 36185575 PMCID: PMC9523389 DOI: 10.1016/j.jhepr.2022.100576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 01/01/2023] Open
Abstract
Background & Aims Antigen-specific immunotherapy is a promising strategy to treat HBV infection and hepatocellular carcinoma (HCC). To facilitate killing of malignant and/or infected hepatocytes, it is vital to know which T cell targets are presented by human leucocyte antigen (HLA)-I complexes on patient-derived hepatocytes. Here, we aimed to reveal the hepatocyte-specific HLA-I peptidome with emphasis on peptides derived from HBV proteins and tumour-associated antigens (TAA) to guide development of antigen-specific immunotherapy. Methods Primary human hepatocytes were isolated with high purity from (HBV-infected) non-tumour and HCC tissues using a newly designed perfusion-free procedure. Hepatocyte-derived HLA-bound peptides were identified by unbiased mass spectrometry (MS), after which source proteins were subjected to Gene Ontology and pathway analysis. HBV antigen and TAA-derived HLA peptides were searched for using targeted MS, and a selection of peptides was tested for immunogenicity. Results Using unbiased data-dependent acquisition (DDA), we acquired a high-quality HLA-I peptidome of 2 × 105 peptides that contained 8 HBV-derived peptides and 14 peptides from 8 known HCC-associated TAA that were exclusive to tumours. Of these, 3 HBV- and 12 TAA-derived HLA peptides were detected by targeted MS in the sample they were originally identified in by DDA. Moreover, 2 HBV- and 2 TAA-derived HLA peptides were detected in samples in which no identification was made using unbiased MS. Finally, immunogenicity was demonstrated for 5 HBV-derived and 3 TAA-derived peptides. Conclusions We present a first HLA-I immunopeptidome of isolated primary human hepatocytes, devoid of immune cells. Identified HBV-derived and TAA-derived peptides directly aid development of antigen-specific immunotherapy for chronic HBV infection and HCC. The described methodology can also be applied to personalise immunotherapeutic treatment of liver diseases in general. Lay summary Immunotherapy that aims to induce immune responses against a virus or tumour is a promising novel treatment option to treat chronic HBV infection and liver cancer. For the design of successful therapy, it is essential to know which fragments (i.e. peptides) of virus-derived and tumour-specific proteins are presented to the T cells of the immune system by diseased liver cells and are thus good targets for immunotherapy. Here, we have isolated liver cells from patients who have chronic HBV infection and/or liver cancer, analysed what peptides are presented by these cells, and assessed which peptides are able to drive immune responses. We developed a perfusion-free method to isolate primary hepatocytes that are depleted of immune cells. We derived a large-scale unbiased hepatocyte HLA ligandome from patients with HBV and/or HCC. The ligandome included peptides derived from HBV proteins and tumour-associated antigens (TAA). Using a targeted MS regime, the detection sensitivity of several HBV and TAA-derived peptides could be increased. Immunogenicity was demonstrated for a selection of TAA- and HBV-derived HLA peptides.
