1
|
Ouladan S, Orouji E. Chimeric Antigen Receptor-T Cells in Colorectal Cancer: Pioneering New Avenues in Solid Tumor Immunotherapy. J Clin Oncol 2025:JCO2402081. [PMID: 39805063 DOI: 10.1200/jco-24-02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC. This review explores the potential of CAR-T cell therapy in CRC by analyzing clinical trials and highlighting prominent CRC-specific targets. We discuss the challenges such as immunosuppressive microenvironment, tumor heterogeneity, and physical barriers that limit CAR-T efficacy. Emerging strategies, such as logic-gated and dual-targeting CAR-T cells, offer practical solutions to overcome these hurdles. Furthermore, we explore the combination of CAR-T cell therapy with immune checkpoint inhibitors to enhance T-cell persistence and tumor infiltration. As the field continues to evolve, CAR-T cell therapies hold significant potential for revolutionizing the treatment landscape of CRC.
Collapse
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Kobayashi H, Iida T, Ochiai Y, Malagola E, Zhi X, White RA, Qian J, Wu F, Waterbury QT, Tu R, Zheng B, LaBella JS, Zamechek LB, Ogura A, Woods SL, Worthley DL, Enomoto A, Wang TC. Neuro-Mesenchymal Interaction Mediated by a β2-Adrenergic Nerve Growth Factor Feedforward Loop Promotes Colorectal Cancer Progression. Cancer Discov 2025; 15:202-226. [PMID: 39137067 PMCID: PMC11729495 DOI: 10.1158/2159-8290.cd-24-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
SIGNIFICANCE Our work demonstrates that the bidirectional interplay between sympathetic nerves and NGF-expressing CAFs drives colorectal tumorigenesis. This study also offers novel mechanistic insights into catecholamine action in colorectal cancer. Inhibiting the neuro-mesenchymal interaction by TRK blockade could be a potential strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Xiaofei Zhi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruth A. White
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jin Qian
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Quin T. Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruhong Tu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Jonathan S. LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Leah B. Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Atsushi Ogura
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Susan L. Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Daniel L. Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Lutwyche, QLD, 4030, Australia
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
3
|
Wang L, Tian G. Insight into dipeptidase 1: structure, function, and mechanism in gastrointestinal cancer diseases. Transl Cancer Res 2024; 13:7015-7025. [PMID: 39816548 PMCID: PMC11730190 DOI: 10.21037/tcr-2024-2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Dipeptidase 1 (DPEP1), initially identified as a renal membrane enzyme in mature human kidneys, plays a pivotal role in various cellular processes. It facilitates the exchange of materials and signal transduction across cell membranes, contributing significantly to dipeptide hydrolysis, glucose and lipid metabolism, immune inflammation, and ferroptosis, among other cellular functions. Extensive research has delineated the complex role of DPEP1 in oncogenesis and tumor progression, with its influence being context dependent. DPEP1 has been observed to promote oncogenic activities in hepatocellular carcinoma, non-small cell lung cancer, colorectal cancer, and lymphoblastic malignancies and is hypothesized to participate in multiple biological processes, including tumor cell invasion, metastatic spread, cellular signaling pathways, cell-matrix interactions, and evasion of immune surveillance. Conversely, DPEP1 has been identified as a tumor suppressor in pancreatic adenocarcinoma, lobular breast carcinoma, and Wilms tumor. Moreover, the role of DPEP1 in colorectal cancer has been increasingly recognized in recent research. Emerging evidence suggests that DPEP1 substantially augments the metastatic and invasive potential of colorectal cancer cells, facilitates immune evasion, and confers resistance to chemotherapeutic agents. Despite these findings, the precise molecular mechanisms remain to be fully characterized. This systematic review endeavors to elucidate the structural and functional attributes of the DPEP1 protein, with the aim to clarify its regulatory mechanisms and assess its clinical relevance in oncology. Gaining a thorough understanding of the physiological role and molecular underpinnings of DPEP1 is critical to informing the diagnostic, therapeutic, and prognostic paradigms of related pathologies. It is anticipated that these insights will facilitate the discovery of novel therapeutic targets and generate new investigative trajectories, particularly in the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Ouladan S, Orouji E. Beyond traditional subtyping: a multilayered genomic perspective on colorectal cancer. Gut 2024; 74:e7. [PMID: 38749670 PMCID: PMC11671932 DOI: 10.1136/gutjnl-2024-332325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Zhu Y, Shang L, Tang Y, Li Q, Ding L, Wang Y, Zhang T, Xie B, Ma J, Li X, Chen S, Yi X, Peng J, Liang Y, He A, Yan H, Zhu H, Zhang B, Zhu Y. Genome-Wide Profiling of H3K27ac Identifies TDO2 as a Pivotal Therapeutic Target in Metabolic Associated Steatohepatitis Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404224. [PMID: 39364706 PMCID: PMC11615751 DOI: 10.1002/advs.202404224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/13/2024] [Indexed: 10/05/2024]
Abstract
H3K27ac has been widely recognized as a representative epigenetic marker of active enhancer, while its regulatory mechanisms in pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remain elusive. Here, a genome-wide comparative study on H3K27ac activities and transcriptome profiling in high fat diet (HFD)-induced MASLD model is performed. A significantly enhanced H3K27ac density with abundant alterations of regulatory transcriptome is observed in MASLD rats. Based on integrative analysis of ChIP-Seq and RNA-Seq, TDO2 is identified as a critical contributor for abnormal lipid accumulation, transcriptionally activated by YY1-promoted H3K27ac. Furthermore, TDO2 depletion effectively protects against hepatic steatosis. In terms of mechanisms, TDO2 activates NF-κB pathway to promote macrophages M1 polarization, representing a crucial event in MASLD progression. A bovine serum albumin nanoparticle is fabricated to provide sustained release of Allopurinol (NPs-Allo) for TDO2 inhibition, possessing excellent biocompatibility and desired targeting capacity. Venous injection of NPs-Allo robustly alleviates HFD-induced metabolic disorders. This study reveals the pivotal role of TDO2 and its underlying mechanisms in pathogenesis of MASLD epigenetically and genetically. Targeting H3K27ac-TDO2-NF-κB axis may provide new insights into the pathogenesis of abnormal lipid accumulation and pave the way for developing novel strategies for MASLD prevention and treatment.
Collapse
Affiliation(s)
- Yaling Zhu
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Limeng Shang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Yunshu Tang
- Laboratory Animal Research CenterSchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Qiushuang Li
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Lin Ding
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Yi Wang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Tiantian Zhang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Bin Xie
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Jinhu Ma
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Xinyu Li
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Shuwen Chen
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Xinrui Yi
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Jin Peng
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Youfeng Liang
- Department of CardiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230001China
| | - Anyuan He
- School of Life SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Hong Yan
- Department of PathologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of BiochemistryAnhui Medical UniversityHefeiAnhui230032China
| | - Buchun Zhang
- Department of CardiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Yong Zhu
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| |
Collapse
|
6
|
Wei D, Yuan L, Xu X, Wu C, Huang Y, Zhang L, Zhang J, Jing T, Liu Y, Wang B. Exploring epigenetic dynamics unveils a super-enhancer-mediated NDRG1-β-catenin axis in modulating gemcitabine resistance in pancreatic cancer. Cancer Lett 2024; 605:217284. [PMID: 39366545 DOI: 10.1016/j.canlet.2024.217284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Chemoresistance remains a formidable challenge in pancreatic ductal adenocarcinoma (PDAC) treatment, necessitating a comprehensive exploration of underlying molecular mechanisms. This work aims to investigate the dynamic epigenetic landscape during the development of gemcitabine resistance in PDAC, with a specific focus on super-enhancers and their regulatory effects. We employed well-established gemcitabine-resistant (Gem-R) PDAC cell lines to perform high-throughput analyses of the epigenome, enhancer connectome, and transcriptome. Our findings revealed notable alterations in the epigenetic landscape and genome architecture during the transition from gemcitabine-sensitive to -resistant PDAC cells. Remarkably, we observed substantial plasticity in the activation status of super-enhancers, with a considerable proportion of these cis-elements becoming deactivated in chemo-resistant cells. Furthermore, we pinpointed the NDRG1 super-enhancer (NDRG1-SE) as a crucial regulator in gemcitabine resistance among the loss-of-function super-enhancers. NDRG1-SE deactivation induced activation of WNT/β-catenin signaling, thereby conferring gemcitabine resistance. This work underscores a NDRG1 super-enhancer deactivation-driven β-catenin pathway activation as a crucial regulator in the acquisition of gemcitabine-resistance. These findings advance our understanding of PDAC biology and provide valuable insights for the development of effective therapeutic approaches against chemoresistance in this malignant disease.
Collapse
MESH Headings
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Humans
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Epigenesis, Genetic
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
- Cell Line, Tumor
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Enhancer Elements, Genetic
- Wnt Signaling Pathway/genetics
- Wnt Signaling Pathway/drug effects
Collapse
Affiliation(s)
- Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jilong Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
7
|
Yang K, Zhu T, Sheng C, Zhu J, Xu J, Fu G. Expression and prognostic impact of VDAC3 in colorectal adenocarcinoma. Transl Cancer Res 2024; 13:4736-4751. [PMID: 39430839 PMCID: PMC11483328 DOI: 10.21037/tcr-24-402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background Colorectal adenocarcinoma (COAD) is a malignant tumor with high mortality and low 5-year survival rate. Voltage-dependent anion channel 3 (VDAC3) is the least understood isoform of voltage-dependent anion-selective channels in the mitochondrial outer membrane. In this thesis, we aimed to investigate the prognostic value of VDAC3 and provide new insights into colon adenocarcinoma. Methods We utilized The Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) database, Human Protein Atlas online database, and the University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) database to analyze VDAC3 expression in COAD and assess patient survival rates. Univariate and multivariate Cox regression analyses were employed to evaluate VDAC3's prognostic significance for COAD. Gene set variation analysis (GSVA) was utilized to explore COAD-related signaling pathways associated with VDAC3. Additionally, we predicted the relationship between VDAC3 expression and anticancer drug sensitivity using the CellMiner database. Results In the TCGA database, VDAC3 demonstrated elevated expression levels in COAD, which was further validated by findings from the GEO database. Survival analysis conducted using Kaplan-Meier (K-M) curves highlighted that the patients with decreased VDAC3 expression exhibited significantly shorter overall survival durations. VDAC3 expression demonstrated correlation with COAD pathological stage. VDAC3 gene mutation was linked to COAD outcomes. Cox regression analysis showed that VDAC3 was an independent predictor. In addition, GSVA analysis showed that VDAC3 was closely related to mitochondria-related biological processes and involved in the occurrence and development of mitochondria-related diseases. Finally, analysis of the CellMiner database predicted that VDAC3 expression was positively correlated with chelerythrine and cladribine, but negatively correlated with Ergenyl. Conclusions Our study suggests that VDAC3 may be a potential biomarker for early diagnosis, prognosis, and treatment of COAD.
Collapse
Affiliation(s)
- Kaiqiang Yang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caixia Sheng
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Hua X, Zhao C, Tian J, Wang J, Miao X, Zheng G, Wu M, Ye M, Liu Y, Zhou Y. A Ctnnb1 enhancer transcriptionally regulates Wnt signaling dosage to balance homeostasis and tumorigenesis of intestinal epithelia. eLife 2024; 13:RP98238. [PMID: 39320349 PMCID: PMC11424096 DOI: 10.7554/elife.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 - the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.
Collapse
Affiliation(s)
- Xiaojiao Hua
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
11
|
Mouillet-Richard S, Cazelles A, Sroussi M, Gallois C, Taieb J, Laurent-Puig P. Clinical Challenges of Consensus Molecular Subtype CMS4 Colon Cancer in the Era of Precision Medicine. Clin Cancer Res 2024; 30:2351-2358. [PMID: 38564259 PMCID: PMC11145159 DOI: 10.1158/1078-0432.ccr-23-3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Over the past decade, our understanding of the diversity of colorectal cancer has expanded significantly, raising hopes of tailoring treatments more precisely for individual patients. A key achievement in this direction was the establishment of the consensus molecular classification, particularly identifying the challenging consensus molecular subtype (CMS) CMS4 associated with poor prognosis. Because of its aggressive nature, extensive research is dedicated to the CMS4 subgroup. Recent years have unveiled molecular and microenvironmental features at the tissue level specific to CMS4 colorectal cancer. This has paved the way for mechanistic studies and the development of preclinical models. Simultaneously, efforts have been made to easily identify patients with CMS4 colorectal cancer. Reassessing clinical trial results through the CMS classification lens has improved our understanding of the therapeutic challenges linked to this subtype. Exploration of the biology of CMS4 colorectal cancer is yielding potential biomarkers and novel treatment approaches. This overview aims to provide insights into the clinico-biological characteristics of the CMS4 subgroup, the molecular pathways driving this subtype, and available diagnostic options. We also emphasize the therapeutic challenges associated with this subtype, offering potential explanations. Finally, we summarize the current tailored treatments for CMS4 colorectal cancer emerging from fundamental and preclinical studies.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Antoine Cazelles
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marine Sroussi
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Gallois
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Gastroenterology and Gastrointestinal Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Julien Taieb
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Gastroenterology and Gastrointestinal Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Team “Personalized medicine, pharmacogenomics, therapeutic optimization”, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Department of Biology, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| |
Collapse
|
12
|
Chen Z, Guo X, Tao R, Huyghe JR, Law PJ, Fernandez-Rozadilla C, Ping J, Jia G, Long J, Li C, Shen Q, Xie Y, Timofeeva MN, Thomas M, Schmit SL, Díez-Obrero V, Devall M, Moratalla-Navarro F, Fernandez-Tajes J, Palles C, Sherwood K, Briggs SEW, Svinti V, Donnelly K, Farrington SM, Blackmur J, Vaughan-Shaw PG, Shu XO, Lu Y, Broderick P, Studd J, Harrison TA, Conti DV, Schumacher FR, Melas M, Rennert G, Obón-Santacana M, Martín-Sánchez V, Oh JH, Kim J, Jee SH, Jung KJ, Kweon SS, Shin MH, Shin A, Ahn YO, Kim DH, Oze I, Wen W, Matsuo K, Matsuda K, Tanikawa C, Ren Z, Gao YT, Jia WH, Hopper JL, Jenkins MA, Win AK, Pai RK, Figueiredo JC, Haile RW, Gallinger S, Woods MO, Newcomb PA, Duggan D, Cheadle JP, Kaplan R, Kerr R, Kerr D, Kirac I, Böhm J, Mecklin JP, Jousilahti P, Knekt P, Aaltonen LA, Rissanen H, Pukkala E, Eriksson JG, Cajuso T, Hänninen U, Kondelin J, Palin K, Tanskanen T, Renkonen-Sinisalo L, Männistö S, Albanes D, Weinstein SJ, Ruiz-Narvaez E, Palmer JR, Buchanan DD, Platz EA, Visvanathan K, Ulrich CM, Siegel E, Brezina S, Gsur A, Campbell PT, Chang-Claude J, Hoffmeister M, Brenner H, Slattery ML, Potter JD, Tsilidis KK, Schulze MB, Gunter MJ, Murphy N, Castells A, Castellví-Bel S, Moreira L, Arndt V, Shcherbina A, Bishop DT, Giles GG, Southey MC, Idos GE, McDonnell KJ, Abu-Ful Z, Greenson JK, Shulman K, Lejbkowicz F, Offit K, Su YR, Steinfelder R, Keku TO, van Guelpen B, Hudson TJ, Hampel H, Pearlman R, Berndt SI, Hayes RB, Martinez ME, Thomas SS, Pharoah PDP, Larsson SC, Yen Y, Lenz HJ, White E, Li L, Doheny KF, Pugh E, Shelford T, Chan AT, Cruz-Correa M, Lindblom A, Hunter DJ, Joshi AD, Schafmayer C, Scacheri PC, Kundaje A, Schoen RE, Hampe J, Stadler ZK, Vodicka P, Vodickova L, Vymetalkova V, Edlund CK, Gauderman WJ, Shibata D, Toland A, Markowitz S, Kim A, Chanock SJ, van Duijnhoven F, Feskens EJM, Sakoda LC, Gago-Dominguez M, Wolk A, Pardini B, FitzGerald LM, Lee SC, Ogino S, Bien SA, Kooperberg C, Li CI, Lin Y, Prentice R, Qu C, Bézieau S, Yamaji T, Sawada N, Iwasaki M, Le Marchand L, Wu AH, Qu C, McNeil CE, Coetzee G, Hayward C, Deary IJ, Harris SE, Theodoratou E, Reid S, Walker M, Ooi LY, Lau KS, Zhao H, Hsu L, Cai Q, Dunlop MG, Gruber SB, Houlston RS, Moreno V, Casey G, Peters U, Tomlinson I, Zheng W. Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes. Nat Commun 2024; 15:3557. [PMID: 38670944 PMCID: PMC11053150 DOI: 10.1038/s41467-024-47399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Philip J Law
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Ceres Fernandez-Rozadilla
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
- Genomic Medicine Group, Instituto de Investigacion Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chao Li
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Shen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Maria N Timofeeva
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Danish Institute for Advanced Study, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Matthew Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ferran Moratalla-Navarro
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Juan Fernandez-Tajes
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kitty Sherwood
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sarah E W Briggs
- Department of Public Health, Richard Doll Building, University of Oxford, Oxford, UK
| | - Victoria Svinti
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kevin Donnelly
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James Blackmur
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Peter G Vaughan-Shaw
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Broderick
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - James Studd
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David V Conti
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fredrick R Schumacher
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gad Rennert
- Clalit National Cancer Control Center, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Vicente Martín-Sánchez
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Biomedicine Institute, University of León, León, Spain
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Aesun Shin
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, South Korea
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keitaro Matsuo
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Cedars-Sinai Cancer Research Center for Health Equity, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Michael O Woods
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John, ON, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - David Duggan
- City of Hope National Medical Center, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Richard Kaplan
- MRC Clinical Trials Unit, Medical Research Council, Cardiff, UK
| | - Rachel Kerr
- Department of Oncology, University of Oxford, Oxford, UK
| | - David Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Iva Kirac
- Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Jan Böhm
- Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | | | - Pekka Jousilahti
- Department of Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Paul Knekt
- Department of Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Harri Rissanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eero Pukkala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Johan G Eriksson
- Folkhälsan Research Centre, University of Helsinki, Helsinki, Finland
- Human Potential Translational Research Programme, National University of Singapore, Singapore, Singapore
- Unit of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tatiana Cajuso
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Ulrika Hänninen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Johanna Kondelin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Tomas Tanskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Julie R Palmer
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Erin Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg, Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregory E Idos
- Department of Medical Oncology and Center For Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Kevin J McDonnell
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Medical Oncology and Center For Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Zomoroda Abu-Ful
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Joel K Greenson
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Katerina Shulman
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Flavio Lejbkowicz
- Clalit National Cancer Control Center, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit Health Services, Personalized Genomic Service, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yu-Ru Su
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Robert Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Marie Elena Martinez
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
- Population Sciences, Disparities and Community Engagement, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yun Yen
- Taipei Medical University, Taipei, Taiwan
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Li Li
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tameka Shelford
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew T Chan
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia Cruz-Correa
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Zsofia K Stadler
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Christopher K Edlund
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amanda Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Sanford Markowitz
- Departments of Medicine and Genetics, Case Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | - Andre Kim
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franzel van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Public Foundation of Genomic Medicine, Servicio Galego de Saude, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Pardini
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, (TO), Italy
- Italian Institute for Genomic Medicine, Candiolo Cancer Institute FPO-IRCCS, Candiolo, (TO), Italy
| | - Liesel M FitzGerald
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Soo Chin Lee
- National University Cancer Institute, Singapore, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ross Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | | | - Anna H Wu
- Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenxu Qu
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caroline E McNeil
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Stuart Reid
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marion Walker
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Li Yin Ooi
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephen B Gruber
- Department of Medical Oncology and Center For Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Valdeolivas A, Amberg B, Giroud N, Richardson M, Gálvez EJC, Badillo S, Julien-Laferrière A, Túrós D, Voith von Voithenberg L, Wells I, Pesti B, Lo AA, Yángüez E, Das Thakur M, Bscheider M, Sultan M, Kumpesa N, Jacobsen B, Bergauer T, Saez-Rodriguez J, Rottenberg S, Schwalie PC, Hahn K. Profiling the heterogeneity of colorectal cancer consensus molecular subtypes using spatial transcriptomics. NPJ Precis Oncol 2024; 8:10. [PMID: 38200223 PMCID: PMC10781769 DOI: 10.1038/s41698-023-00488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
The consensus molecular subtypes (CMS) of colorectal cancer (CRC) is the most widely-used gene expression-based classification and has contributed to a better understanding of disease heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity restricts its clinical application, stressing the necessity of further characterizing the composition and architecture of CRC. Here, we used Spatial Transcriptomics (ST) in combination with single-cell RNA sequencing (scRNA-seq) to decipher the spatially resolved cellular and molecular composition of CRC. In addition to mapping the intratumoral heterogeneity of CMS and their microenvironment, we identified cell communication events in the tumor-stroma interface of CMS2 carcinomas. This includes tumor growth-inhibiting as well as -activating signals, such as the potential regulation of the ETV4 transcriptional activity by DCN or the PLAU-PLAUR ligand-receptor interaction. Our study illustrates the potential of ST to resolve CRC molecular heterogeneity and thereby help advance personalized therapy.
Collapse
Affiliation(s)
- Alberto Valdeolivas
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Bettina Amberg
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Giroud
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Marion Richardson
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Eric J C Gálvez
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Solveig Badillo
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Alice Julien-Laferrière
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Demeter Túrós
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Isabelle Wells
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Benedek Pesti
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Amy A Lo
- Genentech, Inc, San Francisco, CA, USA
| | - Emilio Yángüez
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Michael Bscheider
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Marc Sultan
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Nadine Kumpesa
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Björn Jacobsen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Bergauer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Petra C Schwalie
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Kerstin Hahn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Wei J, Yu W, Wu L, Chen Z, Huang G, Hu M, Du H. Intercellular Molecular Crosstalk Networks within Invasive and Immunosuppressive Tumor Microenvironment Subtypes Associated with Clinical Outcomes in Four Cancer Types. Biomedicines 2023; 11:3057. [PMID: 38002057 PMCID: PMC10669098 DOI: 10.3390/biomedicines11113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Heterogeneity is a critical basis for understanding how the tumor microenvironment (TME) contributes to tumor progression. However, an understanding of the specific characteristics and functions of TME subtypes (subTMEs) in the progression of cancer is required for further investigations into single-cell resolutions. Here, we analyzed single-cell RNA sequencing data of 250 clinical samples with more than 200,000 cells analyzed in each cancer datum. Based on the construction of an intercellular infiltration model and unsupervised clustering analysis, four, three, three, and four subTMEs were revealed in breast, colorectal, esophageal, and pancreatic cancer, respectively. Among the subTMEs, the immune-suppressive subTME (subTME-IS) and matrix remodeling with malignant cells subTME (subTME-MRM) were highly enriched in tumors, whereas the immune cell infiltration subTME (subTME-ICI) and precancerous state of epithelial cells subTME (subTME-PSE) were less in tumors, compared with paracancerous tissues. We detected and compared genes encoding cytokines, chemokines, cytotoxic mediators, PD1, and PD-L1. The results showed that these genes were specifically overexpressed in different cell types, and, compared with normal tissues, they were upregulated in tumor-derived cells. In addition, compared with other subTMEs, the expression levels of PDCD1 and TGFB1 were higher in subTME-IS. The Cox proportional risk regression model was further constructed to identify possible prognostic markers in each subTME across four cancer types. Cell-cell interaction analysis revealed the distinguishing features in molecular pairs among different subTMEs. Notably, ligand-receptor gene pairs, including COL1A1-SDC1, COL6A2-SDC1, COL6A3-SDC1, and COL4A1-ITGA2 between stromal and tumor cells, associated with tumor invasion phenotypes, poor patient prognoses, and tumor advanced progression, were revealed in subTME-MRM. C5AR1-RPS19, LGALS9-HAVCR2, and SPP1-PTGER4 between macrophages and CD8+ T cells, associated with CD8+ T-cell dysfunction, immunosuppressive status, and tumor advanced progression, were revealed in subTME-IS. The spatial co-location information of cellular and molecular interactions was further verified by spatial transcriptome data from colorectal cancer clinical samples. Overall, our study revealed the heterogeneity within the TME, highlighting the potential pro-invasion and pro-immunosuppressive functions and cellular infiltration characteristics of specific subTMEs, and also identified the key cellular and molecular interactions that might be associated with the survival, invasion, immune escape, and classification of cancer patients across four cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.W.); (W.Y.); (L.W.); (Z.C.); (G.H.); (M.H.)
| |
Collapse
|
15
|
Naschberger E, Fuchs M, Dickel N, Kunz M, Popp B, Anchang CG, Demmler R, Lyu Y, Uebe S, Ekici AB, Geppert CI, Hartmann A, Flierl C, Petter K, Gass T, Völkl S, Scharl M, Ramming A, Günther C, Merkel S, Schellerer VS, Stürzl M. Tumor microenvironment-dependent epigenetic imprinting in the vasculature predicts colon cancer outcome. Cancer Commun (Lond) 2023; 43:1280-1285. [PMID: 37859581 PMCID: PMC10631479 DOI: 10.1002/cac2.12489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental SurgeryTranslational Research CenterUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
| | - Maximilian Fuchs
- Chair of Medical InformaticsFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
- Fraunhofer Institute of Toxicology and Experimental MedicineLower saxonyHannoverGermany
| | - Nicholas Dickel
- Chair of Medical InformaticsFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Meik Kunz
- Chair of Medical InformaticsFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
- Fraunhofer Institute of Toxicology and Experimental MedicineLower saxonyHannoverGermany
| | - Bernt Popp
- Institute of Human GeneticsUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Charles Gwellem Anchang
- Department of Medicine 3Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Richard Demmler
- Division of Molecular and Experimental SurgeryTranslational Research CenterUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
| | - Yanmin Lyu
- Division of Molecular and Experimental SurgeryTranslational Research CenterUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
| | - Steffen Uebe
- Institute of Human GeneticsUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Arif Bülent Ekici
- Institute of Human GeneticsUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Carol Immanuel Geppert
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
- Institute of PathologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
- Institute of PathologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Christian Flierl
- Division of Molecular and Experimental SurgeryTranslational Research CenterUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Katja Petter
- Division of Molecular and Experimental SurgeryTranslational Research CenterUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Tobias Gass
- Division of Molecular and Experimental SurgeryTranslational Research CenterUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Simon Völkl
- Department of Internal Medicine 5 – Hematology and OncologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Michael Scharl
- Department of Gastroenterology and HepatologyUniversity Hospital ZurichUniversity of ZurichCanton ZurichZurichSwitzerland
| | - Andreas Ramming
- Department of Medicine 3Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Claudia Günther
- Department of Medicine 1Universitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Susanne Merkel
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
- Department of SurgeryUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Vera Simone Schellerer
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
- Department of SurgeryUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
| | - Michael Stürzl
- Division of Molecular and Experimental SurgeryTranslational Research CenterUniversitätsklinikum ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenBavariaGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenBavariaGermany
| |
Collapse
|
16
|
Hosseini ST, Nemati F. Identification of GUCA2A and COL3A1 as prognostic biomarkers in colorectal cancer by integrating analysis of RNA-Seq data and qRT-PCR validation. Sci Rep 2023; 13:17086. [PMID: 37816854 PMCID: PMC10564945 DOI: 10.1038/s41598-023-44459-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
By 2030, it is anticipated that there will be 2.2 million new instances of colorectal cancer worldwide, along with 1.1 million yearly deaths. Therefore, it is critical to develop novel biomarkers that could help in CRC early detection. We performed an integrated analysis of four RNA-Seq data sets and TCGA datasets in this study to find novel biomarkers for diagnostic, prediction, and as potential therapeutic for this malignancy, as well as to determine the molecular mechanisms of CRC carcinogenesis. Four RNA-Seq datasets of colorectal cancer were downloaded from the Sequence Read Archive (SRA) database. The metaSeq package was used to integrate differentially expressed genes (DEGs). The protein-protein interaction (PPI) network of the DEGs was constructed using the string platform, and hub genes were identified using the cytoscape software. The gene ontology and KEGG pathway enrichment analysis were performed using enrichR package. Gene diagnostic sensitivity and its association to clinicopathological characteristics were demonstrated by statistical approaches. By using qRT-PCR, GUCA2A and COL3A1 were examined in colon cancer and rectal cancer. We identified 5037 differentially expressed genes, including (4752 upregulated, 285 downregulated) across the studies between CRC and normal tissues. Gene ontology and KEGG pathway analyses showed that the highest proportion of up-regulated DEGs was involved in RNA binding and RNA transport. Integral component of plasma membrane and mineral absorption pathways were identified as containing down-regulated DEGs. Similar expression patterns for GUCA2A and COL3A1 were seen in qRT-PCR and integrated RNA-Seq analysis. Additionally, this study demonstrated that GUCA2A and COL3A1 may play a significant role in the development of CRC.
Collapse
Affiliation(s)
- Seyed Taleb Hosseini
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran
- Young Researchers and Elite Club, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran
| | - Farkhondeh Nemati
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran.
| |
Collapse
|
17
|
Ling J, Tang Z, Yang W, Li Y, Dong X. Pygo2 activates BRPF1 via Pygo2-H3K4me2/3 interaction to maintain malignant progression in colon cancer. Exp Cell Res 2023; 431:113696. [PMID: 37423512 DOI: 10.1016/j.yexcr.2023.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Epigenetic alterations have essential roles during colon adenocarcinoma (COAD) progression. As the coactivator of Wnt/b-catenin signaling, Pygopus 2 (Pygo2) binds H3K4me2/3 and participate in chromatin remodeling in multiple cancers. However, It remains unclear whether the Pygo2-H3K4me2/3 association has significance in COAD. We aimed to elucidate the roles of Pygo2 in COAD. Functionally, Pygo2 inhibition attenuated cell proliferation, self-renewal capacities in vitro. Pygo2 overexpression enhanced in vivo tumor growth. Besides, Pygo2 overexpression could also enhance cell migration ability and in vivo distal metastasis. Mechanistically, Pygo2 correlates positively with BRPF1 expressions, one epigenetic reader of histone acetylation. The luciferase reporter assay and Chromatin Immunoprecipitation (ChIP)-qPCR assay were used to find that Pygo2 coordinated with H3K4me2/3 modifications to activate BRPF1 transcriptions via binding to the promoter. Both Pygo2 and BRPF1 expressed highly in tumors and Pygo2 relied on BRPF1 to accelerate COAD progression, including cell proliferation rate, migration abilities, stemness features and in vivo tumor growth. Targeting BPRF1 (GSK5959) is effective to suppress in vitro growth of Pygo2high cell lines, and has mild effect on Pygo2low cells. The subcutaneous tumor model further demonstrated that GSK5959 could effectively suppress the in vivo growth of Pygo2high COAD, but not the Pygo2low subtype. Collectively, our study represented Pygo2/BRPF1 as an epigenetic vulnerability for COAD treatment with predictive significance.
Collapse
Affiliation(s)
- Jie Ling
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zhijie Tang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Wei Yang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
18
|
Luo D, Chen M, Li Q, Wang K, Wang K, Li J, Fu G, Shan Z, Liu Q, Yang Y, Liang L, Ma Y, Qin Y, Qin J, Gao D, Li X. CUL4B-DDB1-COP1-mediated UTX downregulation promotes colorectal cancer progression. Exp Hematol Oncol 2023; 12:77. [PMID: 37679762 PMCID: PMC10483726 DOI: 10.1186/s40164-023-00440-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND UTX (encoded by KDM6A), a histone demethylase for H3K27me2/3, is frequently mutated in human cancers. However, its functional and regulatory mechanisms in colorectal cancer (CRC) remain unclear. METHODS Immunohistochemistry staining was used to investigate the clinical relevance of UTX in CRC. Additionally, we generated a spontaneous mouse CRC model with conditional Utx knockout to explore the role of UTX in the colorectal tumorigenesis. Post-translational regulation of UTX was determined by co-immunoprecipitation and immunoblot analyses. RESULTS Herein, we identify that downregulation of UTX, mediated by the Cullin 4B-DNA Damage Binding Protein-1-Constitutive Photomorphogenesis Protein 1 (CUL4B-DDB1-COP1) complex, promotes CRC progression. Utx deletion in intestinal epithelial cells enhanced the susceptibility to tumorigenesis in AOM/DSS-induced spontaneous mouse CRC model. However, this effect is primarily alleviated by GSK126, an inhibitor of histone methyltransferase EZH2. Mechanistically, EMP1 and AUTS2 are identified as putative UTX target genes mediating UTX functions in limiting intestinal tumorigenesis. Notably, the CUL4B-DDB1-COP1 complex is identified as the functional E3 ligase responsible for targeting UTX for degradation in CRC cells. Thus, Cop1 deficiency in mouse intestinal tissue results in UTX accumulation and restricts tumorigenesis. Furthermore, patient cohort analysis reveals that UTX expression is negatively correlated with clinical stage, favorable disease outcomes, and COP1 expression. CONCLUSIONS In the current study, the tumor suppressor function and regulation of UTX in CRC provide a molecular basis and the rationale to target EZH2 in UTX-deficient CRC.
Collapse
Grants
- 82103259, 81972260, 81925029, 82230098, 32221002, 81790253 National Natural Science Foundation of China
- 82103259, 81972260, 81925029, 82230098, 32221002, 81790253 National Natural Science Foundation of China
- 82103259, 81972260, 81925029, 82230098, 32221002, 81790253 National Natural Science Foundation of China
- 2020YFA0803203 and 2019YFA0802102 National Key Research and Development Program of China
- YSBR-014 CAS project for young scientists in basic research
- JCTD-2018-14 CAS Interdisciplinary Innovation Team
- CAS Interdisciplinary Innovation Team and the Shanghai Municipal
Science and Technology Major Project
Collapse
Affiliation(s)
- Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kangjunjie Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Kaihua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junqiang Li
- D1 Medical Technology (Shanghai) Co., Ltd, Shanghai, 201802, China
| | - Guoxiang Fu
- D1 Medical Technology (Shanghai) Co., Ltd, Shanghai, 201802, China
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Chowdhury S, Gupta R, Millstein J, Lin K, Haridas V, Zeineddine MA, Parseghian C, Lenz HJ, Kopetz S, Shen JP. Transcriptional Profiling and Consensus Molecular Subtype Assignment to Understand Response and Resistance to Anti-Epidermal Growth Factor Receptor Therapy in Colorectal Cancer. JCO Precis Oncol 2023; 7:e2200422. [PMID: 37487150 PMCID: PMC10581628 DOI: 10.1200/po.22.00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Activating mutations in KRAS, NRAS, and BRAF are known to cause resistance to anti-epidermal growth factor receptor (EGFR) therapy; however, only approximately 40% of patients with colorectal cancer (CRC) with RASWT tumors respond to anti-EGFR treatment. We sought to discover novel biomarkers to predict response to anti-EGFR antibody treatment in CRC and to understand mechanisms of resistance to anti-EGFR therapy. MATERIALS AND METHODS Transcriptomic profiles from three clinical and two preclinical cohorts treated with cetuximab were used to assign consensus molecular subtypes (CMS) to each sample and correlated with outcomes. RESULTS Restricting to RASWT patients, we observed that CMS2 tumors (canonical subtype) had significantly higher response rates relative to other CMS when treated with cetuximab combination with doublet chemotherapy (Okita et al cohort: 92% disease control rate (DCR) for CMS2, chi-square P = .04; CALGB/SWOG 80405 cohort: 90% objective response rate (ORR) for CMS2, chi-square P < .001) and with single-agent cetuximab (68%, chi-square P = .01). CMS2 tumors showed best response among right-sided (ORR = 80%) and left-sided (ORR = 92%) tumors in the CALGB/SWOG 80405 cohort. CMS2 cells lines were most likely to be sensitive to cetuximab (60%) and CMS2 patient-derived xenograft had the highest DCR (84%). We found Myc, E2F, and mammalian target of rapamycin pathways were consistently upregulated in resistant samples (enrichment score >1, false discovery rate <0.25). Inhibitors of these pathways in resistant cell lines exhibited additive effects with cetuximab. CONCLUSION These data suggest that CRC transcriptional profiles, when used to assign CMS, provide additional ability to predict response to anti-EGFR therapy relative to using tumor sidedness alone. Notably both right-sided and left-sided CMS2 tumors had excellent response, suggesting that anti-EGFR therapy be included as a treatment option for right-sided CMS2 tumors.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ria Gupta
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Valsala Haridas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mohammad A. Zeineddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine Parseghian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Heinz-Josef Lenz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
20
|
High P, Carmon KS. G protein-coupled receptor-targeting antibody-drug conjugates: Current status and future directions. Cancer Lett 2023; 564:216191. [PMID: 37100113 PMCID: PMC11270908 DOI: 10.1016/j.canlet.2023.216191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
In recent years, antibody-drug conjugates (ADCs) have emerged as promising anti-cancer therapeutic agents with several having already received market approval for the treatment of solid tumor and hematological malignancies. As ADC technology continues to improve and the range of indications treatable by ADCs increases, the repertoire of target antigens has expanded and will undoubtedly continue to grow. G protein-coupled receptors (GPCRs) are well-characterized therapeutic targets implicated in many human pathologies, including cancer, and represent a promising emerging target of ADCs. In this review, we will discuss the past and present therapeutic targeting of GPCRs and describe ADCs as therapeutic modalities. Moreover, we will summarize the status of existing preclinical and clinical GPCR-targeted ADCs and address the potential of GPCRs as novel targets for future ADC development.
Collapse
Affiliation(s)
- Peyton High
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Kendra S Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Rodger EJ, Gimenez G, Ajithkumar P, Stockwell PA, Almomani S, Bowden SA, Leichter AL, Ahn A, Pattison S, McCall JL, Schmeier S, Frizelle FA, Eccles MR, Purcell RV, Chatterjee A. An epigenetic signature of advanced colorectal cancer metastasis. iScience 2023; 26:106986. [PMID: 37378317 PMCID: PMC10291510 DOI: 10.1016/j.isci.2023.106986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. The majority of CRC deaths are caused by tumor metastasis, even following treatment. There is strong evidence for epigenetic changes, such as DNA methylation, accompanying CRC metastasis and poorer patient survival. Earlier detection and a better understanding of molecular drivers for CRC metastasis are of critical clinical importance. Here, we identify a signature of advanced CRC metastasis by performing whole genome-scale DNA methylation and full transcriptome analyses of paired primary cancers and liver metastases from CRC patients. We observed striking methylation differences between primary and metastatic pairs. A subset of loci showed coordinated methylation-expression changes, suggesting these are potentially epigenetic drivers that control the expression of critical genes in the metastatic cascade. The identification of CRC epigenomic markers of metastasis has the potential to enable better outcome prediction and lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Peter A. Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sarah A. Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna L. Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Antonio Ahn
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Frank A. Frizelle
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rachel V. Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, School of Health Sciences and Technology, UPES University, India
| |
Collapse
|
22
|
Luo ZH, Shi MW, Zhang Y, Wang DY, Tong YB, Pan XL, Cheng S. CenhANCER: a comprehensive cancer enhancer database for primary tissues and cell lines. Database (Oxford) 2023; 2023:7173547. [PMID: 37207350 DOI: 10.1093/database/baad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/21/2023]
Abstract
Enhancers, which are key tumorigenic factors with wide applications for subtyping, diagnosis and treatment of cancer, are attracting increasing attention in the cancer research. However, systematic analysis of cancer enhancers poses a challenge due to the lack of integrative data resources, especially those from tumor primary tissues. To provide a comprehensive enhancer profile across cancer types, we developed a cancer enhancer database CenhANCER by curating public resources including all the public H3K27ac ChIP-Seq data from 805 primary tissue samples and 671 cell line samples across 41 cancer types. In total, 57 029 408 typical enhancers, 978 411 super-enhancers and 226 726 enriched transcription factors were identified. We annotated the super-enhancers with chromatin accessibility regions, cancer expression quantitative trait loci (eQTLs), genotype-tissue expression eQTLs and genome-wide association study risk single nucleotide polymorphisms (SNPs) for further functional analysis. The identified enhancers were highly consistent with accessible chromatin regions in the corresponding cancer types, and all the 10 super-enhancer regions identified from one colorectal cancer study were recapitulated in our CenhANCER, both of which testified the high quality of our data. CenhANCER with high-quality cancer enhancer candidates and transcription factors that are potential therapeutic targets across multiple cancer types provides a credible resource for single cancer analysis and for comparative studies of various cancer types. Database URL http://cenhancer.chenzxlab.cn/.
Collapse
Affiliation(s)
- Zhi-Hui Luo
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China
| | - Meng-Wei Shi
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 97 Buxin Road, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 97 Buxin Road, Shenzhen 518000, China
| | - Yuan Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 97 Buxin Road, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 97 Buxin Road, Shenzhen 518000, China
| | - Dan-Yang Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
| | - Yi-Bo Tong
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
| | - Xue-Ling Pan
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, No. 1, Shizishan Street, Wuhan, Hubei 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 97 Buxin Road, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 97 Buxin Road, Shenzhen 518000, China
| | - ShanShan Cheng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
23
|
Lu Y, Cao Q, Yu Y, Sun Y, Jiang X, Li X. Pan-cancer analysis revealed H3K4me1 at bivalent promoters premarks DNA hypermethylation during tumor development and identified the regulatory role of DNA methylation in relation to histone modifications. BMC Genomics 2023; 24:235. [PMID: 37138231 PMCID: PMC10157937 DOI: 10.1186/s12864-023-09341-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND DNA hypermethylation at promoter CpG islands (CGIs) is a hallmark of cancers and could lead to dysregulation of gene expression in the development of cancers, however, its dynamics and regulatory mechanisms remain elusive. Bivalent genes, that direct development and differentiation of stem cells, are found to be frequent targets of hypermethylation in cancers. RESULTS Here we performed comprehensive analysis across multiple cancer types and identified that the decrease in H3K4me1 levels coincides with DNA hypermethylation at the bivalent promoter CGIs during tumorigenesis. Removal of DNA hypermethylation leads to increment of H3K4me1 at promoter CGIs with preference for bivalent genes. Nevertheless, the alteration of H3K4me1 by overexpressing or knockout LSD1, the demethylase of H3K4, doesn't change the level or pattern of DNA methylation. Moreover, LSD1 was found to regulate the expression of a bivalent gene OVOL2 to promote tumorigenesis. Knockdown of OVOL2 in LSD1 knockout HCT116 cells restored the cancer cell phenotype. CONCLUSION In summary, our work identified a universal indicator that can pre-mark DNA hypermethylation in cancer cells, and dissected the interplay between H3K4me1 and DNA hypermethylation in detail. Current study also reveals a novel mechanism underlying the oncogenic role of LSD1, providing clues for cancer therapies.
Collapse
Affiliation(s)
- Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
24
|
Menter DG, Bresalier RS. An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention. Annu Rev Pharmacol Toxicol 2023; 63:165-186. [PMID: 36202092 DOI: 10.1146/annurev-pharmtox-052020-023107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
25
|
Epigenetic Perspective of Immunotherapy for Cancers. Cells 2023; 12:cells12030365. [PMID: 36766706 PMCID: PMC9913322 DOI: 10.3390/cells12030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
Collapse
|
26
|
Chen Y, Ying Y, Wang M, Ma C, Jia M, Shi L, Wang S, Zheng X, Chen W, Shu XS. A distal super-enhancer activates oncogenic ETS2 via recruiting MECOM in inflammatory bowel disease and colorectal cancer. Cell Death Dis 2023; 14:8. [PMID: 36609474 PMCID: PMC9822945 DOI: 10.1038/s41419-022-05513-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Abnormal activities of distal cis-regulatory elements (CREs) contribute to the initiation and progression of cancer. Gain of super-enhancer (SE), a highly active distal CRE, is essential for the activation of key oncogenes in various cancers. However, the mechanism of action for most tumor-specific SEs still largely remains elusive. Here, we report that a candidate oncogene ETS2 was activated by a distal SE in inflammatory bowel disease (IBD) and colorectal cancer (CRC). The SE physically interacted with the ETS2 promoter and was required for the transcription activation of ETS2. Strikingly, the ETS2-SE activity was dramatically upregulated in both IBD and CRC tissues when compared to normal colon controls and was strongly correlated with the level of ETS2 expression. The tumor-specific activation of ETS2-SE was further validated by increased enhancer RNA transcription from this region in CRC. Intriguingly, a known IBD-risk SNP resides in the ETS2-SE and the genetic variant modulated the level of ETS2 expression through affecting the binding of an oncogenic transcription factor MECOM. Silencing of MECOM induced significant downregulation of ETS2 in CRC cells, and the level of MECOM and ETS2 correlated well with each other in CRC and IBD samples. Functionally, MECOM and ETS2 were both required for maintaining the colony-formation and sphere-formation capacities of CRC cells and MECOM was crucial for promoting migration. Taken together, we uncovered a novel disease-specific SE that distantly drives oncogenic ETS2 expression in IBD and CRC and delineated a mechanistic link between non-coding genetic variation and epigenetic regulation of gene transcription.
Collapse
Affiliation(s)
- Yongheng Chen
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ying Ying
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Maolin Wang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Canjie Ma
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Min Jia
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Liang Shi
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shilan Wang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiangyi Zheng
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wei Chen
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xing-Sheng Shu
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Zhou RW, Xu J, Martin TC, Zachem AL, He J, Ozturk S, Demircioglu D, Bansal A, Trotta AP, Giotti B, Gryder B, Shen Y, Wu X, Carcamo S, Bosch K, Hopkins B, Tsankov A, Steinhagen R, Jones DR, Asara J, Chipuk JE, Brody R, Itzkowitz S, Chio IIC, Hasson D, Bernstein E, Parsons RE. A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma. Nat Commun 2022; 13:6041. [PMID: 36253360 PMCID: PMC9576746 DOI: 10.1038/s41467-022-33377-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Tumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines. Intriguingly, this phenomenon extends to highly recurrent aberrant super-enhancers gained in CRC over normal. We find one such super-enhancer activated in epithelial cancer cells due to surrounding inflammation in the tumor microenvironment. We restore this super-enhancer and its expressed gene, PDZK1IP1, following treatment with cytokines or xenotransplantation into nude mice, thus demonstrating cell-extrinsic etiology. We demonstrate mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. We show this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens.
Collapse
Affiliation(s)
- Royce W Zhou
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Xu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tiphaine C Martin
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexis L Zachem
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John He
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sait Ozturk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew P Trotta
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yao Shen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Saul Carcamo
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kaitlyn Bosch
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin Hopkins
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander Tsankov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randolph Steinhagen
- Division of Colon and Rectal Surgery, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY, 10016, USA
| | - John Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Brody
- Mount Sinai Biorepository, Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven Itzkowitz
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Dan Hasson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Orouji E, Raman AT. Computational methods to explore chromatin state dynamics. Brief Bioinform 2022; 23:6751148. [PMID: 36208178 PMCID: PMC9677473 DOI: 10.1093/bib/bbac439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
The human genome is marked by several singular and combinatorial histone modifications that shape the different states of chromatin and its three-dimensional organization. Genome-wide mapping of these marks as well as histone variants and open chromatin regions is commonly carried out via profiling DNA-protein binding or via chromatin accessibility methods. After the generation of epigenomic datasets in a cell type, statistical models can be used to annotate the noncoding regions of DNA and infer the combinatorial histone marks or chromatin states (CS). These methods involve partitioning the genome and labeling individual segments based on their CS patterns. Chromatin labels enable the systematic discovery of genomic function and activity and can label the gene body, promoters or enhancers without using other genomic maps. CSs are dynamic and change under different cell conditions, such as in normal, preneoplastic or tumor cells. This review aims to explore the available computational tools that have been developed to capture CS alterations under two or more cellular conditions.
Collapse
Affiliation(s)
- Elias Orouji
- Corresponding author: Elias Orouji, Epigenomics Lab, Princess Margaret Cancer Centre, University Health Network (UHN), 101 College St., Toronto, ON M5G 1 L7, Canada. Tel: +1 (917) 647-2202; E-mail:
| | - Ayush T Raman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Callahan SC, Kochat V, Liu Z, Raman AT, Divenko M, Schulz J, Terranova CJ, Ghosh AK, Tang M, Johnson FM, Wang J, Skinner HD, Pickering CR, Myers JN, Rai K. High enhancer activity is an epigenetic feature of HPV negative atypical head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:936168. [PMID: 35927986 PMCID: PMC9343809 DOI: 10.3389/fcell.2022.936168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with significant mortality and frequent recurrence. Prior efforts to transcriptionally classify HNSCC into groups of varying prognoses have identified four accepted molecular subtypes of the disease: Atypical (AT), Basal (BA), Classical (CL), and Mesenchymal (MS). Here, we investigate the active enhancer landscapes of these subtypes using representative HNSCC cell lines and identify samples belonging to the AT subtype as having increased enhancer activity compared to the other 3 HNSCC subtypes. Cell lines belonging to the AT subtype are more resistant to enhancer-blocking bromodomain inhibitors (BETi). Examination of nascent transcripts reveals that both AT TCGA tumors and cell lines express higher levels of enhancer RNA (eRNA) transcripts for enhancers controlling BETi resistance pathways, such as lipid metabolism and MAPK signaling. Additionally, investigation of higher-order chromatin structure suggests more enhancer-promoter (E-P) contacts in the AT subtype, including on genes identified in the eRNA analysis. Consistently, known BETi resistance pathways are upregulated upon exposure to these inhibitors. Together, our results identify that the AT subtype of HNSCC is associated with higher enhancer activity, resistance to enhancer blockade, and increased signaling through pathways that could serve as future targets for sensitizing HNSCC to BET inhibition.
Collapse
Affiliation(s)
- S. Carson Callahan
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Veena Kochat
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhiyi Liu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ayush T. Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, United States
- Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Margarita Divenko
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan Schulz
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christopher J. Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Archit K. Ghosh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Faye M. Johnson
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Heath D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
30
|
Zeng C, Qi G, Shen Y, Li W, Zhu Q, Yang C, Deng J, Lu W, Liu Q, Jin J. DPEP1 promotes drug resistance in colon cancer cells by forming a positive feedback loop with ASCL2. Cancer Med 2022; 12:412-424. [PMID: 35670012 PMCID: PMC9844606 DOI: 10.1002/cam4.4926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Drug resistance is an important factor affecting the efficacy of chemotherapy in patients with colon cancer. However, clinical markers for diagnosing drug resistance of tumor cells are not only a few in number, but also low in specificity, and the mechanism of action of tumor cell drug resistance remains unclear. METHODS Dipeptidase 1 (DPEP1) expression was analyzed using the cancer genome atlas (TCGA) and genotype-Tissue Expression pan-cancer data. Survival analysis was performed using the survival package in R software to assess the prognostic value of DPEP1 expression in colon cancer. Correlation and Venn analyses were adopted to identify key genes. Immunohistochemistry, western blot, qRT-PCR, Co-immunoprecipitation, and dual-luciferase reporter experiments were carried out to explore the underlying associations between DPEP1 and Achaete scute-like 2 (ASCL2). MTT assays were used to evaluate the role of DPEP1 and ASCL2 in colon cancer drug resistance. RESULTS DPEP1 was highly expressed in colon cancer tissues. DPEP1 expression correlated negatively with disease-specific survival but not with overall survival. Bioinformatics analysis and experiments showed that the expressions of DPEP1 and ASCL2 in colon cancer tissues were markedly positively correlated. Mechanistic research indicated that DPEP1 enhanced the stability of protein ASCL2 by inhibiting its ubiquitination-mediated degradation. In turn, ASCL2 functioned as a transcription factor to activate the transcriptional activity of the DPEP1 gene and boost its expression. Furthermore, DPEP1 also could enhance the expression of colon cancer stem cell markers (LGR5, CD133, and CD44), which strengthened the tolerance of colon cancer cells to chemotherapy drugs. CONCLUSIONS Our findings reveal that the DPEP1 enhances the stemness of tumor cells by forming a positive feedback loop with ASCL2 to improve resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Guoping Qi
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Ying Shen
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenjing Li
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qi Zhu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Chunxia Yang
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianzhong Deng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenbin Lu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qian Liu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianhua Jin
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| |
Collapse
|
31
|
Khaliq AM, Erdogan C, Kurt Z, Turgut SS, Grunvald MW, Rand T, Khare S, Borgia JA, Hayden DM, Pappas SG, Govekar HR, Kam AE, Reiser J, Turaga K, Radovich M, Zang Y, Qiu Y, Liu Y, Fishel ML, Turk A, Gupta V, Al-Sabti R, Subramanian J, Kuzel TM, Sadanandam A, Waldron L, Hussain A, Saleem M, El-Rayes B, Salahudeen AA, Masood A. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol 2022; 23:113. [PMID: 35538548 PMCID: PMC9092724 DOI: 10.1186/s13059-022-02677-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) consensus molecular subtypes (CMS) have different immunological, stromal cell, and clinicopathological characteristics. Single-cell characterization of CMS subtype tumor microenvironments is required to elucidate mechanisms of tumor and stroma cell contributions to pathogenesis which may advance subtype-specific therapeutic development. We interrogate racially diverse human CRC samples and analyze multiple independent external cohorts for a total of 487,829 single cells enabling high-resolution depiction of the cellular diversity and heterogeneity within the tumor and microenvironmental cells. RESULTS Tumor cells recapitulate individual CMS subgroups yet exhibit significant intratumoral CMS heterogeneity. Both CMS1 microsatellite instability (MSI-H) CRCs and microsatellite stable (MSS) CRC demonstrate similar pathway activations at the tumor epithelial level. However, CD8+ cytotoxic T cell phenotype infiltration in MSI-H CRCs may explain why these tumors respond to immune checkpoint inhibitors. Cellular transcriptomic profiles in CRC exist in a tumor immune stromal continuum in contrast to discrete subtypes proposed by studies utilizing bulk transcriptomics. We note a dichotomy in tumor microenvironments across CMS subgroups exists by which patients with high cancer-associated fibroblasts (CAFs) and C1Q+TAM content exhibit poor outcomes, providing a higher level of personalization and precision than would distinct subtypes. Additionally, we discover CAF subtypes known to be associated with immunotherapy resistance. CONCLUSIONS Distinct CAFs and C1Q+ TAMs are sufficient to explain CMS predictive ability and a simpler signature based on these cellular phenotypes could stratify CRC patient prognosis with greater precision. Therapeutically targeting specific CAF subtypes and C1Q + TAMs may promote immunotherapy responses in CRC patients.
Collapse
Affiliation(s)
- Ateeq M Khaliq
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cihat Erdogan
- Isparta University of Applied Sciences, Isparta, Turkey
| | - Zeyneb Kurt
- Northumbria University, Newcastle Upon Tyne, UK
| | | | | | - Tim Rand
- Tempus Labs, Inc., Chicago, IL, USA
| | | | | | | | - Sam G Pappas
- Rush University Medical Center, Chicago, IL, USA
| | | | - Audrey E Kam
- Rush University Medical Center, Chicago, IL, USA
| | | | | | - Milan Radovich
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yong Zang
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yingjie Qiu
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Anita Turk
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vineet Gupta
- Rush University Medical Center, Chicago, IL, USA
| | - Ram Al-Sabti
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Arif Hussain
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Bassel El-Rayes
- University of Alabama, O'Neil Comprehensive Cancer Institute, Birmingham, AL, USA
| | | | - Ashiq Masood
- Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Zhang ZL, Yu PF, Ling ZQ. The role of KMT2 gene in human tumors. Histol Histopathol 2022; 37:323-334. [PMID: 35233758 DOI: 10.14670/hh-18-447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Histone methylation plays a crucial role in the regulation of gene transcriptional expression, and aberration of methylation-modifying enzyme genes can lead to a variety of genetic diseases, including human cancers. The histone modified protein KMT2 (lysin methyltransferase) family are involved in cell proliferation, growth, development and differentiation through regulating gene expression, and are closely related with many blood cancers and solid tumors. In recent years, several studies have shown that mutations in the KMT2 gene occur frequently in a variety of human cancers and the mutation status of the KMT2 gene may be correlated with the occurrence, development and prognosis of some tumors. Research uncovering the clinical characteristics and molecular mechanisms of KMT2 mutation in human tumors will be helpful for early diagnosis and prognosis of tumors as well as drug development for targeted therapies.
Collapse
Affiliation(s)
- Zhi-Long Zhang
- Zhejiang Cancer Institute (Experimental Research Center), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China.,The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou, PR China
| | - Peng-Fei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute (Experimental Research Center), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China.
| |
Collapse
|