1
|
King LR. Gastrointestinal manifestations of long COVID. Life Sci 2024; 357:123100. [PMID: 39357795 DOI: 10.1016/j.lfs.2024.123100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Long COVID is estimated to have affected 6.9 % of US adults, 17.8 million people in the US alone, as of early 2023. While SARS-CoV-2 is primarily considered a respiratory virus, gastrointestinal (GI) symptoms are also frequent in patients with coronavirus disease 2019 (COVID-19) and in patients with Long COVID. The risk of developing GI symptoms is increased with increasing severity of COVID-19, the presence of GI symptoms in the acute infection, and psychological distress both before and after COVID-19. Persistence of the virus in the GI tract, ensuing inflammation, and alteration of the microbiome are all likely mediators of the effects of SARS Co-V-2 virus on the gut. These factors may all increase intestinal permeability and systemic inflammation. GI inflammation and dysbiosis can change the absorption and metabolism of tryptophan, an important neurotransmitter. Long COVID GI symptoms resemble a Disorder of Gut Brain Interaction (DGBI) such as post infection Irritable Bowel Syndrome (IBS). Current standards of treatment for IBS can guide our treatment of Long COVID patients. Dysautonomia, a frequent Long COVID condition affecting the autonomic nervous system, can also affect the GI tract, and must be considered in Long COVID patients with GI symptoms. Long COVID symptoms fall within the broader category of Infection Associated Chronic Conditions (IACCs). Research into the GI symptoms of Long COVID may further our understanding of other post infection chronic GI conditions, and elucidate the roles of therapeutic options including antivirals, probiotics, neuromodulators, and treatments of dysautonomia.
Collapse
Affiliation(s)
- Louise R King
- University of North Carolina School of Medicine, Department of Medicine, Division of General Medicine and Clinical Epidemiology, 5034 Old Clinic Building, 101 Manning Drive, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
2
|
Yu LCH. Gastrointestinal pathophysiology in long COVID: Exploring roles of microbiota dysbiosis and serotonin dysregulation in post-infectious bowel symptoms. Life Sci 2024; 358:123153. [PMID: 39454992 DOI: 10.1016/j.lfs.2024.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered an unprecedented public health crisis known as the coronavirus disease 2019 (COVID-19) pandemic. Gastrointestinal (GI) symptoms develop in patients during acute infection and persist after recovery from airway distress in a chronic form of the disease (long COVID). A high incidence of irritable bowel syndrome (IBS) manifested by severe abdominal pain and defecation pattern changes is reported in COVID patients. Although COVID is primarily considered a respiratory disease, fecal shedding of SARS-CoV-2 antigens positively correlates with bowel symptoms. Active viral infection in the GI tract was identified by human intestinal organoid studies showing SARS-CoV-2 replication in gut epithelial cells. In this review, we highlight the key findings in post-COVID bowel symptoms and explore possible mechanisms underlying the pathophysiology of the illness. These mechanisms include mucosal inflammation, gut barrier dysfunction, and microbiota dysbiosis during viral infection. Viral shedding through the GI route may be the primary factor causing the alteration of the microbiome ecosystem, particularly the virome. Recent evidence in experimental models suggested that microbiome dysbiosis could be further aggravated by epithelial barrier damage and immune activation. Moreover, altered microbiota composition has been associated with dysregulated serotonin pathways, resulting in intestinal nerve hypersensitivity. These mechanisms may explain the development of post-infectious IBS-like symptoms in long COVID. Understanding how coronavirus infection affects gut pathophysiology, including microbiome changes, would benefit the therapeutic advancement for managing post-infectious bowel symptoms.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Okuducu YK, Mall MA, Yonker LM. COVID-19 in Pediatric Populations. Clin Chest Med 2024; 45:675-684. [PMID: 39069330 DOI: 10.1016/j.ccm.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The COVID-19 pandemic reshaped the landscape of respiratory viral illnesses, causing common viruses to fade as SARS-CoV-2 took precedence. By 2023, more than 96% of the children in the United States were estimated to have been infected with SARS-CoV-2, with certain genetic predispositions and underlying health conditions posing risk factors for severe disease in children. Children, in general though, exhibit immunity advantages, protecting against aspects of the SARS-CoV-2 infection known to drive increased severity in older adults. Post-COVID-19 complications such as multisystem inflammatory syndrome in children and long COVID have emerged, underscoring the importance of vaccination. Here, we highlight the risks of severe pediatric COVID-19, age-specific immunoprotection, comparisons of SARS-CoV-2 with other respiratory viruses, and factors contributing to post-COVID-19 complications in children.
Collapse
Affiliation(s)
- Yanki K Okuducu
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin Augustenburger Platz 1, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 13353, Germany; German Center for Lung Research (DZL), Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lael M Yonker
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, 175 Cambridge Street, 5(th) floor, Boston, MA 02114, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Zhai X, Wu W, Zeng S, Miao Y. Advance in the mechanism and clinical research of myalgia in long COVID. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:142-164. [PMID: 39310121 PMCID: PMC11411160 DOI: 10.62347/txvo6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mortality rates of coronavirus disease 2019 (COVID-19) have significantly decreased. However, a variable proportion of patients exhibit persistent prolonged symptoms of COVID-19 infection (long COVID). This virus primarily attacks respiratory system, but numerous individuals complain persistent skeletal muscle pain or worsening pre-existing muscle pain post COVID-19, which severely affects the quality of life and recovery. Currently, there is limited research on the skeletal muscle pain in long COVID. In this brief review, we review potential pathological mechanisms of skeletal muscle pain in long COVID, and summarize the various auxiliary examinations and treatments for skeletal muscle pain in long COVID. We consider abnormal activation of inflammatory response, myopathy, and neurological damages as pivotal pathological mechanisms of skeletal muscle pain in long COVID. A comprehensive examination is significantly important in order to work out effective treatment plans and relieve skeletal muscle pain. So far, rehabilitation interventions for myalgia in long COVID contain but are not limited to drug, nutraceutical therapy, gut microbiome-targeted therapy, interventional therapy and strength training. Our study provides a potential mechanism reference for clinical researches, highlighting the importance of comprehensive approach and management of skeletal muscle pain in long COVID. The relief of skeletal muscle pain will accelerate rehabilitation process, improve activities of daily living and enhance the quality of life, promoting individuals return to society with profound significance.
