1
|
Haq IU, Shabtaie SA, Tan NY, Lachman N, Asirvatham SJ. Anatomy of the Ventricular Outflow Tracts: An Electrophysiology Perspective. Clin Anat 2024; 37:43-53. [PMID: 37337379 DOI: 10.1002/ca.24083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Outflow tract ventricular arrhythmias are the most common type of idiopathic ventricular arrhythmia. A systematic understanding of the outflow tract anatomy improves procedural efficacy and enables electrophysiologists to anticipate and prevent complications. This review emphasizes the three-dimensional spatial relationships between the ventricular outflow tracts using seven anatomical principles. In turn, each principle is elaborated on from a clinical perspective relevant for the practicing electrophysiologist. The developmental anatomy of the outflow tracts is also discussed and reinforced with a clinical case.
Collapse
Affiliation(s)
- Ikram U Haq
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Samuel A Shabtaie
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nirusha Lachman
- Department of Anatomy, Mayo Clinic, Rochester, Minnesota, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Bell-Cheddar Y, Devine WA, Diaz-Castrillon CE, Seese L, Castro-Medina M, Morales R, Follansbee CW, Alsaied T, Lin JHI. Double outlet right ventricle. Front Pediatr 2023; 11:1244558. [PMID: 37818164 PMCID: PMC10560996 DOI: 10.3389/fped.2023.1244558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
This review article addresses the history, morphology, anatomy, medical management, and different surgical options for patients with double outlet right ventricle.
Collapse
Affiliation(s)
- Yolandee Bell-Cheddar
- Division of Pediatric Cardiac Critical Care, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, United States
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - William A. Devine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Laura Seese
- Department of Pediatric Cardiothoracic Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Mario Castro-Medina
- Department of Pediatric Cardiothoracic Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Raymond Morales
- Division of Pediatric Cardiac Critical Care, Children's Hospital of New Orleans, New Orleans, LA, United States
| | - Christopher W. Follansbee
- Division of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Tarek Alsaied
- Division of Pediatric Cardiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jiuann-Huey I. Lin
- Division of Pediatric Cardiac Critical Care, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, United States
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Zhao K, Hua D, Yang C, Wu X, Mao Y, Sheng Y, Sun W, Li Y, Kong X, Li P. Nuclear import of Mas-related G protein-coupled receptor member D induces pathological cardiac remodeling. Cell Commun Signal 2023; 21:181. [PMID: 37488545 PMCID: PMC10364433 DOI: 10.1186/s12964-023-01168-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/14/2023] [Indexed: 07/26/2023] Open
Abstract
Alamandine (Ala), a ligand of Mas-related G protein-coupled receptor, member D (MrgD), alleviates angiotensin II (AngII)-induced cardiac hypertrophy. However, the specific physiological and pathological role of MrgD is not yet elucidated. Here, we found that MrgD expression increased under various pathological conditions. Then, MrgD knockdown prevented AngII-induced cardiac hypertrophy and fibrosis via inactivating Gαi-mediacted downstream signaling pathways, including the phosphorylation of p38 (p-P38), while MrgD overexpression induced pathological cardiac remodeling. Next, Ala, like silencing MrgD, exerted its cardioprotective effects by inhibiting Ang II-induced nuclear import of MrgD. MrgD interacted with p-P38 and promoted its entry into the nucleus under Ang II stimulation. Our results indicated that Ala was a blocking ligand of MrgD that inhibited downstream signaling pathway, which unveiled the promising cardioprotective effect of silencing MrgD expression on alleviating cardiac remodeling. Video Abstract.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Dongxu Hua
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoguang Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yukang Mao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yanhui Sheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yong Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
5
|
Long X, Yuan X, Du J. Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Comput Struct Biotechnol J 2023; 21:2717-2731. [PMID: 37181659 PMCID: PMC10173363 DOI: 10.1016/j.csbj.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Current transcriptomics technologies, including bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), single-nucleus RNA-sequencing (snRNA-seq), and spatial transcriptomics (ST), provide novel insights into the spatial and temporal dynamics of gene expression during cardiac development and disease processes. Cardiac development is a highly sophisticated process involving the regulation of numerous key genes and signaling pathways at specific anatomical sites and developmental stages. Exploring the cell biological mechanisms involved in cardiogenesis also contributes to congenital heart disease research. Meanwhile, the severity of distinct heart diseases, such as coronary heart disease, valvular disease, cardiomyopathy, and heart failure, is associated with cellular transcriptional heterogeneity and phenotypic alteration. Integrating transcriptomic technologies in the clinical diagnosis and treatment of heart diseases will aid in advancing precision medicine. In this review, we summarize applications of scRNA-seq and ST in the cardiac field, including organogenesis and clinical diseases, and provide insights into the promise of single-cell and spatial transcriptomics in translational research and precision medicine.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
6
|
Ling S, Chen J, Lapierre-Landry M, Suh J, Liu Y, Jenkins MW, Watanabe M, Ford SM, Rollins AM. Automated endocardial cushion segmentation and cellularization quantification in developing hearts using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5599-5615. [PMID: 36733755 PMCID: PMC9872882 DOI: 10.1364/boe.467629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/18/2023]
Abstract
Of all congenital heart defects (CHDs), anomalies in heart valves and septa are among the most common and contribute about fifty percent to the total burden of CHDs. Progenitors to heart valves and septa are endocardial cushions formed in looping hearts through a multi-step process that includes localized expansion of cardiac jelly, endothelial-to-mesenchymal transition, cell migration and proliferation. To characterize the development of endocardial cushions, previous studies manually measured cushion size or cushion cell density from images obtained using histology, immunohistochemistry, or optical coherence tomography (OCT). Manual methods are time-consuming and labor-intensive, impeding their applications in cohort studies that require large sample sizes. This study presents an automated strategy to rapidly characterize the anatomy of endocardial cushions from OCT images. A two-step deep learning technique was used to detect the location of the heart and segment endocardial cushions. The acellular and cellular cushion regions were then segregated by K-means clustering. The proposed method can quantify cushion development by measuring the cushion volume and cellularized fraction, and also map 3D spatial organization of the acellular and cellular cushion regions. The application of this method to study the developing looping hearts allowed us to discover a spatial asymmetry of the acellular cardiac jelly in endocardial cushions during these critical stages, which has not been reported before.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiawei Chen
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junwoo Suh
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yehe Liu
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Stephanie M. Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Chen T, Song S, Jiang H, Lian H, Hu S. Single Cell Sequencing Reveals Mechanisms of Persistent Truncus Arteriosus Formation after PDGFRα and PDGFRβ Double Knockout in Cardiac Neural Crest Cells. Genes (Basel) 2022; 13:genes13101708. [PMID: 36292593 PMCID: PMC9601305 DOI: 10.3390/genes13101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Persistent truncus arteriosus (PTA) is an uncommon and complex congenital cardiac malformation accounting for about 1.2% of all congenital heart diseases (CHDs), which is caused by a deficiency in the embryonic heart outflow tract’s (OFT) septation and remodeling. PDGFRα and PDGFRβ double knockout (DKO) in cardiac neural crest cells (CNCCs) has been reported to cause PTA, but the underlying mechanisms remain unclear. Here, we constructed a PTA mouse model with PDGFRα and PDGFRβ double knockout in Pax3+ CNCCs and described the condensation failure into OFT septum of CNCC-derived cells due to disturbance of cell polarity in the DKO group. In addition, we further explored the mechanism with single-cell RNA sequencing. We found that two main cell differentiation trajectories into vascular smooth muscle cells (VSMCs) from cardiomyocytes (CMs) and mesenchymal cells (MSs), respectively, were interrupted in the DKO group. The process of CM differentiation into VSMC stagnated in a transitional CM I-like state, which contributed to the failure of OFT remodeling and muscular septum formation. On the other hand, a Penk+ transitional MS II cluster closely related to cell condensation into the OFT septum disappeared, which led to the OFT’s septation absence directly. In conclusion, the disturbance of CNCC-derived cells caused by PDGFRα and PDGFRβ knockout can lead to the OFT septation disorder and the occurrence of PTA.
