1
|
Ramos-Kuri M, Meka SH, Salamanca-Buentello F, Hajjar RJ, Lipskaia L, Chemaly ER. Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies. Biol Res 2021; 54:23. [PMID: 34344467 PMCID: PMC8330049 DOI: 10.1186/s40659-021-00342-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Abstract The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Graphic abstract ![]()
The Ras (Rat Sarcoma) gene family is a group of small G proteins Ras is regulated by growth factors and neurohormones affecting cardiomyocyte growth and hypertrophy Ras directly affects cardiomyocyte physiological and pathological hypertrophy Genetic alterations of Ras and its pathways result in various cardiac phenotypes Ras and its pathway are differentially regulated in acquired heart disease Ras modulation is a promising therapeutic target in various cardiac conditions.
Collapse
Affiliation(s)
- Manuel Ramos-Kuri
- Instituto Nacional de Cancerología, Unidad de Investigación Biomédica en Cáncer, Secretarìa de Salud/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México.,Researcher of the Facultad de Bioética, Cátedra de Infertilidad, Universidad Anáhuac, Mexico City, México.,Centro de Investigación en Bioética y Genética, Querétaro, México
| | - Sri Harika Meka
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA
| | - Fabio Salamanca-Buentello
- University of Toronto Institute of Medical Science, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, ON, M5S 1A8, Canada
| | | | - Larissa Lipskaia
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, and Université Paris-Est Créteil (UPEC), 94010, Créteil, France
| | - Elie R Chemaly
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA.
| |
Collapse
|
2
|
Xu G, Gaul MD, Liu Z, DesJarlais RL, Qi J, Wang W, Krosky D, Petrounia I, Milligan CM, Hermans A, Lu HR, Huang DZ, Xu JZ, Spurlino JC. Hit-to-lead optimization and discovery of a potent, and orally bioavailable G protein coupled receptor kinase 2 (GRK2) inhibitor. Bioorg Med Chem Lett 2020; 30:127602. [PMID: 33038544 DOI: 10.1016/j.bmcl.2020.127602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022]
Abstract
G-protein coupled receptor kinase 2 (GRK2), which is upregulated in the failing heart, appears to play a critical role in heart failure (HF) progression in part because enhanced GRK2 activity promotes dysfunction of β-adrenergic signaling and myocyte death. An orally bioavailable GRK2 inhibitor could offer unique therapeutic outcomes that cannot be attained by current heart failure treatments that directly target GPCRs or angiotensin-converting enzyme. Herein, we describe the discovery of a potent, selective, and orally bioavailable GRK2 inhibitor, 8h, through high-throughput screening, hit-to-lead optimization, structure-based design, molecular modelling, synthesis, and biological evaluation. In the cellular target engagement assays, 8h enhances isoproterenol-mediated cyclic adenosine 3',5'-monophosphate (cAMP) production in HEK293 cells overexpressing GRK2. Compound 8h was further evaluated in a human stem cell-derived cardiomyocyte (HSC-CM) contractility assay and potentiated isoproterenol-induced beating rate in HSC-CMs.
Collapse
Affiliation(s)
- Guozhang Xu
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States.
| | - Michael D Gaul
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - Zhijie Liu
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - Renee L DesJarlais
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - Jenson Qi
- Cardiovascular & Metabolic Research, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - Weixue Wang
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - Daniel Krosky
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - Ioanna Petrounia
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - Cynthia M Milligan
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - An Hermans
- Discovery Sciences, Janssen Research & Development, LLC, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Hua-Rong Lu
- Discovery Sciences, Janssen Research & Development, LLC, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Devine Zheng Huang
- Cardiovascular & Metabolic Research, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - June Zhi Xu
- Cardiovascular & Metabolic Research, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| | - John C Spurlino
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, United States
| |
Collapse
|
3
|
Wang J, Yu Q, Dai M, Zhang Y, Cao Q, Luo Q, Tan T, Zhou Y, Shu L, Bao M. Carotid baroreceptor stimulation improves cardiac performance and reverses ventricular remodelling in canines with pacing-induced heart failure. Life Sci 2019; 222:13-21. [DOI: 10.1016/j.lfs.2019.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
|
4
|
Okawa T, Aramaki Y, Yamamoto M, Kobayashi T, Fukumoto S, Toyoda Y, Henta T, Hata A, Ikeda S, Kaneko M, Hoffman ID, Sang BC, Zou H, Kawamoto T. Design, Synthesis, and Evaluation of the Highly Selective and Potent G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure. J Med Chem 2017; 60:6942-6990. [PMID: 28699740 DOI: 10.1021/acs.jmedchem.7b00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel class of therapeutic drug candidates for heart failure, highly potent and selective GRK2 inhibitors, exhibit potentiation of β-adrenergic signaling in vitro studies. Hydrazone derivative 5 and 1,2,4-triazole derivative 24a were identified as hit compounds by HTS. New scaffold generation and SAR studies of all parts resulted in a 4-methyl-1,2,4-triazole derivative with an N-benzylcarboxamide moiety with highly potent activity toward GRK2 and selectivity over other kinases. In terms of subtype selectivity, these compounds showed enough selectivity against GRK1, 5, 6, and 7 with almost equipotent inhibition to GRK3. Our medicinal chemistry efforts led to the discovery of 115h (GRK2 IC50 = 18 nM), which was obtained the cocrystal structure with human GRK2 and an inhibitor of GRK2 that potentiates β-adrenergic receptor (βAR)-mediated cAMP accumulation and prevents internalization of βARs in β2AR-expressing HEK293 cells treated with isoproterenol. Therefore, 115h appears to be a novel class of therapeutic for heart failure treatment.