Collapse
Key Words
- Antigen presentation
- Cancer germline antigen
- Cancer testis antigen
- DDA, data-dependent acquisition
- GO, Gene Ontology
- HBV, Hepatitis B virus
- HCC, hepatocellular carcinoma
- HLA
- HLA, human leucocyte antigen
- IEDB, Immune Epitope Database
- IFNγ, interferon γ
- IP, immunoprecipitation
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LSEC, liver sinusoidal cell
- Liver cancer
- MHC
- MS, mass spectrometry
- PBMCs, peripheral blood mononuclear cells
- PRM, parallel reaction monitoring
- Peptidome
- Pol, polymerase
- T cell epitope
- TAA, tumour-associated antigen
- Viral hepatitis
- cHBV, chronic HBV
Collapse
|
39
|
Aliabadi E, Urbanek-Quaing M, Maasoumy B, Bremer B, Grasshoff M, Li Y, Niehaus CE, Wedemeyer H, Kraft ARM, Cornberg M. Impact of HBsAg and HBcrAg levels on phenotype and function of HBV-specific T cells in patients with chronic hepatitis B virus infection. Gut 2022; 71:2300-2312. [PMID: 34702717 PMCID: PMC9554084 DOI: 10.1136/gutjnl-2021-324646] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatitis B virus (HBV)-specific T cells are main effector cells in the control of HBV infection and hepatitis B surface antigen (HBsAg) is suggested to be a critical factor in the impaired immune response, a hallmark of chronic HBV infection. In addition to HBsAg, other viral markers such as hepatitis B core-related antigen (HBcrAg) are available, but their potential association with HBV-specific immune responses is not defined yet, which will be important if these markers are used for patient stratification for novel therapies aimed at functional HBV cure. DESIGN We analysed T cell responses in 92 patients with hepatitis B e antigen negative chronic HBV infection with different HBsAg and HBcrAg levels. Overlapping peptides were used for in vitro response analyses (n=57), and HBV core18-specific and polymerase (pol)455-specific CD8+ T cells were assessed in human leukocyte antigen (HLA)-A*02 patients (n=35). In addition, in vitro responsiveness to anti-programmed cell death-ligand 1 (anti-PD-L1) was investigated. RESULTS HBV-specific T cell responses were not affected by HBsAg levels, but rather by age and CD4+ T cell responses were highest in patients with low HBcrAg levels. The phenotypes and functionality of HBV core18-specific and pol455-specific CD8+ T cells differed, but HBsAg and HBcrAg levels did not affect their profiles. Blocking with anti-PD-L1 could restore HBV-specific T cells, but the effect was significantly higher in T cells isolated from patients with low HBsAg and in particular low HBcrAg. CONCLUSION Our data suggest that age and HBcrAg rather than HBsAg, are associated with HBV-specific T cell responses. Finally, very low antigen levels indicated by HBsAg and in particular HBcrAg may influence T cell response to checkpoint inhibition.
Collapse
Affiliation(s)
- Elmira Aliabadi
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Melanie Urbanek-Quaing
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Martin Grasshoff
- Computational Biology for Individualised Medicine, Helmholtz Centre for Infection Research (HZI), c/o CRC, Hannover, Germany
| | - Yang Li
- TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,Computational Biology for Individualised Medicine, Helmholtz Centre for Infection Research (HZI), c/o CRC, Hannover, Germany,Centre for Individualized Infection Medicine (CiiM), c/o CRC, Hannover, Germany
| | - Christian E Niehaus
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany .,TWINCORE Center of Experimental and Clinical Infection Research, Hannover, Germany.,German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany.,Centre for Individualized Infection Medicine (CiiM), c/o CRC, Hannover, Germany.,Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
40
|
Hoogeveen RC, Dijkstra S, Bartsch LM, Drescher HK, Aneja J, Robidoux MP, Cheney JA, Timm J, Gehring A, de Sousa PSF, Ximenez L, Peliganga LB, Pitts A, Evans FB, Boonstra A, Kim AY, Lewis-Ximenez LL, Lauer GM. Hepatitis B virus-specific CD4 T cell responses differentiate functional cure from chronic surface antigen + infection. J Hepatol 2022; 77:1276-1286. [PMID: 35716846 DOI: 10.1016/j.jhep.2022.05.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS With or without antiviral treatment, few individuals achieve sustained functional cure of chronic hepatitis B virus (HBV) infection. A better definition of what mediates functional cure is essential for improving immunotherapeutic strategies. We aimed to compare HBV-specific T cell responses in patients with different degrees of viral control. METHODS We obtained blood from 124 HBV-infected individuals, including those with acute self-limiting HBV infection, chronic infection, and chronic infection with functional cure. We screened for HBV-specific T cell specificities by ELISpot, assessed the function of HBV-specific T cells using intracellular cytokine staining, and characterized HBV-specific CD4 T cells using human leukocyte antigen (HLA) class II tetramer staining, all directly ex vivo. RESULTS ELISpot screening readily identified HBV-specific CD4 and CD8 T cell responses in acute resolving infection compared with more limited reactivity in chronic infection. Applying more sensitive assays revealed higher frequencies of functional HBV-specific CD4 T cells, but not CD8 T cells, in functional cure compared to chronic infection. Function independent analysis using HLA multimers also identified more HBV-specific CD4 T cell responses in functional cure compared to chronic infection, with the emergence of CD4 T cell memory both after acute and chronic infection. CONCLUSIONS Functional cure is associated with higher frequencies of functional HBV-specific CD4 memory T cell responses. Thus, immunotherapeutic approaches designed to induce HBV functional cure should also aim to improve CD4 T cell responses. LAY SUMMARY Immunotherapy is a form of treatment that relies on harnessing the power of an individual's immune system to target a specific disease or pathogen. Such approaches are being developed for patients with chronic HBV infection, in an attempt to mimic the immune response in patients who control HBV infection spontaneously, achieving a so-called functional cure. However, what exactly defines protective immune responses remains unclear. Herein, we show that functional cure is associated with robust responses by HBV-specific CD4 T cells (a type of immune cell).
