1
|
You X, Niu L, Fu J, Ge S, Shi J, Zhang Y, Zhuang P. Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. Neural Regen Res 2025; 20:2153-2168. [PMID: 39359076 DOI: 10.4103/nrr.nrr-d-24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/11/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional "brain-gut axis" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the "brain-gut-microbiota axis."
Collapse
Affiliation(s)
- Xinyu You
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shining Ge
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Tian TT, Chen G, Sun K, Wang XY, Liu Y, Wang FQ, Yang B, Liu J, Han JY, Tang DX. ChanLingGao alleviates intestinal mucosal barrier damage and suppresses the onset and progression of Colorectal cancer in AOM/DSS murine model. Int Immunopharmacol 2024; 143:113193. [PMID: 39368132 DOI: 10.1016/j.intimp.2024.113193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/26/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND The occurrence of Colorectal Cancer (CRC) is influenced by various factors, including host susceptibility, immune imbalance, and environmental triggers. Numerous studies have underscored the critical role of chronic intestinal inflammation and dysbiosis in the development of CRC. Traditional Chinese Medicine (TCM) holds unique advantages in regulating the intricate process of and comprehensive treatment for systemic disease. Previous investigations by our team have confirmed the anti-cancer properties of the TCM compound ChanLingGao (CLG), including inhibiting cancer cell migration, and alleviating bone cancer pain. However, the mechanisms underlying its efficacy in alleviating chronic intestinal inflammation, modulating the gut microbiota, and protecting the intestinal mucosal barrier remain largely unknown. PURPOSE This study aims to explore the inhibitory effects of CLG on CRC tumors in mice and its potential mechanisms. METHODS A chronic inflammation-related CRC mouse model was established using AOM/DSS. The study examined the mechanisms of intestinal inflammation and tumor cell proliferation through intestinal histological morphology. High-throughput sequencing was employed to analyze changes in gut microbiota diversity and intestinal mucosal barrier integrity in CRC mice. Based on network pharmacology target prediction and Wnt/β-catenin signaling pathway analysis, the study analyzed and discussed the potential mechanisms of CLG on CRC. RESULTS CLG significantly ameliorated weight loss and increased survival rates in CRC mice, while suppressing tumor growth in the intestinal tract. Post-CLG treatment improved intestinal inflammation in CRC mice, with a significant reduction in inflammatory factors IL-6, IL-23 and LCN2, and inhibition of tumor cell proliferation markers Proliferating Cell Nuclear Antigen (PCNA), Recombinant Ki-67 Protein (Ki-67), and CCND1. 16sV3-V4 region microbiota sequencing results indicated that CLG improved dysbiosis, and significantly increased the abundance of Akkermansia bacteria, further promoting the expression of MUC-2 protein and mucin secretion. Additionally, CLG prevented the disruption of intestinal epithelial cell junction proteins Occludin, Claudin-1, ZO-1, and E-cadherin, restored the number of goblet cells, and preserved the integrity of the intestinal mucosal barrier. Further experiments suggested that CLG inhibited abnormal activation of the Wnt/β-catenin pathway, and its potential mechanism in maintaining mucosal barrier integrity might be related to blocking Wnt/β-catenin pathway. CONCLUSIONS This study demonstrates that CLG can inhibit CRC tumor growth by regulating the gut microbiota structure, reducing intestinal inflammation, improving intestinal mucosal barrier function, and inhibiting the complex process of cancer cell proliferation. This provides new clinical insights into the "membrane-oriented" treatment of CRC with CLG.
Collapse
Affiliation(s)
- Ting-Ting Tian
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Guo Chen
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Kai Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yang Liu
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Fei-Qing Wang
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Bing Yang
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Dong-Xin Tang
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
| |
Collapse
|
3
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
4
|
Chen X, Chen Y, Zhang Y, Zhang Y, Wang Y, Li Y, Sun Y, Meng G, Yang G, Li H. ZG16 impacts gut microbiota-associated intestinal inflammation and pulmonary mucosal function through bacterial metabolites. Int Immunopharmacol 2024; 141:112995. [PMID: 39191121 DOI: 10.1016/j.intimp.2024.112995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Zymogen granule 16 (ZG16) is a secretory glycoprotein found in zymogen granules, which also plays an important role in colorectal inflammation and cancer. Herein, a ZG16 gene knock-out (ZG16-/-) mouse line was established and we found that ZG16 deletion damaged the intestinal mucosal barrier and gut microbiota, which resulted in low-level inflammation and further promoted the development of ulcerative colitis and inflammation-related colorectal cancer. Meanwhile, a metabolomics analysis on mouse feces showed that the metabolites significantly differed between ZG16-/- and WT mice, which were important mediators of host-microbiota communication and may impact the pulmonary inflammation of mice. Indeed, ZG16-/- mice showed more severe inflammation in a bronchial asthma model. Taken together, the results demonstrate that ZG16 plays a pivotal role in inhibiting inflammation and regulating immune responses in colorectum and lung of experimental animals, which may provide a better understanding of the underlying mechanism of human inflammatory diseases associated with ZG16.
Collapse
Affiliation(s)
- Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yixin Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yonghuan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yao Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yingjia Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yaqi Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Guangxun Meng
- The Center for Microbes, Development, and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China; The Center for Microbes, Development, and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai 200031, PR China.
| |
Collapse
|
5
|
Liu X, Zhang M, Chen S, Liu H, Ma H, Hu T, Luo P, Wei S. Grifola frondosa polysaccharide's therapeutic potential in oxazolone-induced ulcerative colitis. Carbohydr Polym 2024; 344:122517. [PMID: 39218542 DOI: 10.1016/j.carbpol.2024.122517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Grifola frondosa polysaccharide (GFP) is a consumable fungus recognized for its potential health advantages. The present study aimed to investigate the development and potential etiologies of ulcerative colitis (UC) utilizing oxazolone (OXZ) as an inducer in mice, along with assessing the therapeutic effects of GFP at varying doses in UC mice, with sulfasalazine (SASP) serving as the positive control. The obtained results indicated that OXZ intervention in mice induced numerous physical manifestations of UC, including increased disease activity index (DAI), decreased goblet cell division, enhanced fibrosis, reduced expression of Claudin1 and Zona encludens protein1 (ZO-1), decreased proliferative activity of colonic mucosal epithelial cells, disturbed oxidation balance, and alterations in intestinal flora. Nonetheless, GFP intervention significantly ameliorated or even resolved these abnormal indicators to a considerable extent. Consequently, this study suggests that GFP might serve as a prebiotic to regulate intestinal flora, mitigate enterotoxin production, restore oxidative balance, thereby reducing the generation of inflammatory mediators, restoring the intestinal barrier, and ultimately improving OXZ-induced UC in mice. GFP demonstrates promising potential as a candidate drug for colitis treatment and as a dietary supplement for alleviating intestinal inflammatory issues.
Collapse
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, 510632 Guangzhou, China
| | - Mingjun Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Shuai Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Haoran Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Ting Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
6
|
Gao N, Zhuang Y, Zheng Y, Li Y, Wang Y, Zhu S, Fan M, Tian W, Jiang Y, Wang Y, Cui M, Suo C, Zhang T, Jin L, Chen X, Xu K. Investigating the link between gut microbiome and bone mineral density: The role of genetic factors. Bone 2024; 188:117239. [PMID: 39179139 DOI: 10.1016/j.bone.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Osteoporosis is a complex metabolic bone disease that severely undermines the quality of life and overall health of the elderly. While previous studies have established a close relationship between gut microbiome and host bone metabolism, the role of genetic factors has received less scrutiny. This research aims to identify potential taxa associated with various bone mineral density states, incorporating assessments of genetic factors. Fecal microbiome profiles from 605 individuals (334 females and 271 males) aged 55-65 from the Taizhou Imaging Study with osteopenia (n = 270, 170 women) or osteoporosis (n = 94, 85 women) or normal (n = 241, 79 women) were determined using shotgun metagenomic sequencing. The linear discriminant analysis was employed to identify differentially enriched taxa. Utilizing the Kyoto Encyclopedia of Genes and Genomes for annotation, functional pathway analysis was conducted to identify differentially metabolic pathways. Polygenic risk score for osteoporosis was estimated to represent genetic susceptibility to osteoporosis, followed by stratification and interaction analyses. Gut flora diversity did not show significant differences among various bone mineral groups. After multivariable adjustment, certain species, such as Clostridium leptum, Fusicatenibacter saccharivorans and Roseburia hominis, were enriched in osteoporosis patients. Statistically significant interactions between the polygenic risk score and taxa Roseburia faecis, Megasphaera elsdenii were observed (P for interaction = 0.005, 0.018, respectively). Stratified analyses revealed a significantly negative association between Roseburia faecis and bone mineral density in the low-genetic-risk group (β = -0.045, P < 0.05), while Turicimonas muris was positively associated with bone mineral density in the high-genetic-risk group (β = 4.177, P < 0.05) after multivariable adjustments. Functional predictions of the gut microbiome indicated an increase in pathways related to structural proteins in high-genetic-risk patients, while low-genetic-risk patients exhibited enrichment in enzyme-related pathways. This study emphasizes the association between gut microbes and bone mass, offering new insights into the interaction between genetic background and gut microbiome.