Collapse
Affiliation(s)
- Tomohiro Okawa
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshio Aramaki
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuo Yamamoto
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshitake Kobayashi
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoji Fukumoto
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukio Toyoda
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsutomu Henta
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akito Hata
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shota Ikeda
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Manami Kaneko
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Isaac D Hoffman
- Takeda California , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Bi-Ching Sang
- Takeda California , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Hua Zou
- Takeda California , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Tetsuji Kawamoto
- Shonan Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd. , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Cardiac gene therapy with adeno-associated virus (AAV)-based vectors is emerging as an entirely new platform to treat, or even cure, so far intractable cardiac disorders. This review describes our current knowledge of cardiac AAV gene therapy with a particular focus on the biggest obstacle for the successful translation of cardiac AAV gene therapy into the clinic, namely the efficient delivery of the therapeutic gene to the myocardium. RECENT FINDINGS We summarize the significant recent progress that has been made in treating heart failure in preclinically relevant animal models with AAV gene therapy and the recent results of clinical trials with cardiac AAV gene therapy for the treatment of heart failure. We also discuss the benefits and shortcomings of the currently available delivery methods of AAV to the heart. Finally, we describe the current state of identifying novel AAV variants that have enhanced tropism for human cardiomyocytes and that show increased resistance to preexisting neutralizing antibodies. SUMMARY Here, we describe the successes and challenges in cardiac AAV gene therapy, a treatment modality that has the potential to transform current treatment approaches for cardiac diseases.
Collapse
Affiliation(s)
- Kyle Chamberlain
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
6
|
Ding YY, Li JM, Guo FJ, Liu Y, Tong YF, Pan XC, Lu XL, Ye W, Chen XH, Zhang HG. Triptolide Upregulates Myocardial Forkhead Helix Transcription Factor p3 Expression and Attenuates Cardiac Hypertrophy. Front Pharmacol 2016; 7:471. [PMID: 27965581 PMCID: PMC5127789 DOI: 10.3389/fphar.2016.00471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson's trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Jing-Mei Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Feng-Jie Guo
- The People's Liberation Army No. 309 Hospital Beijing, China
| | - Ya Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Yang-Fei Tong
- Department of Pharmacology, College of Pharmacy, Third Military Medical UniversityChongqing, China; Department of Pharmacy, Chongqing Traditional Medicine HospitalChongqing, China
| | - Xi-Chun Pan
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Xiao-Lan Lu
- Department of Pharmacology, College of Pharmacy, Third Military Medical UniversityChongqing, China; Department of Clinical Laboratory, First Affiliated Hospital of North Sichuan Medical CollegeNanchong, China
| | - Wen Ye
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Xiao-Hong Chen
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| | - Hai-Gang Zhang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University Chongqing, China
| |
Collapse
|
7
|
Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation. PLoS One 2016; 11:e0149125. [PMID: 26959359 PMCID: PMC4784992 DOI: 10.1371/journal.pone.0149125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 01/19/2023] Open
Abstract
Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively.
Collapse
|
8
|
Ungru K, Tenbrinck D, Jiang X, Stypmann J. Automatic classification of left ventricular wall segments in small animal ultrasound imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 117:2-12. [PMID: 25053013 DOI: 10.1016/j.cmpb.2014.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Multiple statistics show that heart diseases are one of the main causes of mortality in our highly developed societies today. These diseases lead to a change of the physiology of the heart, which gives useful information about characteristic and severity of the defect. A fast and reliable diagnosis is the base for successful therapy. As a first step towards recognition of such heart remodeling processes, this work proposes a fully automatic processing pipeline for regional classification of the left ventricular wall in ultrasound images of small animals. The pipeline is based on state-of-the-art methods from computer vision and pattern classification. The myocardial wall is segmented and its motion is estimated. A feature extraction using the segmented data is realized to automatically classify the image regions into normal and abnormal myocardial tissue. The performance of the proposed pipeline is evaluated and a comparison of common classification algorithms on ultrasound data of living mice before and after artificially induced myocardial infarction is given. It is shown that the results of this work, reaching a maximum accuracy of 91.46%, are an encouraging base for further investigation.
Collapse
Affiliation(s)
- Kathrin Ungru
- Department of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Daniel Tenbrinck
- Department of Mathematics and Computer Science, University of Münster, Münster, Germany; Department of Cardiovascular Medicine, Division of Cardiology, University Hospital Münster, Münster, Germany
| | - Xiaoyi Jiang
- Department of Mathematics and Computer Science, University of Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion (CiM), University of Münster, Münster, Germany.
| | - Jörg Stypmann
- Department of Cardiovascular Medicine, Division of Cardiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
9
|
Abstract
Pathological ventricle remodelling, which follows a cardiac insult, causes heart failure. Despite the existence of multiple pharmaceutical approaches, heart failure is one of the leading causes of death worldwide and there is an urgent need to explore new therapeutic avenues. The Notch pathway is an evolutionary conserved fundamental pathway that regulates cell fate during development as well as throughout postnatal life in self-renewing tissues. In the myocardium, Notch signalling is involved in the modulation of cardiomyocytes survival, cardiac stem cells differentiation, and angiogenesis which are factors known to determine the extent of pathological cardiac remodelling. Modulation of the Notch pathway could become a tool to limit ventricle remodelling and the associated inexorable deterioration of cardiac performance.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Cardiology and LTTA Centre, University Hospital of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- GVM Care and Research, E.S: Health Science Foundation, Maria Cecilia Hospital, Cotignola, Italy
| |
Collapse
|
10
|
|