Collapse
Affiliation(s)
- Tianyun Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Haobin Jiang
- Division of Thoracic Surgery, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
- Correspondence:
| |
Collapse
|
8
|
Sopek Merkaš I, Lakušić N, Paar MH. Quadricuspid aortic valve and right ventricular type of myocardial bridging in an asymptomatic middle-aged woman: A case report. World J Clin Cases 2022; 10:8954-8961. [PMID: 36157661 PMCID: PMC9477056 DOI: 10.12998/wjcc.v10.i25.8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/19/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Quadricuspid aortic valve (QAV) is a very rare congenital cardiac defect with the incidence of 0.0125%-0.033% (< 0.05%) predominantly causing aortic regurgitation. A certain number of patients (nearly one-half) have abnormal function and often require surgery, commonly in their fifth or sixth decade. QAV usually appears as an isolated anomaly but may also be associated with other cardiac congenital defects. Echocardiography is considered the main diagnostic method although more and more importance is given to computed tomography (CT) and magnetic resonance imaging (MRI) as complementary methods.
CASE SUMMARY A 60-year-old female patient was referred for transthoracic ultrasound of the heart as part of a routine examination in the treatment of arterial hypertension. She did not have any significant symptoms. QAV was confirmed and there were no elements of valve stenosis with moderate aortic regurgitation. At first, it seemed that in the projection of the presumed left coronary cusp, there were two smaller and equally large cusps along with two larger and normally developed cusps. Cardiac CT imaging was performed to obtain an even more precise valve morphology and it showed that the location of the supernumerary cusp is between the right and left coronary cusp, with visible central malcoaptation of the cusps. Also, coronary computed angiography confirmed the right-type of myocardial bridging at the distal segment of the left anterior descending coronary artery. Significant valve dysfunction often occurs in middle-aged patients and results in surgical treatment, therefore, a 1-year transthoracic echocardiogram control examination and follow-up was recommended to our patient.
CONCLUSION This case highlights the importance of diagnosing QAV since it leads to progressive valve dysfunction and can be associated with other congenital heart defects which is important to detect, emphasizing the role of cardiac CT and MRI.
Collapse
Affiliation(s)
- Ivana Sopek Merkaš
- Department of Cardiology, Special Hospital for Medical Rehabilitation Krapinske Toplice, Krapinske Toplice 49217, Croatia
| | - Nenad Lakušić
- Department of Cardiology, Special Hospital for Medical Rehabilitation Krapinske Toplice, Krapinske Toplice 49217, Croatia
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, Osijek 31000, Croatia
- Department of Internal Medicine, Family Medicine and History of Medicine, Faculty of Medicine Osijek, Osjiek 31000, Croatia
| | - Maja Hrabak Paar
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
9
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Thube HR, Sane MR. Sudden death of a post-partum female with anomalous origin of the coronary artery with bicuspid aortic valve. Med Leg J 2022:258172211060688. [PMID: 35156433 DOI: 10.1177/00258172211060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modern techniques have enabled routine diagnosis of congenital cardiac defects, notwithstanding, there will be some that remain undiagnosed and asymptomatic until adulthood. But this is rarely the case with the patent foramen ovale, with the anomalous aortic origin of the left main coronary artery and bicuspid aortic valve. This case describes the sudden death of a female in her post-partum period due to cardiac tamponade following a ruptured aneurysm of the coronary artery at its origin at the sinus of Valsalva. Autopsy shows patent foramen ovale findings and anomalous aortic origin of coronary artery (AAOCA) and bicuspid aortic valve. The association of AAOCA with bicuspid aortic valve and patent foramen ovale is rare.
Collapse
Affiliation(s)
- Harshal R Thube
- Department of Forensic Medicine & Toxicology, All India Institute of Medical Sciences, Nagpur, India
| | - Mandar R Sane
- Department of Forensic Medicine & Toxicology, All India Institute of Medical Sciences, Nagpur, India
| |
Collapse
|
11
|
Al-Saloos H, Yassin H. Diagnosis and therapeutic cardiac catheterization of symptomatic bicuspid aortic stenosis in the pediatric population. Heart Views 2022; 23:47-54. [PMID: 35757452 PMCID: PMC9231541 DOI: 10.4103/heartviews.heartviews_39_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/10/2022] [Indexed: 11/05/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart disease with a prevalence of 0.5%–1.3% of the population. Many children with BAV are asymptomatic. Clinically relevant abnormal valve function usually occurs in adulthood. However, in rare cases, children can fail to thrive which requires valvular intervention. In this review, we will explore in more detail the anatomy of the BAV, clinical presentation of BAV, diagnosis of BAV, and its function by echocardiography, and indications for transcatheter intervention in the pediatric population.
Collapse
|
12
|
Vessel structural stress mediates aortic media degeneration in bicuspid aortopathy: New insights based on patient-specific fluid-structure interaction analysis. J Biomech 2021; 129:110805. [PMID: 34678623 DOI: 10.1016/j.jbiomech.2021.110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to assess the relationship between local mechanical stimuli and regional aortic tissue degeneration using fluid-structure interaction (FSI) analysis in patients with bicuspid aortic valve (BAV) disease. Nine patients underwent ascending aortic replacement were recruited. Tissues were collected to evaluate the pathology features in four regions, greater curvature (GC-region), posterior (P-region), anterior (A-region), and lesser curvature (LC-region). FSI analysis was performed to quantify vessel structural stress (VSS) and flow-induced parameters, including wall shear stress (WSS), oscillatory shear index (OSI), and particle relative residence time (RRT). The correlation between these biomechanical metrics and tissue degeneration was analyzed. Elastin in the medial layer and media thickness were thinnest and the gap between fibers was biggest in the GC-region, followed by the P-region and A-region, while the elastin and media thickness were thickest and the gap smallest in the LC-region. The collagen deposition followed a pattern with the biggest in the GC-region and least in the LC-region. There is a strong negative correlation between mean or peak VSS and elastin thickness in the arterial wall in the GC-region (r = -0.917; p = 0.001 and r = -0.899; p = 0.001), A-region (r = -0.748; p = 0.020 and r = -0.700; p = 0.036) and P-region (r = -0.773; p = 0.014 and r = -0.769; p = 0.015), and between mean VSS and fiber distance in the A-region (r = -0.702, p = 0.035). Moreover, strong negative correlation between mean or peak VSS and media thickness was also observed. No correlation was found between WSS, OSI, and RRT and aortic tissue degeneration in these four regions. These findings indicate that increased VSS correlated with local elastin degradation and aortic media degeneration, implying that it could be a potential biomechanical parameter for a refined risk stratification for patients with BAV.
Collapse
|
13
|
Surman TL, Abrahams JM, Manavis J, Finnie J, O'Rourke D, Reynolds KJ, Edwards J, Worthington MG, Beltrame J. Histological regional analysis of the aortic root and thoracic ascending aorta: a complete analysis of aneurysms from root to arch. J Cardiothorac Surg 2021; 16:255. [PMID: 34496896 PMCID: PMC8424949 DOI: 10.1186/s13019-021-01641-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/29/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Although aortic root and ascending aortic aneurysms are treated the same, they differ in embryological development and pathological processes. This study examines the microscopic structural differences between aortic root and ascending aortic aneurysms, correlating these features to the macroscopic pathophysiological processes. METHODS We obtained surgical samples from ascending aortic aneurysms (n = 11), aortic root aneurysms (n = 3), and non-aneurysmal patients (n = 7), Aortic collagen and elastin content were examined via histological analysis, and immunohistochemistry techniques used to determine collagen I, III, and IV subtypes. Analysis was via observational features, and colour deconvolution quantification techniques. RESULTS Elastin fiber disruption and fragmentation was the most extensive in the proximal aneurysmal regions. Medial fibrosis and collagen density increased in proximal aneurysmal regions and aortic root aneurysms (p < 0.005). Collagen I was seen in highest quantity in aortic root aneurysms. Collagen I content was greatest in the sinus tissue regions compared to the valvular and ostial regions (p < 0.005) Collagen III and IV quantification did not vary greatly. The most susceptible regions to ultrastructural changes in disease are the proximal ascending aorta and aortic root. CONCLUSIONS The aortic root differs histologically from the ascending aorta confirming its unique composition in aneurysm pathology. These findings should prompt further evaluation on the influence of this altered structure on function which could potentially guide clinical management.
Collapse
Affiliation(s)
- Timothy Luke Surman
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia.