Collapse
Affiliation(s)
- Xiuyun Zhai
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Weijun Wu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
| | - Siliang Zeng
- Department of Rehabilitation Therapy, School of Health, Shanghai Normal University Tianhua CollegeNo. 1661, North Shengxin Road, Shanghai 201815, China
| | - Yun Miao
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong UniversityNo. 100, Haining Road, Shanghai 200080, China
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda UniversityNo. 2727, Jinhai Road, Shanghai 201209, China
| |
Collapse
|
5
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Lau RI, Su Q, Ching JYL, Lui RN, Chan TT, Wong MTL, Lau LHS, Wing YK, Chan RNY, Kwok HYH, Ho AHY, Tse YK, Cheung CP, Li MKT, Siu WY, Liu C, Lu W, Wang Y, Chiu EOL, Cheong PK, Chan FKL, Ng SC. Fecal Microbiota Transplantation for Sleep Disturbance in Post-acute COVID-19 Syndrome. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00542-1. [PMID: 38908733 DOI: 10.1016/j.cgh.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND & AIMS Post-acute COVID-19 syndrome (PACS) is associated with sleep disturbance, but treatment options are limited. The etiology of PACS may be secondary to alterations in the gut microbiome. Here, we report the efficacy of fecal microbiota transplantation (FMT) in alleviating post-COVID insomnia symptoms in a nonrandomized, open-label prospective interventional study. METHODS Between September 22, 2022, and May 22, 2023, we recruited 60 PACS patients with insomnia defined as Insomnia Severity Index (ISI) ≥8 and assigned them to the FMT group (FMT at weeks 0, 2, 4, and 8; n = 30) or the control group (n = 30). The primary outcome was clinical remission defined by an ISI of <8 at 12 weeks. Secondary outcomes included changes in the Pittsburgh Sleep Quality Index, Generalized Anxiety Disorder-7 scale, Epworth Sleepiness Scale, Multidimensional Fatigue Inventory, blood cortisol and melatonin, and gut microbiome analysis on metagenomic sequencing. RESULTS At week 12, more patients in the FMT than the control group had insomnia remission (37.9% vs 10.0%; P = .018). The FMT group showed a decrease in ISI score (P < .0001), Pittsburgh Sleep Quality Index (P < .0001), Generalized Anxiety Disorder-7 scale (P = .0019), Epworth Sleepiness Scale (P = .0057), and blood cortisol concentration (P = .035) from baseline to week 12, but there was no significant change in the control group. There was enrichment of bacteria such as Gemmiger formicilis and depletion of microbial pathways producing menaquinol derivatives after FMT. The gut microbiome profile resembled that of the donor in FMT responders but not in nonresponders at week 12. There was no serious adverse event. CONCLUSIONS This pilot study showed that FMT could be effective and safe in alleviating post-COVID insomnia, and further clinical trials are warranted. CLINICALTRIALS gov, Number: NCT05556733.
Collapse
Affiliation(s)
- Raphaela I Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Qi Su
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Rashid N Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Ting Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marc T L Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis H S Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rachel N Y Chan
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanson Y H Kwok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Agnes H Y Ho
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee Kit Tse
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Moses K T Li
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Wan Ying Siu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chengyu Liu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Wenqi Lu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Yun Wang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Emily O L Chiu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Kuan Cheong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Siew C Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Boncheva I, Poudrier J, Falcone EL. Role of the intestinal microbiota in host defense against respiratory viral infections. Curr Opin Virol 2024; 66:101410. [PMID: 38718575 DOI: 10.1016/j.coviro.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
Viral infections, including those affecting the respiratory tract, can alter the composition of the intestinal microbiota, which, in turn, can significantly influence both innate and adaptive immune responses, resulting in either enhanced pathogen clearance or exacerbation of the infection, possibly leading to inflammatory complications. A deeper understanding of the interplay between the intestinal microbiota and host immune responses in the context of respiratory viral infections (i.e. the gut-lung axis) is necessary to develop new treatments. This review highlights key mechanisms by which the intestinal microbiota, including its metabolites, can act locally or at distant organs to combat respiratory viruses. Therapeutics aimed at harnessing the microbiota to prevent and/or help treat respiratory viral infections represent a promising avenue for future investigation.
Collapse
Affiliation(s)
- Idia Boncheva
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Johanne Poudrier
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Emilia L Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute/Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada; Department of Microbiology and Infectious Diseases, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
8
|
Su Q, Lau RI, Liu Q, Li MKT, Yan Mak JW, Lu W, Lau ISF, Lau LHS, Yeung GTY, Cheung CP, Tang W, Liu C, Ching JYL, Cheong PK, Chan FKL, Ng SC. The gut microbiome associates with phenotypic manifestations of post-acute COVID-19 syndrome. Cell Host Microbe 2024; 32:651-660.e4. [PMID: 38657605 DOI: 10.1016/j.chom.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
The mechanisms underlying the many phenotypic manifestations of post-acute COVID-19 syndrome (PACS) are poorly understood. Herein, we characterized the gut microbiome in heterogeneous cohorts of subjects with PACS and developed a multi-label machine learning model for using the microbiome to predict specific symptoms. Our processed data covered 585 bacterial species and 500 microbial pathways, explaining 12.7% of the inter-individual variability in PACS. Three gut-microbiome-based enterotypes were identified in subjects with PACS and associated with different phenotypic manifestations. The trained model showed an accuracy of 0.89 in predicting individual symptoms of PACS in the test set and maintained a sensitivity of 86% and a specificity of 82% in predicting upcoming symptoms in an independent longitudinal cohort of subjects before they developed PACS. This study demonstrates that the gut microbiome is associated with phenotypic manifestations of PACS, which has potential clinical utility for the prediction and diagnosis of PACS.
