1
|
Bergman I, Boyle D, Braver O, Gelikas S, Wexler Y, Omelchenko A, Assali A, Nussinovitch U. Ischemic Postconditioning Confers No Benefit to Left Ventricular Systolic Function: A Meta-Analysis of Cardiac Magnetic Resonance Imaging Results. Am J Cardiol 2023; 208:126-133. [PMID: 37837795 DOI: 10.1016/j.amjcard.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/16/2023]
Abstract
Ischemic postconditioning (IPoC) is a technique suggested to reduce reperfusion injury in patients suffering acute ST-elevation myocardial infarction (STEMI), although its use is highly controversial. This meta-analysis aimed to evaluate the effect of IPoC with percutaneous coronary intervention in patients with acute STEMI, as measured by follow-up left ventricular ejection fraction (LVEF) on cardiac magnetic resonance imaging. The investigators searched PubMed, Embase, and Web of Science for all randomized controlled trials published during the last 2 decades. After the removal of duplicates, 2,021 articles from online databases had been identified using relevant search criteria. The included randomized controlled trials had studied patients with acute STEMI and Thrombolysis in Myocardial Infarction flow 0 to 1 at presentation and had measured follow-up LVEF using cardiac magnetic resonance imaging. Overall, 11 studies (n = 1,339 patients) qualified for inclusion. In each study, the control group did not differ significantly from the experimental group. The pooled data from included studies were analyzed using standardized mean difference between IPoC and control groups, and the 95% confidence interval for LVEF; the results were visualized using a forest plot. Bivariate regression analyses and 1-way analyses of LVEF coefficient ratios were done to isolate for various clinical and procedural parameters. An analysis of pooled data of the IPoC (n = 674) and control (n = 665) groups showed that IPoC did not significantly impact follow-up LVEF (using standardized mean difference 0.10, 95% confidence interval 0.00 to 0.21). Further analysis showed that IPoC did not improve follow-up LVEF when isolating for relevant clinical and procedural parameters. In conclusion, the use of IPoC as an adjunctive therapy to percutaneous coronary intervention seemingly provides no benefit to left ventricular systolic function, as quantified with cardiac magnetic resonance imaging, in patients with acute STEMI with Thrombolysis in Myocardial Infarction flow 0 to 1.
Collapse
Affiliation(s)
- Idan Bergman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Rabin Medical Center, Petach Tikva, Israel
| | | | - Omri Braver
- Department of Cardiology, Barzilai Medical Center, Ashkelon, Israel
| | - Shaul Gelikas
- The Trauma and Combat Medicine Branch, Surgeon General's Headquarters, Israel Defense Forces, Ramat Gan, Israel
| | - Yehuda Wexler
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexander Omelchenko
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Cardiology, Meir Medical Center, Kfar Saba, Israel
| | - Abid Assali
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Cardiology, Meir Medical Center, Kfar Saba, Israel
| | - Udi Nussinovitch
- Heart Institute at the Edith Wolfson Medical Center, Holon, Israel.