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia.
| | - John Matthew Abrahams
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Jim Manavis
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Finnie
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Dermot O'Rourke
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Karen Jane Reynolds
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - James Edwards
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Michael George Worthington
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Beltrame
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, SA, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Orthopedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
14
|
Ridge LA, Kewbank D, Schütz D, Stumm R, Scambler PJ, Ivins S. Dual role for CXCL12 signaling in semilunar valve development. Cell Rep 2021; 36:109610. [PMID: 34433040 PMCID: PMC8411116 DOI: 10.1016/j.celrep.2021.109610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/29/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.
Collapse
Affiliation(s)
- Liam A Ridge
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dania Kewbank
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sarah Ivins
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
15
|
Hazekamp MG, Barron DJ, Dangel J, Homfray T, Jongbloed MRM, Voges I. Consensus document on optimal management of patients with common arterial trunk. Eur J Cardiothorac Surg 2021; 60:7-33. [PMID: 34017991 DOI: 10.1093/ejcts/ezaa423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mark G Hazekamp
- Department of Cardiothoracic Surgery, University Hospital Leiden, Leiden, Netherlands
| | - David J Barron
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Joanna Dangel
- Department of Perinatal Cardiology and Congenital Anomalies, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Tessa Homfray
- Department of Medical Genetics, Royal Brompton and Harefield hospitals NHS Trust, London, UK
| | - Monique R M Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Inga Voges
- Department for Congenital Cardiology and Pediatric Cardiology, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
16
|
Vallabhajosyula S, Fuchs M, Yang LT, Medina Inojosa J, Tajouri TH, Enriquez-Sarano M, Phillips SD, Gulati R, Klarich KW, Michelena H. Anomalous coronary artery origin from the opposite sinus in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Open Heart 2021. [PMCID: PMC8217920 DOI: 10.1136/openhrt-2020-001567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
ObjectiveTo compare the prevalence and patterns of anomalous coronary artery origin from the opposite sinus (ACAOS) in patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV).MethodsRetrospective review of consecutive patients with surgically excised BAV and TAV was performed from 1994 to 2015. Clinical notes, echocardiograms, coronary angiograms, CT angiographies, and pathology reports were reviewed. ACAOS included right coronary artery from the left cusp, left circumflex artery from the right cusp and left main or left anterior descending artery from the right cusp.Results2371 (years 1994–2015) and 1679 (years 2009–2015) consecutive patients with pathology-confirmed BAV and TAV, respectively, and defined preoperative coronary anatomy were identified. A left dominant coronary circulation was present in 386 (18%) patients with BAV and 179 (11%) patients with TAV (p<0.001). ACAOS was identified in 43 (1.8%) patients with BAV and 15 (0.9%) patients with TAV, p=0.02. Among patients with BAV and ACAOS, the most common phenotype was right-left fusion (n=34, 79%) with present raphe (n=36, 84%), with no association between BAV phenotype and ACAOS type. On multivariate analysis, BAV status and size of the mid-ascending aorta were independently associated with ACAOS (OR 3.29; CI 1.26 to 8.6; p=0.02; OR 0.93; CI 0.87 to 0.98; p=0.01; respectively). Only two patients with ACAOS, one with BAV and one with TAV, had a perioperative coronary ischaemic event.ConclusionsThe prevalence of the potentially malignant ACAOS is significantly higher (threefold higher odds) in patients with BAV as compared with TAV, yet remains uncommon in absolute terms. Most patients with BAV and ACAOS had right-left cusp fusion and present raphe. Perioperative coronary events are rare in patients with ACAOS.
Collapse
Affiliation(s)
| | - Margaret Fuchs
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Li-Tan Yang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jose Medina Inojosa
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tanya H Tajouri
- Department of Cardiology, Sentara Healthcare Inc, Harrisonburg, Virginia, USA
| | | | - Sabrina D Phillips
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyle W Klarich
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
17
|
|
18
|
Cheung MYQ, Roberts C, Scambler P, Stathopoulou A. Setd5 is required in cardiopharyngeal mesoderm for heart development and its haploinsufficiency is associated with outflow tract defects in mouse. Genesis 2021; 59:e23421. [PMID: 34050709 PMCID: PMC8564859 DOI: 10.1002/dvg.23421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Congenital heart defects are a feature of several genetic haploinsufficiency syndromes, often involving transcriptional regulators. One property of haploinsufficient genes is their propensity for network interactions at the gene or protein level. In this article we took advantage of an online dataset of high throughput screening of mutations that are embryonic lethal in mice. Our aim was to identify new genes where the loss of function caused cardiovascular phenotypes resembling the 22q11.2 deletion syndrome models, that is, heterozygous and homozygous loss of Tbx1. One gene with a potentially haploinsufficient phenotype was identified, Setd5, thought to be involved in chromatin modification. We found murine Setd5 haploinsufficiency to be associated with double outlet right ventricle and perimembranous ventricular septal defect, although no genetic interaction with Tbx1 was detected. Conditional mutagenesis revealed that Setd5 was required in cardiopharyngeal mesoderm for progression of the heart tube through the ballooning stage to create a four-chambered heart.
Collapse
Affiliation(s)
- Michelle Yu-Qing Cheung
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Catherine Roberts
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom.,Institute of Medical and Biomedical Education, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Peter Scambler
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Athanasia Stathopoulou
- Developmental Biology and Cancer, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| |
Collapse
|
19
|
Abstract
Aortic stenosis (AS) remains one of the most common forms of valve disease, with significant impact on patient survival. The disease is characterized by left ventricular outflow obstruction and encompasses a series of stenotic lesions starting from the left ventricular outflow tract to the descending aorta. Obstructions may be subvalvar, valvar, or supravalvar and can be present at birth (congenital) or acquired later in life. Bicuspid aortic valve, whereby the aortic valve forms with two instead of three cusps, is the most common cause of AS in younger patients due to primary anatomic narrowing of the valve. In addition, the secondary onset of premature calcification, likely induced by altered hemodynamics, further obstructs left ventricular outflow in bicuspid aortic valve patients. In adults, degenerative AS involves progressive calcification of an anatomically normal, tricuspid aortic valve and is attributed to lifelong exposure to multifactoral risk factors and physiological wear-and-tear that negatively impacts valve structure-function relationships. AS continues to be the most frequent valvular disease that requires intervention, and aortic valve replacement is the standard treatment for patients with severe or symptomatic AS. While the positive impacts of surgical interventions are well documented, the financial burden, the potential need for repeated procedures, and operative risks are substantial. In addition, the clinical management of asymptomatic patients remains controversial. Therefore, there is a critical need to develop alternative approaches to prevent the progression of left ventricular outflow obstruction, especially in valvar lesions. This review summarizes our current understandings of AS cause; beginning with developmental origins of congenital valve disease, and leading into the multifactorial nature of AS in the adult population.
Collapse
Affiliation(s)
- Punashi Dutta
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Jeanne F James
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Hail Kazik
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee (H.K.)
| | - Joy Lincoln
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| |
Collapse
|
20
|
Loomba RS, Aiello S, Tretter JT, Gaffar M, Reppucci J, Brock MA, Spicer D, Anderson RH. Left Pulmonary Artery from the Ascending Aorta: A Case Report and Review of Published Cases. J Cardiovasc Dev Dis 2020; 8:1. [PMID: 33375662 PMCID: PMC7824649 DOI: 10.3390/jcdd8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
The left pulmonary artery arising from the ascending aorta is an infrequent finding. It may be found isolated or with intracardiac anomalies. We present a new case of the left pulmonary artery arising from the ascending aorta and pool these findings with those of previously reported cases. Associated cardiac, extracardiac, and syndromic findings are discussed along with the implications of these in the evaluation and management of this condition.