Collapse
Affiliation(s)
- Ningxin Gao
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yue Zhuang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yi Zheng
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Mei Cui
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Tiejun Zhang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| |
Collapse
|
7
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
8
|
Manithody C, Denton C, Mehta S, Carter J, Kurashima K, Bagwe A, Swiderska-Syn M, Guzman M, Besmer S, Jain S, McHale M, Qureshi K, Nazzal M, Caliskan Y, Long J, Lin CJ, Hutchinson C, Ericsson AC, Jain AK. Intraduodenal fecal microbiota transplantation ameliorates gut atrophy and cholestasis in a novel parenteral nutrition piglet model. Am J Physiol Gastrointest Liver Physiol 2024; 327:G640-G654. [PMID: 39163019 DOI: 10.1152/ajpgi.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Total parenteral nutrition (TPN) provides lifesaving nutritional support intravenously; however, it is associated with significant side effects. Given gut microbial alterations noted with TPN, we hypothesized that transferring fecal microbiota from healthy controls would restore gut-systemic signaling in TPN and mitigate injury. Using our novel ambulatory model (US Patent: US 63/136,165), 31 piglets were randomly allocated to enteral nutrition (EN), TPN only, TPN + antibiotics (TPN-A), or TPN + intraduodenal fecal microbiota transplant (TPN + FMT) for 14 days. Gut, liver, and serum were assessed through histology, biochemistry, and qPCR. Stool samples underwent 16 s rRNA sequencing. Permutational multivariate analysis of variance, Jaccard, and Bray-Curtis metrics were performed. Significant bilirubin elevation in TPN and TPN-A versus EN (P < 0.0001) was prevented with FMT. IFN-G, TNF-α, IL-β, IL-8, and lipopolysaccharide (LPS) were significantly higher in TPN (P = 0.009, P = 0.001, P = 0.043, P = 0.011, P < 0.0001), with preservation upon FMT. Significant gut atrophy by villous-to-crypt ratio in TPN (P < 0.0001) and TPN-A (P = 0.0001) versus EN was prevented by FMT (P = 0.426 vs. EN). Microbiota profiles using principal coordinate analysis demonstrated significant FMT and EN overlap, with the largest separation in TPN-A followed by TPN, driven primarily by Firmicutes and Fusobacteria. TPN-altered gut barrier was preserved upon FMT; upregulated cholesterol 7 α-hydroxylase and bile salt export pump in TPN and TPN-A and downregulated fibroblast growth factor receptor 4, EGF, farnesoid X receptor, and Takeda G Protein-coupled Receptor 5 (TGR5) versus EN was prevented by FMT. This study provides novel evidence of prevention of gut atrophy, liver injury, and microbial dysbiosis with intraduodenal FMT, challenging current paradigms into TPN injury mechanisms and underscores the importance of gut microbes as prime targets for therapeutics and drug discovery.NEW & NOTEWORTHY Intraduodenal fecal microbiota transplantation presents a novel strategy to mitigate complications associated with total parenteral nutrition (TPN), highlighting gut microbiota as a prime target for therapeutic and diagnostic approaches. These results from a highly translatable model provide hope for TPN side effect mitigation for thousands of chronically TPN-dependent patients.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Christine Denton
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Shaurya Mehta
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Jasmine Carter
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Kento Kurashima
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Ashlesha Bagwe
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Marzena Swiderska-Syn
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Miguel Guzman
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Sherri Besmer
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Sonali Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Matthew McHale
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Kamran Qureshi
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Mustafa Nazzal
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Yasar Caliskan
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - John Long
- Department of Comparative Medicine, Saint Louis University, Saint Louis, Missouri, United States
| | - Chien-Jung Lin
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Chelsea Hutchinson
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States
| | - Ajay Kumar Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| |
Collapse
|
9
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
10
|
Zhu X, Wu S, Zhou Y, Xiao T, Xia L, Wang Y, Xiao A, Guo J, Zhang M, Wen Y, Shang D, Yu L. The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. J Biomol Struct Dyn 2024; 42:9309-9324. [PMID: 37632305 DOI: 10.1080/07391102.2023.2251067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Danzhi-xiaoyao-San (DZXYS), a Traditional Chinese Medicine, plays an essential role in the clinical treatment of depression, but its mechanisms in humans remain unclear. To investigate its pharmacological effects and mechanisms as an add-on therapy for depression, we conducted a double-blind, placebo-controlled trial with depressed patients receiving selective serotonin reuptake inhibitors (SSRIs). Serum and fecal samples were collected for metabolomic and microbiome analysis using UHPLC-QTRAP-MS/MS and 16S rRNA gene sequencing technologies, respectively. Depression symptoms were assessed using the 24-item Hamilton Depression Scale. We employed network pharmacology, metabolomics, and molecular docking to identify potential targets associated with DZXYS. We also examined the correlation between gut microbes and metabolites to understand how DZXYS affects the microbiota-gut-brain axis. The results showed that DZXYS combined with SSRIs was more effective than SSRIs alone in improving depression. We identified 39 differential metabolites associated with DZXYS treatment and found seven upregulated metabolic pathways. The active ingredients quercetin and luteolin were docked to targets (AVPR2, EGFR, F2, and CDK6) associated with the enriched pathways 'pancreatic cancer' and 'phospholipase D signaling pathway', which included the metabolite lysophosphatidic acid [LPA(0:0/16:0)]. Additionally, we identified 32 differential gut microbiota species related to DZXYS treatment, with Bacteroides coprophilus and Ruminococcus gnavus showing negative correlations with specific metabolites such as L-2-aminobutyric acid and LPA(0:0/16:0). Our findings indicate that DZXYS's antidepressant mechanisms involve multiple targets, pathways, and the regulation of LPA and the microbiota-gut-brain axis. These insights from our systems pharmacology analysis contribute to a better understanding of DZXYS's potential pharmacological mechanisms in depression treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengwei Wu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufang Zhou
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Xiao
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Liang Xia
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Materia Medica, Beijing, China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youtian Wang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aixiang Xiao
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Nursing Department, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxiong Guo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Zhang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguan Wen
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dewei Shang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Yu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li X, Wang Q, Wang F, Jin Q, Deng B, Yang R, Fu A, Li F, Zhang Q, Li W. Rosa roxburghii Tratt (Cili) has a more effective capacity in alleviating DSS-induced colitis compared to Vitamin C through B cell receptor pathway. Food Res Int 2024; 195:114950. [PMID: 39277228 DOI: 10.1016/j.foodres.2024.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Rosa roxburghii Tratt (RRT), a traditional Chinese plant known as the 'King of Vitamin C (VitC; ascorbic acid, AsA)', contains a wealth of nutrients and functional components, including polysaccharides, organic acids, flavonoids, triterpenes, and high superoxide dismutase (SOD) activity. The various functional components of RRT suggest that it may theoretically have a stronger potential for alleviating colitis compared to VitC. This study aims to verify whether RRT has a stronger ability to alleviate colitis than equimolar doses of VitC and to explore the mechanisms underlying this improvement. Results showed that RRT significantly mitigated body weight loss, intestinal damage, elevated inflammation levels, and compromised barriers in mice induced by Dextran sulfate sodium (DSS). Additionally, RRT enhanced the diversity and composition of intestinal microbiota in these DSS-induced mice. Colon RNA sequencing analysis revealed that compared to VitC, RRT further downregulated multiple immune-related signaling pathways, particularly the B cell receptor (BCR) pathway, which is centered around genes like Btk and its downstream PI3K-AKT, NF-κB, and MAPK signaling pathways. Correlation analysis between microbiota and genes demonstrated a significant relationship between the taxa improved by RRT and the key genes in the BCR and its downstream signaling pathways. Overall, RRT exhibited superior capabilities in alleviating DSS-induced colitis compared to VitC by decreasing intestinal inflammation and modulating BCR and its downstream signaling pathways, potentially regulated by the improved intestinal microbiota.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Qian Jin
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bin Deng
- Guizhou Light Industry Technical College, Guiyang 550025, Guizhou Province, China
| | - RongChang Yang
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, Jiangsu Province, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fuyong Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Zhejiang Youheyhey Biotechnology Co., LTD, Huzhou 313000, Zhejiang Province, China.
| |
Collapse
|
12
|
Jia J, Fu M, Ji W, Xiong N, Chen P, Lin J, Yang Q. from Bacillus subtilis enhances immune response and contributes to the maintenance of intestinal microbial homeostasis. Microbiol Spectr 2024:e0091824. [PMID: 39470280 DOI: 10.1128/spectrum.00918-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Surfactin, a lipopeptide biosurfactant produced by Bacillus spp., has emerged as a promising bioactive compound due to its potent inhibitory effects on bacterial and viral pathogens. This showcases its potential as a non-antibiotic strategy for managing infectious diseases. Our investigation reveals that surfactin administration significantly promotes weight gain and improves immune organ indices in mice, reflecting enhanced immunity and gut health. Surfactin augments phagocytic function in peritoneal macrophages and boosts proliferative responses in splenic lymphocytes post-chicken red blood cell immunization. Furthermore, it increases intestinal villi height, indicative of superior nutrient absorption. It elevates mucin secretion and expression of intestinal mucosal proteins, such as secretory IgA, Muc1, and Muc2, and tight junction proteins claudin-1, occludin, and Zo-1 in the jejunum and colon. Crucially, surfactin modifies the gut microbiota composition by reducing Escherichia coli populations and ameliorating cyclophosphamide-induced gut dysbiosis. Our data suggest that oral surfactin could be a valuable therapeutic modality to alleviate immune suppression and gut damage, proposing a new pathway for immunomodulatory treatment. IMPORTANCE The potential of surfactin as a microbial surfactant extends beyond its surfactant properties, impacting immune regulation and gut health. As the need for alternatives to traditional antibiotics continues to grow, surfactin's ability to enhance host defense mechanisms against common pathogens without directly targeting them with antibiotics offers a strategic advantage. Understanding how surfactin shapes the immune landscape and the gut microbiome can inform innovative interventions against immunosuppression and intestinal impairment, particularly in contexts such as cyclophosphamide-induced toxicity.
Collapse
Affiliation(s)
- Junpeng Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mei Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxin Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ningna Xiong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Peng Chen
- Beijing Enhalor International Tech Co., Ltd., Beijing, China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Qiao X, Bao L, Liu G, Cui X. Nanomaterial journey in the gut: from intestinal mucosal interaction to systemic transport. NANOSCALE 2024; 16:19207-19220. [PMID: 39347780 DOI: 10.1039/d4nr02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engineered nanomaterials (NMs) are commonly utilized in food additives, cosmetics, and therapeutic applications due to their advantageous properties. Consequently, humans are frequently exposed to exogenous nanomaterials through oral ingestion, thus making the intestinal mucosal system a primary site for these particles. Understanding the interactions between nanomaterials and the intestinal mucosal system is crucial for harnessing their therapeutic potential and mitigating potential health risks from unintended exposure. This review aims to elucidate recent advancements in the dual effects of nanomaterials on the intestinal mucosal system. Upon entering the gut lumen, nanomaterials will interact with diverse intestinal components, including trillions of gut microbiota, mucus layer, intestinal epithelial cells (IECs), and the intestinal immune system. Additionally, the systemic fate and transportation of nanomaterials to distal organs, such as central nervous system, are also highlighted. These interactions result in a distinct biological effect of nanomaterials on the multilayer structure of intestine, thus displaying complex journeys and outcomes of nanomaterials in the living body. This in-depth exploration of the in vivo destiny and immunological implications of nanomaterials encountering the intestine has the potential to propel advancements in oral drug delivery techniques and motivate future investigations in novel toxicology research.