Collapse
Affiliation(s)
- Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raphaela I Lau
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Moses K T Li
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Joyce Wing Yan Mak
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ivan S F Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis H S Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Giann T Y Yeung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Whitney Tang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Annesley SJ, Missailidis D, Heng B, Josev EK, Armstrong CW. Unravelling shared mechanisms: insights from recent ME/CFS research to illuminate long COVID pathologies. Trends Mol Med 2024; 30:443-458. [PMID: 38443223 DOI: 10.1016/j.molmed.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic illness often triggered by an initiating acute event, mainly viral infections. The transition from acute to chronic disease remains unknown, but interest in this phenomenon has escalated since the COVID-19 pandemic and the post-COVID-19 illness, termed 'long COVID' (LC). Both ME/CFS and LC share many clinical similarities. Here, we present recent findings in ME/CFS research focussing on proposed disease pathologies shared with LC. Understanding these disease pathologies and how they influence each other is key to developing effective therapeutics and diagnostic tests. Given that ME/CFS typically has a longer disease duration compared with LC, with symptoms and pathologies evolving over time, ME/CFS may provide insights into the future progression of LC.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, VIC, Australia.
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Elisha K Josev
- Neurodisability & Rehabilitation, Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia; Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Christopher W Armstrong
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Huang K, Li Z, He X, Dai J, Huang B, Shi Y, Fan D, Zhang Z, Liu Y, Li N, Zhang Z, Peng J, Liu C, Zeng R, Cen Z, Wang T, Yang W, Cen M, Li J, Yuan S, Zhang L, Hu D, Huang S, Chen P, Lai P, Lin L, Wen J, Zhao Z, Huang X, Yuan L, Zhou L, Wu H, Huang L, Feng K, Wang J, Liao B, Cai W, Deng X, Li Y, Li J, Hu Z, Yang L, Li J, Zhuo Y, Zhang F, Lin L, Luo Y, Zhang W, Ni Q, Hong X, Chang G, Zhang Y, Guan D, Cai W, Lu Y, Li F, Yan L, Ren M, Li L, Chen S. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab 2024; 36:598-616.e9. [PMID: 38401546 DOI: 10.1016/j.cmet.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Thrombosis represents the leading cause of death and disability upon major adverse cardiovascular events (MACEs). Numerous pathological conditions such as COVID-19 and metabolic disorders can lead to a heightened thrombotic risk; however, the underlying mechanisms remain poorly understood. Our study illustrates that 2-methylbutyrylcarnitine (2MBC), a branched-chain acylcarnitine, is accumulated in patients with COVID-19 and in patients with MACEs. 2MBC enhances platelet hyperreactivity and thrombus formation in mice. Mechanistically, 2MBC binds to integrin α2β1 in platelets, potentiating cytosolic phospholipase A2 (cPLA2) activation and platelet hyperresponsiveness. Genetic depletion or pharmacological inhibition of integrin α2β1 largely reverses the pro-thrombotic effects of 2MBC. Notably, 2MBC can be generated in a gut-microbiota-dependent manner, whereas the accumulation of plasma 2MBC and its thrombosis-aggravating effect are largely ameliorated following antibiotic-induced microbial depletion. Our study implicates 2MBC as a metabolite that links gut microbiota dysbiosis to elevated thrombotic risk, providing mechanistic insight and a potential therapeutic strategy for thrombosis.
Collapse
Affiliation(s)
- Kan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China; Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Wenchao Yang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jingyu Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Shuai Yuan
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Lu Zhang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Dandan Hu
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong 510700, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Liyan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lining Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Lifang Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Haoliang Wu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China
| | - Kai Feng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jianping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Lin Lin
- Department of Respiratory Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yifeng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Qianlin Ni
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, Hubei 430070, China
| | - Guangqi Chang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510620, China
| | - Li Yan
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Meng Ren
- Guangdong Clinical Research Center for Metabolic Diseases (Diabetes), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, Guangdong 528200, China.