Collapse
Affiliation(s)
- Rohit S. Loomba
- Department of Pediatric Cardiology, Advocate Children’s Hospital, Oak Lawn, IL 60453, USA
- Department of Pediatrics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60543, USA;
| | - Salvatore Aiello
- Department of Pediatrics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60543, USA;
| | - Justin T. Tretter
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45299, USA;
| | - Maira Gaffar
- Department of Pediatric Cardiology, University of Florida, Gainseville, FL 32611, USA; (M.G.); (J.R.); (M.A.B.); (D.S.)
| | - Jennifer Reppucci
- Department of Pediatric Cardiology, University of Florida, Gainseville, FL 32611, USA; (M.G.); (J.R.); (M.A.B.); (D.S.)
| | - Michael A. Brock
- Department of Pediatric Cardiology, University of Florida, Gainseville, FL 32611, USA; (M.G.); (J.R.); (M.A.B.); (D.S.)
| | - Diane Spicer
- Department of Pediatric Cardiology, University of Florida, Gainseville, FL 32611, USA; (M.G.); (J.R.); (M.A.B.); (D.S.)
| | - Robert H. Anderson
- Department of pediatrics, Newcastle University, Newcastle Upon Tyne NE17RU, UK;
| |
Collapse
|
21
|
Pulmonary Artery Aneurysm Coexisting With Dysplastic Pulmonary Valves. Ann Thorac Surg 2020; 111:1407. [PMID: 33035456 DOI: 10.1016/j.athoracsur.2020.06.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
|
22
|
Boezio GL, Bensimon-Brito A, Piesker J, Guenther S, Helker CS, Stainier DY. Endothelial TGF-β signaling instructs smooth muscle cell development in the cardiac outflow tract. eLife 2020; 9:57603. [PMID: 32990594 PMCID: PMC7524555 DOI: 10.7554/elife.57603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-β signaling. To better understand the role of TGF-β signaling in OFT formation, we generated zebrafish lacking the TGF-β receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-β signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.
Collapse
Affiliation(s)
- Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
23
|
Liu X, Chen W, Li W, Li Y, Priest JR, Zhou B, Wang J, Zhou Z. Single-Cell RNA-Seq of the Developing Cardiac Outflow Tract Reveals Convergent Development of the Vascular Smooth Muscle Cells. Cell Rep 2020; 28:1346-1361.e4. [PMID: 31365875 DOI: 10.1016/j.celrep.2019.06.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/17/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac outflow tract (OFT) is a major hotspot for congenital heart diseases. A thorough understanding of the cellular diversity, transitions, and regulatory networks of normal OFT development is essential to decipher the etiology of OFT malformations. We performed single-cell transcriptomic sequencing of 55,611 mouse OFT cells from three developmental stages that generally correspond to the early, middle, and late stages of OFT remodeling and septation. Known cellular transitions, such as endothelial-to-mesenchymal transition, have been recapitulated. In particular, we identified convergent development of the vascular smooth muscle cell (VSMC) lineage where intermediate cell subpopulations were found to be involved in either myocardial-to-VSMC trans-differentiation or mesenchymal-to-VSMC transition. Finally, we uncovered transcriptional regulators potentially governing cellular transitions. Our study provides a single-cell reference map of cell states for normal OFT development and paves the way for further studies of the etiology of OFT malformations at the single-cell level.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - James R Priest
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University. School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Jikui Wang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University. Xinxiang 453003, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
24
|
Soto-Navarrete MT, López-Unzu MÁ, Durán AC, Fernández B. Embryonic development of bicuspid aortic valves. Prog Cardiovasc Dis 2020; 63:407-418. [PMID: 32592706 DOI: 10.1016/j.pcad.2020.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, frequently associated with aortopathies and valvulopathies. The congenital origin of BAV is suspected to impact the development of the disease in the adult life. During the last decade, a number of studies dealing with the embryonic development of congenital heart disease have significantly improved our knowledge on BAV etiology. They describe the developmental defects, at the molecular, cellular and morphological levels, leading to congenital cardiac malformations, including BAV, in animal models. These models consist of a spontaneous hamster and several mouse models with different genetic manipulations in genes belonging to a variety of pathways. In this review paper, we aim to gather information on the developmental defects leading to BAV formation in these animal models, in order to tentatively explain the morphogenetic origin of the spectrum of valve morphologies that characterizes human BAV. BAV may be the only defect resulting from gene manipulation in mice, but usually it appears as the less severe defect of a spectrum of malformations, most frequently affecting the cardiac outflow tract. The genes whose alterations cause BAV belong to different genetic pathways, but many of them are direct or indirectly associated with the NOTCH pathway. These molecular alterations affect three basic cellular mechanisms during heart development, i.e., endocardial-to-mesenchymal transformation, cardiac neural crest (CNC) cell behavior and valve cushion mesenchymal cell differentiation. The defective cellular functions affect three possible morphogenetic mechanisms, i.e., outflow tract endocardial cushion formation, outflow tract septation and valve cushion excavation. While endocardial cushion abnormalities usually lead to latero-lateral BAVs and septation defects to antero-posterior BAVs, alterations in cushion excavation may give rise to both BAV types. The severity of the original defect most probably determines the specific aortic valve phenotype, which includes commissural fusions and raphes. Based on current knowledge on the developmental mechanisms of the cardiac outflow tract, we propose a unified hypothesis of BAV formation, based on the inductive role of CNC cells in the three mechanisms of BAV development. Alterations of CNC cell behavior in three possible alternative key valvulogenic processes may lead to the whole spectrum of BAV.
Collapse
Affiliation(s)
- María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBERCV Enfermedades Cardiovasculares, Málaga, Spain.
| |
Collapse
|
25
|
Stenotic lesions of pulmonary arteries: imaging evaluation using multidetector computed tomography angiography. Clin Imaging 2020; 69:17-26. [PMID: 32652453 DOI: 10.1016/j.clinimag.2020.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
Stenotic lesions of the pulmonary arteries can be congenital or acquired. Different etiologies may affect the pulmonary arteries, unilaterally or bilaterally, at different levels. The clinical scenario, age of presentation and the precipitating event may provide clues to the underlying etiology. Diagnosis is important as these lesions may have hemodynamic and clinical consequences. Multidetector computed tomography angiography allows for accurate depiction of these lesions along with a comprehensive assessment of the pulmonary arterial wall, intra- or extraluminal involvement, associated cardiac or extracardiac anomalies, effects secondary to pulmonary stenosis on the cardiac chambers as well as associated causative or resultant lung parenchymal changes.
Collapse
|
26
|
Identification and analysis of KLF13 variants in patients with congenital heart disease. BMC MEDICAL GENETICS 2020; 21:78. [PMID: 32293321 PMCID: PMC7160950 DOI: 10.1186/s12881-020-01009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022]
Abstract
Background The protein Kruppel-like factor 13 (KLF13) is a member of the KLF family and has been identified as a cardiac transcription factor that is involved in heart development. However, the relationship between KLF13 variants and CHDs in humans remains largely unknown. The present study aimed to screen the KLF13 variants in CHD patients and genetically analyze the functions of these variants. Methods KLF13 variants were sequenced in a cohort of 309 CHD patients and population-matched healthy controls (n = 200) using targeted sequencing. To investigate the effect of variants on the functional properties of the KLF13 protein, the expression and subcellular localization of the protein, as well as the transcriptional activities of downstream genes and physical interactions with other transcription factors, were assessed. Results Two heterozygous variants, c.487C > T (P163S) and c.467G > A (S156N), were identified in two out of 309 CHD patients with tricuspid valve atresia and transposition of the great arteries, respectively. No variants were found among healthy controls. The variant c.467G > A (S156N) had increased protein expression and enhanced functionality compared with the wild type, without affecting the subcellular localization. The other variant, c.487C > T (P163S), did not show any abnormalities in protein expression or subcellular localization; however, it inhibited the transcriptional activities of downstream target genes and physically interacted with TBX5, another cardiac transcription factor. Conclusion Our results show that the S156N and P163S variants may affect the transcriptional function of KLF13 and physical interaction with TBX5. These results identified KLF13 as a potential genetic risk factor for congenital heart disease.
Collapse
|
27
|
Mechano-biological adaptation of the pulmonary artery exposed to systemic conditions. Sci Rep 2020; 10:2724. [PMID: 32066803 PMCID: PMC7026065 DOI: 10.1038/s41598-020-59554-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac surgeries may expose pulmonary arterial tissue to systemic conditions, potentially resulting in failure of that tissue. Our goal was to quantitatively assess pulmonary artery adaptation due to changes in mechanical environment. In 17 sheep, we placed a pulmonary autograft in aortic position, with or without macroporous mesh reinforcement. It was exposed to systemic conditions for 6 months. All sheep underwent 3 ECG-gated MRI’s. Explanted tissue was subjected to mechanical and histological analysis. Results showed progressive dilatation of the unreinforced autograft, while reinforced autografts stabilized after two months. Some unreinforced pulmonary autograft samples displayed more aorta-like mechanical behavior with increased collagen deposition. The mechanical behavior of reinforced autografts was dominated by the mesh. The decrease in media thickness and loss of vascular smooth muscle cells was more pronounced in reinforced than in unreinforced autografts. In conclusion, altering the mechanical environment of a pulmonary artery causes changes in its mechano-biological properties.