Collapse
Affiliation(s)
- Xin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guanyu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
14
|
Gao F, Wu S, Zhang K, Xu Z, Zhang X, Zhu Z, Quan F. Goat Milk Exosomes Ameliorate Ulcerative Colitis in Mice through Modulation of the Intestinal Barrier, Gut Microbiota, and Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23196-23210. [PMID: 39390385 DOI: 10.1021/acs.jafc.4c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Goat milk is rich in a variety of nutrients that are important for intestinal health and disease prevention. However, the role of exosomes in goat milk remains to be elucidated. This study investigated for the first time the therapeutic efficacy and molecular underlying mechanisms of mature milk exosomes (M-exo) and goat colostrum exosomes (C-exo) on dextran sodium sulfate-induced ulcerative colitis (UC) in mice. The findings demonstrate that M-exo and C-exo significantly improved physiological indices, suppressed the secretion of proinflammatory cytokines, and diminished oxidative stress and apoptosis in UC mice. Moreover, C-exo and M-exo restored the intestinal barrier function, remodeled the gut microbiota, and improved metabolite composition in the feces of colitis mice. In conclusion, goat milk exosomes ameliorate UC in mice, which provides a basis for the development of functional food applications for the prevention and treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xin Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhengjin Zhu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
15
|
Zhang P, Yang D, Xiao J, Hong W, Sun H, Xie Q, Zeng C. Artemisia argyi polysaccharide alleviates osmotic diarrhea by enhancing intestinal barrier protection and anti-inflammation. Int J Biol Macromol 2024:136779. [PMID: 39442837 DOI: 10.1016/j.ijbiomac.2024.136779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/08/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Artemisia argyi polysaccharide (AAP) is a homogeneous polysaccharide with a molecular weight of 16 kDa, displaying anti-inflammatory, antioxidant, and anti-tumorigenic properties, and potential protective effects on intestinal barrier function. It is anticipated to serve as an efficient component in diarrhea treatment. This study aims to examine the impact of AAP on diarrhea severity, intestinal barrier function, and inflammation in diarrhea-induced rats. The results demonstrated that AAP treatment notably decreased the incidence of diarrhea, reduced its severity, and lowered the disease activity score in rats, while also increasing body weight. Oral administration of AAP augmented goblet cell counts and elevated mucin-2 expression, aiding in the restoration of the mucus barrier. Additionally, AAP treatment enhanced colonic microbial diversity by increasing the abundance of S24-7 and Lactobacillus, while decreasing the levels of Bacteroides, Clostridium, and Sutterella. Moreover, the AAP administration elevated the levels of steroid hormones, prostaglandins, and their derivatives. By inhibiting the TLR4/MyD88/NF-κB pathway, AAP mitigated the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased the secretion of anti-inflammatory factor (IL-10). Overall, oral AAP administration effectively combats osmotic diarrhea by fortifying mucus barrier integrity and exerting anti-inflammatory effects, suggesting its potential use as an adjunctive agent in oral rehydration therapy.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Dexin Yang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Jiahai Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Weitao Hong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Qingqing Xie
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China; Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China..
| |
Collapse
|
16
|
Mousa WK, Al Ali A. The Gut Microbiome Advances Precision Medicine and Diagnostics for Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:11259. [PMID: 39457040 PMCID: PMC11508888 DOI: 10.3390/ijms252011259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiome emerges as an integral component of precision medicine because of its signature variability among individuals and its plasticity, which enables personalized therapeutic interventions, especially when integrated with other multiomics data. This promise is further fueled by advances in next-generation sequencing and metabolomics, which allow in-depth high-precision profiling of microbiome communities, their genetic contents, and secreted chemistry. This knowledge has advanced our understanding of our microbial partners, their interaction with cellular targets, and their implication in human conditions such as inflammatory bowel disease (IBD). This explosion of microbiome data inspired the development of next-generation therapeutics for treating IBD that depend on manipulating the gut microbiome by diet modulation or using live products as therapeutics. The current landscape of artificial microbiome therapeutics is not limited to probiotics and fecal transplants but has expanded to include community consortia, engineered probiotics, and defined metabolites, bypassing several limitations that hindered rapid progress in this field such as safety and regulatory issues. More integrated research will reveal new therapeutic targets such as enzymes or receptors mediating interactions between microbiota-secreted molecules that drive or modulate diseases. With the shift toward precision medicine and the enhanced integration of host genetics and polymorphism in treatment regimes, the following key questions emerge: How can we effectively implement microbiomics to further personalize the treatment of diseases like IBD, leveraging proven and validated microbiome links? Can we modulate the microbiome to manage IBD by altering the host immune response? In this review, we discuss recent advances in understanding the mechanism underpinning the role of gut microbes in driving or preventing IBD. We highlight developed targeted approaches to reverse dysbiosis through precision editing of the microbiome. We analyze limitations and opportunities while defining the specific clinical niche for this innovative therapeutic modality for the treatment, prevention, and diagnosis of IBD and its potential implication in precision medicine.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| |
Collapse
|
17
|
Li X, Li C, Wu P, Zhang L, Zhou P, Ma X. Recent status and trends of innate immunity and the gut-kidney aixs in IgAN: A systematic review and bibliometric analysis. Int Immunopharmacol 2024; 143:113335. [PMID: 39423662 DOI: 10.1016/j.intimp.2024.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a significant global demand for precise diagnosis and effective treatment of IgA nephropathy (IgAN), with innate immunity, particularly the complement system, exerting a profound influence on its pathogenesis. Additionally, the gut-kidney axis pathway is vital in the emergence and development of IgAN. METHODS We conducted a comprehensive search in the Web of Science database, spanning from January 1, 2000 to December 18, 2023. The gathered literature underwent a visual examination through CiteSpace, VOSviewer, and Scimago Graphica to delve into authors, nations, organizations, key terms, and other pertinent elements. RESULT Between 2000 and 2023, a total of 720 publications were identified, out of which 436 publications underwent screening for highly relevant literature analysis. The average annual number of articles focusing on IgAN, innate immunity, and the gut-kidney axis is approximately 31, with an upward trend observed. In terms of research impact encompassing publication count and authorship, the United States emerged as the leading contributor. Prominent keywords included "complement", "activation", "microbe", "gut-kidney axis", "C4d deposition", "alternative pathway" and "B cells" along with other prospective hot topics. CONCLUSION The correlation between IgAN and innate immunity is a focal point in current scientific research. Recent literature underscores the significance of the gut-kidney axis, where intestinal microorganisms and metabolites may influence IgAN. The complement system, a key component of innate immunity, also has a crucial function.Advancements in prevention, diagnosis, and treatment hinge on unraveling this intricate relationship.
Collapse
Affiliation(s)
- Xun Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chengni Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Peiwen Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Lifang Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Ping Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Xin Ma
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
18
|
Duarte ME, Deng Z, Kim SW. Effects of dietary Lactobacillus postbiotics and bacitracin on the modulation of mucosa-associated microbiota and pattern recognition receptors affecting immunocompetence of jejunal mucosa in pigs challenged with enterotoxigenic F18 + Escherichia coli. J Anim Sci Biotechnol 2024; 15:139. [PMID: 39390608 PMCID: PMC11468193 DOI: 10.1186/s40104-024-01098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (E. coli) is a threat to humans and animals that causes intestinal disorders. Antimicrobial resistance has urged alternatives, including Lactobacillus postbiotics, to mitigate the effects of enterotoxigenic E. coli. METHODS Forty-eight newly weaned pigs were allotted to NC: no challenge/no supplement; PC: F18+ E. coli challenge/no supplement; ATB: F18+ E. coli challenge/bacitracin; and LPB: F18+ E. coli challenge/postbiotics and fed diets for 28 d. On d 7, pigs were orally inoculated with F18+ E. coli. At d 28, the mucosa-associated microbiota, immune and oxidative stress status, intestinal morphology, the gene expression of pattern recognition receptors (PRR), and intestinal barrier function were measured. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS PC increased (P < 0.05) Helicobacter mastomyrinus whereas reduced (P < 0.05) Prevotella copri and P. stercorea compared to NC. The LPB increased (P < 0.05) P. stercorea and Dialister succinatiphilus compared with PC. The ATB increased (P < 0.05) Propionibacterium acnes, Corynebacterium glutamicum, and Sphingomonas pseudosanguinis compared to PC. The PC tended to reduce (P = 0.054) PGLYRP4 and increased (P < 0.05) TLR4, CD14, MDA, and crypt cell proliferation compared with NC. The ATB reduced (P < 0.05) NOD1 compared with PC. The LPB increased (P < 0.05) PGLYRP4, and interferon-γ and reduced (P < 0.05) NOD1 compared with PC. The ATB and LPB reduced (P < 0.05) TNF-α and MDA compared with PC. CONCLUSIONS The F18+ E. coli challenge compromised intestinal health. Bacitracin increased beneficial bacteria showing a trend towards increasing the intestinal barrier function, possibly by reducing the expression of PRR genes. Lactobacillus postbiotics enhanced the immunocompetence of nursery pigs by increasing the expression of interferon-γ and PGLYRP4, and by reducing TLR4, NOD1, and CD14.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
19
|
Qi Z, Liu J, Xu Y, Sun H, Qi X, Cong M, Zhang X, Yan Y, Liu T. Protective effects of phenylethanol glycosides from Cistanche tubulosa against ALD through modulating gut microbiota homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118925. [PMID: 39395767 DOI: 10.1016/j.jep.2024.118925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche tubulosa (Schenk) Wight, a Chinese herbal medicine (Rou Cong Rong) with Xinjiang characteristics, was recorded in many medical books in ancient China and often used as a tonic medicine. Supported by the traditional Chinese medicine theory of "homology of liver and kidney," C. tubulosa (Schenk) Wight has many clinical applications in tonifying the kidney and protecting the liver. Modern pharmacological studies have also found that the protective effects of phenylethanol glycosides from C. tubulosa (Schenk) Wight (CPhGs) play an important role in ameliorating alcoholic liver injury. AIM OF THE STUDY We aimed to investigate whether CPhGs can enhance the therapeutic outcome of alcoholic liver disease (ALD) by targeting the "gut-liver axis," thus contributing to the knowledge of how Chinese herbs alleviate disease by influencing the gut microbiota. MATERIALS AND METHODS An ALD mouse model was established using the Lieber-DeCarli alcohol liquid diet, and the effects of CPhGs on the intestinal barrier and gut microbiota of ALD mice were investigated in a pseudo-sterile mouse model and fecal microbiota transplantation (FMT) mouse model. We fed female C57BL/6N mice with Lieber-DeCarli ethanol liquid diet, according to the NIAAA model. Animal experiment of long-term, ethanol diet intervention for 6W, and short-term for 11d. The FMT experiments were also performed. RESULTS CPhGs significantly improved ALD manifestations. ALD mice demonstrated significant gut microbiota dysbiosis and significantly abnormal proliferation of Allobaculum compared with the control diet group in long-term NIAAA mouse model (L-Pair). In mice that received the long-term intervention, the improvement in gut barrier function in the CPhGs-treated group was accompanied by a significant decrease in the abundance of Allobaculum and a significant increase in the abundance of Akkermansia. Furthermore, compared with the mouse were gavaged fecal microbiota from the long-term NIAAA mouse donors (FMT-EtOH), the number of goblet cells, abundance of Akkermansia, and the intestinal short-chain fatty acid concentrations were significantly increased in the mouse were gavaged fecal microbiota from high (700 mg/kg) doses of CPhGs orally in long-term NIAAA model donors (FMT-EtOH-H). Network analysis and species distribution results demonstrated that Akkermansia and Allobaculum were the genera with the highest abundances in the gut microbiota and that their interaction was related to propionic acid metabolism. CONCLUSIONS The results suggest that CPhGs exert a protective effect against ALD by modulating the abundance and composition of Akkermansia and Allobaculum in the intestine, maintaining the intestinal mucus balance, and safeguarding intestinal barrier integrity.