| |
Collapse
|
11
|
Lau RI, Su Q, Lau ISF, Ching JYL, Wong MCS, Lau LHS, Tun HM, Mok CKP, Chau SWH, Tse YK, Cheung CP, Li MKT, Yeung GTY, Cheong PK, Chan FKL, Ng SC. A synbiotic preparation (SIM01) for post-acute COVID-19 syndrome in Hong Kong (RECOVERY): a randomised, double-blind, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:256-265. [PMID: 38071990 DOI: 10.1016/s1473-3099(23)00685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Post-acute COVID-19 syndrome (PACS) affects over 65 million individuals worldwide but treatment options are scarce. We aimed to assess a synbiotic preparation (SIM01) for the alleviation of PACS symptoms. METHODS In this randomised, double-blind, placebo-controlled trial at a tertiary referral centre in Hong Kong, patients with PACS according to the US Centers for Disease Control and Prevention criteria were randomly assigned (1:1) by random permuted blocks to receive SIM01 (10 billion colony-forming units in sachets twice daily) or placebo orally for 6 months. Inclusion criterion was the presence of at least one of 14 PACS symptoms for 4 weeks or more after confirmed SARS-CoV-2 infection, including fatigue, memory loss, difficulty in concentration, insomnia, mood disturbance, hair loss, shortness of breath, coughing, inability to exercise, chest pain, muscle pain, joint pain, gastrointestinal upset, or general unwellness. Individuals were excluded if they were immunocompromised, were pregnant or breastfeeding, were unable to receive oral fluids, or if they had received gastrointestinal surgery in the 30 days before randomisation. Participants, care providers, and investigators were masked to group assignment. The primary outcome was alleviation of PACS symptoms by 6 months, assessed by an interviewer-administered 14-item questionnaire in the intention-to-treat population. Forward stepwise multivariable logistical regression was performed to identify predictors of symptom alleviation. The trial is registered with ClinicalTrials.gov, NCT04950803. FINDINGS Between June 25, 2021, and Aug 12, 2022, 463 patients were randomly assigned to receive SIM01 (n=232) or placebo (n=231). At 6 months, significantly higher proportions of the SIM01 group had alleviation of fatigue (OR 2·273, 95% CI 1·520-3·397, p=0·0001), memory loss (1·967, 1·271-3·044, p=0·0024), difficulty in concentration (2·644, 1·687-4·143, p<0·0001), gastrointestinal upset (1·995, 1·304-3·051, p=0·0014), and general unwellness (2·360, 1·428-3·900, p=0·0008) compared with the placebo group. Adverse event rates were similar between groups during treatment (SIM01 22 [10%] of 232 vs placebo 25 [11%] of 231; p=0·63). Treatment with SIM01, infection with omicron variants, vaccination before COVID-19, and mild acute COVID-19, were predictors of symptom alleviation (p<0·0036). INTERPRETATION Treatment with SIM01 alleviates multiple symptoms of PACS. Our findings have implications on the management of PACS through gut microbiome modulation. Further studies are warranted to explore the beneficial effects of SIM01 in other chronic or post-infection conditions. FUNDING Health and Medical Research Fund of Hong Kong, Hui Hoy and Chow Sin Lan Charity Fund, and InnoHK of the HKSAR Government. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Raphaela I Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Qi Su
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Ivan S F Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Martin C S Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Louis H S Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hein M Tun
- Microbiota I-Center, Hong Kong Special Administrative Region, China; The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chris K P Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Steven W H Chau
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yee Kit Tse
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chun Pan Cheung
- Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Moses K T Li
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China
| | - Giann T Y Yeung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pui Kuan Cheong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Francis K L Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Siew C Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I-Center, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
12
|
Lai Z, Pu T, Li J, Bai F, Wu L, Tang Y. Visual analysis of hotspots and trends in long COVID research based on bibliometric. Heliyon 2024; 10:e24053. [PMID: 38293444 PMCID: PMC10827472 DOI: 10.1016/j.heliyon.2024.e24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/23/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
After severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a series of symptoms may persist for a long time, which is now called long COVID. It was found that long COVID can affect all patients with COVID-19. Therefore, long COVID has become a hot topic. In this study, we used the WOS database as a sample data source to conduct a bibliometric and visual analysis of 1765 long COVID articles over the past three years through VOSviewer and R package. The results show that countries/authors in Europe and The United States of America contribute most of the articles, and their cooperation is also the most active. Keyword co-occurrence identified four clusters, with important topics including the mechanism, clinical symptoms, epidemiological characteristics, and management/treatment of long COVID. Themes such as "cognitive impairment", "endothelial dysfunction", "diagnosis", and "biomarkers" are likely to be the focus of new attention in the coming period. In addition, we put forward the possible research opportunities on long COVID for researchers and practitioners to facilitate future research.
Collapse
Affiliation(s)
- Zongqiang Lai
- The Pharmaceutical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Tao Pu
- Department of Adolescent Gynecology, Shenzhen Children's Hospital, Shenzhen, Guangdong, PR China
| | - Jun Li
- The Pharmaceutical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Facheng Bai
- The Pharmaceutical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Lining Wu
- The Pharmaceutical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yunxia Tang
- The Pharmaceutical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
13
|
Righi E, Dalla Vecchia I, Auerbach N, Morra M, Górska A, Sciammarella C, Lambertenghi L, Gentilotti E, Mirandola M, Tacconelli E, Sartor A. Gut Microbiome Disruption Following SARS-CoV-2: A Review. Microorganisms 2024; 12:131. [PMID: 38257958 PMCID: PMC10820238 DOI: 10.3390/microorganisms12010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
COVID-19 has been associated with having a negative impact on patients' gut microbiome during both active disease and in the post-acute phase. In acute COVID-19, rapid alteration of the gut microbiome composition was observed, showing on one side a reduction in beneficial symbionts (e.g., Roseburia, Lachnospiraceae) and on the other side an increase in opportunistic pathogens such as Enterococcus and Proteobacteria. Alpha diversity tends to decrease, especially initially with symptom onset and hospital admission. Although clinical recovery appears to align with improved gut homeostasis, this process could take several weeks, even in mild infections. Moreover, patients with COVID-19 post-acute syndrome showed changes in gut microbiome composition, with specific signatures associated with decreased respiratory function up to 12 months following acute disease. Potential treatments, especially probiotic-based therapy, are under investigation. Open questions remain on the possibility to use gut microbiome data to predict disease progression and on potential confounders that may impair result interpretation (e.g., concomitant therapies in the acute phase; reinfection, vaccines, and occurrence of novel conditions or diseases in the post-acute syndrome). Understanding the relationships between gut microbiome dynamics and disease progression may contribute to better understanding post-COVID syndrome pathogenesis or inform personalized treatment that can affect specific targets or microbiome markers.