Collapse
|
28
|
Redefining the electroanatomy of the cardiac conduction system. Heart Rhythm 2019; 17:131-132. [PMID: 31449882 DOI: 10.1016/j.hrthm.2019.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 11/22/2022]
|
29
|
Mori S, Tretter JT, Spicer DE, Bolender DL, Anderson RH. What is the real cardiac anatomy? Clin Anat 2019; 32:288-309. [PMID: 30675928 PMCID: PMC6849845 DOI: 10.1002/ca.23340] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022]
Abstract
The heart is a remarkably complex organ. Teaching its details to medical students and clinical trainees can be very difficult. Despite the complexity, accurate recognition of these details is a pre‐requisite for the subsequent understanding of clinical cardiologists and cardiac surgeons. A recent publication promoted the benefits of virtual reconstructions in facilitating the initial understanding achieved by medical students. If such teaching is to achieve its greatest value, the datasets used to provide the virtual images should themselves be anatomically accurate. They should also take note of a basic rule of human anatomy, namely that components of all organs should be described as they are normally situated within the body. It is almost universal at present for textbooks of anatomy to illustrate the heart as if removed from the body and positioned on its apex, the so‐called Valentine situation. In the years prior to the emergence of interventional techniques to treat cardiac diseases, this approach was of limited significance. Nowadays, therapeutic interventions are commonplace worldwide. Advances in three‐dimensional imaging technology, furthermore, now mean that the separate components of the heart can readily be segmented, and then shown in attitudinally appropriate fashion. In this review, we demonstrate how such virtual dissection of computed tomographic datasets in attitudinally appropriate fashion reveals the true details of cardiac anatomy. The virtual approach to teaching the arrangement of the cardiac components has much to commend it. If it is to be used, nonetheless, the anatomical details on which the reconstructions are based must be accurate. Clin. Anat. 32:288–309, 2019. © 2019 The Authors. Clinical Anatomy published by Wiley Periodicals, Inc. on behalf of American Association of Clinical Anatomists.
Collapse
Affiliation(s)
- Shumpei Mori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diane E Spicer
- Department of Pediatric Cardiology, University of Florida, Gainesville, Florida
| | - David L Bolender
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
30
|
High incidence of ductal closure or narrowing at birth in patients with right ventricular outflow tract obstruction with normal orientation of the ductus arteriosus. Cardiol Young 2019; 29:54-58. [PMID: 30352636 DOI: 10.1017/s1047951118001798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Ductal patency is mandatory to manage patients with ductal-dependent pulmonary circulation. The aim of this study is to elucidate the morphological and haemodynamic features of ductus arteriosus with right ventricular outflow tract obstruction, and investigate the appropriate perinatal management.Patients and methodsPatients with prenatal diagnosis of right ventricular outflow tract obstruction at our institution between 2010 and 2015 were included in the study. Reverse orientation of the ductus arteriosus is defined as an inferior angle of 90°. We retrospectively reviewed the shape and flow pattern of ductus arteriosus and the clinical characteristics of the cases. RESULTS A total of 39 patients were enrolled. The shape was divided into normal orientation (n=15) and reverse orientation (n=24) of the ductus arteriosus. There was no significant difference in the type of oxygen saturation at birth and age at shunt operation between both the groups. However, the median narrowest diameter of ductus arteriosus in the normal orientation group was significantly smaller than that in the reverse orientation group (2.0 [1.0-5.4] versus 3.0 [1.3-4.4] mm, p<0.05). In two patients of the normal orientation group, ductus arteriosus had closed at birth, and one of whom died because of severe cyanosis. CONCLUSIONS Normal orientation pattern might have high incidence of an early narrowing or closure of ductus arteriosus at birth. The critical patients need careful evaluation by repeated foetal echocardiography and further maternal interventions.
Collapse
|
31
|
Lazzarini R, Gómez-Quiroz LE, González-Márquez H, Villavicencio-Guzmán L, Salazar-García M, Sánchez-Gómez C. The proximal segment of the embryonic outflow (conus) does not participate in aortic vestibule development. PLoS One 2018; 13:e0209930. [PMID: 30596770 PMCID: PMC6312233 DOI: 10.1371/journal.pone.0209930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE There is no consensus on the embryonic components or morphogenetic processes involved in mature ventricular outflow tract development. Our goal was to use in vivo labelling to investigate the prospective fate of the myocardium of each conal wall. The conal and atrioventricular cushion mesenchyme changes during transformation into mature structures and their role in apoptosis were also investigated. METHODS Plastic labels were placed at the cephalic and caudal conal limits of chicken embryo hearts (stage 22HH) and traced up to stage 36HH. Histological analyses, scanning electron microscopy and apoptotic detection using Lysotracker-Red were performed. The conal longitudinal length and medial displacement were registered. Muscle myosin was identified by immunofluorescence. RESULTS Labels positioned in the myocardium of each conal wall moved to the right ventricle (RV), shifting from the arterial subvalvular myocardial zone to the apex. No labels were found in the aortic vestibule. At stage 22HH, the conus was a tubular structure composed of myocardium and endocardium with scarce mesenchyme. The dorso-left conal myocardial wall gradually lost continuity and the free ends separated, while the myocardium was distributed to the RV free wall (24HH-28HH). At stage 22HH, conal crests were not observed, but they were apparent at the dorsal zone of the conus at stage 26HH; towards stage 30HH, they fused to form the supraventricular crest, and the pulmonary infundibulum was evident. The ventro-superior cushion of the AV canal was reorganized into the fibrous and muscular structures lined the aortic vestibule. CONCLUSIONS The posterior conus is an erroneous concept. The conal myocardium is reorganized in the free wall of the RV. Internally, the conal lumen is transformed into the pulmonary infundibulum. The aortic vestibule is formed from the ventro-superior cushion of the AV canal. Thus, the ventricular outflow tracts have different embryonic origins.
Collapse
Affiliation(s)
- Roberto Lazzarini
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Luis Enrique Gómez-Quiroz
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Humberto González-Márquez
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Laura Villavicencio-Guzmán
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México, Federico Gómez, Ciudad de México, México
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México, Federico Gómez, Ciudad de México, México
| | - Concepción Sánchez-Gómez
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México, Federico Gómez, Ciudad de México, México
| |
Collapse
|
32
|
Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MJTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC. Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis Model Mech 2018; 11:dmm.034637. [PMID: 30242109 PMCID: PMC6215433 DOI: 10.1242/dmm.034637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
The bicuspid aortic valve (BAV), a valve with two instead of three aortic leaflets, belongs to the most prevalent congenital heart diseases in the world, occurring in 0.5-2% of the general population. We aimed to understand how changes in early cellular contributions result in BAV formation and impact cardiovascular outflow tract development. Detailed 3D reconstructions, immunohistochemistry and morphometrics determined that, during valvulogenesis, the non-coronary leaflet separates from the parietal outflow tract cushion instead of originating from an intercalated cushion. Nos3-/- mice develop a BAV without a raphe as a result of incomplete separation of the parietal outflow tract cushion into the right and non-coronary leaflet. Genetic lineage tracing of endothelial, second heart field and neural crest cells revealed altered deposition of neural crest cells and second heart field cells within the parietal outflow tract cushion of Nos3-/- embryos. The abnormal cell lineage distributions also affected the positioning of the aortic and pulmonary valves at the orifice level. The results demonstrate that the development of the right and non-coronary leaflets are closely related. A small deviation in the distribution of neural crest and second heart field populations affects normal valve formation and results in the predominant right-non-type BAV in Nos3-/- mice.