Collapse
Affiliation(s)
- Zhaoyao Qi
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Jincun Liu
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Yuanhui Xu
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Hongguang Sun
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Xinxin Qi
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Meili Cong
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Xinxuan Zhang
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Yuxin Yan
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| | - Tao Liu
- School of Public Health, Xinjiang Medical University, Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
20
|
Zhao S, Wang L, Huang X, Xiao Y, Li M, Huang X, Chen X, Li S, Xie J, Liu P, Wang YD, Chen WD. Design, Synthesis, and Biological Evaluation of Covalently Mucoadhesive Derivatives as Nonsystemic Intestine-Targeted TGR5 Agonists. J Med Chem 2024; 67:17701-17712. [PMID: 39321318 DOI: 10.1021/acs.jmedchem.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Takeda G-protein-coupled receptor 5 (TGR5) is considered a promising therapeutic target for treating type 2 diabetes mellitus (T2DM), obesity, and other metabolism-related diseases. Although many TGR5 agonists have been identified, they might cause some side effects in the gallbladder and the heart. To reduce these side effects and improve glucose-lowering capability, we first designed and synthesized a series of 4-phenoxynicotinamide intestine-targeted TGR5 agonist derivatives containing maleimides in the side chains with different linker lengths. All of the target compounds demonstrated significant TGR5 agonistic activity, among which compound 22b displayed the best TGR5 agonistic activity. Additionally, compound 22b displayed low Caco-2 cell permeability and strong mucoadhesion to mucin and the rat intestine. In C57BL/6J, diet-induced obese, and db/db mice, compound 22b demonstrated a robust and prolonged hypoglycemic effect along with an acceptable safety profile.
Collapse
Affiliation(s)
- Shizhen Zhao
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Le Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xiaotong Huang
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Yali Xiao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Mengqi Li
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Xueyuan Huang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xueyu Chen
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Shengjie Li
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Jing Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Peng Liu
- Hebi Key Laboratory of Cardiovascular Diseases, Hebi Key Laboratory of Energy Metabolism, People's Hospital of Hebi, Henan University, Kaifeng 475000, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
21
|
Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut 2024; 73:1893-1908. [PMID: 39322314 PMCID: PMC11503168 DOI: 10.1136/gutjnl-2024-333378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The understanding that changes in microbiome composition can influence chronic human diseases and the efficiency of therapies has driven efforts to develop microbiota-centred therapies such as first and next generation probiotics, prebiotics and postbiotics, microbiota editing and faecal microbiota transplantation. Central to microbiome research is understanding how disease impacts microbiome composition and vice versa, yet there is a problematic issue with the term 'dysbiosis', which broadly links microbial imbalances to various chronic illnesses without precision or definition. Another significant issue in microbiome discussions is defining 'healthy individuals' to ascertain what characterises a healthy microbiome. This involves questioning who represents the healthiest segment of our population-whether it is those free from illnesses, athletes at peak performance, individuals living healthily through regular exercise and good nutrition or even elderly adults or centenarians who have been tested by time and achieved remarkable healthy longevity.This review advocates for delineating 'what defines a healthy microbiome?' by considering a broader range of factors related to human health and environmental influences on the microbiota. A healthy microbiome is undoubtedly linked to gut health. Nevertheless, it is very difficult to pinpoint a universally accepted definition of 'gut health' due to the complexities of measuring gut functionality besides the microbiota composition. We must take into account individual variabilities, the influence of diet, lifestyle, host and environmental factors. Moreover, the challenge in distinguishing causation from correlation between gut microbiome and overall health is presented.The review also highlights the resource-heavy nature of comprehensive gut health assessments, which hinders their practicality and broad application. Finally, we call for continued research and a nuanced approach to better understand the intricate and evolving concept of gut health, emphasising the need for more precise and inclusive definitions and methodologies in studying the microbiome.
Collapse
Affiliation(s)
- Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Petitfils
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Willem M De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Grases-Pintó B, Torres-Castro P, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Franch À. TGF-β2, EGF and FGF21 influence the suckling rat intestinal maturation. J Nutr Biochem 2024:109778. [PMID: 39374742 DOI: 10.1016/j.jnutbio.2024.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Some of the growth factors present in breast milk, such as transforming growth factor-β (TGF-β), epidermal growth factor (EGF) and fibroblast growth factor 21 (FGF21), play important roles in the development of the intestinal tract. The aim of this study was to determine the effect of a supplementation with TGF-β2, EGF and FGF21 on suckling rats intestinal maturation. For this purpose, Wistar rats were supplemented daily with TGF-β2, EGF or FGF21 throughout the suckling period. We evaluated the functionality of the intestinal epithelial barrier through an in vivo dextran permeability assay, and by a histomorphometric and immunohistochemical study. In addition, the intestinal gene expression of tight junction-associated proteins, mucins, toll-like receptors, and maturation markers was analyzed. Moreover, the intraepithelial lymphocyte (IEL) phenotypical composition was established.. During the suckling period, the supplementation with TGF-β2, EGF and FGF21 showed important signs of intestinal maturation. These results suggest that these molecules, present in breast milk, play a modulatory role in the maturation of the intestinal barrier function and the IEL composition during the suckling period.
Collapse
Affiliation(s)
- Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Paulina Torres-Castro
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Mar Abril-Gil
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany.
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - María J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
23
|
Abdo SE, El-Nahas AF, Abdellatif RE, Mohamed R, Helal MA, Azzam MM, Di Cerbo A, El-Kassas S. Combined Dietary Spirulina platensis and Citrus limon Essential Oil Enhances the Growth, Immunity, Antioxidant Capacity and Intestinal Health of Nile Tilapia. Vet Sci 2024; 11:474. [PMID: 39453066 PMCID: PMC11512375 DOI: 10.3390/vetsci11100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dietary presence of feed additives is crucial for boosting fish growth and immunity. Accordingly, this feeding trial aimed to investigate the effects of the separate and concurrent dietary supplementation of Spirulina platensis (SP) and bitter lemon (Citrus limon) peel essential oil (LEO) on the growth, immunity, antioxidant capacity, and intestinal health of Nile tilapia (Oreochromis niloticus). Four groups of male Nile tilapia were employed. The first group (control) was given the basal diet, while the second and third groups received the basal diet supplemented with LEO extract (1%) and SP (1 g/kg diet), respectively. The fourth group received the basal diet supplemented with a mix of LEO (1%) and SP at 1 g/kg. After two months of feeding, using LEO or/and SP improved the overall growth and immunological parameters, with their combination yielding the best outcomes. The supplementation of LEO or/and SP improved the Nile tilapia's growth metrics and transcriptomic levels of growth-regulating genes such as (oligo-peptide transporter 1 (Pep1), growth hormone receptors 1 (GHR1), and insulin-like growth factor (IGF1). The improved growth performance was linked to significant increases in the expression levels of mucin and fat metabolism-related genes. Moreover, fish supplemented with LEO, SP, or their combination showed enhanced non-specific immunological measures, including phagocytic and lysozyme activities and the mRNA copies of its regulating genes. Additionally, remarkable increases in the antioxidant enzyme activities and the mRNA levels of their related genes were detected. The complement (C3) gene's transcriptomic level was also significantly increased. Furthermore, the dietary supplementation of LEO, SP, or their combination improved the histological structures of the spleen, hepatopancreas, and intestine. The enhanced effects of LEO, SP, or their combination on fish immunity and growth are suggested to be due to their contents of bioactive compounds with anti-inflammatory, antioxidant, and antimicrobial properties. Thus, using the LOE and SP blends as feed additives is recommended for better growth and immunity of Nile tilapia.
Collapse
Affiliation(s)
- Safaa E. Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (S.E.A.); (R.E.A.)
| | - Abeer F. El-Nahas
- Department of Animal Husbandry and Animal Wealth Development-Genetics, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Rabab E. Abdellatif
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (S.E.A.); (R.E.A.)
| | - Radi Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. Helal
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.A.H.); (S.E.-K.)
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.A.H.); (S.E.-K.)
| |
Collapse
|
24
|
Su X, Li T, Wang Y, Wei L, Jian B, Kang X, Hu M, Li C, Wang S, Lu D, Shen S, Huang H, Liu Y, Deng X, Zhang B, Cai W, Lu Z. Bone marrow-derived mesenchymal stem cell ameliorates post-stroke enterobacterial translocation through liver-gut axis. Stroke Vasc Neurol 2024:svn-2024-003494. [PMID: 39366758 DOI: 10.1136/svn-2024-003494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Enterobacterial translocation is a leading contributor to fatal infection among patients with acute ischaemic stroke (AIS). Accumulative evidence suggests that mesenchymal stem cell (MSC) effectively ameliorates stroke outcomes. Whether MSC could inhibit post-stroke enterobacterial translocation remains elusive. METHODS Patients with AIS and healthy individuals were enrolled in the study. Mice subjected to transient middle cerebral artery occlusion were treated with bone marrow-derived MSC (BM-MSC) right after reperfusion. Enterobacterial translocation was evaluated with Stroke Dysbiosis Index and circulating endotoxin. Thickness of mucus was assessed with Alcian blue staining. Hepatic glucocorticoid (GC) metabolism was analysed with expression of HSD11B2, HSD11B1 and SRD5A1. RESULTS We report that the gut mucus layer was attenuated after the stroke leading to pronounced enterobacterial translocation. The attenuation of the gut mucus was attributed to diminished mucin production by goblet cells in response to the elevated systemic GC after cerebral ischaemia. Transferred-BM-MSC restored the mucus thickness, thus preserving gut microbiota homeostasis and preventing enterobacterial invasion. Mechanistically, the transferred-BM-MSC stationed in the liver and enhanced peroxisome proliferator-activated receptor γ signalling in hepatocytes. Consequently, expression of HSD11B2 and SRD5A1 was increased while HSD11B1 expression was downregulated which promoted GC catabolism and subsequently restored mucin production. CONCLUSIONS Our findings reveal that MSC transfer improves post-stroke gut barrier integrity and inhibits enterobacterial translocation by enhancing the hepatic GC metabolism thus representing a protective modulator of the liver-gut-brain axis in AIS.