Collapse
Affiliation(s)
- Elda Righi
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Ilaria Dalla Vecchia
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Nina Auerbach
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Matteo Morra
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Anna Górska
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Concetta Sciammarella
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Lorenza Lambertenghi
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Elisa Gentilotti
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Massimo Mirandola
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Evelina Tacconelli
- IMID Laboratory, Department of Diagnostics and Public Health, Infectious Diseases Division, University of Verona, 37134 Verona, Italy (A.G.); (C.S.); (E.T.)
| | - Assunta Sartor
- Microbiology Unit, Udine University Hospital, 33100 Udine, Italy;
| |
Collapse
|
14
|
Rubas NC, Peres R, Kunihiro BP, Allan NP, Phankitnirundorn K, Wells RK, McCracken T, Lee RH, Umeda L, Conching A, Juarez R, Maunakea AK. HMGB1 mediates microbiome-immune axis dysregulation underlying reduced neutralization capacity in obesity-related post-acute sequelae of SARS-CoV-2. Sci Rep 2024; 14:355. [PMID: 38172612 PMCID: PMC10764757 DOI: 10.1038/s41598-023-50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
While obesity is a risk factor for post-acute sequelae of SARS-CoV-2 infection (PASC, "long-COVID"), the mechanism(s) underlying this phenomenon remains poorly understood. To address this gap in knowledge, we performed a 6-week longitudinal study to examine immune activity and gut microbiome dysbiosis in post-acute stage patients recovering from SARS-CoV-2 infection. Self-reported symptom frequencies and blood samples were collected weekly, with plasma assessed by ELISA and Luminex for multiple biomarkers and immune cell profiling. DNA from stool samples were collected at the early stage of recovery for baseline assessments of gut microbial composition and diversity using 16S-based metagenomic sequencing. Multiple regression analyses revealed obesity-related PASC linked to a sustained proinflammatory immune profile and reduced adaptive immunity, corresponding with reduced gut microbial diversity. In particular, enhanced signaling of the high mobility group box 1 (HMGB1) protein was found to associate with this dysregulation, with its upregulated levels in plasma associated with significantly impaired viral neutralization that was exacerbated with obesity. These findings implicate HMGB1 as a candidate biomarker of PASC, with potential applications for risk assessment and targeted therapies.
Collapse
Affiliation(s)
- Noelle C Rubas
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Deparment of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Rafael Peres
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Braden P Kunihiro
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nina P Allan
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Krit Phankitnirundorn
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Riley K Wells
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Deparment of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Trevor McCracken
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Rosa H Lee
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Lesley Umeda
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Deparment of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Ruben Juarez
- Hawai'i Integrated Analytics, Honolulu, HI, USA
- Deparment of Economics and UHERO, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Alika K Maunakea
- Department of Biochemistry, Anatomy, and Physiology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
- Hawai'i Integrated Analytics, Honolulu, HI, USA.
| |
Collapse
|
15
|
Demirhan S, Goldman DL, Herold BC. Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults. J Clin Med 2023; 13:128. [PMID: 38202135 PMCID: PMC10780117 DOI: 10.3390/jcm13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The COVID-19 pandemic challenged the medical field to rapidly identify and implement new approaches to the diagnosis, treatment and prevention of SARS-CoV-2 infections. The scientific community also needed to rapidly initiate basic, translational, clinical and epidemiological studies to understand the pathophysiology of this new family of viruses, which continues to evolve with the emergence of new genetic variants. One of the earliest clinical observations that provided a framework for the research was the finding that, in contrast to most other respiratory viruses, children developed less severe acute and post-acute disease compared to adults. Although the clinical manifestations of SARS-CoV-2 infection changed with each new wave of the pandemic, which was dominated by evolving viral variants, the differences in severity between children and adults persisted. Comparative immunologic studies have shown that children mount a more vigorous local innate response characterized by the activation of interferon pathways and recruitment of innate cells to the mucosa, which may mitigate against the hyperinflammatory adaptive response and systemic cytokine release that likely contributed to more severe outcomes including acute respiratory distress syndrome in adults. In this review, the clinical manifestations and immunologic responses in children during the different waves of COVID-19 are discussed.
Collapse
Affiliation(s)
| | | | - Betsy C. Herold
- Department of Pediatrics, Division of Infectious Diseases, Albert Einstein College of Medicine, The Children’s Hospital at Montefiore, 1225 Morris Park Avenue, Bronx, NY 10461, USA; (S.D.); (D.L.G.)
| |
Collapse
|
16
|
Xiao Z, Pan M, Li X, Zhao C. Impact of SARS-CoV2 infection on gut microbiota dysbiosis. MICROBIOME RESEARCH REPORTS 2023; 3:7. [PMID: 38455085 PMCID: PMC10917619 DOI: 10.20517/mrr.2023.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
The composition and function of the gut microbiota constantly influence health. Disruptions in this delicate balance, termed gut microbiota dysbiosis, have been implicated in various adverse health events. As the largest global epidemic since 1918, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had devastating consequences. While the primary impact of Corona Virus Disease 2019 (COVID-19) has been on the respiratory system, a growing body of research has unveiled the significant involvement of the gastrointestinal tract as well. Emerging evidence underscores notable alterations in the gut microbiome of COVID-19 patients. In addition, the gut microbiome is also characterized by an abundance of opportunistic pathogens, which is related to disease manifestations of COVID-19 patients. The intricate bidirectional interaction between the respiratory mucosa and the gut microbiota, known as the gut-lung axis, emerges as a crucial player in the pathological immune response triggered by SARS-CoV-2. Here, we discuss microbiota-based gut characteristics of COVID-19 patients and the long-term consequences of gut microbiota dysregulation. These insights could potentially transform the development of long-term interventions for COVID-19, offering hope for improved outcomes and enhanced patient recovery.