Collapse
Affiliation(s)
- Joshua C Peterson
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Mary Chughtai
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Lambertus J Wisse
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Qingping Feng
- Dept. Physiology and Pharmacology, Schulich Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Marie-José T H Goumans
- Dept. Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - J Conny VanMunsteren
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique R M Jongbloed
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Dept. Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marco C DeRuiter
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
33
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
34
|
HIRA directly targets the enhancers of selected cardiac transcription factors during in vitro differentiation of mouse embryonic stem cells. Mol Biol Rep 2018; 45:1001-1011. [PMID: 30030774 PMCID: PMC6156767 DOI: 10.1007/s11033-018-4247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/08/2018] [Indexed: 01/06/2023]
Abstract
HIRA is a histone chaperone known to modulate gene expression through the deposition of H3.3. Conditional knockout of Hira in embryonic mouse hearts leads to cardiac septal defects. Loss of function mutation in HIRA, together with other chromatin modifiers, was found in patients with congenital heart diseases. However, the effects of HIRA on gene expression at earlier stages of cardiogenic mesoderm differentiation have not yet been studied. Differentiation of mouse embryonic stem cells (mESCs) towards cardiomyocytes mimics some of these early events and is an accepted model of these early stages. We performed RNA-Seq and H3.3-HA ChIP-seq on both WT and Hira-null mESCs and early cardiomyocyte progenitors of both genotypes. Analysis of RNA-seq data showed differential down regulation of cardiovascular development-related genes in Hira-null cardiomyocytes compared to WT cardiomyocytes. We found HIRA-dependent H3.3 deposition at these genes. In particular, we observed that HIRA influenced directly the expression of the transcription factors Gata6, Meis1 and Tbx2, essential for cardiac septation, through H3.3 deposition. We therefore identified new direct targets of HIRA during cardiac differentiation.
Collapse
|
35
|
Mifflin JJ, Dupuis LE, Alcala NE, Russell LG, Kern CB. Intercalated cushion cells within the cardiac outflow tract are derived from the myocardial troponin T type 2 (Tnnt2) Cre lineage. Dev Dyn 2018; 247:1005-1017. [PMID: 29920846 DOI: 10.1002/dvdy.24641] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/12/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The origin of the intercalated cushions that develop into the anterior cusp of the pulmonary valve (PV) and the noncoronary cusp of the aortic valve (AV) is not well understood. RESULTS Cre transgenes in combination with the Rosa TdTomato-EGFP reporter were used to generate three-dimensional lineage mapping of AV and PV cusps during intercalated cushion development. Tie2-Cre;EGFP was used to mark endothelial-derived mesenchymal cells, Wnt1-Cre;EGFP for cardiac neural crest and cardiac Troponin T (Tnnt2)Cre;EGFP, for myocardial lineage. The highest percentage of intercalated cushion cells at embryonic day (E) 12.5 was Tnnt2-Cre; EGFP positive; 68.0% for the PV and 50.0% AV. Neither Tnnt2 mRNA nor Tnnt2-Cre protein was expressed in the intercalated cushions; and the Tnnt2-Cre lineage intercalated cushion cells were also positive for the mesenchymal markers Sox9 and versican. Tnnt2-Cre lineage was present within the forming intercalated cushions from E11.5 and was present in the intercalated cushion derived PV and AV cusps and localized to the fibrosa layer at postnatal day 0. CONCLUSIONS Intercalated cushions of the developing outflow tract are populated with Tnnt2-Cre derived cells, a Cre reporter previously used for tracing and excision of myocardial cells and not previously associated with mesenchymal cells. Developmental Dynamics 247:1005-1017, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua J Mifflin
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Loren E Dupuis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Nicolas E Alcala
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lea G Russell
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Christine B Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
36
|
Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V. The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biol Rev Camb Philos Soc 2018; 93:1604-1619. [DOI: 10.1111/brv.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Lorenzale
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| | - Miguel A. López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Cristina Rodríguez
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Ana C. Durán
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| |
Collapse
|
37
|
Wang Y, Wu B, Farrar E, Lui W, Lu P, Zhang D, Alfieri CM, Mao K, Chu M, Yang D, Xu D, Rauchman M, Taylor V, Conway SJ, Yutzey KE, Butcher JT, Zhou B. Notch-Tnf signalling is required for development and homeostasis of arterial valves. Eur Heart J 2018; 38:675-686. [PMID: 26491108 DOI: 10.1093/eurheartj/ehv520] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
Aims Congenital anomalies of arterial valves are common birth defects, leading to valvar stenosis. With no pharmaceutical treatment that can prevent the disease progression, prosthetic replacement is the only choice of treatment, incurring considerable morbidity and mortality. Animal models presenting localized anomalies and stenosis of congenital arterial valves similar to that of humans are critically needed research tools to uncover developmental molecular mechanisms underlying this devastating human condition. Methods and results We generated and characterized mouse models with conditionally altered Notch signalling in endothelial or interstitial cells of developing valves. Mice with inactivation of Notch1 signalling in valvar endothelial cells (VEC) developed congenital anomalies of arterial valves including bicuspid aortic valves and valvar stenosis. Notch1 signalling in VEC was required for repressing proliferation and activating apoptosis of valvar interstitial cells (VIC) after endocardial-to-mesenchymal transformation (EMT). We showed that Notch signalling regulated Tnfα expression in vivo, and Tnf signalling was necessary for apoptosis of VIC and post-EMT development of arterial valves. Furthermore, activation or inhibition of Notch signalling in cultured pig aortic VEC-promoted or suppressed apoptosis of VIC, respectively. Conclusion We have now met the need of critical animal models and shown that Notch-Tnf signalling balances proliferation and apoptosis for post-EMT development of arterial valves. Our results suggest that mutations in its components may lead to congenital anomaly of aortic valves and valvar stenosis in humans.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Bingruo Wu
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Emily Farrar
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Wendy Lui
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Pengfei Lu
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Donghong Zhang
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Christina M Alfieri
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Centre, Cincinnati, OH, USA
| | - Kai Mao
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ming Chu
- Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Yang
- Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Xu
- Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Simon J Conway
- Department of Paediatrics, Indiana University, Indianapolis, IN, USA
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Centre, Cincinnati, OH, USA
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Bin Zhou
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA.,Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Koenraadt WMC, Bartelings MM, Gittenberger-de Groot AC, Bökenkamp R, DeRuiter MC, Schalij MJ, Jongbloed MRM. Pulmonary Valve Morphology in Patients with Bicuspid Aortic Valves. Pediatr Cardiol 2018; 39:690-694. [PMID: 29340729 PMCID: PMC5895682 DOI: 10.1007/s00246-018-1807-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022]
Abstract
The aortic and pulmonary valve share a common developmental origin from the embryonic arterial trunk. Bicuspid aortic valve is the most common congenital anomaly and can occur isolated as well as in association with other congenital heart disease (CHD). Data on pulmonary valve morphology in these cases are scarce. In this study, we aimed to determine pulmonary valve morphology in hearts with BAV associated with CHD. In 83 post-mortem heart specimens with BAV and associated CHD, pulmonary valve morphology was studied and related to BAV morphology. In 14/83 (17%) hearts, the pulmonary valve was affected, bicuspid in 8/83 (10%), dome-shaped in 3/83 (4%) and atretic in 3/83 (4%). In specimens with a bicuspid pulmonary valve, 5/8 (63%) had a strictly bicuspid aortic valve (without raphe), 2/3 hearts (67%) with dome-shaped pulmonary valves and 2/3 hearts (67%) with atretic pulmonary valves had BAV without raphe. Six out of eight (75%) specimens with a bicuspid pulmonary valve had a perimembranous ventricular septal defect (VSD). 4/8 (50%) specimens with a bicuspid pulmonary valve were associated with chromosomal abnormalities: 3 (38%) had trisomy 18 and 1 (13%) had trisomy 13. In BAV with associated CHD, abnormal pulmonary valve morphology was observed in 17% of the hearts. The majority of hearts with abnormal pulmonary valve morphology had a Type B bicuspid aortic valve (without raphe). Bilateral semilunar valvular disease is associated with Type B BAVs and in many cases related to chromosomal abnormalities. As this study was performed in post-mortem specimens with high frequency of associated CHD, caution is warranted with application of these results to the general BAV population.