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Suzan Dijkstra
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Jasneet Aneja
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Maxwell P Robidoux
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - James A Cheney
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Joerg Timm
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lya Ximenez
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luis Baiao Peliganga
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Faculdade de Medicina da Universidade Agostinho Neto, Luanda, Angola; Ministério da Saúde de Angola, Luanda, Angola
| | - Anita Pitts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Fiona B Evans
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
41
|
Zhang W, Sun H, Sun R, Lian Z, Wei H, Tian Z, Chen Y. HBV immune tolerance of HBs-transgenic mice observed through parabiosis with WT mice. Front Immunol 2022; 13:993246. [PMID: 36203595 PMCID: PMC9530942 DOI: 10.3389/fimmu.2022.993246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
It was extensively recognized that central tolerance to HBV exists in HBs-transgenic (Tg) mice, however, the immune response to HBV vaccine may be inspired in adult HBs-Tg mice after boosting with potent adjuvants, leaving a mystery to explore its immune tolerance. Here, WT-HBs-Tg parabiotic mice model was generated by conjoining WT (donor) and HBs-Tg (host) mouse via parabiotic surgery, in order to see how immunocompetent WT mice naturally respond to HBV, and how tolerant HBs-Tg mice influence the anti-HBV immunity from WT mice. It was found that WT CD8+ T cells markedly accumulated into the liver of HBs-Tg parabionts, and importantly, almost all HBsAg-specific CD8+ T cells derived from WT but not HBs-Tg mice, making a clear separation of a normal immune response from WT donor and a tolerant response by recipient host. Further, in the absence of host but not donor spleen, HBsAg-specific CD8+ T cells disappeared, indicating that host spleen was the indispensable site for donor HBsAg-specific CD8+ T cell priming though its mechanisms need further study. We found that donor CD4+ T helper cells were necessary for donor HBsAg-specific CD8+ T cell response by CD4-deficiency in WT or in HBs-Tg mice, indicating that an immune response was elicited between CD4+ T helper cells and CD8+ cytotoxic T cells of donor in the host but not donor spleen. It was noted that compared to donor CD4+ T cells, host CD4+ T cells were characterized with more tolerant features by harboring more CD25+Foxp3+ Tregs with higher expression of PD-1 and TIGIT in the spleen of HBs-Tg parabionts, which exhibited suppressive function on CD8+ T cells directly. Moreover, the Th1/Treg ratio was enhanced after parabiosis, suggesting that donor T helper cells may overcome the negative regulation of host Tregs in host spleen. In conclusion, both incompetent anti-HBV CD8+ T cells and insufficient help from CD4+ T cells are the major mechanisms underlying immune tolerance in HBs-Tg mice which helps explain HBV persistence.
Collapse
Affiliation(s)
- Wendi Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhexiong Lian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zhigang Tian, ; Yongyan Chen,
| |
Collapse
|
42
|
Gehring AJ, Mendez P, Richter K, Ertl H, Donaldson EF, Mishra P, Maini M, Boonstra A, Lauer G, de Creus A, Whitaker K, Martinez SF, Weber J, Gainor E, Miller V. Immunological biomarker discovery in cure regimens for chronic hepatitis B virus infection. J Hepatol 2022; 77:525-538. [PMID: 35259469 DOI: 10.1016/j.jhep.2022.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/26/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
There have been unprecedented advances in the identification of new treatment targets for chronic hepatitis B that are being developed with the goal of achieving functional cure in patients who would otherwise require lifelong nucleoside analogue treatment. Many of the new investigational therapies either directly target the immune system or are anticipated to impact immunity indirectly through modulation of the viral lifecycle and antigen production. While new viral biomarkers (HBV RNA, HBcAg, small, middle, large HBs isoforms) are proceeding through validation steps in clinical studies, immunological biomarkers are non-existent outside of clinical assays for antibodies to HBs, HBc and HBe. To develop clinically applicable immunological biomarkers to measure mechanisms of action, inform logical combination strategies, and guide clinical management for use and discontinuation of immune-targeting drugs, immune assays must be incorporated into phase I/II clinical trials. This paper will discuss the importance of sample collection, the assays available for immunological analyses, their advantages/disadvantages and suggestions for their implementation in clinical trials. Careful consideration must be given to ensure appropriate immunological studies are included as a primary component of the trial with deeper immunological analysis provided by ancillary studies. Standardising immunological assays and data obtained from clinical trials will identify biomarkers that can be deployed in the clinic, independently of specialised immunology laboratories.