Collapse
Affiliation(s)
- Zhenming Xiao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miaomiao Pan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinyao Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Frontiers Science Center, Shanghai 200032, China
| |
Collapse
|
17
|
Liu Y, Gu X, Li H, Zhang H, Xu J. Mechanisms of long COVID: An updated review. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:231-240. [PMID: 39171285 PMCID: PMC11332859 DOI: 10.1016/j.pccm.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 08/23/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 3 years, with an enormous impact on global health and economies. In some patients, symptoms and signs may remain after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which cannot be explained by an alternate diagnosis; this condition has been defined as long COVID. Long COVID may exist in patients with both mild and severe disease and is prevalent after infection with different SARS-CoV-2 variants. The most common symptoms include fatigue, dyspnea, and other symptoms involving multiple organs. Vaccination results in lower rates of long COVID. To date, the mechanisms of long COVID remain unclear. In this narrative review, we summarized the clinical presentations and current evidence regarding the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Xiaoying Gu
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China–Japan Friendship Hospital, Capital Medical University, Beijing 100029, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
18
|
Krasaewes K, Chaiwarith R, Chattipakorn N, Chattipakorn SC. Profiles of gut microbiota associated with clinical outcomes in patients with different stages of SARS-CoV-2 infection. Life Sci 2023; 332:122136. [PMID: 37783267 DOI: 10.1016/j.lfs.2023.122136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The correlation between SARS-CoV-2 infection and gut microbiota has been a subject of growing interest in recent research endeavors. It is postulated that SARS-CoV-2 might lead to gut dysbiosis by affecting the gut-lung axis and reducing the production of antimicrobial peptides in the gastrointestinal tract. Our comprehensive review of both in vivo and clinical studies has revealed a consistent decline in alpha diversity and increased dissimilarity in beta diversity of gut microbiota in comparison to healthy populations, observed during both the acute and post-infection phases of COVID-19. Furthermore, there is a notable reduction in the number of beneficial butyrate-producing bacteria, alongside an upsurge in opportunistic bacteria. Concomitantly, the functional and metabolic characteristics of gut microbiota are significantly altered. Consequently, COVID-19 patients exhibit a heightened inflammatory state, which has been linked to the severity of the disease in the acute phase and the occurrence of post-acute COVID-19 syndrome (PACS) in the post-infection phase. Notably, certain specific gut microbiota species have emerged as potential candidates for aiding in the diagnosis, prediction of disease severity, or treatment of severe cases of COVID-19. This review also underscores the significance of gut microbiota in the context of post-acute COVID-19 syndrome (PACS) and offers valuable insights into possible biomarkers for diagnosis and therapeutic targets for PACS in the future.
Collapse
Affiliation(s)
- Kawisara Krasaewes
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Romanee Chaiwarith
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
19
|
Ghoshal UC, Ghoshal U. Gastrointestinal involvement in post-acute Coronavirus disease (COVID)-19 syndrome. Curr Opin Infect Dis 2023; 36:366-370. [PMID: 37606895 DOI: 10.1097/qco.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PURPOSE OF REVIEW Ten percentage of patients with coronavirus disease (COVID)-19 report having gastrointestinal (GI) symptoms as severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) not only infects the pulmonary but also the GI tract. GI infections including that due to viral infection is known to cause postinfection disorders of gut-brain interaction (DGBI); hence, we wish to review the long-term GI consequences following COVID-19, particularly post-COVID-19 DGBI. RECENT FINDINGS At least 12 cohort studies, four of which also included controls documented the occurrence of post-COVID-19 DGBI, particularly IBS following COVID-19. The risk factors for post-COVID-19 DGBI included female gender, symptomatic COVID-19, particularly GI symptoms, the severity of COVID-19, the occurrence of anosmia and ageusia, use of antibiotics and hospitalization during the acute illness, persistent GI symptoms beyond 1 month after recovery, presence of mental health factors, The putative mechanisms for post-COVID-19 DGBI include altered gut motility, visceral hypersensitivity, gut microbiota dysbiosis, GI inflammation, and immune activation, changes in intestinal permeability, and alterations in the enteroendocrine system and serotonin metabolism. SUMMARY Long-term sequelae of SARS-CoV2 infection may persist even after recovery from COVID-19. Patients with COVID-19 are more likely to develop post-COVID-19 IBS than healthy controls. Post-COVID-19 IBS may pose a substantial healthcare burden to society.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow
| | - Ujjala Ghoshal
- Department of Microbiology, All India Institute of Medical Science, Kalyani, West Bengal, India
| |
Collapse
|
20
|
Perumal R, Shunmugam L, Naidoo K. Long COVID: An approach to clinical assessment and management in primary care. S Afr Fam Pract (2004) 2023; 65:e1-e10. [PMID: 37427773 PMCID: PMC10331047 DOI: 10.4102/safp.v65i1.5751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023] Open
Abstract
Long COVID is an emerging public health threat, following swiftly behind the surges of acute infection over the course of the COVID-19 pandemic. It is estimated that there are already approximately 100 million people suffering from Long COVID globally, 0.5 million of whom are South African, and for whom our incomplete understanding of the condition has forestalled appropriate diagnosis and clinical care. There are several leading postulates for the complex, multi-mechanistic pathogenesis of Long COVID. Patients with Long COVID may present with a diversity of clinical phenotypes, often with significant overlap, which may exhibit temporal heterogeneity and evolution. Post-acute care follow-up, targeted screening, diagnosis, a broad initial assessment and more directed subsequent assessments are necessary at the primary care level. Symptomatic treatment, self-management and rehabilitation are the mainstays of clinical care for Long COVID. However, evidence-based pharmacological interventions for the prevention and treatment of Long COVID are beginning to emerge. This article presents a rational approach for assessing and managing patients with Long COVID in the primary care setting.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, Faculty of Medicine, University of KwaZulu-Natal, Durban, South Africa; and Department of Pulmonology, Faculty of Medicine, University of KwaZulu-Natal, Durban.