Collapse
Affiliation(s)
- Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Banghao Jian
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401172. [PMID: 39361948 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
26
|
Wang J, Gao J, Sheng X, Tang X, Xing J, Chi H, Zhan W. Teleost Muc2 and Muc5ac: Key guardians of mucosal immunity in flounder (Paralichthys olivaceus). Int J Biol Macromol 2024; 277:134127. [PMID: 39053833 DOI: 10.1016/j.ijbiomac.2024.134127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Mucins secreted by mucous cells constitute a core part of the defense line against the invasion of pathogens. However, mucins' structure and immunological functions remain largely unknown in teleost fish. In this study, two typical mucins, Muc2 and Muc5ac of flounder (Paralichthys olivaceus), were cloned and their physicochemical properties, structure and conservation were analyzed. Notably, specific antibodies against flounder Muc2 and Muc5ac were developed. It was verified at the gene and protein level that Muc2 was expressed in the hindgut and gills but not in the skin, while Muc5ac was expressed in the skin and gills but not in the hindgut. After flounders were immunized by immersion with inactivated Edwardsiella tarda, Muc2 and Muc5ac were significantly upregulated at both the gene expression and protein levels, and Muc2+/Muc5ac+ mucous cells proliferated and increased secretion of Muc2 and Muc5ac. Moreover, Muc2 and Muc5ac exerted retention and clearance effects on E. tarda in a short period (within 1 dpi). These results revealed the characterization of fish mucins Muc2 and Muc5ac at the protein level and clarified the role of mucins as key guardians to maintain the mucus barrier, which advanced our understanding of teleost mucosal barrier.
Collapse
Affiliation(s)
- Jincheng Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, PR China
| | - Jianliang Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China
| |
Collapse
|
27
|
Zhou L, Song W, Liu T, Yan T, He Z, He W, Lv J, Zhang S, Dai X, Yuan L, Shi L. Multi-omics insights into anti-colitis benefits of the synbiotic and postbiotic derived from wheat bran arabinoxylan and Limosilactobacillus reuteri. Int J Biol Macromol 2024; 278:134860. [PMID: 39163956 DOI: 10.1016/j.ijbiomac.2024.134860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Exploring nutritional therapies that manipulate tryptophan metabolism to activate AhR signaling represents a promising approach for mitigating chronic colitis. Arabinoxylan is a bioactive constituent abundant in wheat bran. Here, we comprehensively investigated anti-colitis potentials of wheat bran arabinoxylan (WBAX), its synbiotic and postbiotic derived from WBAX and Limosilactobacillus reuteri WX-94 (i.e., a probiotic strain exhibiting tryptophan metabolic activity). WBAX fueled L. reuteri and promoted microbial conversion of tryptophan to AhR ligands during in vitro fermentation in the culture medium and in the fecal microbiota from type 2 diabetes. The WBAX postbiotic outperformed WBAX and its synbiotic in augmenting efficacy of tryptophan in restoring DSS-disturbed serum immune markers, colonic tight junction proteins and gene profiles involved in amino acid metabolism and FoxO signaling. The WBAX postbiotic remodeled gut microbiota and superiorly enhanced AhR ligands (i.e., indole metabolites and bile acids), alongside with elevation in colonic AhR and IL-22. Associations between genera and metabolites modified by the postbiotic and colitis in human were verified and strong binding capacities between metabolites and colitis-related targets were demonstrated by molecular docking. Our study advances the novel perspective of WBAX in manipulating tryptophan metabolism and anti-colitis potentials of WBAX postbiotic via promoting gut microbiota-dependent AhR signaling.
Collapse
Affiliation(s)
- Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Yan
- School of Food Science and Engineering, South China University of Technology, Guangdong 510641, China
| | - Ziyan He
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Weitai He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an 710062, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyi Zhang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoshuang Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xbiome, Scientific Research Building, Room 907, Tsinghua High-Tech Park, Shenzhen, China
| | - Li Yuan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
28
|
Yu T, Luo L, Xue J, Tang W, Wu X, Yang F. Gut microbiota-NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102458. [PMID: 39233138 DOI: 10.1016/j.clinre.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic dysfunction, ranging from hepatic steatosis with or without mild inflammation to nonalcoholic steatohepatitis, which can rapidly progress to liver fibrosis and even liver cancer. In 2023, after several rounds of Delphi surveys, a new consensus recommended renaming NAFLD as metabolic dysfunction-associated steatotic liver disease (MASLD). Ninety-nine percent of NAFLD patients meet the new MASLD criteria related to metabolic cardiovascular risk factors under the "multiple parallel hits" of lipotoxicity, insulin resistance (IR), a proinflammatory diet, and an intestinal microbiota disorder, and previous research on NAFLD remains valid. The NLRP3 inflammasome, a well-known member of the pattern recognition receptor (PRR) family, can be activated by danger signals transmitted by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), as well as cytokines involved in immune and inflammatory responses. The activation of the NLRP3 inflammasome pathway by MASLD triggers the production of the inflammatory cytokines IL-1β and IL-18. In MASLD, while changes in the composition and metabolites of the intestinal microbiota occur, the disrupted intestinal microbiota can also generate the inflammatory cytokines IL-1β and IL-18 by damaging the intestinal barrier, negatively regulating the liver on the gut-liver axis, and further aggravating MASLD. Therefore, modulating the gut-microbiota-liver axis through the NLRP3 inflammasome may emerge as a novel therapeutic approach for MASLD patients. In this article, we review the evidence regarding the functions of the NLRP3 inflammasome and the intestinal microbiota in MASLD, as well as their interactions in this disease.
Collapse
Affiliation(s)
- Tingting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, PR China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Xiaojie Wu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Fan Yang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China.
| |
Collapse
|
29
|
Hu Y, Wang S, Wang R, Zhang Y, Yuan Q, Yuan C. Total saponins from Panax japonicus regulated the intestinal microbiota to alleviate lipid metabolism disorders in aging mice. Arch Gerontol Geriatr 2024; 125:105500. [PMID: 38851092 DOI: 10.1016/j.archger.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Total saponins from Panax japonicus (TSPJ) have many beneficial physiological activities, particularly in alleviating the damages of aging and abnormal lipid metabolism. This work used mice models to investigate if TSPJ reduced obesity and regulated metabolic functions via the intestinal microbiota, the disturbance of which has been shown to cause aging-related diseases. The results showed that TSPJ significantly reduced the weight and blood lipid level of aging mice. Further analyses showed that TSPJ significantly inhibited adipogenesis, changed the composition of the intestinal flora, and protected the integrity of the intestinal barrier. It was inferred from the accumulated experimental data that TSPJ helped to combat obesity in aging mice by regulating the intestinal microbiota and promoting microbial metabolism.
Collapse
Affiliation(s)
- Yaqi Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Shuwen Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Rui Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yifan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
30
|
Lv J, Lang G, Wang Q, Zhao W, Shi D, Zhou Z, Shen Y, Xia H, Han S, Li L. Lactobacillus helveticus attenuates alcoholic liver injury via regulation of gut microecology in mice. Microb Biotechnol 2024; 17:e70016. [PMID: 39431804 PMCID: PMC11492535 DOI: 10.1111/1751-7915.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/04/2024] [Indexed: 10/22/2024] Open
Abstract
Previous reports have demonstrated that alcohol consumption significantly reduces the abundance of Lactobacillus in the gut. In this study, we selected five species of the genus Lactobacillus, commonly found in fermented foods, and acknowledged them as safe, edible, and effective in preventing or treating certain diseases, to evaluate their effects on alcoholic liver disease (ALD). By comparing the liver damage indices in each group, we found that the type strain of Lactobacillus helveticus (LH, ATCC 15009) had the most marked alleviating effect on ALD-induced liver injury. Furthermore, experiments combining microbiomics and metabolomics were conducted to explore the mechanisms underlying the hepatoprotective effects of LH. Finally, we discovered that LH mitigated ethanol-induced liver steatosis and inflammation in ALD mice by altering the structure and function of the gut microbiome, increasing intestinal levels of short-chain fatty acids (SCFAs), and enhancing gut barrier integrity. These findings suggest a potential strategy for the clinical management of patients with ALD.
Collapse
Affiliation(s)
- Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Guanjing Lang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenlong Zhao
- Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Yangfan Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
31
|
Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol 2024; 32:970-983. [PMID: 38503579 DOI: 10.1016/j.tim.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
The small intestinal microbiota (SIM) is essential for gastrointestinal health, influencing digestion, immune modulation, and nutrient metabolism. Unlike the colonic microbiota, the SIM has been poorly characterized due to sampling challenges and ethical considerations. Current evidence suggests that the SIM consists of five core genera and additional segment-specific taxa. These bacteria closely interact with the human host, regulating nutrient absorption and metabolism. Recent work suggests the presence of two forms of small intestinal bacterial overgrowth, one dominated by oral bacteria (SIOBO) and a second dominated by coliform bacteria. Less invasive sampling techniques, omics approaches, and mechanistic studies will allow a more comprehensive understanding of the SIM, paving the way for interventions engineering the SIM towards better health.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
32
|
Baidoo N, Sanger GJ. Age-related decline in goblet cell numbers and mucin content of the human colon: Implications for lower bowel functions in the elderly. Exp Mol Pathol 2024; 139:104923. [PMID: 39154390 DOI: 10.1016/j.yexmp.2024.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND & AIMS Older people experience a greater incidence of lower bowel disorders, including constipation. Causes can include factors associated with growing older, such as use of medications or disease, but compounded by degenerative changes within the bowel wall. It has been suggested that the latter is exacerbated by loss of an effective mucosal barrier to luminal contents. In human colon, little is known about the impact of ageing on key components of this barrier, namely the goblet cells and mucin content. METHODS Changes in the number of goblet cells and density of mucin content were investigated in macroscopically normal human ascending (AC; n = 13) and descending (DC; n = 14) colon from elderly (≥ 67 years) and younger adults (60 years and below). Samples were serially sectioned and stained for haematoxylin and eosin to assess tissue morphology, and alcian blue periodic acid Schiff (ABPAS) and MUC-2 antibody to identify goblet cells producing mucins. New procedures in visualization and identification of goblet cells and mucin contents were employed to ensure unbiased counting and densitometric analysis. RESULTS Compared with the younger adults, the numbers of goblet cells per crypt were significantly lower in the elderly AC (72 ± 1.2 vs 51 ± 0.5) and DC (75 ± 2.6 vs. 54 ± 1.9), although this reduction did not reach statistical significance when assessed per mucosal area (AC: P = 0.068; DC: P = 0.096). In both regions from the elderly, numerous empty vesicles (normally containing mucins) were observed, and some areas of epithelium were devoid of goblet cells. Thus, the density of mucin content per unit mucosal area were significantly reduced with age. CONCLUSIONS Ageing could result in a reduced number of goblet cells and development of degenerative changes in mucin production. Together, these have implications for the mucus barrier function in the colon of elderly individuals.