Collapse
Affiliation(s)
- Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Patricia Mendez
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Kirsten Richter
- F. Hoffmann-La Roche, Roche Innovation Center Basel, Grenzacher Strasse 124, CH-4070 Basel, Switzerland
| | | | - Eric F Donaldson
- Division of Antivirals, Center for Drug Evaluation and Research, US Food and Drug Administration, USA
| | - Poonam Mishra
- Division of Antivirals, Center for Drug Evaluation and Research, US Food and Drug Administration, USA
| | - Mala Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Georg Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kathleen Whitaker
- Division of Microbiology Devices Office of In Vitro Diagnostics and Radiological Health Center for Devices and Radiological Health, US Food and Drug Administration, USA
| | - Sara Ferrando Martinez
- Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, US; NeoImmuneTech, LLC 2400 Research Blvd, Suite 250 Rockville, MD 20850, USA
| | - Jessica Weber
- Forum for Collaborative Research, University of California, Berkeley, USA
| | - Emily Gainor
- Forum for Collaborative Research, University of California, Berkeley, USA
| | - Veronica Miller
- Forum for Collaborative Research, University of California, Berkeley, USA
| |
Collapse
|
43
|
Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: The promising paths forward. Hepatology 2022; 76:233-250. [PMID: 34990029 DOI: 10.1002/hep.32314] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection is a global public health burden estimated to impact nearly 300 million persons worldwide. Despite the advent of potent antiviral agents that effectively suppress viral replication, HBV cure remains difficult to achieve because of the persistence of covalently closed circular DNA (cccDNA), HBV-DNA integration into the host genome, and impaired immune response. Indefinite treatment is necessary for most patients to maintain level of viral suppression. The success of direct-acting antivirals (DAAs) for hepatitis C treatment has rejuvenated the search for a cure for chronic hepatitis B (CHB), though an HBV cure likely requires an additional layer: immunomodulators for restoration of robust immune responses. DAAs such as entry inhibitors, capsid assembly modulators, inhibitors of subviral particle release, cccDNA silencers, and RNA interference molecules have reached clinical development. Immunomodulators, namely innate immunomodulators (Toll-like receptor agonists), therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also progressing toward clinical development. The future of the HBV cure possibly lies in triple combination therapies with concerted action on replication inhibition, antigen reduction, and immune stimulation. Many obstacles remain, such as overcoming translational failures, choosing the right endpoint using the right biomarkers, and leveraging current treatments in combination regimens to enhance response rates. This review gives an overview of the current therapies for CHB, HBV biomarkers used to evaluate treatment response, and development of DAAs and immune-targeting drugs and discusses the limitations and unanswered questions on the journey to an HBV cure.
