1
|
Liang Y, Du M, Li X, Gao J, Li Q, Li H, Li J, Gao X, Cong H, Huang Y, Li X, Wang L, Cui J, Gan Y, Tu H. Upregulation of Lactobacillus spp. in gut microbiota as a novel mechanism for environmental eustress-induced anti-pancreatic cancer effects. Gut Microbes 2025; 17:2470372. [PMID: 39988618 PMCID: PMC11853549 DOI: 10.1080/19490976.2025.2470372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited effective treatment options. Emerging evidence links enriched environment (EE)-induced eustress to PDAC inhibition. However, the underlying mechanisms remain unclear. In this study, we explored the role of gut microbiota in PDAC-suppressive effects of EE. We demonstrated that depletion of gut microbiota with antibiotics abolished EE-induced tumor suppression, while fecal microbiota transplantation (FMT) from EE mice significantly inhibited tumor growth in both subcutaneous and orthotopic PDAC models housed in standard environment. 16S rRNA sequencing revealed that EE enhanced gut microbiota diversity and selectively enriched probiotic Lactobacillus, particularly L. reuteri. Treatment with L. reuteri significantly suppressed PDAC tumor growth and increased natural killer (NK) cell infiltration into the tumor microenvironment. Depletion of NK cells alleviated the anti-tumor effects of L. reuteri, underscoring the essential role of NK cell-mediated immunity in anti-tumor response. Clinical analysis of PDAC patients showed that higher fecal Lactobacillus abundance correlated with improved progression-free and overall survival, further supporting the therapeutic potential of L. reuteri in PDAC. Overall, this study identifies gut microbiota as a systemic regulator of PDAC under psychological stress. Supplementation of psychobiotic Lactobacillus may offer a novel therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yiyi Liang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Gao
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinran Li
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Taba N, Fischer K, Estonian Biobank Research Team, Org E, Aasmets O. A novel framework for assessing causal effect of microbiome on health: long-term antibiotic usage as an instrument. Gut Microbes 2025; 17:2453616. [PMID: 39849320 PMCID: PMC11776458 DOI: 10.1080/19490976.2025.2453616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Assessing causality is undoubtedly one of the key questions in microbiome studies for the upcoming years. Since randomized trials in human subjects are often unethical or difficult to pursue, analytical methods to derive causal effects from observational data deserve attention. As simple covariate adjustment is not likely to account for all potential confounders, the idea of instrumental variable (IV) analysis is worth exploiting. Here we propose a novel framework of antibiotic instrumental variable regression (AB-IVR) for estimating the causal relationships between microbiome and various diseases. We rely on the recent studies showing that antibiotic treatment has a cumulative long-term effect on the microbiome, resulting in individuals with higher antibiotic usage to have a more perturbed microbiome. We apply the AB-IVR method on the Estonian Biobank data and show that the microbiome has a causal role in numerous diseases including migraine, depression and irritable bowel syndrome. We show with a plethora of sensitivity analyses that the identified causal effects are robust and propose ways for further methodological developments.
Collapse
Affiliation(s)
- Nele Taba
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Elin Org
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Oliver Aasmets
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Farinella R, Felici A, Peduzzi G, Testoni SGG, Costello E, Aretini P, Blazquez-Encinas R, Oz E, Pastore A, Tacelli M, Otlu B, Campa D, Gentiluomo M. From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction. Semin Cancer Biol 2025; 112:71-92. [PMID: 40147701 DOI: 10.1016/j.semcancer.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized as one of the most lethal malignancies, characterized by late-stage diagnosis and limited therapeutic options. Risk stratification has traditionally been performed using epidemiological studies and genetic analyses, through which key risk factors, including smoking, diabetes, chronic pancreatitis, and inherited predispositions, have been identified. However, the multifactorial nature of PDAC has often been insufficiently addressed by these methods, leading to limited precision in individualized risk assessments. Advances in artificial intelligence (AI) have been proposed as a transformative approach, allowing the integration of diverse datasets-spanning genetic, clinical, lifestyle, and imaging data into dynamic models capable of uncovering novel interactions and risk profiles. In this review, the evolution of PDAC risk stratification is explored, with classical epidemiological frameworks compared to AI-driven methodologies. Genetic insights, including genome-wide association studies and polygenic risk scores, are discussed, alongside AI models such as machine learning, radiomics, and deep learning. Strengths and limitations of these approaches are evaluated, with challenges in clinical translation, such as data scarcity, model interpretability, and external validation, addressed. Finally, future directions are proposed for combining classical and AI-driven methodologies to develop scalable, personalized predictive tools for PDAC, with the goal of improving early detection and patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Sabrina Gloria Giulia Testoni
- Division of Gastroenterology and Gastrointestinal Endoscopy, IRCCS Policlinico San Donato, Vita-Salute San Raffaele University, Milan, Italy
| | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Ricardo Blazquez-Encinas
- Department of Cell Biology, Physiology and Immunology, University of Cordoba / Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elif Oz
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Matteo Tacelli
- Pancreas Translational & Clinical Research Center, Pancreato-Biliary Endoscopy and Endosonography Division, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Burçak Otlu
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
4
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Murray K, Oldfield L, Stefanova I, Gentiluomo M, Aretini P, O'Sullivan R, Greenhalf W, Paiella S, Aoki MN, Pastore A, Birch-Ford J, Rao BH, Uysal-Onganer P, Walsh CM, Hanna GB, Narang J, Sharma P, Campa D, Rizzato C, Turtoi A, Sever EA, Felici A, Sucularli C, Peduzzi G, Öz E, Sezerman OU, Van der Meer R, Thompson N, Costello E. Biomarkers, omics and artificial intelligence for early detection of pancreatic cancer. Semin Cancer Biol 2025; 111:76-88. [PMID: 39986585 DOI: 10.1016/j.semcancer.2025.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed in its late stages when treatment options are limited. Unlike other common cancers, there are no population-wide screening programmes for PDAC. Thus, early disease detection, although urgently needed, remains elusive. Individuals in certain high-risk groups are, however, offered screening or surveillance. Here we explore advances in understanding high-risk groups for PDAC and efforts to implement biomarker-driven detection of PDAC in these groups. We review current approaches to early detection biomarker development and the use of artificial intelligence as applied to electronic health records (EHRs) and social media. Finally, we address the cost-effectiveness of applying biomarker strategies for early detection of PDAC.
Collapse
Affiliation(s)
- Kate Murray
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Oldfield
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Irena Stefanova
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Rachel O'Sullivan
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - William Greenhalf
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Salvatore Paiella
- Pancreatic Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Italy
| | - Mateus N Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Brazil
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, Scuola Normale Superiore di Pisa, Italy
| | - James Birch-Ford
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Bhavana Hemantha Rao
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Pinar Uysal-Onganer
- School of Life Sciences, Cancer Mechanisms and Biomarkers Group, The University of Westminster, United Kingdom
| | - Caoimhe M Walsh
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | | | | | | | | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, France
| | - Elif Arik Sever
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Turkiye
| | | | | | | | - Elif Öz
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Turkiye
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Turkiye
| | | | | | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
6
|
Zhou YD, Komnick MR, Sepulveda F, Liu G, Nieves-Ortiz E, Meador K, Ndatabaye O, Fatkhullina A, Bozicevich A, Juengel B, Wu-Woods NJ, Naydenkov PM, Kent J, Christiansen N, Madariaga ML, Witkowski P, Ismagilov RF, Esterházy D. Inducible, but not constitutive, pancreatic REG/Reg isoforms are regulated by intestinal microbiota and pancreatic diseases. Mucosal Immunol 2025:S1933-0219(25)00050-9. [PMID: 40398680 DOI: 10.1016/j.mucimm.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/21/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The REG/Reg gene locus encodes a conserved family of potent antimicrobial but also pancreatitis-associated proteins. Here we investigated whether REG/Reg family members differ in their baseline expression levels and abilities to be regulated in the pancreas and gut upon perturbations. We found, in humans and mice, the pancreas and gut differed in REG/Reg isoform levels and preferences, with the duodenum most resembling the pancreas. Pancreatic acinar cells and intestinal enterocytes were the dominant REG producers. Intestinal symbiotic microbes regulated the expression of the same, select Reg members in gut and pancreas. These Reg members had the most STAT3-binding sites close to the transcription start sites and were partially IL-22 dependent. We thus categorized them as "inducible" and others as "constitutive". Indeed, in pancreatic ductal adenocarcinoma and pancreatitis models, only inducible Reg members were upregulated in the pancreas. While intestinal Reg expression remained unchanged upon pancreatic perturbation, pancreatitis altered the microbial composition of the duodenum and feces shortly after disease onset. Our study reveals differential usage and regulation of REG/Reg isoforms as a mechanism for tissue-specific innate immunity, highlights the intimate connection of pancreas and duodenum, and implies a gut-to-pancreas communication axis resulting in a coordinated Reg response.
Collapse
Affiliation(s)
- Yixuan D Zhou
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Macy R Komnick
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Grace Liu
- The College, University of Chicago, Chicago, IL, USA
| | - Elida Nieves-Ortiz
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Kelsey Meador
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Aliia Fatkhullina
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Asha Bozicevich
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Braden Juengel
- The Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Natalie J Wu-Woods
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Paulina M Naydenkov
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Johnathan Kent
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | | | | | - Piotr Witkowski
- The Transplantation Institute, University of Chicago, Chicago, IL, USA
| | - Rustem F Ismagilov
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Daria Esterházy
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Hesami Z, Sabzehali F, Khorsand B, Alipour S, Sadeghi A, Asri N, Pazienza V, Houri H. Microbiota as a state-of-the-art approach in precision medicine for pancreatic cancer management: A comprehensive systematic review. iScience 2025; 28:112314. [PMID: 40276756 PMCID: PMC12019022 DOI: 10.1016/j.isci.2025.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Emerging evidence suggests that harnessing the microbiome holds promise for innovative diagnostic and therapeutic strategies in the management of pancreatic cancer (PC). This study aims to systematically summarize the microbial markers associated with PC and assess their potential application in clinical outcome. Forty-one studies were included to assess the associations between microbial markers and PC. Among these, 13 were developed prediction models related to the microbiome in which the highest diagnostic and prognostic model belong to blood and intratumor markers, respectively. Notably, findings that utilize microbiotas from various body sites were elucidated, demonstrating their importance as unique signatures in biomarker discovery for diverse clinical applications. This review provides unique perspectives on overcoming challenges in PC by highlighting potential microbial-related markers as non-invasive approaches. Further clinical studies should evaluate the utility and accuracy of key indicators in the microbiome as a personalized tool for managing PC.
Collapse
Affiliation(s)
- Zeinab Hesami
- Student Research Committee, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Sabzehali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Peduzzi G, Archibugi L, Farinella R, de Leon Pisani RP, Vodickova L, Vodicka P, Kraja B, Sainz J, Bars-Cortina D, Daniel N, Silvestri R, Uysal-Onganer P, Landi S, Dulińska-Litewka J, Comandatore A, Campa D, Hughes DJ, Rizzato C. The exposome and pancreatic cancer, lifestyle and environmental risk factors for PDAC. Semin Cancer Biol 2025; 113:100-129. [PMID: 40368260 DOI: 10.1016/j.semcancer.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
Pancreatic cancer (PC), particularly pancreatic ductal adenocarcinoma (PDAC), is a significant global health issue with high mortality rates. PDAC, though only 3 % of cancer diagnoses, causes 7 % of cancer deaths due to its severity and asymptomatic early stages. Risk factors include lifestyle choices, environmental exposures, and genetic predispositions. Conditions like new-onset type 2 diabetes and chronic pancreatitis also contribute significantly. Modifiable risk factors include smoking, alcohol consumption, non-alcoholic fatty pancreatic disease (NAFPD), and obesity. Smoking and heavy alcohol consumption increase PC risk, while NAFPD and obesity, particularly central adiposity, contribute through chronic inflammation and insulin resistance. Refined sugar and sugar-sweetened beverages (SSBs) are also linked to increased PC risk, especially among younger individuals. Hormonal treatments and medications like statins, aspirin, and metformin have mixed results on PC risk, with some showing protective effects. The gut microbiome influences PC through the gut-pancreas axis, with disruptions leading to inflammation and carcinogenesis. Exposure to toxic substances, including heavy metals and chemicals, is associated with increased PC risk. Glycome changes, such as abnormal glycosylation patterns, are significant in PDAC development and offer potential for early diagnosis. Interactions between environmental and genetic factors are crucial in PDAC susceptibility. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) linked to PDAC, but gene-environment interactions remain largely unexplored. Future research should focus on polygenic risk scores (PRS) and large-scale studies to better understand these interactions and their impact on PDAC risk.
Collapse
Affiliation(s)
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Ruggero Ponz de Leon Pisani
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ludmila Vodickova
- Biomedical Center Martin, Bioinformatic Center, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovakia; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Vodicka
- Biomedical Center Martin, Bioinformatic Center, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovakia; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Bledar Kraja
- University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain; GENYO. Centre for Genomics and Oncological Research. Genomic Oncology department, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| | - David Bars-Cortina
- Institut Català d'Oncologia (ICO) IDIBELL, Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; Institut Català d'Oncologia (ICO) IDIBELL, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
9
|
Zhi J, Liang Y, Zhao W, Qiao J, Zheng Y, Peng X, Li L, Wei X, Wang W. Oral microbiome-derived biomarkers for non-invasive diagnosis of head and neck squamous cell carcinoma. NPJ Biofilms Microbiomes 2025; 11:74. [PMID: 40335510 PMCID: PMC12059021 DOI: 10.1038/s41522-025-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/20/2025] [Indexed: 05/09/2025] Open
Abstract
Mounting evidence suggests that sustained microbial dysbiosis is associated with the development of multiple cancers, while the species-level bacterial taxa and metabolic dysfunction of oral microbiome in patients with head and neck squamous cell carcinoma (HNSCC) remains unclear. In this cross-sectional study, comprehensive metagenomic and 16S rRNA amplicon sequencing analyses of oral swab samples from 172 patients were performed. Unsupervised clustering algorithms of relative microbial abundance profiles revealed three distinctive microbiome clusters. Based on the metagenomic and 16S rRNA amplicon sequencing data, machine learning-based methods were used to construct the HNSCC diagnostic classifier, which exhibited high area under the curve values of 0.78-0.89. Our study provided the first exhaustive metagenomic and 16S rRNA amplicon sequencing analyses to date, revealing that microbial-metabolic dysbiosis is a potential risk factor for HNSCC progression and therefore providing a robust theoretical basis for potential diagnostic and therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Jingtai Zhi
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China
| | - Yibo Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China
| | - Wang Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China
| | - Jie Qiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China
| | - Yongzhe Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China
| | - Xin Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China
| | - Li Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China.
| | - Xianfeng Wei
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China.
| | - Wei Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Tianjin First Central Hospital, Institute of Otolaryngology of Tianjin, Key Laboratory of Auditory Speech and Balance Medicine, Key Medical Discipline of Tianjin (Otolaryngology), Quality Control Centre of Otolaryngology, Tianjin First Central Hospital, Tianjin, PR China.
| |
Collapse
|
10
|
Scherübl H. [Generation X and millennials are at greater cancer risk than previous generations: Possible causes and implications]. Dtsch Med Wochenschr 2025; 150:575-583. [PMID: 40262757 DOI: 10.1055/a-2531-9761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The incidence of early-onset malignancy (EOM) diagnosed under the age of 50 has been increasing worldwide. In the USA, Generation X and the millennials are up to 2 times more likely to develop 17 of the 34 most common cancers than the baby boomers at any given age. Globally, the incidence of EOM increased by 79.1% between 1990 and 2019. Early-life exposure may be linked with EOM development and may forecast a greater disease burden in the future. Possible causes and consequences are discussed with regards to cancer prevention.
Collapse
Affiliation(s)
- Hans Scherübl
- Klinik für Innere Medizin - Gastroenterologie, Gastrointestinale Onkologie und Infektiologie, Vivantes Klinikum Am Urban, Berlin, GERMANY
| |
Collapse
|
11
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1283-1308. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Han Y, Cao B, Tang J, Wang J. A comprehensive multi-omics analysis uncovers the associations between gut microbiota and pancreatic cancer. Front Microbiol 2025; 16:1592549. [PMID: 40376462 PMCID: PMC12078283 DOI: 10.3389/fmicb.2025.1592549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025] Open
Abstract
Pancreatic cancer is one of the most lethal malignant neoplasms. Pancreatic cancer is related to gut microbiota, but the associations between its treatment and microbial abundance as well as genetic variations remain unclear. In this study, we collected fecal samples from 58 pancreatic cancer patients including 43 pancreatic ductal adenocarcinoma (PDAC) and 15 non-PDAC, and 40 healthy controls, and shotgun metagenomic sequencing and untargeted metabolome analysis were conducted. PDAC patients were divided into five groups according to treatment and tumor location, including treatment-naive (UT), chemotherapy (CT), surgery combined with chemotherapy (SCT), Head, and body/tail (Tail) groups. Multivariate association analysis revealed that both CT and SCT were associated with increased abundance of Lactobacillus gasseri and Streptococcus equinus. The microbial single nucleotide polymorphisms (SNPs) densities of Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus were positively associated with CT, while Lachnospiraceae bacterium 2_1_58FAA was positively associated with Head group. Compared with Tail group, the Head group showed positive associations with opportunistic pathogens, such as Escherichia coli, Shigella sonnei and Shigella flexneri. We assembled 424 medium-quality non-redundant metagenome-assembled genomes (nrMAGs) and 276 high-quality nrMAGs. In CT group, indole-3-acetic acid, capsaicin, sinigrin, chenodeoxycholic acid, and glycerol-3-phosphate were increased, and the accuracy of the model based on fecal metabolites reached 0.77 in distinguishing healthy controls and patients. This study identifies the associations between pancreatic cancer treatment and gut microbiota as well as its metabolites, reveals bacterial SNPs are related to tumor location, and extends our knowledge of gut microbiota and pancreatic cancer.
Collapse
Affiliation(s)
- Yang Han
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Biyang Cao
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiayue Tang
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Sawada K, Yamashita R, Sakai SA, Horasawa S, Yoshikawa A, Fujisawa T, Kadowaki S, Kato K, Ueno M, Oki E, Komatsu Y, Chiyoda T, Horita Y, Yasui H, Denda T, Satake H, Esaki T, Satoh T, Takahashi N, Yamazaki K, Matsuhashi N, Nishina T, Takeda H, Ohtsubo K, Ohta T, Tsuji A, Goto M, Kato T, Bando H, Tsuchihara K, Nakamura Y, Yoshino T. Microbiome Landscape and Association with Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors: A SCRUM-Japan MONSTAR-SCREEN Study. CANCER RESEARCH COMMUNICATIONS 2025; 5:857-870. [PMID: 40341952 DOI: 10.1158/2767-9764.crc-24-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/04/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Although the gut microbiome is associated with cancer development and progression, little is known about the effects of the gut microbiome landscape and the efficacy of immune checkpoint inhibitors (ICI) across cancer types. We investigated the association between the microbiome, clinical features, and ICI efficacy across cancer types in a large nationwide screening project for solid tumors. Among 2,180 patients with advanced solid tumors enrolled in the SCRUM-Japan MONSTAR-SCREEN between October 2019 and September 2021, in the chemotherapy-naïve cohort (n = 817), a high prevalence of oral bacteria was observed in patients using proton pump inhibitors (PPI) and those with upper gastrointestinal cancers, particularly postoperative patients with gastric or pancreatic cancer. Among patients treated with ICIs (n = 333), a high abundance of sequence variants in the gut microbiome was not significantly associated with ICI efficacy across cancer types (HR = 0.94; 95% confidence interval, 0.73-1.21). However, high oral bacteria in feces significantly correlated with a shorter progression-free survival compared with low oral bacteria (median, 4.34 vs. 6.97 months; HR = 1.38; 95% confidence interval, 1.07-1.78). Notably, in patients using PPIs, a higher proportion of oral bacteria influenced progression-free survival outcomes of ICI treatment (median, 3.15 vs. 2.04 months; P = 0.08), unlike in PPI nonusers (median, 7.13 vs. 5.55 months; P = 0.74). This study of the gut microbiome has unveiled significant insights into its landscape and potential impact on ICI efficacy. It highlights that the abundance of oral bacteria in feces may play a critical role in diminishing ICI efficacy among patients using PPIs. SIGNIFICANCE As part of the MONSTAR-SCREEN, a prospective nationwide project for patients with solid tumors, we found that although gut microbiome diversity does not consistently predict ICI efficacy across cancer types, a high level of oral bacteria in the gut is linked to reduced ICI effectiveness, especially in patients using PPIs. These findings highlight the potential clinical impact of microbiome variations on cancer treatment outcomes.
Collapse
Affiliation(s)
- Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunsuke A Sakai
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Horasawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ayumu Yoshikawa
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takao Fujisawa
- Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Ken Kato
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Eiji Oki
- Department of Surgery and Science, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Horita
- Department of Medical Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Hisateru Yasui
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tadamichi Denda
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Hironaga Satake
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, Japan
- Department of Medical Oncology, Kochi Medical School, Nankoku, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Ina, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Nishina
- Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Gifu, Japan
| | - Hiroyuki Takeda
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Takashi Ohta
- Department of Clinical Oncology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Akihito Tsuji
- Department of Clinical Oncology, Kagawa University Hospital, Amagasaki, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
14
|
Sammallahti H, Rezasoltani S, Pekkala S, Kokkola A, Asadzadeh Agdaei H, Azizmohammad Looha M, Ghanbari R, Zamani F, Sadeghi A, Sarhadi VK, Tiirola M, Puolakkainen P, Knuutila S. Fecal profiling reveals a common microbial signature for pancreatic cancer in Finnish and Iranian cohorts. Gut Pathog 2025; 17:24. [PMID: 40241224 PMCID: PMC12001732 DOI: 10.1186/s13099-025-00698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents a significant challenge in oncology because of its late-stage diagnosis and limited treatment options. The inadequacy of current screening methods has prompted investigations into stool-based assays and microbial classifiers as potential early detection markers. The gut microbiota composition of PC patients may be influenced by population differences, thereby impacting the accuracy of disease prediction. However, comprehensive profiling of the PC gut microbiota and analysis of these cofactors remain limited. Therefore, we analyzed the stool microbiota of 33 Finnish and 50 Iranian PC patients along with 35 Finnish and 34 Iranian healthy controls using 16S rRNA gene sequencing. We assessed similarities and differences of PC gut microbiota in both populations while considering sociocultural impacts and generated a statistical model for disease prediction based on microbial classifiers. Our aim was to expand the current understanding of the PC gut microbiota, discuss the impact of population differences, and contribute to the development of early PC diagnosis through microbial biomarkers. RESULTS Compared with healthy controls, PC patients presented reduced microbial diversity, with discernible microbial profiles influenced by factors such as ethnicity, demographics, and lifestyle. PC was marked by significantly higher abundances of facultative pathogens including Enterobacteriaceae, Enterococcaceae, and Fusobacteriaceae, and significantly lower abundances of beneficial bacteria. In particular, bacteria belonging to the Clostridia class, such as butyrate-producing Lachnospiraceae, Butyricicoccaceae, and Ruminococcaceae, were depleted. A microbial classifier for the prediction of pancreatic ductal adenocarcinoma (PDAC) was developed in the Iranian cohort and evaluated in the Finnish cohort, where it yielded a respectable AUC of 0.88 (95% CI 0.78, 0.97). CONCLUSIONS This study highlights the potential of gut microbes as biomarkers for noninvasive PC screening and the development of targeted therapies, emphasizing the need for further research to validate these findings in diverse populations. A comprehensive understanding of the role of the gut microbiome in PC could significantly enhance early detection efforts and improve patient outcomes.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sama Rezasoltani
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074, Aachen, Germany
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Hamid Asadzadeh Agdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
- BiopSense Oy, Eeronkatu 10, 40720, Jyväskylä, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
15
|
Fu Y, Wang X, Nie L, Wang Z, Ma X, Wu L, Han L, Fu W, Wang R, Ren H, Zhang D, Ding J. Gut microbiota characteristics in neonatal respiratory distress syndrome and the therapeutic potential of probiotics in recovery. Front Microbiol 2025; 16:1544055. [PMID: 40256622 PMCID: PMC12006762 DOI: 10.3389/fmicb.2025.1544055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background Neonatal Respiratory Distress Syndrome (NRDS) is a common and severe respiratory disorder in neonates, particularly among preterm infants (PTIs), and is often associated with hypoxemia and multiple organ dysfunction. This study aims to investigate the gut microbiota characteristics in NRDS and the potential regulatory role of probiotics in restoring gut microbiota dysbiosis. Methods This study enrolled 55 PTIs diagnosed with NRDS and 26 preterm infants without NRDS. The NRDS group was classified into two groups based on treatment: an antibiotic-only group (TA group, N = 30) and an antibiotic plus probiotics group (TB group, N = 25). Fecal samples were collected within 48 h of birth and again after recovery, for 16S rRNA sequencing. Results The study revealed that the gut microbiota diversity in the NRDS group was significantly greater than in the non-NRDS group, and the microbiota composition in the NRDS group was closely associated with multiple clinical indicators, including Apgar score, pH, PaO2, and PaCO2. Notably, the abundance of bacteria such as Muribaculaceae Incertae Sedis, Rhodococcus, and Corynebacterium was significantly higher in the NRDS group, which may contribute to disease progression. ROC analysis suggested that gut microbiota could serve as potential biomarkers for diagnosing NRDS. Probiotic intervention notably restored the gut microbiota structure in the NRDS group, particularly by enhancing the abundance of beneficial genera such as Streptococcus, Bifidobacterium, and Clostridium. This intervention reduced the microbiota disparity between the NRDS group and normal one-month-old children, thereby slowing disease progression. Conclusion This study demonstrated that the NRDS displayed an increase in gut microbiota diversity and alterations in specific bacterial populations, both of which were closely correlated with clinical data. Probiotic treatment aids in restoring the disrupted gut microbiota in NRDS infants, promoting disease recovery, and providing new biomarkers and clinical strategies for managing NRDS.
Collapse
Affiliation(s)
- Yongcheng Fu
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiujuan Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lintao Nie
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaorui Wang
- Translational Medicine Research Center, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, China
| | - Xiao Ma
- Department of Human Resources, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijia Wu
- Department of Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Han
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjun Fu
- Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruoming Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Ding
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Sulekha Suresh D, Jain T, Dudeja V, Iyer S, Dudeja V. From Microbiome to Malignancy: Unveiling the Gut Microbiome Dynamics in Pancreatic Carcinogenesis. Int J Mol Sci 2025; 26:3112. [PMID: 40243755 PMCID: PMC11988718 DOI: 10.3390/ijms26073112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/01/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality globally, characterized by a poor prognosis and limited therapeutic response. The current approach for treating pancreatic cancer involves locoregional control with surgical resection and systemic therapy in the form of cytotoxic chemotherapy. However, despite standard-of-care treatment, the outcomes remain dismal. Emerging evidence suggests that the gut microbiota plays a significant role in pancreatic carcinogenesis through dysbiosis, chronic inflammation and immune modulation. Dysbiosis-driven alterations in the gut microbiota composition can disrupt intestinal homeostasis, promote systemic inflammation and create a tumor-permissive microenvironment in the pancreas. Moreover, the gut microbiota modulates the efficacy of systemic therapies, including chemotherapy and immunotherapy, by impacting drug metabolism and shaping the tumor immune landscape. This review is mainly focused on exploring the intricate interplay between the gut microbiota and pancreatic cancer, and also highlighting its dual role in carcinogenesis and the therapeutic response.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, The University of Alabama at Birmingham, BDB 573 1808 7th Avenue South, Birmingham, AL 35294, USA; (D.S.S.); (T.J.); (V.D.); (S.I.)
| |
Collapse
|
17
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
18
|
Li P, Zhang H, Chen L, Gao X, Hu Y, Xu Q, Liu W, Chen W, Chen H, Yuan S, Wang M, Liu S, Dai M. Oral and fecal microbiota as accurate non-invasive tools for detection of pancreatic cancer in the Chinese population. Cancer Lett 2025; 612:217456. [PMID: 39800212 DOI: 10.1016/j.canlet.2025.217456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
Pancreatic cancer (PCA), a leading cause of cancer-related deaths, has limited non-invasive diagnostic methods. We aimed to identify oral and fecal microbiome biomarkers and construct diagnostic classifiers. Oral and fecal samples from 97 PCA patients and 90 healthy controls underwent 16S rRNA sequencing. Samples were randomly divided into training and validation cohorts in a 7:3 ratio. Random forest models were constructed using training cohort and validated internally and externally in Chinese, Japanese, and Spanish populations. Results revealed significant dysbiosis of the oral and fecal microbiota of PCA patients. Most of the differential taxa shared between oral and fecal samples showed similar changes. Relative abundances of Streptococcus in oral samples, and of Bifidobacterium, Klebsiella and Akkermansia in fecal samples, were enriched in PCA. The fecal Firmicutes to Bacteroidota ratio was higher in PCA patient samples. Oral and fecal microbiome classifiers based on the top 20 contributing genera were constructed, and internal validation showed that the area under the curve (AUC) values were 0.963 and 0.890, respectively. The fecal microbiome classifier performed well in the external Chinese population, with an AUC of 0.878, but poorly in the Japanese and Spanish populations. Furthermore, fecal microbiomes could predict metastasis status in PCA patients, with an AUC of 0.804. In conclusion, oral and fecal microbiota were dysbiotic in PCA patients. Fecal microbiome classifier provides a feasible, non-invasive, and cost-effective tool with high precision for PCA screening in China; oral microbiome classifier requires further validation in external populations sampled with the same simple and convenient methods.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xingyu Gao
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Wenjing Liu
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Weijie Chen
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Haomin Chen
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shuai Yuan
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Mingfei Wang
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Cheelo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Lixia District, Jinan, Shandong, 250012, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
19
|
Świdnicka-Siergiejko A, Daniluk J, Miniewska K, Daniluk U, Guzińska-Ustymowicz K, Pryczynicz A, Dąbrowska M, Rusak M, Ciborowski M, Dąbrowski A. Inflammatory Stimuli and Fecal Microbiota Transplantation Accelerate Pancreatic Carcinogenesis in Transgenic Mice, Accompanied by Changes in the Microbiota Composition. Cells 2025; 14:361. [PMID: 40072088 PMCID: PMC11898920 DOI: 10.3390/cells14050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
An association between gut microbiota and the development of pancreatic ductal adenocarcinoma (PDAC) has been previously described. To better understand the bacterial microbiota changes accompanying PDAC promotion and progression stimulated by inflammation and fecal microbiota transplantation (FMT), we investigated stool and pancreatic microbiota by 16s RNA-based metagenomic analysis in mice with inducible acinar transgenic expressions of KrasG12D, and age- and sex-matched control mice that were exposed to inflammatory stimuli and fecal microbiota obtained from mice with PDAC. Time- and inflammatory-dependent stool and pancreatic bacterial composition alterations and stool alpha microbiota diversity reduction were observed only in mice with a Kras mutation that developed advanced pancreatic changes. Stool Actinobacteriota abundance and pancreatic Actinobacteriota and Bifidobacterium abundances increased. In contrast, stool abundance of Firmicutes, Verrucomicrobiota, Spirochaetota, Desulfobacterota, Butyricicoccus, Roseburia, Lachnospiraceae A2, Lachnospiraceae unclassified, and Oscillospiraceae unclassified decreased, and pancreatic detection of Alloprevotella and Oscillospiraceae uncultured was not observed. Furthermore, FMT accelerated tumorigenesis, gradually decreased the stool alpha diversity, and changed the pancreatic and stool microbial composition in mice with a Kras mutation. Specifically, the abundance of Actinobacteriota, Bifidobacterium and Faecalibaculum increased, while the abundance of genera such as Lachnospiraceace A2 and ASF356, Desulfovibrionaceace uncultured, and Roseburia has decreased. In conclusion, pancreatic carcinogenesis in the presence of an oncogenic Kras mutation stimulated by chronic inflammation and FMT dynamically changes the stool and pancreas microbiota. In particular, a decrease in stool microbiota diversity and abundance of bacteria known to be involved in short-fatty acids production were observed. PDAC mouse model can be used for further research on microbiota-PDAC interactions and towards more personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Agnieszka Świdnicka-Siergiejko
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.D.); (A.D.)
| | - Jarosław Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.D.); (A.D.)
| | - Katarzyna Miniewska
- Department of Medical Biochemistry, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | | | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.G.-U.); (A.P.)
| | - Milena Dąbrowska
- Department of Heamatological Diagnostics, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.R.)
| | - Małgorzata Rusak
- Department of Heamatological Diagnostics, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.R.)
| | - Michał Ciborowski
- Metabolomics and Proteomics Laboratory, Department of Medical Biochemistry, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Andrzej Dąbrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.D.); (A.D.)
| |
Collapse
|
20
|
Chen X, Sun F, Wang X, Feng X, Aref AR, Tian Y, Ashrafizadeh M, Wu D. Inflammation, microbiota, and pancreatic cancer. Cancer Cell Int 2025; 25:62. [PMID: 39987122 PMCID: PMC11847367 DOI: 10.1186/s12935-025-03673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
Pancreatic cancer (PC) is a malignancy of gastrointestinal tract threatening the life of people around the world. In spite of the advances in the treatment of PC, the overall survival of this disease in advanced stage is less than 12%. Moreover, PC cells have aggressive behaviour in proliferation and metastasis as well as capable of developing therapy resistance. Therefore, highlighting the underlying molecular mechanisms in PC pathogenesis can provide new insights for its treatment. In the present review, inflammation and related pathways as well as role of gut microbiome in the regulation of PC pathogenesis are highlighted. The various kinds of interleukins and chemokines are able to regulate angiogenesis, metastasis, proliferation, inflammation and therapy resistance in PC cells. Furthermore, a number of molecular pathways including NF-κB, TLRs and TGF-β demonstrate dysregulation in PC aggravating inflammation and tumorigenesis. Therapeutic regulation of these pathways can reverse inflammation and progression of PC. Both chronic and acute pancreatitis have been shown to be risk factors in the development of PC, further highlighting the role of inflammation. Finally, the composition of gut microbiota can be a risk factor for PC development through affecting pathways such as NF-κB to mediate inflammation.
Collapse
Affiliation(s)
- XiaoLiang Chen
- Department of General Surgery and Integrated Traditional Chinese and Western Medicine Oncology, Tiantai People'S Hospital of Zhejiang Province(Tiantai Branch of Zhejiang Provincial People'S Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Xuqin Wang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Yu Tian
- Research Center, the Huizhou Central People'S Hospital, Guangdong Medical University, Huizhou, Guangdong, China.
- School of Public Health, Benedictine University, No. 5700 College Road, Lisle, IL, 60532, USA.
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Dengfeng Wu
- Department of Emergency, The People'S Hospital of Gaozhou, No. 89 Xiguan Road, Gaozhou, 525200, Guangdong, China.
| |
Collapse
|
21
|
Chmielarczyk A, Golińska E, Tomusiak-Plebanek A, Żeber-Lubecka N, Kulecka M, Szczepanik A, Jedlińska K, Mech K, Szaciłowski K, Kuziak A, Pietrzyk A, Strus M. Microbial dynamics of acute pancreatitis: integrating culture, sequencing, and bile impact on bacterial populations and gaseous metabolites. Front Microbiol 2025; 16:1544124. [PMID: 40012789 PMCID: PMC11860950 DOI: 10.3389/fmicb.2025.1544124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
Background Our study examined the composition of the intestinal microflora in a hospitalized patient with AP symptoms treated several months earlier for diverticulitis. The therapeutic intervention necessitated Hartmann's procedure, culminating in colostomy creation. Aims Employing a thorough microbiological analysis we attempted to demonstrate whether the microflora isolated from the peripancreatic fluid exhibited a stronger correlation with the contents of the stoma or with the rectal swab. Additionally, we sought to determine the association between later onset of AP and diverticulitis. Methods Following clinical materials from the patient in the initial phase of AP were collected: rectal swab, colostomy bag contents (in the publication referred to as stoma content/stool) and peripancreatic fluid. Microbiological analysis was performed, including classic culture methodology, NGS techniques, and genotyping methodologies. Furthermore, the effect of bile on the shift in the population of selected bacterial species was examined. Results The NGS technique confirmed greater consistency in bacteria percentage (phyla/family) between stoma content and peripancreatic fluid. In both samples, a clear dominance of the Proteobacteria phyla (over 75%) and the Enterobacteriaceae family was demonstrated. Moreover, NGS verified the presence of the Fusobacteriota phylum and Fusobacteriaceae family only in rectal swabs, which may indicate a link between this type of bacteria and the etiology of diverticulitis. We observed that Escherichia coli 33 isolated from stool exhibited active gaseous metabolite production (mainly hydrogen). Conclusions The abundant production of hydrogen may substantially impact enzymatic processes, inducing specific alterations in disulfide bonds and trypsin inactivation. Our investigation alludes to the conceivable active involvement of bile in effecting qualitative and quantitative modifications in the peripancreatic microbiota composition, establishing a correlation between released bile and bacterial generation of gaseous metabolites.
Collapse
Affiliation(s)
- Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Tomusiak-Plebanek
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Antoni Szczepanik
- Clinical Department of General Surgery and Oncology, Narutowicz City Speciality Hospital at Krakow, Krakow, Poland
| | - Katarzyna Jedlińska
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology of Krakow, Krakow, Poland
| | - Krzysztof Mech
- Academic Center for Materials and Nanotechnology, AGH University of Krakow, Krakow, Poland
| | - Konrad Szaciłowski
- Academic Center for Materials and Nanotechnology, AGH University of Krakow, Krakow, Poland
| | - Agata Kuziak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
22
|
Davis T, Decker KT, Hosseini D, Jameson G, Borazanci E. Skin microbiome differences in pancreatic adenocarcinoma, other cancers, and healthy controls: a pilot study. Front Oncol 2025; 15:1495500. [PMID: 39980568 PMCID: PMC11839409 DOI: 10.3389/fonc.2025.1495500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Many studies have reported the importance of the human microbiome in relationship to the overall health of its host. While recent studies have explored the microbiome's role in various types of cancer compared to healthy patients, this pilot study is the first to investigate differences in the skin microbiome composition among pancreatic adenocarcinoma patients, individuals with other cancers, and cancer-free controls. Methods The study characterizes the skin microbiome's potential associations with cancer status by analyzing skin swabs from the forehead and cheek of 58 participants using Next Generation Sequencing (NGS), differential abundance analysis, and machine learning techniques. Results The study results indicated that the cancer group displayed a significantly higher mean alpha diversity compared to the control group. Additionally, a machine learning classification model achieved a mean F1 Score of 0.943 in predicting cancer status, indicating measurable differentiation in the skin microbiome between the study groups. This differentiation is supported by differential abundance methods, including ANCOM-BC and MaAsLin2. Discussion This pilot study suggests that skin microbiome profiling could serve as a non-invasive biomarker for cancer detection and monitoring, which warrants a larger, longitudinal study to validate these results.
Collapse
Affiliation(s)
- Taylor Davis
- Department of Oncology, HonorHealth Research Institute, Scottsdale, AZ, United States
| | | | | | - Gayle Jameson
- Department of Oncology, HonorHealth Research Institute, Scottsdale, AZ, United States
| | - Erkut Borazanci
- Department of Oncology, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
23
|
Xu K, Tan J, Lin D, Jiang H, Chu Y, Zhou L, Zhang J, Lu Y. Gut microbes of the cecum versus the colon drive more severe lethality and multi-organ damage. Int Immunopharmacol 2025; 147:114029. [PMID: 39793233 DOI: 10.1016/j.intimp.2025.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear. This study investigates how gut flora influences outcomes from perforations at different sites in mice. Using fecal-induced peritonitis mouse model, isolated IC from the cecum or colon was injected peritoneally at 2 mg/kg. Bacterial burden was quantified with quantitative PCR, and microbial communities were analyzed using 16S rRNA gene sequencing. Survival rates were monitored, and blood biochemical indices, histological changes, cytokines expression, immunological signaling and multiple-organ damage were assessed at 16 h post-injections. The results showed cecum IC developed more severe sepsis than colon IC, with shorter median survival time and greater multi-organ damage. Mice treated with cecum IC displayed elevated tissue damage markers in the liver, heart, and kidneys, contributing to worsened pathology. This was likely driven by systematic inflammatory cytokines production and lung inflammation. Mechanistically, cecum IC triggered stronger cGAS-STING and TBK1-NF-κB signaling, promoting systemic inflammation compared to the colon IC. Moreover, bacterial analysis demonstrated that cecum IC carry a higher bacterial burden than colon IC and exhibit a different microbial community. A detailed microbiome comparison revealed an increased abundance of potentially pathogenic bacteria in the cecum IC. These findings suggest that the site of intestinal perforation influences sepsis severity, with the cecum being associated with a higher bacterial burden and a relatively increased abundance of potentially pathogenic bacteria compared to the colon. Our findings first compared the lethality associated with the microbial composition of the cecum and colon, indicating the perforation site could help providers predict the severity of sepsis, thereby introducing a novel perspective to microbiology and sepsis research.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha Hunan 410013, China
| | - Dongyang Lin
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Haoran Jiang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Luting Zhou
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Junjie Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
24
|
Bogdanski AM, Acedo P, Wallace MB, van Leerdam ME, Klatte DCF. Recommendations, evidence and sustainability of screening for pancreatic cancer in high-risk individuals. Best Pract Res Clin Gastroenterol 2025; 74:101974. [PMID: 40210328 DOI: 10.1016/j.bpg.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 04/12/2025]
Abstract
Pancreatic cancer is a highly lethal malignancy and is predicted to become the second leading cause of cancer-related deaths by 2030. Early detection significantly improves outcomes, but general population screening remains infeasible due to the low prevalence of the disease and lack of specific biomarkers. This review evaluates current recommendations for pancreatic cancer surveillance in high-risk individuals, synthesises evidence from recent studies and explores the sustainability of current imaging-based surveillance programmes. Challenges such as overdiagnosis, economic feasibility and disparities in access highlight the need for targeted, cost-effective strategies. Collaborative initiatives and consortia are needed to advance biomarker research and refine risk stratification. By integrating evidence-based recommendations with sustainable approaches, this review outlines pathways to improve early detection and reduce mortality from pancreatic cancer.
Collapse
Affiliation(s)
- Aleksander M Bogdanski
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, United Kingdom
| | - Michael B Wallace
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Derk C F Klatte
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
25
|
Jankowski WM, Fichna J, Tarasiuk-Zawadzka A. A systematic review of the relationship between gut microbiota and prevalence of pancreatic diseases. Microb Pathog 2025; 199:107214. [PMID: 39653281 DOI: 10.1016/j.micpath.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Acute pancreatitis (AP) represents one of the most common gastrointestinal (GI) diseases; it can manifest in varying degrees of severity, sometimes leading to a life-threatening condition for the patient. Pancreatic ductal adenocarcinoma (PDAC), due to its high malignancy and uncertain prognosis, is widely regarded as one of the most fatal diseases. The increasing prevalence of AP and PDAC represents a major burden on public health and the healthcare system worldwide. The aim of this systematic review was to discuss the current state of knowledge regarding the relationship between the gut microbiota and the incidence, prognosis, diagnosis and treatment of AP and PDAC. To identify studies that analyzed the relationship between the gut microbiota and the occurrence/development of pancreatic diseases or PDAC, the online databases PubMed, Scopus and Google Scholar were searched between November 2023 and January 2024. Finally, 14 publications met the inclusion criteria (1. were conducted exclusively in humans and/or animals; 2. original, published in English in peer-reviewed journals after 2019; 3. described the relationship between gut microbiota and the occurrence of AP or PDAC). The collected studies indicated significant changes in the gut microbiota of patients with AP and PDAC. Moreover, they highlighted the presence of a relationship between the gut microbiota and the occurrence, course, treatment efficiency and prognosis of the disease in question. Further research is needed to understand precisely the relationship between the gut microbiota and the occurrence of pancreatic diseases and whether it may be a starting point for the development of modern forms of therapy based on the use of prebiotics and/or diet to restore the normal composition of the intestinal bacteria.
Collapse
Affiliation(s)
- Wojciech Michał Jankowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Aleksandra Tarasiuk-Zawadzka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
26
|
Brasiel PGDA, Dutra Medeiros J, Costa de Almeida T, Teodoro de Souza C, de Cássia Ávila Alpino G, Barbosa Ferreira Machado A, Dutra Luquetti SCP. Preventive effects of kefir on colon tumor development in Wistar rats: gut microbiota critical role. J Dev Orig Health Dis 2025; 16:e5. [PMID: 39868980 DOI: 10.1017/s2040174424000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (108 CFU/mL) during lactation. After weaning (postnatal day 21), KP pups received kefir treatment until 60 days. At 67 days old, colorectal carcinogenesis was induced through intraperitoneal injection of 1, 2-dimethylhydrazine. The gut microbiota composition were analyzed by 16S rRNA gene sequencing and DESeq2 (differential abundance method), revealing significant differences in bacterial abundances between the kefir consumption periods. Maternal kefir intake strong anticancer power, suppressed tumors in adult offspring and reduced the relative risk of offspring tumor development. The gut microbiota in cecal samples of the KL group was enriched with Lactobacillus, Romboutsia, and Blautia. In contrast, control animals were enriched with Acinetobacter. The administration of kefir during critical periods of development, with emphasis on lactation, affected the gut microbial community structure to promote host benefits. Pearson analysis indicated positive correlation between tumor number with IL-1 levels. Therefore, the probiotic fermented food intake in early life may be effective as chemopreventive potential against colon tumor development, especially in lactation period.
Collapse
Affiliation(s)
| | - Julliane Dutra Medeiros
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thaís Costa de Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Claudio Teodoro de Souza
- Department of Clinical Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
27
|
Fanijavadi S, Jensen LH. Dysbiosis-NK Cell Crosstalk in Pancreatic Cancer: Toward a Unified Biomarker Signature for Improved Clinical Outcomes. Int J Mol Sci 2025; 26:730. [PMID: 39859442 PMCID: PMC11765696 DOI: 10.3390/ijms26020730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects. Dysbiosis can affect NK cell function, leading to resistance and side effects. We propose that a combined biomarker approach, integrating microbiome composition and NK cell profiles, can help predict treatment resistance and side effects, enabling more personalized therapies. This review examines how dysbiosis contributes to NK cell dysfunction in PDAC and discusses strategies (e.g., antibiotics, probiotics, vaccines) to modulate the microbiome and enhance NK cell function. Targeting dysbiosis could modulate NK cell activity, improve the effectiveness of PDAC treatments, and reduce side effects. However, further research is needed to develop unified NK cell-microbiome interaction-based biomarkers for more precise and effective patient outcomes.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Trøndelag, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
28
|
Nychas E, Marfil-Sánchez A, Chen X, Mirhakkak M, Li H, Jia W, Xu A, Nielsen HB, Nieuwdorp M, Loomba R, Ni Y, Panagiotou G. Discovery of robust and highly specific microbiome signatures of non-alcoholic fatty liver disease. MICROBIOME 2025; 13:10. [PMID: 39810263 PMCID: PMC11730835 DOI: 10.1186/s40168-024-01990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases. RESULTS Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis. We identified highly specific microbiome signatures through building accurate machine learning models (accuracy = 0.845-0.917) for NAFLD with high portability (generalizable) and low prediction rate (specific) when applied to other metabolic diseases, as well as through a community approach involving differential co-abundance ecological networks. Moreover, using these signatures coupled with further mediation analysis and metabolic dependency modeling, we propose synergistic defined microbial consortia associated with NAFLD phenotype in overweight and lean individuals, respectively. CONCLUSION Our study reveals robust and highly specific NAFLD signatures and offers a more realistic microbiome-therapeutics approach over individual species for this complex disease. Video Abstract.
Collapse
Affiliation(s)
- Emmanouil Nychas
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Andrea Marfil-Sánchez
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Xiuqiang Chen
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Mohammad Mirhakkak
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | | | - Max Nieuwdorp
- Amsterdam UMC, Location AMC, Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Rohit Loomba
- Department of Medicine, MASLD Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, 07745, Germany.
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
29
|
Karwowska Z, Aasmets O, Kosciolek T, Org E. Effects of data transformation and model selection on feature importance in microbiome classification data. MICROBIOME 2025; 13:2. [PMID: 39754220 PMCID: PMC11699698 DOI: 10.1186/s40168-024-01996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored. RESULTS Our analysis of over 8500 samples from 24 shotgun metagenomic datasets showed that it is possible to classify healthy and diseased individuals using microbiome data with minimal dependence on the choice of algorithm or transformation. Presence-absence transformations performed comparably to abundance-based transformations, and only a small subset of predictors is necessary for accurate classification. However, while different transformations resulted in comparable classification performance, the most important features varied significantly, which highlights the need to reevaluate machine learning-based biomarker detection. CONCLUSIONS Microbiome data transformations can significantly influence feature selection but have a limited effect on classification accuracy. Our findings suggest that while classification is robust across different transformations, the variation in feature selection necessitates caution when using machine learning for biomarker identification. This research provides valuable insights for applying machine learning to microbiome data and identifies important directions for future work.
Collapse
Affiliation(s)
- Zuzanna Karwowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
| | - Oliver Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tomasz Kosciolek
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland.
- Sano Centre for Computational Medicine, Krakow, Poland.
| | - Elin Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
30
|
Shete O, Ghosh TS. Normal Gut Microbiomes in Diverse Populations: Clinical Implications. Annu Rev Med 2025; 76:95-114. [PMID: 39556491 DOI: 10.1146/annurev-med-051223-031809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The human microbiome is a sensor and modulator of physiology and homeostasis. Remarkable tractability underpins the promise of therapeutic manipulation of the microbiome. However, the definition of a normal or healthy microbiome has been elusive. This is in part due to the underrepresentation of minority groups and major global regions in microbiome studies to date. We review studies of the microbiome in different populations and highlight a commonality among health-associated microbiome signatures along with major drivers of variation. We also provide an overview of microbiome-associated therapeutic interventions for some widespread, widely studied diseases. We discuss sources of bias and the challenges associated with defining population-specific microbiome reference bases. We propose a roadmap for defining normal microbiome references that can be used for population-customized microbiome therapeutics and diagnostics.
Collapse
Affiliation(s)
- Omprakash Shete
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, India;
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, India;
| |
Collapse
|
31
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
32
|
Liang X, Zhu Y, Bu Y, Dong M, Zhang G, Chen C, Tang H, Wang L, Wang P, Wang Y, Ma R, Chen X, Wang J, Yu G, Zhong N, Li L, Li Z. Microbiome and metabolome analysis in smoking and non-smoking pancreatic ductal adenocarcinoma patients. BMC Microbiol 2024; 24:541. [PMID: 39731043 DOI: 10.1186/s12866-024-03688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Smoking is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC). This study aimed to investigate the effects of smoking on the pancreatic microbiome and metabolome in resectable and unresectable male PDAC patients. METHODS The pancreatic tissue samples were collected from resectable PDACs via surgery and unresectable PDACs via endoscopic ultrasound fine needle aspiration (EUS-FNA). Surgical samples obtained from 10 smoking and 6 non-smoking PDACs were measured by 16S ribosomal RNA (16S rRNA) gene sequencing and liquid chromatography-mass spectrometry (LC/MS). Fine needle aspiration (FNA) samples obtained from 20 smoking and 14 non-smoking PDACs were measured by 16S rRNA gene sequencing. RESULTS From resectable to unresectable patients, the dominant genus in the pancreas changed from Achromobacter to Delftia. Smoking further altered the abundance of specific bacteria, mainly manifested as an increase of Slackia in surgical tumor tissue of the smoking group, and an enrichment of Aggregatibacter and Peptococcus in FNA samples of the smoking group. In tumor tissue, smoking caused an enrichment of the cancer-promoting cAMP signaling pathway and L-lactic acid. In paracancerous tissue, smoking also induced a detrimental disturbance in the pancreatic microbiome and metabolome, including an enrichment of Veillonella, Novosphingobium, Deinococcus, and 3-hydroxybutanoic acid, and a reduction of linoleic acid. Besides, the cancer-promoting L-lactic acid was negatively correlated with Faecalibacterium in tumor tissue based on the correlation analysis. CONCLUSION There were differences in the pancreatic microbiome of PDAC patients at different stages, and smoking can further disrupt the pancreatic microbiome and metabolism in PDAC.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yiqing Zhu
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongqi Bu
- School of Software, Shandong University, Jinan, 250100, China
- SDU-NTU Joint Centre for AI Research, Shandong University, Jinan, 250100, China
| | - Min Dong
- PKUCare Luzhong Hospital, Shandong University, Zibo, 250100, China
| | - Guoming Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Changxu Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haoyun Tang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Limei Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yifan Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruiguang Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Wang
- School of Software, Shandong University, Jinan, 250100, China
- SDU-NTU Joint Centre for AI Research, Shandong University, Jinan, 250100, China
| | - Guoxian Yu
- School of Software, Shandong University, Jinan, 250100, China
- SDU-NTU Joint Centre for AI Research, Shandong University, Jinan, 250100, China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
33
|
Li P, Zhang H, Gao X, Chen L, Chen H, Yuan S, Chen W, Dai M. Difference in fecal and oral microbiota between pancreatic cancer and benign/low-grade malignant tumor patients. BMC Microbiol 2024; 24:527. [PMID: 39695939 DOI: 10.1186/s12866-024-03687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Significant gaps exist in understanding the gastrointestinal microbiota in patients with pancreatic cancer (PCA) versus benign or low-grade malignant pancreatic tumors (NPCA). This study aimed to analyze these microbiota characteristics and explore their potential use in distinguishing malignant pancreatic lesions. METHODS Between September 2020 and May 2024, fecal and oral samples were collected from 121 patients undergoing surgical resection or diagnostic biopsy of pancreatic lesions, including 75 patients with PCA and 46 patients with NPCA, and 16s rRNA sequencing was performed. Random forest models based using fecal and oral microbiota data were developed to diagnose PCA and NPCA, with performance assessed using the leave-one-out cross validation method. RESULTS The Shannon index and PCoA analysis revealed significant differences in oral microbiota composition between PCA and NPCA (p < 0.001 and p = 0.001, respectively). Fecal microbiome richness differed significantly (p = 0.02), though composition similarity was noted (p = 0.238). LEfSe identified 16 and 23 genera with significant differences in fecal and oral microbiomes, respectively. Random forest classifiers based on fecal and oral microbiota achieved areas under the curves (AUCs) of 89.4% and 96.3%, respectively, for distinguishing PCA and NPCA. In the mucinous tumor cohort, oral and fecal microbiome classifiers outperformed CA19-9, yielding AUCs of 83.0% and 85.2%, respectively. CONCLUSION Fecal and oral microbiota compositions were significantly different between PCA and NPCA patients. Random forest classifiers utilizing fecal and oral microbiota data effectively distinguish between benign or low-grade malignant and malignant pancreatic lesions.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyu Gao
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haomin Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Yuan
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
35
|
Kovács P, Schwarcz S, Nyerges P, Bíró TI, Ujlaki G, Bai P, Mikó E. Anticarcinogenic effects of ursodeoxycholic acid in pancreatic adenocarcinoma cell models. Front Cell Dev Biol 2024; 12:1487685. [PMID: 39723238 PMCID: PMC11668698 DOI: 10.3389/fcell.2024.1487685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Changes to the composition of the microbiome in neoplasia, is termed oncobiosis, may affect tumor behavior through the changes to the secretion of bacterial metabolites. In this study we show, that ursodeoxycholic acid (UDCA), a bacterial metabolite, has cytostatic properties in pancreatic adenocarcinoma cell (PDAC) models. UDCA in concentrations corresponding to the human serum reference range suppressed PDAC cell proliferation. UDCA inhibited the expression of epithelial mesenchymal transition (EMT)-related markers and invasion capacity of PDAC cells. UDCA treatment increased oxidative/nitrosative stress by reducing the expression of nuclear factor, erythroid 2-like 2 (NRF2), inducing inducible nitric oxide synthase (iNOS) and nitrotyrosine levels and enhancing lipid peroxidation. Furthermore, UDCA reduced the expression of cancer stem cell markers and the proportion of cancer stem cells. Suppression of oxidative stress by antioxidants, blunted the UDCA-induced reduction in cancer stemness. Finally, we showed that UDCA induced mitochondrial oxidative metabolism. UDCA did not modulate the effectiveness of chemotherapy agents used in the chemotherapy treatment of pancreatic adenocarcinoma. The antineoplastic effects of UDCA, observed here, may contribute to the induction of cytostasis in PDAC cell models by providing a more oxidative/nitrosative environment.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Nyerges
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tímea Ingrid Bíró
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Fernández-Edreira D, Liñares-Blanco J, V.-del-Río P, Fernandez-Lozano C. VIBES: A consensus subtyping of the vaginal microbiota reveals novel classification criteria. Comput Struct Biotechnol J 2024; 23:148-156. [PMID: 38144944 PMCID: PMC10749217 DOI: 10.1016/j.csbj.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to develop a robust classification scheme for stratifying patients based on vaginal microbiome. By employing consensus clustering analysis, we identified four distinct clusters using a cohort that includes individuals diagnosed with Bacterial Vaginosis (BV) as well as control participants, each characterized by unique patterns of microbiome species abundances. Notably, the consistent distribution of these clusters was observed across multiple external cohorts, such as SRA022855, SRA051298, PRJNA208535, PRJNA797778, and PRJNA302078 obtained from public repositories, demonstrating the generalizability of our findings. We further trained an elastic net model to predict these clusters, and its performance was evaluated in various external cohorts. Moreover, we developed VIBES, a user-friendly R package that encapsulates the model for convenient implementation and enables easy predictions on new data. Remarkably, we explored the applicability of this new classification scheme in providing valuable insights into disease progression, treatment response, and potential clinical outcomes in BV patients. Specifically, we demonstrated that the combined output of VIBES and VALENCIA scores could effectively predict the response to metronidazole antibiotic treatment in BV patients. Therefore, this study's outcomes contribute to our understanding of BV heterogeneity and lay the groundwork for personalized approaches to BV management and treatment selection.
Collapse
Affiliation(s)
- Diego Fernández-Edreira
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, A Coruña, Spain
| | | | - Patricia V.-del-Río
- Servicio de Ginecología, Hospital Universitario Lucus Augusti (HULA). Servizo Galego de Saúde (SERGAS), Spain
| | - Carlos Fernandez-Lozano
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
37
|
Hu L, Wang X, Song Z, Chen F, Wu B. Leveraging CAR macrophages targeting c-Met for precision immunotherapy in pancreatic cancer: insights from single-cell multi-omics. Mol Med 2024; 30:231. [PMID: 39592929 PMCID: PMC11590533 DOI: 10.1186/s10020-024-00996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Pancreatic cancer is known for its poor prognosis and resistance to conventional therapies, largely due to the presence of cancer stem cells (CSCs) and aggressive angiogenesis. Effectively targeting these CSCs and associated angiogenic pathways is crucial for effective treatment. This study leverages single-cell multi-omics to explore a novel therapeutic approach involving Chimeric Antigen Receptor (CAR) macrophages engineered to target the c-Met protein on pancreatic CSCs. METHODS We employed single-cell RNA sequencing to analyze pancreatic cancer tissue, identifying c-Met as a key marker of CSCs. CAR macrophages were engineered using a lentiviral system to express a c-Met-specific receptor. The phagocytic efficiency of these CAR macrophages against pancreatic CSCs was assessed in vitro, along with their ability to inhibit angiogenesis. The in vivo efficacy of CAR macrophages was evaluated in a mouse model of pancreatic cancer. RESULTS CAR macrophages demonstrated high specificity for c-Met + CSCs, significantly enhancing phagocytosis and reducing the secretion of angiogenic factors such as VEGFA, FGF2, and ANGPT. In vivo, these macrophages significantly suppressed tumor growth and angiogenesis, prolonging survival in pancreatic cancer-bearing mice. CONCLUSION CAR macrophages targeting c-Met represent a promising therapeutic strategy for pancreatic cancer, offering targeted elimination of CSCs and disruption of tumor angiogenesis. This study highlights the potential of single-cell multi-omics in guiding the development of precision immunotherapies.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China.
| |
Collapse
|
38
|
Wu G, Xu T, Zhao N, Lam YY, Ding X, Wei D, Fan J, Shi Y, Li X, Li M, Ji S, Wang X, Fu H, Zhang F, Shi Y, Zhang C, Peng Y, Zhao L. A core microbiome signature as an indicator of health. Cell 2024; 187:6550-6565.e11. [PMID: 39378879 DOI: 10.1016/j.cell.2024.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/29/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiota is crucial for human health, functioning as a complex adaptive system akin to a vital organ. To identify core health-relevant gut microbes, we followed the systems biology tenet that stable relationships signify core components. By analyzing metagenomic datasets from a high-fiber dietary intervention in type 2 diabetes and 26 case-control studies across 15 diseases, we identified a set of stably correlated genome pairs within co-abundance networks perturbed by dietary interventions and diseases. These genomes formed a "two competing guilds" (TCGs) model, with one guild specialized in fiber fermentation and butyrate production and the other characterized by virulence and antibiotic resistance. Our random forest models successfully distinguished cases from controls across multiple diseases and predicted immunotherapy outcomes through the use of these genomes. Our guild-based approach, which is genome specific, database independent, and interaction focused, identifies a core microbiome signature that serves as a holistic health indicator and a potential common target for health enhancement.
Collapse
Affiliation(s)
- Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Yan Y Lam
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Dongqin Wei
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Jian Fan
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Yajuan Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xiaofeng Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Mi Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Shenjie Ji
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huaqing Fu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- Nutrition Department (Clinical Study Center of Functional Food), The Affiliated Hospital of Jiangnan University Wuxi, Wuxi, Jiangsu 214122, China
| | - Yu Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA.
| |
Collapse
|
39
|
Li P, Zhang H, Dai M. Current status and prospect of gut and oral microbiome in pancreatic cancer: Clinical and translational perspectives. Cancer Lett 2024; 604:217274. [PMID: 39307411 DOI: 10.1016/j.canlet.2024.217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is a highly lethal malignancy, and its diagnosis and treatment continue to pose significant challenges. Despite advancements in surgical and comprehensive treatment methods, the five-year survival rate remains below 12 %. With the rapid development of microbiome science, the gut and oral microbiota, which are readily accessible and can be sampled non-invasively, have emerged as a novel area of interest in pancreatic cancer research. Dysbiosis in these microbial communities can induce persistent inflammatory responses and affect the host's immune system, promoting cancer development and impacting the efficacy of treatments like chemotherapy and immunotherapy. This review provides an up-to-date overview of the roles of both gut and oral microbiota in the onset, progression, diagnosis, and treatment of pancreatic cancer. It analyzes the potential of utilizing these microbiomes as biomarkers and therapeutic targets from a clinical application perspective. Furthermore, it discusses future research directions aimed at harnessing these insights to advance the diagnosis and treatment strategies for pancreatic cancer. By focusing on the microbiome's role in clinical and translational medicine, this review offers insights into improving pancreatic cancer diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
van Eijck CWF, Ju J, van 't Land FR, Verheij M, Li Y, Stubbs A, Doukas M, Lila K, Heij LR, Wiltberger G, Alonso L, Malats N, Groot Koerkamp B, Vietsch EE, van Eijck CHJ. The tumor immune microenvironment in resected treatment-naive pancreatic cancer patients with long-term survival. Pancreatology 2024; 24:1057-1065. [PMID: 39218754 DOI: 10.1016/j.pan.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Presently, only a fraction of patients undergo successful surgical resection, the most effective treatment. Enhancing treatment strategies necessitates a deep comprehension of the factors underlying extended survival after surgical resection in patients. METHODS This study aims to identify the important factors of PDAC patients' long-term survival with metatranscriptomics and multiplex immunofluorescence (IF) staining analyses. Specifically, differences in tumor immune microenvironment (TIME) were investigated between treatment-naïve PDAC short-term survivors (STS, overall survival <6 months) and long-term survivors (LTS, overall survival >5 years). RESULTS As a result, we detected 589 over-expressed genes, including HOXB9, CDA, and HOXB8, and 507 under-expressed genes, including AMY2B, SCARA5, and SLC2A2 in LTS. Most of the Reactome overbiological pathways enriched in our data were over-expressed in LTS, such as RHO GTPase Effectors and Cell Cycle Checkpoints. Eleven microbiomes significantly differed between LTS and STS, including Sphingopyxis and Capnocytophaga. Importantly, we demonstrate that the TIME profile with an increased abundance of memory B cells and the reduction of M0 and pro-tumoral M2 macrophages are associated with a good prognosis in PDAC. CONCLUSIONS In this study, we delved into the TIME with metatranscriptomics and IF staining analyses to understand the prerequisite of prolonged survival in PDAC patients. In LTS, several biological pathways were overexpressed, and specific microbiomes were identified. Furthermore, apparent differences in driven immune factors were found that provide valuable insights into developing new treatment strategies.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Freek R van 't Land
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Maaike Verheij
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Michael Doukas
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Lara R Heij
- Institute of Pathology, Medical Center University Duisburg-Essen, Essen, Germany; Department of Surgery and Transplantation, University Hospital Essen, Germany; Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bas Groot Koerkamp
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Eveline E Vietsch
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
41
|
Rouzbahani AK, Khalili-Tanha G, Rajabloo Y, Khojasteh-Leylakoohi F, Garjan HS, Nazari E, Avan A. Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration. Pathol Res Pract 2024; 263:155602. [PMID: 39357184 DOI: 10.1016/j.prp.2024.155602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and patient outcomes. These biomarkers can potentially revolutionize medical practice by enabling personalized, more effective, targeted treatments, ultimately improving patient outcomes. METHODS The search strategy was developed following PRISMA guidelines. A comprehensive search was performed across four electronic databases: PubMed, Scopus, EMBASE, and Web of Science, covering all English publications up to September 2022. The Newcastle-Ottawa Scale (NOS) was utilized to assess bias, categorizing studies as "good," "fair," or "poor" quality based on their NOS scores. Descriptive statistics for all included studies were compiled and reviewed, along with the NOS scores for each study to indicate their quality assessment. RESULTS Our results showed that SVM and RF are the most widely used algorithms in machine learning and data analysis, particularly for biomarker identification. SVM, a supervised learning algorithm, is employed for both classification and regression by mapping data points in high-dimensional space to identify the optimal separating hyperplane between classes. CONCLUSIONS The application of machine-learning algorithms in the search for novel biomarkers in pancreatic cancer represents a significant advancement in the field. By harnessing the power of artificial intelligence, researchers are poised to make strides towards earlier detection and more effective treatment, ultimately improving patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran; USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hassan Shokri Garjan
- Department of Health Information Technology, School of Management University of Medical Sciences, Tabriz, Iran
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Daniel N, Farinella R, Chatziioannou AC, Jenab M, Mayén AL, Rizzato C, Belluomini F, Canzian F, Tavanti A, Keski-Rahkonen P, Hughes DJ, Campa D. Genetically predicted gut bacteria, circulating bacteria-associated metabolites and pancreatic ductal adenocarcinoma: a Mendelian randomisation study. Sci Rep 2024; 14:25144. [PMID: 39448785 PMCID: PMC11502931 DOI: 10.1038/s41598-024-77431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high mortality and rising incidence rates. Recent data indicate that the gut microbiome and associated metabolites may play a role in the development of PDAC. To complement and inform observational studies, we investigated associations of genetically predicted abundances of individual gut bacteria and genetically predicted circulating concentrations of microbiome-associated metabolites with PDAC using Mendelian randomisation (MR). Gut microbiome-associated metabolites were identified through a comprehensive search of Pubmed, Exposome Explorer and Human Metabolome Database. Single Nucleotide Polymorphisms (SNPs) associated by Genome-Wide Association Studies (GWAS) with circulating levels of 109 of these metabolites were collated from Pubmed and the GWAS catalogue. SNPs for 119 taxonomically defined gut genera were selected from a meta-analysis performed by the MiBioGen consortium. Two-sample MR was conducted using GWAS summary statistics from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including a total of 8,769 cases and 7,055 controls. Inverse variance-weighted MR analyses were performed along with sensitivity analyses to assess potential violations of MR assumptions. Nominally significant associations were noted for genetically predicted circulating concentrations of mannitol (odds ratio per standard deviation [ORSD] = 0.97; 95% confidence interval [CI]: 0.95-0.99, p = 0.006), methionine (ORSD= 0.97; 95%CI: 0.94-1.00, p = 0.031), stearic acid (ORSD= 0.93; 95%CI: 0.87-0.99, p = 0.027), carnitine = (ORSD=1.01; 95% CI: 1.00-1.03, p = 0.027), hippuric acid (ORSD= 1.02; 95%CI: 1.00-1.04, p = 0.038) and 3-methylhistidine (ORSD= 1.05; 95%CI: 1.01-1.10, p = 0.02). Two gut microbiome genera were associated with reduced PDAC risk; Clostridium sensu stricto 1 (OR: 0.88; 95%CI: 0.78-0.99, p = 0.027) and Romboutsia (OR: 0.87; 95%CI: 0.80-0.96, p = 0.004). These results, though based only on genetically predicted gut microbiome characteristics and circulating bacteria-related metabolite concentrations, provide evidence for causal associations with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Tong Y, Han F, Liu M, Xu T, Zhang A, Qin J, Zhang Y, Qian X. Characteristics of Gut Microbiome in the Murine Model of Pancreatic Cancer with Damp-Heat Syndrome. Biomedicines 2024; 12:2360. [PMID: 39457673 PMCID: PMC11504882 DOI: 10.3390/biomedicines12102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
PURPOSE Murine models of pancreatic cancer with damp-heat syndrome were established based on two methods to explore the differences in the composition of intestinal flora and to seek characteristic genera with potential for model evaluation. METHODS In our study, thirty-four C57BL/6J male mice were randomly divided into a control group (Con), a model group (Mod), a classic damp-heat syndrome group (CDHS), and a climate-chamber group (CC). CDHS and CC groups were fed with a high-fat diet and glucose water, while the CDHS group was given 2.4 g/kg alcohol by gavage for 10 days, and the CC group was placed in a climatic chamber with a set temperature of (32 ± 1) °C and humidity of (92 ± 2)% for 10 days. The Mod group, CDHS group, and CC group underwent tumor-building experiments on day 11. Tumorigenicity was then assessed twice a week. After 4 weeks, feces, colon tissue, and tumor tissue were taken from the mice and were tested, and the mice were euthanized afterwards. RESULTS Mice in the CDHS and CC groups showed symptoms similar to the clinical damp-heat syndrome observed in traditional Chinese medicine (TCM), and exhibited a worse general condition and more rapid tumor growth trend than those in the Mod group. The pathological examination indicated that inflammation was prevalent in the CDHS and CC groups. Both groups had a disrupted intestinal barrier and an overgrowth of pathogenic bacteria such as c_Gammaproteobacteria, o_Enterobacteriales, and g_Bacteroides. Their microbiota composition showed greater diversity. CONCLUSIONS Intestinal flora may have a promising future in the discovery of indicators for evaluating a model of damp-heat syndrome in pancreatic cancer.
Collapse
Affiliation(s)
- Yangbo Tong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Fang Han
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Tianyu Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Aiqin Zhang
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China;
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Xiang Qian
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| |
Collapse
|
44
|
Yang L, Qiao S, Zhang G, Lu A, Li F. Inflammatory Processes: Key Mediators of Oncogenesis and Progression in Pancreatic Ductal Adenocarcinoma (PDAC). Int J Mol Sci 2024; 25:10991. [PMID: 39456771 PMCID: PMC11506938 DOI: 10.3390/ijms252010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Associations between inflammation and cancer were first discovered approximately 160 years ago by Rudolf Virchow, who observed that tumors were infiltrated with inflammatory cells, and defined inflammation as a pathological condition. Inflammation has now emerged as one of the key mediators in oncogenesis and tumor progression, including pancreatic ductal adenocarcinoma (PDAC). However, the role of inflammatory processes in cancers is complicated and controversial, and the detailed regulatory mechanisms are still unclear. This review elucidates the dynamic interplay between inflammation and immune regulation, microenvironment alteration, metabolic reprogramming, and microbiome risk factors in PDAC, committing to exploring a deeper understanding of the role of crucial inflammatory pathways and molecules for providing insights into therapeutic strategies.
Collapse
Affiliation(s)
- Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (L.Y.); (S.Q.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
45
|
Yang Z, Ma J, Han J, Li A, Liu G, Sun Y, Zheng J, Zhang J, Chen G, Xu R, Sun L, Meng C, Gao J, Bai Z, Deng W, Zhang C, Su J, Yao H, Zhang Z. Gut microbiome model predicts response to neoadjuvant immunotherapy plus chemoradiotherapy in rectal cancer. MED 2024; 5:1293-1306.e4. [PMID: 39047732 DOI: 10.1016/j.medj.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Accurate evaluation of the response to preoperative treatment enables the provision of a more appropriate personalized therapeutic schedule for locally advanced rectal cancer (LARC), which remains an enormous challenge, especially neoadjuvant immunotherapy plus chemoradiotherapy (nICRT). METHODS This prospective, multicenter cohort study enrolled patients with LARC from 6 centers who received nICRT. The dynamic variation in the gut microbiome during nICRT was evaluated. A species-level gut microbiome prediction (SPEED) model was developed and validated to predict the pathological complete response (pCR) to nICRT. FINDINGS A total of 50 patients were enrolled, 75 fecal samples were collected from 33 patients at different time points, and the pCR rate reached 42.4% (14/33). Lactobacillus and Eubacterium were observed to increase after nICRT. Additionally, significant differences in the gut microbiome were observed between responders and non-responders at baseline. Significantly higher abundances of Lachnospiraceae bacterium and Blautia wexlerae were found in responders, while Bacteroides, Prevotella, and Porphyromonas were found in non-responders. The SPEED model showcased a superior predictive performance with areas under the curve of 98.80% (95% confidence interval [CI]: 95.67%-100%) in the training cohort and 77.78% (95% CI: 65.42%-88.29%) in the validation cohort. CONCLUSIONS Programmed death 1 (PD-1) blockade plus concurrent long-course CRT showed a favorable pCR rate and is well tolerated in microsatellite-stable (MSS)/mismatch repair-proficient (pMMR) patients with LARC. The SPEED model can be used to predict the pCR to nICRT based on the baseline gut microbiome with high robustness and accuracy, thereby assisting clinical physicians in providing individualized management for patients with LARC. FUNDING This research was funded by the China National Natural Science Foundation (82202884).
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingxin Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liting Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Cong Meng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Chenlin Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
46
|
Guo Z, Lei Y, Wang Q. Chinese expert consensus on standard technical specifications for a gut microecomics laboratory (Review). Exp Ther Med 2024; 28:403. [PMID: 39234587 PMCID: PMC11372251 DOI: 10.3892/etm.2024.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem that not only affects various physiological functions, such as metabolism, inflammation and the immune response, but also has an important effect on the development of tumors and response to treatment. The detection of intestinal flora enables the timely identification of disease-related flora abnormalities, which has significant implications for both disease prevention and treatment. In the field of basic and clinical research targeting gut microbiome, there is a need to recognize and understand the laboratory assays for gut microbiomics. Currently, there is no unified standard for the experimental procedure, quality management and report interpretation of intestinal microbiome assay technology. In order to clarify the process, the Tumor and Microecology Committee of China Anti-Cancer Association and the Tumor and Microecology Committee of Hubei Provincial Immunology Society organized relevant experts to discuss and put forward the standard technical specifications for gut microecomics laboratories, which provides a basis for further in-depth research in the field of intestinal microecomics.
Collapse
Affiliation(s)
- Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
47
|
Merali N, Chouari T, Sweeney C, Halle-Smith J, Jessel MD, Wang B, O’ Brien J, Suyama S, Jiménez JI, Roberts KJ, Velliou E, Sivakumar S, Rockall TA, Demirkan A, Pedicord V, Deng D, Giovannetti E, Annels NE, Frampton AE. The microbial composition of pancreatic ductal adenocarcinoma: a systematic review of 16S rRNA gene sequencing. Int J Surg 2024; 110:6771-6799. [PMID: 38874485 PMCID: PMC11487005 DOI: 10.1097/js9.0000000000001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets, and the intrinsic selection bias between studies. CONCLUSION Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Tarak Chouari
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Casie Sweeney
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - James Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Bing Wang
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
| | - James O’ Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Satoshi Suyama
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | | | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey
| | - Virginia Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
- Fondazione Pisa per la Scienza, San Giuliano, Italy
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| |
Collapse
|
48
|
Turner KM, Patel SH. Pancreatic Cancer Screening among High-risk Individuals. Surg Clin North Am 2024; 104:951-964. [PMID: 39237170 DOI: 10.1016/j.suc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to remain one of the leading causes of cancer-related death. Unlike other malignancies where universal screening is recommended, the same cannot be said for PDAC. The purpose of this study is to review which patients are at high risk of developing PDAC and therefore candidates for screening, methods/frequency of screening, and risk for these groups of patients.
Collapse
Affiliation(s)
- Kevin M Turner
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Sameer H Patel
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA; Division of Surgical Oncology, Medical Science Building 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA.
| |
Collapse
|
49
|
Xu W, Zhang Y, Chen D, Huang D, Zhao Y, Hu W, Lin L, Liu Y, Wang S, Zeng J, Xie C, Chan H, Li Q, Chen H, Liu X, Wong SH, Yu J, Chan FKL, Chan MTV, Ng SC, Wu WKK, Zhang L. Elucidating the genotoxicity of Fusobacterium nucleatum-secreted mutagens in colorectal cancer carcinogenesis. Gut Pathog 2024; 16:50. [PMID: 39334474 PMCID: PMC11438217 DOI: 10.1186/s13099-024-00640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is one of the key tumorigenic bacteria in colorectal cancer (CRC), yet how F. nucleatum is involved in colorectal cancer carcinogenesis remains unknown. RESULTS In the present study, we carried out PathSeq analysis on RNA sequencing data from the 430 primary colon adenocarcinomas in TCGA database to assess the relationship between patients' survival and F. nucleatum abundance. Among patients with cecum and ascending colon tumors, we found that F. nucleatum transcriptome abundance is positively correlated with mutation load. We further demonstrated that patients with both high tumoral abundance of F. nucleatum and high mutation load exhibited poorer survival and DNA damage. We furthermore determined that F. nucleatum-conditioned medium (Fn. CM) induces DNA damage in both in vitro and in vivo studies. In addition, two F. nucleatum-secreted mutagens, namely DL-homocystine and allantoic acid, were identified to lead to DNA damage. CONCLUSIONS Our finding delineates the genotoxicity of F.nucleatum-secreted mutagens, which provides a basis for further work to investigate the role of F. nucleatum in the pathogenicity of CRC.
Collapse
Affiliation(s)
- Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yuchen Zhang
- Obstetrics Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongjiao Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dan Huang
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yang Zhao
- Department of Pharmacology, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Ling Lin
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Judeng Zeng
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Chuan Xie
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Qing Li
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Huarong Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China.
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
50
|
Hong J, Fu Y, Chen X, Zhang Y, Li X, Li T, Liu Y, Fan M, Lin R. Gut microbiome changes associated with chronic pancreatitis and pancreatic cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:5781-5794. [PMID: 38847785 PMCID: PMC11392207 DOI: 10.1097/js9.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/19/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The study of changes in the microbiome in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) holds significant potential for developing noninvasive diagnostic tools as well as innovative interventions to alter the progression of diseases. This systematic review and meta-analysis aimed to analyze in detail the taxonomic and functional characteristics of the gut microbiome in patients with CP and PDAC. METHODS Two researchers conducted a systematic search across public databases to gather all published research up to June 2023. Diversity and gut microbiota composition are the main outcomes the authors focus on. RESULTS This meta-analysis included 14 studies, involving a total of 1511 individuals in the PDAC ( n =285), CP ( n =342), and control ( n =649) groups. Our results show a significant difference in the composition of gut microbiota between PDAC/CP patients compared to healthy controls (HC), as evidenced by a slight decrease in α-diversity, including Shannon (SMD=-0.33; P =0.002 and SMD=-0.59; P <0.001, respectively) and a statistically significant β-diversity ( P <0.05). The pooled results showed that at the phylum level, the proportion of Firmicutes was lower in PDAC and CP patients than in HC patients. At the genus level, more than two studies demonstrated that four genera were significantly increased in PDAC patients compared to HC (e.g. Escherichia-Shigella and Veillonella ). CP patients had an increase in four genera (e.g. Escherichia-Shigella and Klebsiella ) and a decrease in eight genera (e.g. Coprococcus and Bifidobacterium ) compared to HC. Functional/metabolomics results from various studies also showed differences between PDAC/CP patients and HC. In addition, this study found no significant differences in gut microbiota between PDAC and CP patients. CONCLUSIONS Current evidence suggests changes in gut microbiota is associated with PDAC/CP, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species. Further studies are needed to confirm these findings and explore therapeutic possibilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|