Collapse
Affiliation(s)
- Nicholas Baidoo
- University of Westminster, School of Life Sciences. New Cavendish Street, UK; Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, Song WA, Seldin MM, Pannunzio NR, Masri S. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1458. [PMID: 39331712 PMCID: PMC11430476 DOI: 10.1126/sciadv.ado1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis. To address this, genetic disruption of the circadian clock, in an Apc-driven mouse model of CRC, was used to define the impact on the gut microbiome. When clock disruption is combined with CRC, metagenomic sequencing identified dysregulation of many bacterial genera including Bacteroides, Helicobacter, and Megasphaera. We identify functional changes to microbial pathways including dysregulated nucleic acid, amino acid, and carbohydrate metabolism, as well as disruption of intestinal barrier function. Our findings suggest that clock disruption impinges on microbiota composition and intestinal permeability that may contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Rachel C. Fellows
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Natalie Larson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas R. Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
34
|
Collatuzzo G, Teglia F, Boffetta P. Gastrointestinal cancer and occupational diesel exhaust exposure: a meta-analysis of cohort studies. Occup Med (Lond) 2024; 74:438-448. [PMID: 39313244 DOI: 10.1093/occmed/kqae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Diesel exhaust exposure and cancer other than the lungs have been limitedly investigated. AIMS To conduct a systematic review and meta-analysis on the association between occupational exposure to diesel exhaust and gastrointestinal cancers. METHODS Two researchers performed a systematic literature review to identify all cohort studies on occupational exposure to diesel exhaust and risk of cancers other than lung. Of the 30 retained studies, 10 reported risk estimates for oesophageal, 18 on gastric, 15 on colon and 14 on rectal cancer. We performed random-effects meta-analyses to calculate summary relative risks (RRs) and 95% confidence intervals (CIs) for ever-exposure to diesel exhaust. RESULTS We calculated summary RR = 1.08 (95% CI 0.97-1.21, P heterogeneity = 0.06) for oesophageal, 1.06 (95% CI 0.99-1.14, P < 0.001) for gastric, 0.98 (95% CI 0.96-1.00, P = 0.453) for colon, and RR = 1.04 (95% CI 0.97-1.11, P = 0.013) for rectal cancer. Drivers showed an association with oesophageal (RR = 1.26, 95% CI 0.99-1.62), gastric (RR = 1.20, 95% CI 0.91-1.59) and rectal cancer (RR = 1.41, 95% CI 1.13-1.75); machine operators with oesophageal (RR = 1.09, 95% CI 1.00-1.20) and gastric (RR = 1.15, 95% CI 1.10-1.20) and handlers with oesophageal cancer (RR = 1.95, 95% CI 1.23-3.09). Studies from Europe revealed an association with gastric cancer while those from North America did not (P < 0.05). No difference was found by quality score except for gastric cancer, where high-quality studies but not low-quality ones showed increased risk (P heterogeneity = 0.04). There was no evidence of publication bias. CONCLUSIONS An increased but insignificant risk of oesophageal, gastric and rectal, but not colon cancer, was suggested in workers exposed to diesel exhaust. Residual confounding cannot be excluded.
Collapse
Affiliation(s)
- G Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - F Teglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - P Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
35
|
Wang CM, Oberoi HS, Law D, Li Y, Kassis T, Griffith LG, Breault DT, Carrier RL. Human Mesofluidic Intestinal Model for Studying Transport of Drug Carriers and Bacteria Through a Live Mucosal Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613692. [PMID: 39345622 PMCID: PMC11429741 DOI: 10.1101/2024.09.18.613692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The intestinal mucosal barrier forms a critical interface between lumen contents such as bacteria, drugs, and drug carriers and the underlying tissue. Current in vitro intestinal models, while recapitulating certain aspects of this barrier, generally present challenges with respect to imaging transport across mucus and uptake into enterocytes. A human mesofluidic small intestinal chip was designed to enable facile visualization of a mucosal interface created by growing primary human intestinal cells on a vertical hydrogel wall separating channels representing the intestinal lumen and circulatory flow. Type I collagen, fortified via cross-linking to prevent deformation and leaking during culture, was identified as a suitable gel wall material for supporting primary organoid-derived human duodenal epithelial cell attachment and monolayer formation. Addition of DAPT and PGE2 to culture medium paired with air-liquid interface culture increased the thickness of the mucus layer on epithelium grown within the device for 5 days from approximately 5 mm to 50 μm, making the model suitable for revealing intriguing features of interactions between luminal contents and the mucus barrier using live cell imaging. Time-lapse imaging of nanoparticle diffusion within mucus revealed a zone adjacent to the epithelium largely devoid of nanoparticles up to 4.5 hr after introduction to the lumen channel, as well as pockets of dimly lectin-stained mucus within which particles freely diffused, and apparent clumping of particles by mucus components. Multiple particle tracking conducted on the intact mucus layer in the chip revealed significant size-dependent differences in measured diffusion coefficients. E. coli introduced to the lumen channel were freely mobile within the mucus layer and appeared to intermittently contact the epithelial surface over 30 minute periods of culture. Mucus shedding into the lumen and turnover of mucus components within cells were visualized. Taken together, this system represents a powerful tool for visualization of interactions between luminal contents and an intact live mucosal barrier.
Collapse
Affiliation(s)
- Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Hardeep S Oberoi
- NCE-Formulation Sciences, Abbvie Inc., North Chicago, IL, 60064, USA
| | - Devalina Law
- NCE-Formulation Sciences, Abbvie Inc., North Chicago, IL, 60064, USA
| | - Yuan Li
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Timothy Kassis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
36
|
Miller MA, Medina S. Synthetic Colonic Mucus Enables the Development of Modular Microbiome Organoids. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2402514. [PMID: 39309137 PMCID: PMC11415244 DOI: 10.1002/adfm.202402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Indexed: 09/25/2024]
Abstract
The human colon is home to trillions of microorganisms that modulate gastrointestinal physiology. Our understanding of how this gut ecosystem impacts human health, although evolving, has been slowed by the lack of accessible tools suitable to studying complex host-mucus-microbe interactions. Here, we report a synthetic gel-like material capable of recapitulating the varied structural, mechanical, and biochemical profiles of native human colonic mucus to develop compositionally simple microbiome screening platforms with utility in microbiology and drug discovery. The viscous fibrillar material is realized through templated assembly of a fluorine-rich amino acid at liquid-liquid interphases. The fluorine-assisted mucus surrogate (FAMS) can be decorated with mucins to serve as a habitat for microbial colonization and integrated with human colorectal cells to generate artificial mucosae, referred to as a microbiome organoid. Notably, FAMS are made with inexpensive and commercially available materials, and can be generated using simple protocols and standard laboratory hardware. As a result, this platform can be broadly incorporated into various laboratory settings to advance probiotic research and inform in vivo approaches. If implemented into high throughput screening approaches, FAMS may represent a valuable tool to study compound metabolism and gut permeability, with an exemplary demonstration of this utility presented here.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802-4400
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802-4400
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802-4400
| |
Collapse
|
37
|
Nishiyama K, Murakami R, Nakahata M, Zhou B, Hashikura N, Kaneko H, Namai F, Ikeda-Ohtsubo W, Xiao JZ, Kitazawa H, Odamaki T. Exploring strain-level diversity in the gut microbiome through mucin particle adhesion. Appl Environ Microbiol 2024; 90:e0123524. [PMID: 39133001 PMCID: PMC11409716 DOI: 10.1128/aem.01235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 08/13/2024] Open
Abstract
Mucin glycoproteins are a significant source of carbon for the gut bacteria. Various gut microbial species possess diverse hydrolytic enzymes and catabolic pathways for breaking down mucin glycans, resulting in competition for the limited nutrients within the gut environment. Adherence to mucin glycans represents a crucial strategy used by gut microbes to access nutrient reservoirs. Understanding these properties is pivotal for comprehending the survival mechanisms of bacteria in the gastrointestinal tract. However, characterization of individual strains within the vast array of coexisting bacteria in the microbiome is challenging. To investigate this, we developed mucin-immobilized particles by immobilizing porcine gastric mucin (PGM) onto glass beads chemically modified with boronic acid. These PGM-immobilized particles were then anaerobically cultured with human fecal microbiota, and the bacteria adhering to PGM were isolated. Interestingly, the microbiome composition remained largely unchanged irrespective of PGM immobilization. Nonetheless, bacteria isolated from PGM-immobilized glass particles exhibited notably higher N-acetylgalactosaminidase activity compared to the control beads. Furthermore, Bacteroides strains isolated from PGM-immobilized glass particles displayed enhanced adhesive and metabolic properties to PGM. These findings underscore the utility of PGM particles in enriching and isolating specific microbes. Moreover, they highlight substantial differences in microbial properties at the strain level. We anticipate that PGM-immobilized particles will advance culture-based microbiome research, emphasizing the significance of strain-level characterization. IMPORTANCE Metabolism of mucin glycans by gut bacteria represents a crucial strategy for accessing nutrient reservoirs. The efficacy of mucin glycan utilization among gut bacteria hinges on the metabolic capabilities of individual strains, necessitating meticulous strain-level characterization. In this investigation, we used glass beads chemically immobilized with mucins to selectively enrich bacteria from fecal fermentation cultures, based on their superior adhesion to and metabolism of mucin glycoproteins. These findings lend support to the hypothesis that the physical interactions between bacteria and mucin glycoprotein components directly correlate with their capacity to utilize mucins as nutrient sources. Furthermore, our study implies that physical proximity may significantly influence bacterial nutrient acquisition within the ecosystem, facilitating gut bacteria's access to carbohydrate components.