Collapse
Affiliation(s)
- Wilke M C Koenraadt
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margot M Bartelings
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Regina Bökenkamp
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
39
|
Chassagnon G, Lefort B, Meot M, Carpentier E, Sirinelli D, Chantepie A, Morel B. Association Between Tetralogy of Fallot and Tracheobronchial Branching Abnormalities: A New Clue for Pathogenesis? J Am Heart Assoc 2017; 7:JAHA.117.006921. [PMID: 29288155 PMCID: PMC5778959 DOI: 10.1161/jaha.117.006921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background In our practice, we noticed an increased frequency of tracheobronchial branching abnormalities (TBAs) in patients with tetralogy of Fallot (ToF). This study aimed to determine whether an association exists between congenital TBAs and ToF with or without pulmonary atresia. Methods and Results The frequency of TBAs on chest computed tomography was assessed in 55 patients with ToF without pulmonary atresia, 34 patients with ToF with pulmonary arteria, and 100 control patients. We then looked for a possible association between TBAs and pulmonary artery branch hypoplasia, the presence of major aortopulmonary collateral arteries, and the presence of the chromosome 22q11 deletion. TBAs were significantly more frequent in patients with ToF with or without pulmonary atresia than in the control group (any TBAs, 21% versus 2% [P<0.001]; bronchial situs anomalies, 6% versus 0% [P=0.002]; right tracheal bronchus, 4% versus 0% [P=0.04]; left eparterial bronchus, 8% versus 0% [P=0.005]); and tended to be more frequent in those with ToF without pulmonary atresia than in those with ToF with pulmonary atresia (any TBAs, 27% versus 12% [P=0.11]; left eparterial bronchus, 13% versus 0% [P=0.04]). TBAs were readily multiple (8 patients of 19 with TBA) and concerned essentially the upper lobes. TBAs were not associated with pulmonary branch hypoplasia, major aortopulmonary collateral arteries, or the chromosome 22q11 deletion. Conclusions We demonstrated a significantly increased frequency of tracheobronchial abnormalities in patients with ToF with or without pulmonary atresia compared with a control group. These results suggest an interaction between abnormalities in conotruncal septation and tracheobronchial branching and may provide a new clue to the pathogenesis of conotruncal heart diseases.
Collapse
Affiliation(s)
- Guillaume Chassagnon
- Radiology Department, Hôpital Clocheville, Université François Rabelais de Tours, France
| | - Bruno Lefort
- Pediatric Cardiology Department, Hôpital Clocheville, Université François Rabelais de Tours, France
| | - Mathilde Meot
- Pediatric Cardiology Department, Hôpital Clocheville, Université François Rabelais de Tours, France
| | - Elodie Carpentier
- Radiology Department, Hôpital Clocheville, Université François Rabelais de Tours, France
| | - Dominique Sirinelli
- Radiology Department, Hôpital Clocheville, Université François Rabelais de Tours, France
| | - Alain Chantepie
- Pediatric Cardiology Department, Hôpital Clocheville, Université François Rabelais de Tours, France
| | - Baptiste Morel
- Radiology Department, Hôpital Clocheville, Université François Rabelais de Tours, France
| |
Collapse
|
40
|
Multiple Roles of Pitx2 in Cardiac Development and Disease. J Cardiovasc Dev Dis 2017; 4:jcdd4040016. [PMID: 29367545 PMCID: PMC5753117 DOI: 10.3390/jcdd4040016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases.
Collapse
|
41
|
Disha K, Dubslaff G, Rouman M, Fey B, Borger MA, Barker AJ, Kuntze T, Girdauskas E. Evidence of subannular and left ventricular morphological differences in patients with bicuspid versus tricuspid aortic valve stenosis: magnetic resonance imaging-based analysis. Interact Cardiovasc Thorac Surg 2017; 24:369-376. [PMID: 28040769 DOI: 10.1093/icvts/ivw363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 11/12/2022] Open
Abstract
Objectives Prospective analysis of left ventricular (LV) morphological/functional parameters in patients with bicuspid versus tricuspid aortic valve (TAV) stenosis undergoing aortic valve replacement (AVR) surgery. Methods A total of 190 consecutive patients with BAV ( n = 154) and TAV stenosis ( n = 36) (mean age 61 ± 8 years, 65% male) underwent AVR ± concomitant aortic surgery from January 2012 through May 2015. All patients underwent preoperative cardiac magnetic resonance imaging in order to evaluate: (i) left ventricular outflow tract (LVOT) dimensions, (ii) length of anterior mitral leaflet (AML), (iii) end-systolic and end-diastolic LV wall thickness, (iv) LV area, (v) LV end-systolic and end-diastolic diameters (LVESD, LVEDD), (vi) LV end-diastolic and end-systolic volumes (LVEDV, LVESV) and (vii) maximal diameter of aortic root. These parameters were compared between the two study groups. Results The LVOT diameter was significantly larger in BAV patients (21.7 ± 3 mm in BAV vs 18.9 ± 3 mm in TAV, P < 0.001). Moreover, BAV patients had significantly longer AML (24 ± 3 mm in BAV vs 22 ± 4 mm in TAV, P = 0.009). LVEDV and LVESV were significantly larger in BAV patients (LVEDV: 164.9 ± 68.4 ml in BAV groups vs 126.5 ± 53.1 ml in TAV group, P = 0.037; LVESV: 82.1 ± 57.9 ml in BAV group vs 52.9 ± 25.7 ml in TAV group, P = 0.008). A strong linear correlation was found between LVOT diameter and aortic annulus diameter in BAV patients ( r = 0.7, P < 0.001), whereas significantly weaker correlation was observed in TAV patients ( r = 0.5, P = 0.006, z = 1.65, P = 0.04). Presence of BAV morphology was independently associated with larger LVOT diameters (OR 9.0, 95% CI 1.0-81.3, P = 0.04). Conclusions We found relevant differences in LV morphological/functional parameters between BAV and TAV stenosis patients. Further investigations are warranted in order to determine the cause of these observed differences.
Collapse
Affiliation(s)
- Kushtrim Disha
- Department of Cardiac Surgery, Central Hospital Bad Berka, Bad Berka, Germany
| | - Georg Dubslaff
- Department of Radiology, Central Hospital Bad Berka, Bad Berka, Germany
| | - Mina Rouman
- Department of Cardiac Surgery, Central Hospital Bad Berka, Bad Berka, Germany
| | - Beatrix Fey
- Department of Radiology, Central Hospital Bad Berka, Bad Berka, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, Columbia University, New York, NY, USA
| | - Alex J Barker
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Thomas Kuntze
- Department of Cardiac Surgery, Central Hospital Bad Berka, Bad Berka, Germany
| | - Evaldas Girdauskas
- Department of Cardiac Surgery, Central Hospital Bad Berka, Bad Berka, Germany.,Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| |
Collapse
|
42
|
Batkai S, Bär C, Thum T. MicroRNAs in right ventricular remodelling. Cardiovasc Res 2017; 113:1433-1440. [DOI: 10.1093/cvr/cvx153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
|
43
|
Cook AC, Tran VH, Spicer DE, Rob JMH, Sridharan S, Taylor A, Anderson RH, Jensen B. Sequential segmental analysis of the crocodilian heart. J Anat 2017; 231:484-499. [PMID: 28766716 DOI: 10.1111/joa.12661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 11/27/2022] Open
Abstract
Differences between hearts of crocodilians and those of mammals and birds are only partly understood because there is no standardised approach and terminology for describing cardiac structure. Whereas most reptiles have an undivided ventricle, crocodilians have a fully septated ventricle. Their hearts, therefore, are more readily comparable with the hearts of mammals and birds. Here, we describe the heart of a crocodile (Crocodylus noliticus). We use the versatile sequential segmental approach to analysis, juxtaposing several key views of the crocodilian heart to the comparable views of human hearts. In crocodiles, the atrial and ventricular septums are complete but, unlike in placental mammals, the atrial septum is without an oval fossa. The myocardial component of the crocodilian ventricular septum dominates, but the membranous septum likely makes up a greater proportion than in any mammal. In the crocodile, the aortic trunk takes its origin from the left ventricle and is not wedged between the atrioventricular junctions. Consequently, there is a common atrioventricular junction, albeit with separate right and left atrioventricular valvar orifices. As in mammals, nonetheless, the crocodilian left atrioventricular valvar orifice is cranial to the right atrioventricular valvar orifice. By applying a method of analysis and terminology usually restricted to the human heart, we build from the considerable existing literature to show neglected and overlooked shared features, such as the offset between the left and right atrioventricular valvar orifices. Such commonalities are surprising given the substantial evolutionary divergence of the archosaur and synapsid lineages, and likely reflect evolutionarily shared morphogenetic programmes.