| | | | | |
Collapse
|
21
|
Zhang J, Zhang Y, Xia Y, Sun J. Microbiome and intestinal pathophysiology in post-acute sequelae of COVID-19. Genes Dis 2023; 11:S2352-3042(23)00223-4. [PMID: 37362775 PMCID: PMC10278891 DOI: 10.1016/j.gendis.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 06/28/2023] Open
Abstract
Long COVID, also known for post-acute sequelae of COVID-19, describes the people who have the signs and symptoms that continue or develop after the acute COVID-19 phase. Long COVID patients suffer from an inflammation or host responses towards the virus approximately 4 weeks after initial infection with the SARS CoV-2 virus and continue for an uncharacterized duration. Anyone infected with COVID-19 before could experience long-COVID conditions, including the patients who were infected with SARS CoV-2 virus confirmed by tests and those who never knew they had an infection early. People with long COVID may experience health problems from different types and combinations of symptoms over time, such as fatigue, dyspnea, cognitive impairments, and gastrointestinal (GI) symptoms (e.g., nausea, vomiting, diarrhea, decreased or loss of appetite, abdominal pain, and dysgeusia). The critical role of the microbiome in these GI symptoms and long COVID were reported in clinical patients and experimental models. Here, we provide an overall view of the critical role of the GI tract and microbiome in the development of long COVID, including the clinical GI symptoms in patients, dysbiosis, viral-microbiome interactions, barrier function, and inflammatory bowel disease patients with long COVID. We highlight the potential mechanisms and possible treatment based on GI health and microbiome. Finally, we discuss challenges and future direction in the long COVID clinic and research.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, IL 60612, USA
- UIC Cancer Center, Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, Vahlne A, Nikolich J. Biological mechanisms underpinning the development of long COVID. iScience 2023; 26:106935. [PMID: 37265584 PMCID: PMC10193768 DOI: 10.1016/j.isci.2023.106935] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-CoV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences. Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available. To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.
Collapse
Affiliation(s)
- Rubeshan Perumal
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
- Department of Pulmonology and Critical Care, Division of Internal Medicine, School of Clinical Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| | - Letitia Shunmugam
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Kogieleum Naidoo
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Dave Wilkins
- The Global Virus Network, Baltimore, MD 21201, USA
| | - Alfredo Garzino-Demo
- The Global Virus Network, Baltimore, MD 21201, USA
- Department of Molecular Medicine, University of Padova, Padova 1- 35129, Italy
| | - Christian Brechot
- The Global Virus Network, Baltimore, MD 21201, USA
- Infectious Disease and International Health, University of South Florida, Tampa, FL 33620, USA
| | - Anders Vahlne
- The Global Virus Network, Baltimore, MD 21201, USA
- Division of Clinical Microbiology, Karolinska Institute, Stockholm 17165, Sweden
| | - Janko Nikolich
- The Global Virus Network, Baltimore, MD 21201, USA
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
23
|
Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol 2023; 20:323-337. [PMID: 36271144 PMCID: PMC9589856 DOI: 10.1038/s41575-022-00698-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract is involved in coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gut microbiota has important roles in viral entry receptor angiotensin-converting enzyme 2 (ACE2) expression, immune homeostasis, and crosstalk between the gut and lungs, the 'gut-lung axis'. Emerging preclinical and clinical studies indicate that the gut microbiota might contribute to COVID-19 pathogenesis and disease outcomes; SARS-CoV-2 infection was associated with altered intestinal microbiota and correlated with inflammatory and immune responses. Here, we discuss the cutting-edge evidence on the interactions between SARS-CoV-2 infection and the gut microbiota, key microbial changes in relation to COVID-19 severity and host immune dysregulations with the possible underlying mechanisms, and the conceivable consequences of the pandemic on the human microbiome and post-pandemic health. Finally, potential modulatory strategies of the gut microbiota are discussed. These insights could shed light on the development of microbiota-based interventions for COVID-19.
Collapse
Affiliation(s)
- Fen Zhang
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Raphaela I Lau
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qin Liu
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Qi Su
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Shatin, Hong Kong S.A.R., China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
- State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., China.