Collapse
Affiliation(s)
- Keita Nishiyama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- International Education and Research Center for Food Agricultural Immunology (CFAI), Tohoku University, Aoba-ku, Sendai, Japan
| | - Ryuta Murakami
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, Zama, Kanagawa, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Binghui Zhou
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- International Education and Research Center for Food Agricultural Immunology (CFAI), Tohoku University, Aoba-ku, Sendai, Japan
| | - Nanami Hashikura
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, Zama, Kanagawa, Japan
| | - Hiroki Kaneko
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, Zama, Kanagawa, Japan
| | - Fu Namai
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- International Education and Research Center for Food Agricultural Immunology (CFAI), Tohoku University, Aoba-ku, Sendai, Japan
| | - Wakako Ikeda-Ohtsubo
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- International Education and Research Center for Food Agricultural Immunology (CFAI), Tohoku University, Aoba-ku, Sendai, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, Zama, Kanagawa, Japan
| | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- International Education and Research Center for Food Agricultural Immunology (CFAI), Tohoku University, Aoba-ku, Sendai, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, Zama, Kanagawa, Japan
| |
Collapse
|
38
|
Yang X, Gan Y, Zhang Y, Liu Z, Geng J, Wang W. Microbial genotoxin-elicited host DNA mutations related to mitochondrial dysfunction, a momentous contributor for colorectal carcinogenesis. mSystems 2024; 9:e0088724. [PMID: 39189772 PMCID: PMC11406885 DOI: 10.1128/msystems.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Gut microbe dysbiosis increases repetitive inflammatory responses, leading to an increase in the incidence of colorectal cancer. Recent studies have revealed that specific microbial species directly instigate mutations in the host nucleus DNA, thereby accelerating the progression of colorectal cancer. Given the well-established role of mitochondrial dysfunction in promoting colorectal cancer, it is reasonable to postulate that gut microbes may induce mitochondrial gene mutations, thereby inducing mitochondrial dysfunction. In this review, we focus on gut microbial genotoxins and their known and potential targets in mitochondrial genes. Consequently, we propose that targeted disruption of genotoxin transport pathways may effectively reduce the rate of mitochondrial gene mutations and yield substantial benefits for the prevention of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue Yang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuting Zhang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
39
|
Guan HR, Li B, Zhang ZH, Wu HS, Wang N, Chen XF, Zhou CL, Bian XR, Li L, Xu WF, He XL, Dong YJ, Jiang NH, Su J, Lv GY, Chen SH. Exploring the efficacy and mechanism of Bailing capsule to improve polycystic ovary syndrome in mice based on intestinal-derived LPS-TLR4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118274. [PMID: 38697410 DOI: 10.1016/j.jep.2024.118274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive dysfunction and metabolic abnormalities, particularly characterized by insulin resistance and chronic low-grade inflammation. Multiple clinical studies have clearly demonstrated the significant efficacy and safety of the combination of Bailing capsules (BL) in the treatment of PCOS, but its pharmacological effects and mechanisms still require further study. AIM OF THE STUDY To evaluate the effect of BL on improving PCOS in mice and explore the mechanism. METHODS In this study, Dehydroepiandrosterone (DHEA) injection was administered alone and in combination with a high-fat and high-sugar diet to induce PCOS-like mouse. They were randomly divided into five groups: normal group (N), PCOS group (P), Bailing capsule low-dose group (BL-L), Bailing capsule high-dose group (BL-H) and Metformin + Daine-35 group (M + D). Firstly, the effects of BL on ovarian lesions, serum hormone levels, HOMA-IR, intestinal barrier function, inflammation levels, along with the expression of IRS1, PI3K, AKT, TLR4, Myd88, NF-κB p65, TNF-α, IL-6, and Occludin of the ovary, liver and colon were investigated. Finally, the composition of the gut microbiome of fecal was tested. RESULTS The administration of BL significantly reduced body weight, improved hormone levels, improved IR, and attenuated pathological damage to ovarian tissues, up-regulated the expression of IRS1, PI3K, and AKT in liver. It also decreased serum LPS, TNF-α, and IL-6 levels, while downregulating the expression of Myd88, TLR4, and NF-κB p65. Additionally, BL improved intestinal barrier damage and upregulated the expression of Occludin. Interestingly, the abundance of norank_f__Muribaculacea and Lactobacillus was down-regulated, while the abundance of Akkermansia was significantly up-regulated. CONCLUSION The results of the study showed that BL exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota, the improvement of insulin resistance and the intestinal-derived LPS-TLR4 inflammatory pathway. Our research will provide a theoretical basis for the clinical treatment of PCOS.
Collapse
Affiliation(s)
- Hao-Ru Guan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang Province, 313000, PR China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xian-Fang Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Cheng-Liang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xue-Ren Bian
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Lu Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Wan-Feng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xing-Lishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ying-Jie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China.
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou, Zhejiang Province, 313000, PR China.
| |
Collapse
|
40
|
Alatan H, Liang S, Shimodaira Y, Wu X, Hu X, Wang T, Luo J, Iijima K, Jin F. Supplementation with Lactobacillus helveticus NS8 alleviated behavioral, neural, endocrine, and microbiota abnormalities in an endogenous rat model of depression. Front Immunol 2024; 15:1407620. [PMID: 39346901 PMCID: PMC11428200 DOI: 10.3389/fimmu.2024.1407620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Major depressive disorder is a condition involving microbiota-gut-brain axis dysfunction. Increasing research aims to improve depression through gut microbiota regulation, including interventions such as probiotics, prebiotics, and fecal microbiota transplants. However, most research focuses on exogenous depression induced by chronic stress or drugs, with less attention given to endogenous depression. Additionally, research on gut mycobiota in depression is significantly less than that on gut bacteria. Methods In the present study, Wistar-Kyoto rats were used as an endogenous depression and treatment-resistant depression model, while Wistar rats served as controls. Differences between the two rat strains in behavior, gut bacteria, gut mycobiota, nervous system, endocrine system, immune system, and gut barrier were evaluated. Additionally, the effects of Lactobacillus helveticus NS8 supplementation were investigated. Results Wistar-Kyoto rats demonstrated increased depressive-like behaviors in the forced swimming test, reduced sucrose preference in the sucrose preference test, and decreased locomotor activity in the open field test. They also exhibited abnormal gut bacteria and mycobiota, characterized by higher bacterial α-diversity but lower fungal α-diversity, along with increased butyrate, L-tyrosine, and L-phenylalanine biosynthesis from bacteria. Furthermore, these rats showed dysfunction in the microbiota-gut-brain axis, evidenced by a hypo-serotonergic system, hyper-noradrenergic system, defective hypothalamic-pituitary-adrenal axis, compromised gut barrier integrity, heightened serum inflammation, and diminished gut immunity. A 1-month L. helveticus NS8 intervention increased the fecal abundance of L. helveticus; reduced the abundance of Bilophila and Debaryomycetaceae; decreased immobility time but increased climbing time in the forced swimming test; reduced hippocampal corticotropin-releasing hormone levels; decreased hypothalamic norepinephrine levels; increased hippocampal glucocorticoid receptor, brain-derived neurotrophic factor dopamine, and 5-hydroxyindoleacetic acid content; and improved the gut microbiota, serotonergic, and noradrenergic system. Conclusion The depressive phenotype of Wistar-Kyoto rats is not only attributed to their genetic context but also closely related to their gut microbiota. Abnormal gut microbiota and a dysfunctional microbiota-gut-brain axis play important roles in endogenous depression, just as they do in exogenous depression. Supplementing with probiotics such as L. helveticus NS8 is likely a promising approach to improve endogenous depression and treatment-resistant depression.
Collapse
Affiliation(s)
- Husile Alatan
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shan Liang
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yosuke Shimodaira
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jia Luo
- Psychology College, Sichuan Normal University, Chengdu, China
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Feng Jin
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Van Hul M, Neyrinck AM, Everard A, Abot A, Bindels LB, Delzenne NM, Knauf C, Cani PD. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin Microbiol Rev 2024; 37:e0004523. [PMID: 38940505 PMCID: PMC11391702 DOI: 10.1128/cmr.00045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.
Collapse
Affiliation(s)
- Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
| | - Audrey M Neyrinck
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Amandine Everard
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Laure B Bindels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| |
Collapse
|
42
|
Feng G, Wang G, Li T, Han C, Han K, Guo J, Wan Z, Yang X. Phosphatidylcholine Surface Hydration-Dependent Adsorption to Mucin Enhances Intestinal Mucus Barrier Function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18977-18987. [PMID: 39169607 DOI: 10.1021/acs.langmuir.4c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The crucial role of zwitterionic phosphatidylcholines (PC) within mucus gel is essential for maintaining intestinal homeostasis, while the underlying mechanism remains incompletely understood. Herein, we compared the dynamic interfacial adsorption behavior of saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated dioleoylphosphatidylcholine (DOPC) to intestinal mucin and their impact on the intestinal mucus barrier function. Results of quartz crystal microbalance with dissipation showed that the highly surface-hydrated DPPC vesicles exhibited significantly faster and more extensive adsorption to purified intestinal mucin than the slightly surface-hydrated DOPC vesicles. Utilizing an intestinal Caco-2/HT29-MTX coculture model, we observed that DPPC vesicles adsorbed much more to the mucus gel compared to DOPC vesicles. Additionally, DPPC vesicle adsorption displayed increased wetting, and converse for DOPC vesicles. Interestingly, both of them exhibited nearly the same protective effects against cell injury induced by peptic-tryptic digests of gliadin (PTG). The partial mechanism involved the binding of PTG to DPPC and DOPC within the mucus gel, thereby restricting PTG contact with the underlying epithelial cells. These findings shed light on the intricate interfacial dynamics of PC adsorption to mucin and their implications for maintaining the integrity of the intestinal mucus barrier.