Collapse
Affiliation(s)
| | - Vi-Hue Tran
- UCL Institute of Cardiovascular Science, London, UK
| | - Diane E Spicer
- Division of Pediatric Cardiology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jafrin M H Rob
- Department of Obstetric & Gynaecology, Whipps Cross Hospital, London, UK.,Cardiac Unit, Great Ormond Street Hospital, London, UK
| | | | - Andrew Taylor
- UCL Institute of Cardiovascular Science, London, UK.,Cardiac Unit, Great Ormond Street Hospital, London, UK
| | - Robert H Anderson
- UCL Institute of Cardiovascular Science, London, UK.,Cardiac Unit, Great Ormond Street Hospital, London, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Bjarke Jensen
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Loomba RS, Anderson RH. Discordant ventriculo-arterial connections, or "transposition", are not necessarily an essential part of isomerism. Congenit Anom (Kyoto) 2017; 57:66. [PMID: 27711989 DOI: 10.1111/cga.12195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Rohit S Loomba
- Division of Cardiology, Children's Hospital of Wisconsin/ Medical College of Wisconsin, 9000 Wisconsin Avenue, Milwaukee, Wisconsin, 53226, USA
| | - Robert H Anderson
- Division of Genetics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
45
|
Wu B, Wang Y, Xiao F, Butcher JT, Yutzey KE, Zhou B. Developmental Mechanisms of Aortic Valve Malformation and Disease. Annu Rev Physiol 2017; 79:21-41. [DOI: 10.1146/annurev-physiol-022516-034001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Feng Xiao
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853;
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229;
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| |
Collapse
|
46
|
Variations in structure of the outflow tract of the human embryonic heart: A new hypothesis for generating bicuspid aortic semilunar valves. Ann Anat 2017; 211:88-103. [PMID: 28179104 DOI: 10.1016/j.aanat.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/25/2022]
Abstract
Outflow tract development of the heart is complex. The presence, differential growth and interactions of the various tissues through space and time contribute to the final development of the tract. This paper presents a novel interpretation of observations of outflow tract development, in particular of the aortic and pulmonary semilunar valves in embryos from the Shaner Collection at the University of Alberta. Three-dimensional reconstructions assist in the visualization of the spatial relationships of the developing valve tissues. In some embryos the aortic intercalated valve swelling is displaced proximally, giving rise to a bicuspid aortic semilunar valve more distally. In addition, the developing valve tissue first appears external to the myocardial cuff. The pulmonary semilunar valve regions appear to be more normal. This paper thus proposes a novel mechanism for generating a bicuspid aortic valve and also supports the idea that there is some independence of the aortic and pulmonary regions from each other during development.
Collapse
|
47
|
Thankavel PP, Guleserian KJ, Anderson RH. Two Rare Vascular Rings With Ductal Origin of the Left Pulmonary Artery: A Previously Unrecognized Syndrome? World J Pediatr Congenit Heart Surg 2016; 9:352-356. [PMID: 27923942 DOI: 10.1177/2150135116675166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report two neonates with distal ductal origin of the left pulmonary artery who also had rare vascular rings comprised of a left aortic arch and right arterial duct with a midline/rightward descending aorta. To the best of our knowledge, this association has not previously been described, although other abnormalities of the left pulmonary artery in the setting of vascular rings have been reported. We review the embryology, utility of imaging, and clinical course.
Collapse
Affiliation(s)
- Poonam P Thankavel
- 1 Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristine J Guleserian
- 2 Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert H Anderson
- 3 Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
48
|
Rich AL, Phipps LM, Tiwari S, Rudraraju H, Dokpesi PO. The Increasing Prevalence in Intersex Variation from Toxicological Dysregulation in Fetal Reproductive Tissue Differentiation and Development by Endocrine-Disrupting Chemicals. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:163-171. [PMID: 27660460 PMCID: PMC5017538 DOI: 10.4137/ehi.s39825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
An increasing number of children are born with intersex variation (IV; ambiguous genitalia/hermaphrodite, pseudohermaphroditism, etc.). Evidence shows that endocrine-disrupting chemicals (EDCs) in the environment can cause reproductive variation through dysregulation of normal reproductive tissue differentiation, growth, and maturation if the fetus is exposed to EDCs during critical developmental times in utero. Animal studies support fish and reptile embryos exhibited IV and sex reversal when exposed to EDCs. Occupational studies verified higher prevalence of offspring with IV in chemically exposed workers (male and female). Chemicals associated with endocrine-disrupting ability in humans include organochlorine pesticides, poly-chlorinated biphenyls, bisphenol A, phthalates, dioxins, and furans. Intersex individuals may have concurrent physical disorders requiring lifelong medical intervention and experience gender dysphoria. An urgent need exists to determine which chemicals possess the greatest risk for IV and the mechanisms by which these chemicals are capable of interfering with normal physiological development in children.
Collapse
Affiliation(s)
- Alisa L. Rich
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
- World Health Organization Chemical Risk Assessment Network Member, Geneva, Switzerland
| | - Laura M. Phipps
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Sweta Tiwari
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Hemanth Rudraraju
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| | - Philip O. Dokpesi
- University of North Texas Health Science Center, Department of Environmental and Occupational Health Science, Fort Worth, TX, USA
| |
Collapse
|
49
|
In Vivo Cardiotoxicity Induced by Sodium Aescinate in Zebrafish Larvae. Molecules 2016; 21:190. [PMID: 26907249 PMCID: PMC6273315 DOI: 10.3390/molecules21030190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/02/2016] [Indexed: 02/04/2023] Open
Abstract
Sodium aescinate (SA) is a widely-applied triterpene saponin product derived from horse chestnut seeds, possessing vasoactive and organ-protective activities with oral or injection administration in the clinic. To date, no toxicity or adverse events in SA have been reported, by using routine models (in vivo or in vitro), which are insufficient to predict all aspects of its pharmacological and toxicological actions. In this study, taking advantage of transparent zebrafish larvae (Danio rerio), we evaluated cardiovascular toxicity of SA at doses of 1/10 MNLC, 1/3 MNLC, MNLC and LC10 by yolk sac microinjection. The qualitative and quantitative cardiotoxicity in zebrafish was assessed at 48 h post-SA treatment, using specific phenotypic endpoints: heart rate, heart rhythm, heart malformation, pericardial edema, circulation abnormalities, thrombosis and hemorrhage. The results showed that SA at 1/10 MNLC and above doses could induce obvious cardiac and pericardial malformations, whilst 1/3 MNLC and above doses could induce significant cardiac malfunctions (heart rate and circulation decrease/absence), as compared to untreated or vehicle-treated control groups. Such cardiotoxic manifestations occurred in more than 50% to 100% of all zebrafish treated with SA at MNLC and LC10. Our findings have uncovered the potential cardiotoxicity of SA for the first time, suggesting more attention to the risk of its clinical application. Such a time- and cost-saving zebrafish cardiotoxicity assay is very valid and reliable for rapid prediction of compound toxicity during drug research and development.
Collapse
|
50
|
Koenraadt WMC, Tokmaji G, DeRuiter MC, Vliegen HW, Scholte AJHA, Siebelink HMJ, Gittenberger-de Groot AC, de Graaf MA, Wolterbeek R, Mulder BJ, Bouma BJ, Schalij MJ, Jongbloed MRM. Coronary anatomy as related to bicuspid aortic valve morphology. Heart 2016; 102:943-9. [PMID: 26864668 DOI: 10.1136/heartjnl-2015-308629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Variable coronary anatomy has been described in patients with bicuspid aortic valves (BAVs). This was never specified to BAV morphology, and prognostic relevance of coronary vessel dominance in this patient group is unclear. The purpose of this study was to evaluate valve morphology in relation to coronary artery anatomy and outcome in patients with isolated BAV and with associated aortic coarctation (CoA). METHODS Coronary anatomy was evaluated in 186 patients with BAV (141 men (79%), 51±14 years) by CT and invasive coronary angiography. Correlation of coronary anatomy was made with BAV morphology and coronary events. RESULTS Strictly bicuspid valves (without raphe) with left-right cusp fusion (type 1B) had more left dominant coronary systems compared with BAVs with left-right cusp fusion with a raphe (type 1A) (48% vs. 26%, p=0.047) and showed more separate ostia (28% vs. 9%, p=0.016). Type 1B BAVs had more coronary artery disease than patients with type 1A BAV (36% vs. 19%, p=0.047). More left dominance was seen in BAV patients with CoA than in patients without (65% vs. 24%, p<0.05). CONCLUSIONS The incidence of a left dominant coronary artery system and separate ostia was significantly related to BAVs with left-right fusion without a raphe (type 1B). These patients more often had significant coronary artery disease. In patients with BAV and CoA, left dominancy is more common.
Collapse
Affiliation(s)
- Wilke M C Koenraadt
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Tokmaji
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hubert W Vliegen
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Michiel A de Graaf
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara J Mulder
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Berto J Bouma
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|