| |
Collapse
|
24
|
Wong MCS, Zhang L, Ching JYL, Mak JWY, Huang J, Wang S, Mok CKP, Wong A, Chiu OL, Fung YT, Cheong PK, Tun HM, Ng SC, Chan FKL. Effects of Gut Microbiome Modulation on Reducing Adverse Health Outcomes among Elderly and Diabetes Patients during the COVID-19 Pandemic: A Randomised, Double-Blind, Placebo-Controlled Trial (IMPACT Study). Nutrients 2023; 15:1982. [PMID: 37111201 PMCID: PMC10143994 DOI: 10.3390/nu15081982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota is believed to be a major determinant of health outcomes. We hypothesised that a novel oral microbiome formula (SIM01) can reduce the risk of adverse health outcomes in at-risk subjects during the coronavirus disease 2019 (COVID-19) pandemic. In this single-centre, double-blind, randomised, placebo-controlled trial, we recruited subjects aged ≥65 years or with type two diabetes mellitus. Eligible subjects were randomised in a 1:1 ratio to receive three months of SIM01 or placebo (vitamin C) within one week of the first COVID-19 vaccine dose. Both the researchers and participants were blinded to the groups allocated. The rate of adverse health outcomes was significantly lower in the SIM01 group than the placebo at one month (6 [2.9%] vs. 25 [12.6], p < 0.001) and three months (0 vs. 5 [3.1%], p = 0.025). At three months, more subjects who received SIM01 than the placebo reported better sleep quality (53 [41.4%] vs. 22 [19.3%], p < 0.001), improved skin condition (18 [14.1%] vs. 8 [7.0%], p = 0.043), and better mood (27 [21.2%] vs. 13 [11.4%], p = 0.043). Subjects who received SIM01 showed a significant increase in beneficial Bifidobacteria and butyrate-producing bacteria in faecal samples and strengthened the microbial ecology network. SIM01 reduced adverse health outcomes and restored gut dysbiosis in elderly and diabetes patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin C. S. Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Y. L. Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joyce W. Y. Mak
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angie Wong
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oi-Lee Chiu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee-Ting Fung
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui-Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein-Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Siew C. Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K. L. Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Perumal R, Shunmugam L, Naidoo K, Abdool Karim SS, Wilkins D, Garzino-Demo A, Brechot C, Parthasarathy S, Vahlne A, Nikolich JŽ. Long COVID: a review and proposed visualization of the complexity of long COVID. Front Immunol 2023; 14:1117464. [PMID: 37153597 PMCID: PMC10157068 DOI: 10.3389/fimmu.2023.1117464] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2) infection, or Long COVID, is a prevailing second pandemic with nearly 100 million affected individuals globally and counting. We propose a visual description of the complexity of Long COVID and its pathogenesis that can be used by researchers, clinicians, and public health officials to guide the global effort toward an improved understanding of Long COVID and the eventual mechanism-based provision of care to afflicted patients. The proposed visualization or framework for Long COVID should be an evidence-based, dynamic, modular, and systems-level approach to the condition. Furthermore, with further research such a framework could establish the strength of the relationships between pre-existing conditions (or risk factors), biological mechanisms, and resulting clinical phenotypes and outcomes of Long COVID. Notwithstanding the significant contribution that disparities in access to care and social determinants of health have on outcomes and disease course of long COVID, our model focuses primarily on biological mechanisms. Accordingly, the proposed visualization sets out to guide scientific, clinical, and public health efforts to better understand and abrogate the health burden imposed by long COVID.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
- Department of Pulmonology and Critical Care, Division of Internal Medicine, School Clinical Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
| | - Letitia Shunmugam
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Dave Wilkins
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alfredo Garzino-Demo
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Christian Brechot
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
| | - Anders Vahlne
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Janko Ž. Nikolich
- Long COVID Taskforce, The Global Virus Network, Baltimore, MD, United States
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, United States
| |
Collapse
|
26
|
Li J, Ghosh TS, McCann R, Mallon P, Hill C, Draper L, Schult D, Fanning LJ, Shannon R, Sadlier C, Horgan M, O’Mahony L, O’Toole PW. Robust cross-cohort gut microbiome associations with COVID-19 severity. Gut Microbes 2023; 15:2242615. [PMID: 37550964 PMCID: PMC10411309 DOI: 10.1080/19490976.2023.2242615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Although many recent studies have examined associations between the gut microbiome and COVID-19 disease severity in individual patient cohorts, questions remain on the robustness across international cohorts of the biomarkers they reported. Here, we performed a meta-analysis of eight shotgun metagenomic studies of COVID-19 patients (comprising 1,023 stool samples) and 23 > 16S rRNA gene amplicon sequencing (16S) cohorts (2,415 total stool samples). We found that disease severity (as defined by the WHO clinical progression scale) was associated with taxonomic and functional microbiome differences. This alteration in gut microbiome configuration peaks at days 7-30 post diagnosis, after which the gut microbiome returns to a configuration that becomes more similar to that of healthy controls over time. Furthermore, we identified a core set of species that were consistently associated with disease severity across shotgun metagenomic and 16S cohorts, and whose abundance can accurately predict disease severity category of SARS-CoV-2 infected subjects, with Actinomyces oris abundance predicting population-level mortality rate of COVID-19. Additionally, we used relational diet-microbiome databases constructed from cohort studies to predict microbiota-targeted diet patterns that would modulate gut microbiota composition toward that of healthy controls. Finally, we demonstrated the association of disease severity with the composition of intestinal archaeal, fungal, viral, and parasitic communities. Collectively, this study has identified robust COVID-19 microbiome biomarkers, established accurate predictive models as a basis for clinical prognostic tests for disease severity, and proposed biomarker-targeted diets for managing COVID-19 infection.
Collapse
Affiliation(s)
- Junhui Li
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tarini Shankar Ghosh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rachel McCann
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorraine Draper
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Schult
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Liam J. Fanning
- Department of Medicine, University College Cork, Cork, Ireland
| | - Robert Shannon
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Corinna Sadlier
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Mary Horgan
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Liam O’Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Zhou B, Pang X, Wu J, Liu T, Wang B, Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes 2023; 15:2201157. [PMID: 37078497 PMCID: PMC10120564 DOI: 10.1080/19490976.2023.2201157] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
The epidemic of coronavirus disease-19 (COVID-19) has grown to be a global health threat. Gastrointestinal symptoms are thought to be common clinical manifestations apart from a series of originally found respiratory symptoms. The human gut harbors trillions of microorganisms that are indispensable for complex physiological processes and homeostasis. Growing evidence demonstrate that gut microbiota alteration is associated with COVID-19 progress and severity, and post-COVID-19 syndrome, characterized by decrease of anti-inflammatory bacteria like Bifidobacterium and Faecalibacterium and enrichment of inflammation-associated microbiota including Streptococcus and Actinomyces. Therapeutic strategies such as diet, probiotics/prebiotics, herb, and fecal microbiota transplantation have shown positive effects on relieving clinical symptoms. In this article, we provide and summarize the recent evidence about the gut microbiota and their metabolites alterations during and after COVID-19 infection and focus on potential therapeutic strategies targeting gut microbiota. Understanding the connections between intestinal microbiota and COVID-19 would provide new insights into COVID-19 management in the future.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|