Collapse
Affiliation(s)
- Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Liu S, Xu C, Yang F, Zong L, Qin Y, Gao Y, Su Q, Li T, Li Y, Xu Y, Zheng M. Natural Killer Cells Induce CD8+ T Cell Dysfunction via Galectin-9/TIM-3 in Chronic Hepatitis B Virus Infection. Front Immunol 2022; 13:884290. [PMID: 35874664 PMCID: PMC9301626 DOI: 10.3389/fimmu.2022.884290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
The antiviral response of natural killer (NK) cells and CD8+ T cells is weak in patients with chronic hepatitis B (CHB) infection. However, the specific characteristics of these cells and the association between NK cells and CD8+ T cell dysfunction is not well known. In this study, higher galectin-9 (Gal-9) expression was observed in circulating NK cells from CHB patients than from healthy controls and was found to contribute to NK cell dysfunction. In addition, circulating CD8+ T cells showed obvious dysfunction and overexpressed TIM-3, the natural receptor of Gal-9, during active CHB infection. Gal-9+ and Gal-9- NK cells from active CHB patients were sorted and cocultured with autologous CD8+ T cells. The proportion of tetramer+CD8+ T cells and the cytokines production of CD8+ T cells were lower after cocultivation with Gal-9+ than with Gal-9- NK cells. We showed that in vitro depletion of NK cells increased circulating hepatitis B virus (HBV)-specific CD8+ T cell responses in patients with active CHB infection. Because Gal-9 is increased in the serum of CHB patients, CD8+ T cells were sorted and cultured with exogenous Gal-9, resulting in lower IFN-γ, TNF-α, CD107a, and granzyme B levels, decreased expression of the activation receptor CD69, increased expression of TIM-3, and a high percentage of early apoptotic CD8+ T cells. Blocking Gal-9 or TIM-3 in vitro in a culture of peripheral blood mononuclear cells (PBMCs) stimulated with HBV peptide from active CHB patients restored CD8+ T cell function. However, blocking Gal-9 in vitro after removal of NK cells from PBMCs did not rescue CD8+ T cells exhaustion. Furthermore, NK and CD8+ T cells from active CHB patients were sorted and cocultured in vitro, and the exhaustion of CD8+ T cells were alleviated after blocking Gal-9 or TIM-3. In summary, overexpression of Gal-9 on NK cells, which interacts with TIM-3+CD8+ T cells and likely contributes to antiviral CD8+ T cell dysfunction, may be a potential target for the treatment of CHB patients.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zong
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yizu Qin
- Anhui Center for Disease Control and Prevention, Hefei, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Su
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tuantuan Li
- Department of Clinical Laboratory, Second People’s Hospital of Fuyang City, Fuyang, China
| | - Ye Li
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: *Meijuan Zheng,
| |
Collapse
|
45
|
Montali I, Vecchi A, Rossi M, Tiezzi C, Penna A, Reverberi V, Laccabue D, Missale G, Boni C, Fisicaro P. Antigen Load and T Cell Function: A Challenging Interaction in HBV Infection. Biomedicines 2022; 10:biomedicines10061224. [PMID: 35740243 PMCID: PMC9220332 DOI: 10.3390/biomedicines10061224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022] Open
Abstract
Current treatment for chronic HBV infection is mainly based on nucleos(t)ide analogues, that in most cases need to be administered for a patient’s lifetime. There is therefore a pressing need to develop new therapeutic strategies to shorten antiviral treatments. A severe dysfunction of virus-specific T cell responses contributes to virus persistence; hence, immune-modulation to reconstitute an efficient host antiviral response is considered a potential approach for HBV cure. In this perspective, a detailed understanding of the different causes of T cell exhaustion is essential for the design of successful functional T cell correction strategies. Among many different mechanisms which are widely believed to play a role in T cell dysfunction, persistent T cell exposure to high antigen burden, in particular HBsAg, is expected to influence T cell differentiation and function. Definitive evidence of the possibility to improve anti-viral T cell functions by antigen decline is, however, still lacking. This review aims at recapitulating what we have learned so far on the complex T cell–viral antigen interplay in chronic HBV infection.
Collapse
Affiliation(s)
- Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Reverberi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (C.B.); (P.F.); Tel.: +39-0521-703865 (C.B. & P.F.); Fax: +39-0521-703857 (C.B. & P.F.)
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (I.M.); (A.V.); (M.R.); (C.T.); (A.P.); (V.R.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (C.B.); (P.F.); Tel.: +39-0521-703865 (C.B. & P.F.); Fax: +39-0521-703857 (C.B. & P.F.)
| |
Collapse
|
46
|
Prevention of HBV Reactivation in Hemato-Oncologic Setting during COVID-19. Pathogens 2022; 11:pathogens11050567. [PMID: 35631088 PMCID: PMC9144674 DOI: 10.3390/pathogens11050567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Onco-hematologic patients are highly susceptible to SARS-CoV-2 infection and, once infected, frequently develop COVID-19 due to the immunosuppression caused by tumor growth, chemotherapy and immunosuppressive therapy. In addition, COVID-19 has also been recognized as a further cause of HBV reactivation, since its treatment includes the administration of corticosteroids and some immunosuppressive drugs. Consequently, onco-hematologic patients should undergo SARS-CoV-2 vaccination and comply with the rules imposed by lockdowns or other forms of social distancing. Furthermore, onco-hematologic facilities should be adapted to new needs and provided with numerically adequate health personnel vaccinated against SARS-CoV-2 infection. Onco-hematologic patients, both HBsAg-positive and HBsAg-negative/HBcAb-positive, may develop HBV reactivation, made possible by the support of the covalently closed circular DNA (cccDNA) persisting in the hepatocytic nuclei of patients with an ongoing or past HBV infection. This occurrence must be prevented by administering high genetic barrier HBV nucleo(t)side analogues before and throughout the antineoplastic treatment, and then during a long-term post-treatment follow up. The prevention of HBV reactivation during the SARS-CoV-2 pandemic is the topic of this narrative review.
Collapse
|
47
|
Ding Y, Zhou Z, Li X, Zhao C, Jin X, Liu X, Wu Y, Mei X, Li J, Qiu J, Shen C. Screening and Identification of HBV Epitopes Restricted by Multiple Prevalent HLA-A Allotypes. Front Immunol 2022; 13:847105. [PMID: 35464415 PMCID: PMC9021956 DOI: 10.3389/fimmu.2022.847105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Although host T cell immune responses to hepatitis B virus (HBV) have been demonstrated to have important influences on the outcome of HBV infection, the development of T cell epitope-based vaccine and T cell therapy and the clinical evaluation of specific T cell function are currently hampered markedly by the lack of validated HBV T cell epitopes covering broad patients. This study aimed to screen T cell epitopes spanning overall HBsAg, HBeAg, HBx and HBpol proteins and presenting by thirteen prevalent human leukocyte antigen (HLA)-A allotypes which gather a total gene frequency of around 95% in China and Northeast Asia populations. 187 epitopes were in silico predicted. Of which, 62 epitopes were then functionally validated as real-world HBV T cell epitopes by ex vivo IFN-γ ELISPOT assay and in vitro co-cultures using peripheral blood mononuclear cells (PBMCs) from HBV infected patients. Furthermore, the HLA-A cross-restrictions of each epitope were identified by peptide competitive binding assay using transfected HMy2.CIR cell lines, and by HLA-A/peptide docking as well as molecular dynamic simulation. Finally, a peptide library containing 105 validated epitopes which cross-binding by 13 prevalent HLA-A allotypes were used in ELISPOT assay to enumerate HBV-specific T cells for 116 patients with HBV infection. The spot forming units (SFUs) was significantly correlated with serum HBsAg level as confirmed by multivariate linear regression analysis. This study functionally validated 62 T cell epitopes from HBV main proteins and elucidated their HLA-A restrictions and provided an alternative ELISPOT assay using validated epitope peptides rather than conventional overlapping peptides for the clinical evaluation of HBV-specific T cell responses.
Collapse
Affiliation(s)
- Yan Ding
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xingyu Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xueyin Mei
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jian Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jie Qiu
- Division of Hepatitis, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
48
|
Diniz MO, Schurich A, Chinnakannan SK, Duriez M, Stegmann KA, Davies J, Kucykowicz S, Suveizdyte K, Amin OE, Alcock F, Cargill T, Barnes E, Maini MK. NK cells limit therapeutic vaccine-induced CD8 +T cell immunity in a PD-L1-dependent manner. Sci Transl Med 2022; 14:eabi4670. [PMID: 35417187 DOI: 10.1126/scitranslmed.abi4670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A better understanding of mechanisms that regulate CD8+T cell responses to therapeutic vaccines is needed to develop approaches to enhance vaccine efficacy for chronic viral infections and cancers. We show here that NK cell depletion enhanced antigen-specific T cell responses to chimp adenoviral vector (ChAdOx) vaccination in a mouse model of chronic HBV infection (CHB). Probing the mechanism underlying this negative regulation, we observed that CHB drove parallel up-regulation of programmed cell death ligand 1 (PD-L1) on liver-resident NK cells and programmed cell death 1 (PD-1) on intrahepatic T cells. PD-L1-expressing liver-resident NK cells suppressed PD-1hiCD8+T cells enriched within the HBV-specific response to therapeutic vaccination. Cytokine activation of NK cells also induced PD-L1, and combining cytokine activation with PD-L1 blockade resulted in conversion of NK cells into efficient helpers that boosted HBV-specific CD8+T cell responses to therapeutic vaccination in mice and to chronic infection in humans. Our findings delineate an immunotherapeutic combination that can boost the response to therapeutic vaccination in CHB and highlight the broader importance of PD-L1-dependent regulation of T cells by cytokine-activated NK cells.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Anna Schurich
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Senthil K Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Marion Duriez
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Kerstin A Stegmann
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jessica Davies
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Stephanie Kucykowicz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Kornelija Suveizdyte
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Frances Alcock
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| |
Collapse
|
49
|
Fang Z, Zhang Y, Zhu Z, Wang C, Hu Y, Peng X, Zhang D, Zhao J, Shi B, Shen Z, Wu M, Xu C, Chen J, Zhou X, Xie Y, Yu H, Zhang X, Li J, Hu Y, Kozlowski M, Bertoletti A, Yuan Z. Monocytic MDSCs homing to thymus contribute to age-related CD8+ T cell tolerance of HBV. J Exp Med 2022; 219:213051. [PMID: 35254403 PMCID: PMC8906470 DOI: 10.1084/jem.20211838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus exposure in children usually develops into chronic hepatitis B (CHB). Although hepatitis B surface antigen (HBsAg)–specific CD8+ T cells contribute to resolve HBV infection, they are preferentially undetected in CHB patients. Moreover, the mechanism for this rarely detected HBsAg-specific CD8+ T cells remains unexplored. We herein found that the frequency of HBsAg-specific CD8+ T cells was inversely correlated with expansion of monocytic myeloid-derived suppressor cells (mMDSCs) in young rather than in adult CHB patients, and CCR9 was upregulated by HBsAg on mMDSCs via activation of ERK1/2 and IL-6. Sequentially, the interaction between CCL25 and CCR9 mediated thymic homing of mMDSCs, which caused the cross-presentation, transferring of peripheral HBsAg into the thymic medulla, and then promoted death of HBsAg-specific CD8+ thymocytes. In mice, adoptive transfer of mMDSCs selectively obliterated HBsAg-specific CD8+ T cells and facilitated persistence of HBV in a CCR9-dependent manner. Taken together, our results uncovered a novel mechanism for establishing specific CD8+ tolerance to HBsAg in chronic HBV infection.
Collapse
Affiliation(s)
- Zhong Fang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yi Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Hu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiuhua Peng
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dandan Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jun Zhao
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bisheng Shi
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chunhua Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hui Yu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yunwen Hu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Maya Kozlowski
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | | | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai, China
| |
Collapse
|
50
|
A Systematic Review of T Cell Epitopes Defined from the Proteome of Hepatitis B Virus. Vaccines (Basel) 2022; 10:vaccines10020257. [PMID: 35214714 PMCID: PMC8878595 DOI: 10.3390/vaccines10020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a worldwide health problem and no eradicative therapy is currently available. Host T cell immune responses have crucial influences on the outcome of HBV infection, however the development of therapeutic vaccines, T cell therapies and the clinical evaluation of HBV-specific T cell responses are hampered markedly by the lack of validated T cell epitopes. This review presented a map of T cell epitopes functionally validated from HBV antigens during the past 33 years; the human leukocyte antigen (HLA) supertypes to present these epitopes, and the methods to screen and identify T cell epitopes. To the best of our knowledge, a total of 205 CD8+ T cell epitopes and 79 CD4+ T cell epitopes have been defined from HBV antigens by cellular functional experiments thus far, but most are restricted to several common HLA supertypes, such as HLA-A0201, A2402, B0702, DR04, and DR12 molecules. Therefore, the currently defined T cell epitope repertoire cannot cover the major populations with HLA diversity in an indicated geographic region. More researches are needed to dissect a more comprehensive map of T cell epitopes, which covers overall HBV proteome and global patients.
Collapse
|