| |
Collapse
|
2
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
3
|
Madsen JM, Glinge C, Jabbari R, Nepper-Christensen L, Høfsten DE, Tilsted HH, Holmvang L, Pedersen F, Joshi FR, Sørensen R, Bang LE, Bøtker HE, Terkelsen CJ, Mæng M, Jensen LO, Aarøe J, Kelbæk H, Torp-Pedersen C, Køber L, Lønborg JT, Engstrøm T. Comparison of Effect of Ischemic Postconditioning on Cardiovascular Mortality in Patients With ST-Segment Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention With Versus Without Thrombectomy. Am J Cardiol 2022; 166:18-24. [PMID: 34930614 DOI: 10.1016/j.amjcard.2021.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
In patients with ST-segment elevation myocardial infarction (STEMI), ischemic postconditioning (iPOST) have shown ambiguous results in minimizing reperfusion injury. Previous findings show beneficial effects of iPOST in patients with STEMI treated without thrombectomy. However, it remains unknown whether the cardioprotective effect of iPOST in these patients persist on long term. In the current study, all patients were identified through the DANAMI-3-iPOST database. Patients were randomized to conventional primary percutaneous coronary intervention (PCI) or iPOST in addition to PCI. Cumulative incidence rates were calculated, and multivariable analyses stratified according to thrombectomy use were performed. The primary end point was a combination of cardiovascular mortality and hospitalization for heart failure. From 2011 to 2014, 1,234 patients with STEMI were included with a median follow-up of 4.8 years. In patients treated without thrombectomy (n = 520), the primary end point occurred in 15% (48/326) in the iPOST group and in 22% (42/194) in the conventional group (unadjusted hazard ratio [HR] 0.62, 95% confidence interval [CI] 0.41 to 0.94, p = 0.023). In adjusted Cox analysis, iPOST remained associated with reduced long-term risk of cardiovascular mortality (HR 0.53, 95% CI 0.29 to 0.97, p = 0.039). In patients treated with thrombectomy (n = 714), there was no significant difference between iPOST (17%, 49/291) and conventional treatment (17%, 72/423) on the primary end point (unadjusted HR 1.01, 95% CI 0.70 to 1.45, p = 0.95). During a follow-up of nearly 5 years, iPOST reduced long-term occurrence of cardiovascular mortality and hospitalization for heart failure in patients with STEMI treated with PCI but without thrombectomy.
Collapse
|
4
|
Cui Q, Yan L. Tripartite motif-containing protein 16 protects against myocardial ischemia/reperfusion injury by affecting the Keap1/Nrf2 axis. Cell Tissue Res 2021; 386:349-363. [PMID: 34436665 DOI: 10.1007/s00441-021-03518-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Tripartite motif-containing protein (TRIM16) is a newly identified oxidative-stress-responsive protein. Oxidative stress is a hallmark of myocardial ischemia/reperfusion (I/R) injury and contributes to the cardiac injury. To date, whether TRIM16 plays a role in mediating oxidative stress during myocardial I/R injury is undetermined. The work is devoted to evaluate the possible relevance of TRIM16 in myocardial I/R injury. TRIM16 induction by myocardial hypoxia/reoxygenation (H/R) injury in vitro or myocardial I/R injury in vivo was observed. TRIM16 overexpression alleviated H/R-induced injury of rat cardiomyocytes. TRIM16 overexpression markedly attenuated cardiac injury, infarct size, and myocardial apoptosis induced by myocardial I/R injury. Further research revealed that TRIM16 was capable of enhancing Nrf2 activation via the regulation of Keap1. The inhibition of Nrf2 diminished TRIM16-overexpression-mediated cardioprotective effects. Overall, this work demonstrates that TRIM16 protects against myocardial I/R injury via affecting the Keap1/Nrf2 axis. This work offers new insights into the molecular mechanism underlying myocardial I/R injury and proposes TRIM16 as an attractive candidate target for cardioprotection.
Collapse
Affiliation(s)
- Qianwei Cui
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an 710068, China
| | - Li Yan
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an 710068, China.
| |
Collapse
|
5
|
Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mech Ageing Dev 2021; 198:111540. [PMID: 34237321 PMCID: PMC8387860 DOI: 10.1016/j.mad.2021.111540] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the cause of death in 40 % of individuals over 65 years old. Ageing is associated with an increased prevalence of atherosclerosis, coronary artery stenosis and subsequent myocardial infarction, thoracic aortic aneurysm, valvular heart disease and heart failure. An accumulation of senescence and increased inflammation, caused by the senescence-associated secretory phenotype, have been implicated in the aetiology and progression of these age-associated diseases. Recently it has been demonstrated that compounds targeting components of anti-apoptotic pathways expressed by senescent cells can preferentially induce senescence cells to apoptosis and have been termed senolytics. In this review, we discuss the evidence demonstrating that senescence contributes to cardiovascular disease, with a particular focus on studies that indicate the promise of senotherapy. Based on these data we suggest novel indications for senolytics as a treatment of cardiovascular diseases which have yet to be studied in the context of senotherapy. Finally, while the potential benefits are encouraging, several complications may result from senolytic treatment. We, therefore, consider these challenges in the context of the cardiovascular system.
Collapse
|
6
|
Nepper-Christensen L, Lønborg J, Høfsten DE, Sadjadieh G, Schoos MM, Pedersen F, Jørgensen E, Kelbæk H, Haahr-Pedersen S, Flensted Lassen J, Køber L, Holmvang L, Engstrøm T. Clinical outcome following late reperfusion with percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2021; 10:523–531. [PMID: 32419471 PMCID: PMC8248842 DOI: 10.1177/2048872619886312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Up to 40% of patients with ST-segment elevation myocardial infarction (STEMI) present later than 12 hours after symptom onset. However, data on clinical outcomes in STEMI patients treated with primary percutaneous coronary intervention 12 or more hours after symptom onset are non-existent. We evaluated the association between primary percutaneous coronary intervention performed later than 12 hours after symptom onset and clinical outcomes in a large all-comer contemporary STEMI cohort. METHODS All STEMI patients treated with primary percutaneous coronary intervention in eastern Denmark from November 2009 to November 2016 were included and stratified by timing of the percutaneous coronary intervention. The combined clinical endpoint of all-cause mortality and hospitalisation for heart failure was identified from nationwide Danish registries. RESULTS We included 6674 patients: 6108 (92%) were treated less than 12 hours and 566 (8%) were treated 12 or more hours after symptom onset. During a median follow-up period of 3.8 (interquartile range 2.3-5.6) years, 30-day, one-year and long-term cumulative rates of the combined endpoint were 11%, 17% and 25% in patients treated 12 or fewer hours and 21%, 29% and 37% in patients treated more than 12 hours (P<0.001 for all) after symptom onset. Late presentation was independently associated with an increased risk of an adverse clinical outcome (hazard ratio 1.42, 95% confidence interval 1.22-1.66; P<0.001). CONCLUSIONS Increasing duration from symptom onset to primary percutaneous coronary intervention was associated with an increased risk of an adverse clinical outcome in patients with STEMI, especially when the delay exceeded 12 hours.
Collapse
Affiliation(s)
| | - Jacob Lønborg
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | - Dan Eik Høfsten
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | - Golnaz Sadjadieh
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | | | - Frants Pedersen
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | - Erik Jørgensen
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | - Henning Kelbæk
- Department of Cardiology, Zealand University Hospital, Denmark
| | | | | | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | - Lene Holmvang
- Department of Cardiology, Copenhagen University Hospital, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Copenhagen University Hospital, Denmark
- Department of Cardiology, University of Lund, Sweden
| |
Collapse
|
7
|
Dookun E, Walaszczyk A, Redgrave R, Palmowski P, Tual‐Chalot S, Suwana A, Chapman J, Jirkovsky E, Donastorg Sosa L, Gill E, Yausep OE, Santin Y, Mialet‐Perez J, Andrew Owens W, Grieve D, Spyridopoulos I, Taggart M, Arthur HM, Passos JF, Richardson GD. Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery. Aging Cell 2020; 19:e13249. [PMID: 32996233 PMCID: PMC7576252 DOI: 10.1111/acel.13249] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/16/2022] Open
Abstract
A key component of cardiac ischemia-reperfusion injury (IRI) is the increased generation of reactive oxygen species, leading to enhanced inflammation and tissue dysfunction in patients following intervention for myocardial infarction. In this study, we hypothesized that oxidative stress, due to ischemia-reperfusion, induces senescence which contributes to the pathophysiology of cardiac IRI. We demonstrate that IRI induces cellular senescence in both cardiomyocytes and interstitial cell populations and treatment with the senolytic drug navitoclax after ischemia-reperfusion improves left ventricular function, increases myocardial vascularization, and decreases scar size. SWATH-MS-based proteomics revealed that biological processes associated with fibrosis and inflammation that were increased following ischemia-reperfusion were attenuated upon senescent cell clearance. Furthermore, navitoclax treatment reduced the expression of pro-inflammatory, profibrotic, and anti-angiogenic cytokines, including interferon gamma-induced protein-10, TGF-β3, interleukin-11, interleukin-16, and fractalkine. Our study provides proof-of-concept evidence that cellular senescence contributes to impaired heart function and adverse remodeling following cardiac ischemia-reperfusion. We also establish that post-IRI the SASP plays a considerable role in the inflammatory response. Subsequently, senolytic treatment, at a clinically feasible time-point, attenuates multiple components of this response and improves clinically important parameters. Thus, cellular senescence represents a potential novel therapeutic avenue to improve patient outcomes following cardiac ischemia-reperfusion.
Collapse
Affiliation(s)
- Emily Dookun
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Anna Walaszczyk
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | - Pawel Palmowski
- School of Environmental SciencesFaculty of ScienceAgriculture & EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | - Averina Suwana
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James Chapman
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | - Eleanor Gill
- School of MedicineDentistry and Biomedical SciencesCentre for Experimental MedicineInstitute for Health SciencesQueen`s University BelfastBelfastUK
| | - Oliver E Yausep
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | - W Andrew Owens
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - David Grieve
- School of MedicineDentistry and Biomedical SciencesCentre for Experimental MedicineInstitute for Health SciencesQueen`s University BelfastBelfastUK
| | | | - Michael Taggart
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Helen M. Arthur
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - João F. Passos
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | | |
Collapse
|
8
|
Li J, Zhang WJ, Yao H, Li TM. Therapeutic effects of interleukin-37 and induced cardiosphere on treating myocardial ischemia-reperfusion injury. Int Immunopharmacol 2020; 88:106719. [PMID: 32916625 DOI: 10.1016/j.intimp.2020.106719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUNDS Myocardial ischemia-reperfusion injury (MI-RI) has many adverse complications with high mortality rate. In the current study, we investigated the therapeutic advantages of delivering Interleukin-37 (IL-37) by induced cardiospheres (iCS), generated from adult skin fibroblasts via somatic reprogramming, in treating the mice model MI-RI. METHODS The mouse model of MI-RI was established and the iCS cells with IL-37 overexpression (iCS-IL37) were transplanted into the mice via tail-vein injection. Left ventricular (LV) dimensions and LV pressure-volume measurements were assessed by parasternal long-axis echocardiography and hemodynamic assessment. The infarct size was determined by histology analysis. And the inflammatory responses were analyzed by using enzyme-linked immunosorbent assay (ELISA). RESULTS The LV function was significantly improved after the iCS-IL37 transplantation when compared to the vehicle control group and iCS group, including the end-systolic pressure and dP/dtMax. Furthermore, the infarct size was significantly decreased after the iCS-IL37 transplantation. The protein levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were down-regulated by the iCS-IL37 transplantation. CONCLUSION The present study indicated that the iCS with IL-37 overexpression had therapeutic effects on the mice model of MI-RI.
Collapse
Affiliation(s)
- Jing Li
- Preventive Medicine Ward, Wei Hai Municpal Hospital, Shandong University, Weihai 2642, Shandong, China
| | - Wen-Jie Zhang
- Intensive Care Unit(ICU), Wei Hai Municpal Hospital, Shandong University, Weihai 264200, Shandong, China
| | - Hui Yao
- Intensive Care Unit(ICU), Wei Hai Municpal Hospital, Shandong University, Weihai 264200, Shandong, China
| | - Tian-Min Li
- Intensive Care Unit(ICU), Wei Hai Municpal Hospital, Shandong University, Weihai 264200, Shandong, China.
| |
Collapse
|
9
|
Lloyd SG, Farris GR. MRI Apparent Diffusion Coefficient in Reperfused Acute Myocardial Infarction: New Use of an Old Technique. Radiology 2020; 295:550-551. [DOI: 10.1148/radiol.2020200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Steven G. Lloyd
- From the Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294; and Birmingham VA Medical Center, Birmingham, Ala
| | - G. Ross Farris
- From the Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294; and Birmingham VA Medical Center, Birmingham, Ala
| |
Collapse
|
10
|
Sabbah M, Nepper-Christensen L, Køber L, Høfsten DE, Ahtarovski KA, Göransson C, Kyhl K, Ghotbi AA, Schoos MM, Sadjadieh G, Kelbæk H, Lønborg J, Engstrøm T. Infarct size following loading with Ticagrelor/Prasugrel versus Clopidogrel in ST-segment elevation myocardial infarction. Int J Cardiol 2020; 314:7-12. [PMID: 32389767 DOI: 10.1016/j.ijcard.2020.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Treatment with newer direct-acting anti-platelet drugs (Ticagrelor and Prasugrel) prior to primary percutaneous coronary intervention (PCI) is associated with improved outcome in patients with ST-segment elevation myocardial infarction (STEMI) when compared with Clopidogrel. We compared infarct size following treatment with Ticagrelor/Prasugrel versus Clopidogrel in the DANish trial in Acute Myocardial Infarction (DANAMI-3) population of STEMI patients treated with primary PCI. METHODS AND RESULTS Patients were loaded with Clopidogrel, Ticagrelor or Prasugrel in the ambulance before primary PCI. Infarct size and myocardial salvage index were calculated using cardiac magnetic resonance (CMR) during index admission and at three-month follow-up. Six-hundred-and-ninety-three patients were included in this analysis. Clopidogrel was given to 351 patients and Ticagrelor/Prasugrel to 342 patients. The groups were generally comparable in terms of baseline and procedural characteristics. Median infarct size at three-month follow-up was 12.9% vs 10.0%, in patients treated with Clopidogrel and Ticagrelor/ Prasugrel respectively (p < 0.001), and myocardial salvage index was 66% vs 71% (p < 0.001). Results remained significant in a multiple regression model (p < 0.001). CONCLUSIONS Pre-hospital loading with Ticagrelor or Prasugrel compared to Clopidogrel, was associated with smaller infarct size and larger myocardial salvage index at three-month follow-up in patients with STEMI treated with primary PCI.
Collapse
Affiliation(s)
- Muhammad Sabbah
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark.
| | - Lars Nepper-Christensen
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Lars Køber
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Dan Eik Høfsten
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | | | - Christoffer Göransson
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Kasper Kyhl
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Adam Ali Ghotbi
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Mikkel Malby Schoos
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Golnaz Sadjadieh
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Henning Kelbæk
- Zealand University Hospital, Department of Cardiology, Roskilde, Denmark
| | - Jacob Lønborg
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| | - Thomas Engstrøm
- Rigshospitalet - Copenhagen University Hospital, Department of Cardiology, Copenhagen, Denmark
| |
Collapse
|
11
|
Schreckenberg R, Klein J, Kutsche HS, Schulz R, Gömöri K, Bencsik P, Benczik B, Ágg B, Sághy É, Ferdinandy P, Schlüter KD. Ischaemic post-conditioning in rats: Responder and non-responder differ in transcriptome of mitochondrial proteins. J Cell Mol Med 2020; 24:5528-5541. [PMID: 32297702 PMCID: PMC7214154 DOI: 10.1111/jcmm.15209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
Ischaemic post‐conditioning (IPoC) is a clinical applicable procedure to reduce reperfusion injury. Non‐responsiveness to IPoC possibly caused by co‐morbidities limits its clinical attractiveness. We analysed differences in the expression of mitochondrial proteins between IPoC responder (IPoC‐R) and non‐responder (IPoC‐NR). Eighty rats were randomly grouped to sham, ischaemia/reperfusion (I/R), IPoC or ischaemic pre‐conditioning (IPC, as positive cardioprotective intervention) in vivo. Infarct sizes were quantified by plasma troponin I levels 60 minutes after reperfusion. After 7 days, rats were sacrificed and left ventricular tissue was taken for post hoc analysis. The transcriptome was analysed by qRT‐PCR and small RNA sequencing. Key findings were verified by immunoblots. I/R increased plasma troponin I levels compared to Sham. IPC reduced troponin I compared to I/R, whereas IPoC produced either excellent protection (IPoC‐R) or no protection (IPoC‐NR). Twenty‐one miRs were up‐regulated by I/R and modified by IPoC. qRT‐PCR analysis revealed that IPoC‐R differed from other groups by reduced expression of arginase‐2 and bax, whereas the mitochondrial uncoupling protein (UCP)‐2 was induced in IPC and IPoC‐R. IPoC‐R and IPoC‐NR synergistically increased the expression of non‐mitochondrial proteins like VEGF and SERCA2a independent of the infarct size. Cardiac function was more closely linked to differences in mitochondrial proteins than on regulation of calcium‐handling proteins. In conclusion, healthy rats could not always be protected by IPoC. IPoC‐NR displayed an incomplete responsiveness which is reflected by different changes in the mitochondrial transcriptome compared to IPoC‐R. This study underlines the importance of mitochondrial proteins for successful long‐term outcome.
Collapse
Affiliation(s)
| | - Johann Klein
- Department of Physiology, Justus Liebig-University, Gießen, Germany
| | | | - Rainer Schulz
- Department of Physiology, Justus Liebig-University, Gießen, Germany
| | - Kamilla Gömöri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Bettina Benczik
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Pharmahungary Group, Szeged, Hungary.,Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Éva Sághy
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary.,Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
12
|
Zhao Z, Tang Z, Zhang W, Liu J, Li B, Ding S. Inactivated pseudomonas aeruginosa protects against myocardial ischemia reperfusion injury via Nrf2 and HO-1. Exp Ther Med 2020; 19:3362-3368. [PMID: 32266034 DOI: 10.3892/etm.2020.8605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
The current study investigated the protective effects of inactivated pseudomonas aeruginosa (IPA) on myocardial ischemia reperfusion injury (MIR/I) and the mechanisms governing this interaction. Left anterior descending coronary artery ligation was performed on rats for 30 min and reperfusion was performed for a subsequent 2 h. Rat hearts were obtained and the myocardial infarction area was determined using nitroblue tetrazolium. Myocardial cell apoptosis was determined using flow cytometry. Malondialdehyde (MDA) content, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity and catalase (CAT) activities were assayed using the corresponding kits. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) were assayed using western blot and immunofluorescence analysis. When compared with the model group, the results of IPA treatment revealed improved heart function, reduced myocardial infarction area and reduced endothelial cell apoptosis, which led to decreased LDH and MDA levels, and increased SOD and CAT levels in serum, and decreased LDH and MDA levels and increased SOD and CAT in myocardial tissues. Moreover, increased Nrf2 and HO-1 expression levels in the myocardial tissues were also observed at all concentrations of IPA. It was concluded that IPA pretreatment ameliorated MIR/I and reduced endothelial apoptosis and oxidative stress via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zhigang Zhao
- Emergency Department, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Zhongzhi Tang
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Wenkai Zhang
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Jie Liu
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Bo Li
- Emergency Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Shifang Ding
- Cardiovascular Department, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
13
|
Hou F, Geng Q, Zhang F, Li Y. Protective effects of induced cardiosphere on myocardial ischemia-reperfusion injury through secreting interleukin 10. Int Immunopharmacol 2020; 80:106207. [PMID: 31958742 DOI: 10.1016/j.intimp.2020.106207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUNDS Myocardial ischemia-reperfusion injury (MI-RI) has many adverse complications with high mortality rate. It has been demonstrated that the induced cardiospheres (iCS), generated from adult skin fibroblasts via somatic reprogramming, represents a novel source for cell therapy in myocardial infarction. However, whether the iCS could also be applied to treat MI-RI remains unclear. Thus, we investigated the therapeutic application of iCS in the mice model MI-RI. METHODS The mice model of MI-RI was established and the iCS cells were transplanted to the mice via tail-vein injection. Left ventricular (LV) dimensions and LV pressure-volume measurements were assessed by parasternal long-axis echocardiography. The infarct size was determined by histology analysis. And the inflammatory responses were analyzed by using enzyme-linked immunosorbent assay (ELISA). RESULTS The LV function was significantly improved after the iCS transplantation when compared to the vehicle control group, including the end-systolic pressure and dP/dtMax. Furthermore, the infarct size was significantly decreased after the iCS transplantation. The protein levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were down-regulated by the iCS transplantation while the IL-10 was up-regulated. The anti-inflammatory factor IL-10 was found to be expressed and secreted by the iCS cells and knocking down the IL-10 in iCS would significantly impair the therapeutic effects of iCS in the mice model of MI-RI. CONCLUSION The present study indicated that the iCS had therapeutic effects on the mice model of MI-RI through secreting the IL-10.
Collapse
Affiliation(s)
- Fangjie Hou
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao 266000, Shandong, China
| | - Qiang Geng
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao 266000, Shandong, China
| | - Fang Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Ya Li
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China.
| |
Collapse
|
14
|
Chen J, Ma Q, King JS, Sun Y, Xu B, Zhang X, Zohrabian S, Guo H, Cai W, Li G, Bruno I, Cooke JP, Wang C, Kontaridis M, Wang DZ, Luo H, Pu WT, Lin Z. aYAP modRNA reduces cardiac inflammation and hypertrophy in a murine ischemia-reperfusion model. Life Sci Alliance 2020; 3:e201900424. [PMID: 31843959 PMCID: PMC6918510 DOI: 10.26508/lsa.201900424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial recovery from ischemia-reperfusion (IR) is shaped by the interaction of many signaling pathways and tissue repair processes, including the innate immune response. We and others previously showed that sustained expression of the transcriptional co-activator yes-associated protein (YAP) improves survival and myocardial outcome after myocardial infarction. Here, we asked whether transient YAP expression would improve myocardial outcome after IR injury. After IR, we transiently activated YAP in the myocardium with modified mRNA encoding a constitutively active form of YAP (aYAP modRNA). Histological studies 2 d after IR showed that aYAP modRNA reduced cardiomyocyte (CM) necrosis and neutrophil infiltration. 4 wk after IR, aYAP modRNA-treated mice had better heart function as well as reduced scar size and hypertrophic remodeling. In cultured neonatal and adult CMs, YAP attenuated H2O2- or LPS-induced CM necrosis. TLR signaling pathway components important for innate immune responses were suppressed by YAP/TEAD1. In summary, our findings demonstrate that aYAP modRNA treatment reduces CM necrosis, cardiac inflammation, and hypertrophic remodeling after IR stress.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/administration & dosage
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Cardiomegaly/drug therapy
- Cardiomegaly/etiology
- Cell Survival/drug effects
- Cells, Cultured
- Disease Models, Animal
- Humans
- Injections, Intramuscular
- Mice
- Mice, Inbred C57BL
- Myocardial Reperfusion Injury/complications
- Myocarditis/drug therapy
- Myocarditis/etiology
- Myocardium/immunology
- Myocytes, Cardiac/metabolism
- Neutrophil Infiltration/drug effects
- RNA Editing
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- