1
|
Venkataraghavan S, Pankow JS, Boerwinkle E, Fornage M, Selvin E, Ray D. Epigenome-wide association study of incident type 2 diabetes in Black and White participants from the Atherosclerosis Risk in Communities Study. Diabetologia 2025:10.1007/s00125-024-06352-9. [PMID: 39971753 DOI: 10.1007/s00125-024-06352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/29/2024] [Indexed: 02/21/2025]
Abstract
AIMS/HYPOTHESIS DNA methylation studies of incident type 2 diabetes in US populations are limited and to our knowledge none include individuals of African descent. We aimed to fill this gap by identifying methylation sites (CpG sites) and regions likely influencing the development of type 2 diabetes using data from Black and White individuals from the USA. METHODS We prospectively followed 2091 Black and 1029 White individuals without type 2 diabetes from the Atherosclerosis Risk in Communities study over a median follow-up period of 17 years, and performed an epigenome-wide association analysis of blood-based methylation levels with incident type 2 diabetes using Cox regression. We assessed whether significant CpG sites were associated with incident type 2 diabetes independently of BMI or fasting glucose at baseline. We estimated variation in incident type 2 diabetes accounted for by the major non-genetic risk factors and the significant CpG sites. We also examined groups of methylation sites that were differentially methylated. We performed replication of previously discovered CpG sites associated with prevalent and/or incident type 2 diabetes. All analyses were adjusted for batch effects, cell-type proportions and relevant confounders. RESULTS At an epigenome-wide threshold (10-7), we detected seven novel diabetes-associated CpG sites, of which the sites at MICOS10 (cg05380846: HR 0.89, p=8.4 × 10-12), ZNF2 (cg01585592: HR 0.88, p=1.6 × 10-9), JPH3 (cg16696007: HR 0.87, p=7.8 × 10-9) and GPX6 (cg02793507: HR 0.85, p=2.7 × 10-8; cg00647063: HR 1.20, p=2.5 × 10-8) were identified in Black adults; chr17q25 (cg16865890: HR 0.8, p=6.9 × 10-8) in White adults; and chr11p15 (cg13738793: HR 1.11, p=7.7 × 10-8) in the meta-analysed group. The JPH3 and GPX6 sites remained epigenome-wide significant on adjustment for BMI, while only the JPH3 site retained significance after adjusting for fasting glucose. We replicated known type 2 diabetes-associated CpG sites, including cg19693031 at TXNIP, cg00574958 at CPT1A, cg16567056 at PLCB2, cg11024682 at SREBF1, cg08857797 at VPS25 and cg06500161 at ABCG1, three of which were replicated in Black adults at the epigenome-wide threshold and all of which had directionally consistent effects. We observed a modest increase in type 2 diabetes variance explained by the significantly associated CpG sites over and above traditional type 2 diabetes risk factors and fasting glucose (26.2% vs 30.5% in Black adults; 36.9% vs 39.4% in White adults). At the Šidák-corrected significance threshold of 5%, our differentially methylated region (DMR) analyses revealed several clusters of significant CpG sites, including a DMR consisting of a previously discovered CpG site at ADCY7 (pBlack=1.8 × 10-4, pWhite=3.6 × 10-3, pAll=1.6 × 10-9) and a DMR consisting of the promoter region of TP63 (pBlack=7.4 × 10-4, pWhite=3.9 × 10-3, pAll=1.4 × 10-5), which were differentially methylated across all racial and ethnic groups. CONCLUSIONS/INTERPRETATION This study illustrates improved discovery of CpG sites and regions by leveraging both individual CpG site analysis and DMR analyses in an unexplored population. Our findings include genes linked to diabetes in experimental studies (e.g. GPX6, JPH3 and TP63). The JPH3 and GPX6 sites were likely associated with incident type 2 diabetes independently of BMI. All the CpG sites except that at JPH3 were likely consequences of elevated glucose. Replication in African-descent individuals of CpG sites previously discovered mostly in individuals of European descent indicates that some of these methylation-type 2 diabetes associations are robust across racial and ethnic groups. This study is a first step towards understanding the influence of methylation on the incidence of type 2 diabetes and its disparity in two major racial and ethnic groups in the USA. It paves the way for future studies to investigate causal relationships between type 2 diabetes and the CpG sites and potentially elucidate molecular targets for intervention.
Collapse
Affiliation(s)
- Sowmya Venkataraghavan
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Eric Boerwinkle
- The University of Texas Health School of Public Health, Houston, TX, USA
| | - Myriam Fornage
- Brown Foundation Institute for Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, & Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Li Y, Lin L, Zhang W, Wang Y, Guan Y. Genetic association of type 2 diabetes mellitus and glycaemic factors with primary tumours of the central nervous system. BMC Neurol 2024; 24:458. [PMID: 39581977 PMCID: PMC11587545 DOI: 10.1186/s12883-024-03969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a pivotal chronic disease with an increasing prevalence. Recent studies have found associations between T2DM and the development of central nervous system (CNS) tumours, a special class of solid tumours with an unclear pathogenesis. In this study, we aimed to explore the relationship between T2DM and certain glycaemic factors with common CNS tumours by using genetic data to conduct Mendelian randomization (MR) and co-localisation analysis. We found a causal relationship between T2DM and glioblastoma, fasting glucose and spinal cord tumours, glycated haemoglobin and spinal cord tumours, and insulin-like growth factor-1 and spinal cord tumours, pituitary tumours, and craniopharyngiomas. These results clarify the relationship between T2DM, glucose-related factors, and common CNS tumours, and they provide valuable insight into further clinical and basic research on CNS tumours, as well as new ideas for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yongxue Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Lihao Lin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenhui Zhang
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yi Guan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
3
|
Ma M, Yi L, Pei Y, Zhang Q, Tong C, Zhao M, Chen Y, Zhu J, Zhang W, Yao F, Yang P, Zhang P. USP26 as a hepatitis B virus-induced deubiquitinase primes hepatocellular carcinogenesis by epigenetic remodeling. Nat Commun 2024; 15:7856. [PMID: 39251623 PMCID: PMC11385750 DOI: 10.1038/s41467-024-52201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Despite recent advances in systemic therapy for hepatocellular carcinoma (HCC), the prognosis of hepatitis B virus (HBV)-induced HCC patients remains poor. By screening a sgRNA library targeting human deubiquitinases, we find that ubiquitin-specific peptidase 26 (USP26) deficiency impairs HBV-positive HCC cell proliferation. Genetically engineered murine models with Usp26 knockout confirm that Usp26 drives HCC tumorigenesis. Mechanistically, we find that the HBV-encoded protein HBx binds to the promoter and induces the production of USP26, which is an X-linked gene exclusively expressed in the testis. HBx consequently promotes the association of USP26 with SIRT1 to synergistically stabilize SIRT1 by deubiquitination, which promotes cell proliferation and impedes cell apoptosis to accelerate HCC tumorigenesis. In patients with HBV-positive HCC, USP26 is robustly induced, and its levels correlate with SIRT1 levels and poor prognosis. Collectively, our study highlights a causative link between HBV infection, deubiquitinase induction and development of HCC, identifying a druggable target, USP26.
Collapse
Affiliation(s)
- Mengru Ma
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lian Yi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yifei Pei
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qimin Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chao Tong
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manyu Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanhong Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peijing Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Fondevila MF, Novoa E, Fernandez U, Dorta V, Parracho T, Kreimeyer H, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Porteiro B, Cabaleiro A, Koning M, Senra A, Souto Y, Verheij J, Guallar D, Fidalgo M, Meijnikman AS, da Silva Lima N, Dieguez C, Gonzalez-Rellan MJ, Nogueiras R. Inhibition of hepatic p63 ameliorates steatohepatitis with fibrosis in mice. Mol Metab 2024; 85:101962. [PMID: 38815625 PMCID: PMC11180345 DOI: 10.1016/j.molmet.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Mijra Koning
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Yara Souto
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Diana Guallar
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Abraham S Meijnikman
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, M5T 3H7, Canada
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, 15702, Spain.
| |
Collapse
|
5
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Venkataraghavan S, Pankow JS, Boerwinkle E, Fornage M, Selvin E, Ray D. Epigenome-wide association study of incident type 2 diabetes in Black and White participants from the Atherosclerosis Risk in Communities Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.09.23293896. [PMID: 37609313 PMCID: PMC10441493 DOI: 10.1101/2023.08.09.23293896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
DNA methylation studies of incident type 2 diabetes in US populations are limited, and to our knowledge none included individuals of African descent living in the US. We performed an epigenome-wide association analysis of blood-based methylation levels at CpG sites with incident type 2 diabetes using Cox regression in 2,091 Black and 1,029 White individuals from the Atherosclerosis Risk in Communities study. At an epigenome-wide significance threshold of 10-7, we detected 7 novel diabetes-associated CpG sites in C1orf151 (cg05380846: HR= 0.89, p = 8.4 × 10-12), ZNF2 (cg01585592: HR= 0.88, p = 1.6 × 10-9), JPH3 (cg16696007: HR= 0.87, p = 7.8 × 10-9), GPX6 (cg02793507: HR= 0.85, p = 2.7 × 10-8 and cg00647063: HR= 1.20, p = 2.5 × 10-8), chr17q25 (cg16865890: HR= 0.8, p = 6.9 × 10-8), and chr11p15 (cg13738793: HR= 1.11, p = 7.7 × 10-8). The CpG sites at C1orf151, ZNF2, JPH3 and GPX6, were identified in Black adults, chr17q25 was identified in White adults, and chr11p15 was identified upon meta-analyzing the two groups. The CpG sites at JPH3 and GPX6 were likely associated with incident type 2 diabetes independent of BMI. All the CpG sites, except at JPH3, were likely consequences of elevated glucose at baseline. We additionally replicated known type 2 diabetes-associated CpG sites including cg19693031 at TXNIP, cg00574958 at CPT1A, cg16567056 at PLBC2, cg11024682 at SREBF1, cg08857797 at VPS25, and cg06500161 at ABCG1, 3 of which were replicated in Black adults at the epigenome-wide threshold. We observed modest increase in type 2 diabetes variance explained upon addition of the significantly associated CpG sites to a Cox model that included traditional type 2 diabetes risk factors and fasting glucose (increase from 26.2% to 30.5% in Black adults; increase from 36.9% to 39.4% in White adults). We examined if groups of proximal CpG sites were associated with incident type 2 diabetes using a gene-region specific and a gene-region agnostic differentially methylated region (DMR) analysis. Our DMR analyses revealed several clusters of significant CpG sites, including a DMR consisting of a previously discovered CpG site at ADCY7 and promoter regions of TP63 which were differentially methylated across all race groups. This study illustrates improved discovery of CpG sites/regions by leveraging both individual CpG site and DMR analyses in an unexplored population. Our findings include genes linked to diabetes in experimental studies (e.g., GPX6, JPH3, and TP63), and future gene-specific methylation studies could elucidate the link between genes, environment, and methylation in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sowmya Venkataraghavan
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of American
| | - Eric Boerwinkle
- The UTHealth School of Public Health, Houston, Texas, United States of America
| | - Myriam Fornage
- Brown Foundation Institute for Molecular Medicine, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Elizabeth Selvin
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology, & Clinical Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Cai Z, Hu X, Gui L, Qi M, Zhu W, Ren Y, Yang S, Dai C. Study on the therapeutic effect and mechanism of Tangningtongluo Tablet on diabetic mice. J Diabetes Complications 2023; 37:108523. [PMID: 37301061 DOI: 10.1016/j.jdiacomp.2023.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
AIMS To investigate the therapeutic effects of Tangningtongluo Tablet on diabetic mice and its mechanism. This study was established the scientific basis for the clinical application of Tangningtongluo Tablet in the treatment of diabetes mellitus and provided data supporting the transformation of Tangningtongluo Tablet from an in-hospital preparation to a new Chinese medicine. METHODS In this study, a diabetic mouse model was established by high-glucose and high-fat diet feeding in combination with STZ injection for 4 weeks. Glucose metabolism, lipid metabolism, liver histomorphological changes and liver function related indexes were detected, pancreatic histomorphological changes and insulin resistance related indexes were observed, and the expression of pathway related proteins and inflammatory factors were examined. RESULTS Glycemia and glycated hemoglobin were reduced in diabetic mice after the treatment of Tangningtongluo Tablet, and glucose tolerance and lipid results were modified. The insulin resistance status of the mice was diminished and tissue damage to the pancreas and liver was repaired. Expression of ERS/NF-κB related pathway proteins was reduced in liver tissues, and inflammatory factors such as TNF-α, IL-6 and IL-1β were reduced in serum. CONCLUSIONS Tangningtongluo Tablet could reduce blood glucose in diabetic mice, regulate the disorder of lipid metabolism, enhance insulin sensitivity, improve insulin resistance, repair pancreatic tissue damage and protect mouse liver in diabetic mice. The mechanism of action might be related to the regulation of ERS/NF-κB signaling pathway and the reduction of TNF-α, IL-6 and IL-1β production.
Collapse
Affiliation(s)
- Zengxiaorui Cai
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Liuming Gui
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mushuang Qi
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wanjun Zhu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Ren
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shuyu Yang
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China; School of Medicine,Xiamen University, Xiamen, Fujian, China.
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
9
|
Mithieux G. Transcription factor p63, a member of the p53 family of tumour suppressors, regulates hepatic glucose metabolism. Gut 2023; 72:415-416. [PMID: 35705366 DOI: 10.1136/gutjnl-2022-327790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale U1213, University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| |
Collapse
|