Collapse
Affiliation(s)
- Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Huangdao District, Qingdao 266003, Shandong Province, China
| | - Gaoshang Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chuanwu Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
43
|
Camarini R, Marianno P, Hanampa-Maquera M, Oliveira SDS, Câmara NOS. Prenatal Stress and Ethanol Exposure: Microbiota-Induced Immune Dysregulation and Psychiatric Risks. Int J Mol Sci 2024; 25:9776. [PMID: 39337263 PMCID: PMC11431796 DOI: 10.3390/ijms25189776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Changes in maternal gut microbiota due to stress and/or ethanol exposure can have lasting effects on offspring's health, particularly regarding immunity, inflammation response, and susceptibility to psychiatric disorders. The literature search for this review was conducted using PubMed and Scopus, employing keywords and phrases related to maternal stress, ethanol exposure, gut microbiota, microbiome, gut-brain axis, diet, dysbiosis, progesterone, placenta, prenatal development, immunity, inflammation, and depression to identify relevant studies in both preclinical and human research. Only a limited number of reviews were included to support the arguments. The search encompassed studies from the 1990s to the present. This review begins by exploring the role of microbiota in modulating host health and disease. It then examines how disturbances in maternal microbiota can affect the offspring's immune system. The analysis continues by investigating the interplay between stress and dysbiosis, focusing on how prenatal maternal stress influences both maternal and offspring microbiota and its implications for susceptibility to depression. The review also considers the impact of ethanol consumption on gut dysbiosis, with an emphasis on the effects of prenatal ethanol exposure on both maternal and offspring microbiota. Finally, it is suggested that maternal gut microbiota dysbiosis may be significantly exacerbated by the combined effects of stress and ethanol exposure, leading to immune system dysfunction and chronic inflammation, which could increase the risk of depression in the offspring. These interactions underscore the potential for novel mental health interventions that address the gut-brain axis, especially in relation to maternal and offspring health.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Maylin Hanampa-Maquera
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Samuel Dos Santos Oliveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
44
|
Paone P, Latousakis D, Terrasi R, Vertommen D, Jian C, Borlandelli V, Suriano F, Johansson MEV, Puel A, Bouzin C, Delzenne NM, Salonen A, Juge N, Florea BI, Muccioli GG, Overkleeft H, Van Hul M, Cani PD. Human milk oligosaccharide 2'-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut 2024; 73:1632-1649. [PMID: 38740509 PMCID: PMC11420753 DOI: 10.1136/gutjnl-2023-330301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Dimitris Latousakis
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Romano Terrasi
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, MASSPROT platform, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valentina Borlandelli
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anthony Puel
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research (IREC), IREC Imaging Platform (2IP RRID:SCR_023378), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie Juge
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Bogdan I Florea
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Herman Overkleeft
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Gu W, Zhang H, Zhang Z, Xu M, Li X, Han Z, Fu X, Li X, Wang X, Zhang C. Continuous Oral Administration of the Superantigen Staphylococcal Enterotoxin C2 Activates Intestinal Immunity and Modulates the Gut Microbiota in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405039. [PMID: 39248343 DOI: 10.1002/advs.202405039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Staphylococcal Enterotoxin C2 (SEC2), a classical superantigen, is an antitumor immunotherapy agent. However, the injectable formulation of SEC2 limits its clinical application. Here, it is reported that oral administration of SEC2 activates the intestinal immune system and benefits intestinal health in a mouse model. These results indicate that intact SEC2 is detected in the stomach, intestine, and serum after oral administration. Continuous oral administration of SEC2 activates immune cells in gut-associated lymphoid tissues, promoting extensive differentiation and proliferation of CD4+ and CD8+ T cells and CD19+ B cells, leading to increased production of cytokines and secretory immunoglobulin A. SEC2 also enhances intestinal barrier function, as demonstrated by an increased villus length/crypt depth ratio and elevated expression of mucins and tight junction proteins. Additionally, SEC2 indirectly influenced gut microbiota, reinforcing potential probiotics and short-chain fatty acid synthesis. Enhanced differentiation of T and B cells in the spleen, coupled with elevated serum interleukin-2 levels, suggests systemic immune enhancement following oral administration of SEC2. These findings provide a scientific basis for the development of SEC2 as an oral immunostimulant for immune enhancement and anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, P. R. China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- Best Health (Guangdong) Bio-Technology Co., Ltd., Center Building, Minke Park, Xinhui Economic Development Zone, Jiangmen, 529100, P. R. China
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, P. R. China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- Key Laboratory of Superantigen Research of Liao Ning Province, No. 72 WenHua Road, Shenyang, 110016, P. R. China
| | - Xiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- Key Laboratory of Superantigen Research of Liao Ning Province, No. 72 WenHua Road, Shenyang, 110016, P. R. China
| | - Zhiyang Han
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 101408, P. R. China
| | - Xuanhe Fu
- Key Laboratory of Superantigen Research of Liao Ning Province, No. 72 WenHua Road, Shenyang, 110016, P. R. China
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110034, P. R. China
| | - Xu Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- Key Laboratory of Superantigen Research of Liao Ning Province, No. 72 WenHua Road, Shenyang, 110016, P. R. China
| | - Xiujuan Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- Key Laboratory of Superantigen Research of Liao Ning Province, No. 72 WenHua Road, Shenyang, 110016, P. R. China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang, 110016, P. R. China
- Key Laboratory of Superantigen Research of Liao Ning Province, No. 72 WenHua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
46
|
Montipó S, Menegussi EB, Fontana RC, Camassola M. Strategies for producing probiotic biomass and postbiotics from Akkermansia muciniphila in submerged cultivations incorporating prebiotic sources. World J Microbiol Biotechnol 2024; 40:314. [PMID: 39249571 DOI: 10.1007/s11274-024-04129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
This research propounds an innovative technology focused on sustainability to increase the biomass yield of Akkermansia muciniphila, the next-generation probiotic, using prebiotic sources to replace or reduce animal mucin levels. A series of experimental design approaches were developed aiming to optimize the growth of Akkermansiamuciniphila by incorporating extracts of green leafy vegetables and edible mushroom into the cultivation media. Experiments using kale extract (KE), Brassica oleracea L., associated with lyophilized mushroom extract (LME) of Pleurotus ostreatus were the most promising, highlighting the assays with 0.376% KE and 0.423% LME or 1.05% KE and 0.5% LME, in which 3.5 × 1010 CFU (Colony Forming Units) mL- 1 was achieved - higher than in experiments in optimized synthetic media. Such results enhance the potential of using KE and LME not only as mucin substitutes, but also as a source to increase Akkermansia muciniphila biomass yields and release short-chain fatty acids. The work is relevant to the food and pharmaceutical industries in the preparation of the probiotic ingredient.
Collapse
Affiliation(s)
- Sheila Montipó
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, 95070-560, Brazil.
| | | | | | - Marli Camassola
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, 95070-560, Brazil
| |
Collapse
|
47
|
Giedraitis E, Neve RL, Phelan VV. Iron content of commercial mucin contributes to compositional stability of a cystic fibrosis airway synthetic microbiota community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611695. [PMID: 39282275 PMCID: PMC11398496 DOI: 10.1101/2024.09.06.611695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In vitro culture models of mucosal environments are used to elucidate the mechanistic roles of the microbiota in human health. These models often include commercial mucins to reflect the in-situ role of mucins as an attachment site and nutrient source for the microbiota. Two types of mucins are commercially available: porcine gastric mucin (PGM) and bovine submaxillary mucin (BSM). These commercial mucins have been shown to contain iron, an essential element required by the microbiota as a co-factor for a variety of metabolic functions. In these mucin preparations, the concentration of available iron can exceed physiological concentrations present in the native environment. This unexpected source of iron influences experimental outcomes, including shaping the interactions between co-existing microbes in synthetic microbial communities used to elucidate the multispecies interactions within native microbiota. In this work, we leveraged the well-characterized iron-dependent production of secondary metabolites by the opportunistic pathogen Pseudomonas aeruginosa to aid in the development of a simple, low-cost, reproducible workflow to remove iron from commercial mucins. Using the mucosal environment of the cystic fibrosis (CF) airway as a model system, we show that P. aeruginosa is canonically responsive to iron concentration in the chemically defined synthetic CF medium complemented with semi-purified PGM, and community composition of a clinically relevant, synthetic CF airway microbial community is modulated, in part, by iron concentration in PGM.
Collapse
Affiliation(s)
- Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
48
|
Kim R, Allbritton NL. A Microphysiological System with an Anaerobic Air-Liquid Interface and Functional Mucus Layer for Coculture of Intestinal Bacteria and Primary Human Colonic Epithelium. ADVANCED MATERIALS INTERFACES 2024; 11:2400093. [PMID: 39386255 PMCID: PMC11460523 DOI: 10.1002/admi.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 10/12/2024]
Abstract
Coculture of intestinal bacteria with primary human intestinal epithelium provides a valuable tool for investigating host-colon bacterial interactions and for testing and screening therapeutics. However, most current intestinal model systems lack key physiological features of the in vivo colon, such as both a proper oxygen microenvironment and a mucus layer. In this work, a new in vitro colonic microphysiological system is demonstrated with a cell-derived, functional mucus that closely resembles the in vivo colonic mucosa and apical microenvironment by employing an anaerobic air-liquid interface culture. The human primary colon epithelial cells in this new in vitro system exhibit high cell viability (>98%) with ≈100 μm thick functional mucus layer on average. Successful coculture of model anaerobic gut bacterial strains Lactobacillus rhamnosus GG and Anaerobutyricum hallii without loss in human cell viability demonstrates that this new model can be an invaluable tool for future studies of the impact of commensal and pathogenic bacteria on the colon.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
Wang Z, Xie N, Liang X, Shu Q, Hong Y, Shi H, Wang J, Fan D, Liu N, Xu F. Gut mechanoimmunology: Shaping immune response through physical cues. Phys Life Rev 2024; 50:13-26. [PMID: 38821019 DOI: 10.1016/j.plrev.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The gut immune system embodies a complex interplay between the gut mucosal barrier, the host's immune cells, and gut microbiota. These components exist within a dynamic environment characterized by a variety of physical cues, e.g., compression, tension, shear stress, stiffness, and viscoelasticity. The physical cues can be modified under specific pathological conditions. Given their dynamic nature, comprehending the specific effects of these physical cues on the gut immune system is critical for pathological and therapeutic studies of intestinal immune-related diseases. This review aims to discuss how physical cues influence gut immunology by affecting the gut mucosal barrier, host immune cells, and gut microbiota, defining this concept as gut mechanoimmunology. This review seeks to highlight that an enhanced understanding of gut mechanoimmunology carries therapeutic implications, not only for intestinal diseases but also for extraintestinal diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiru Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yijie Hong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
50
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|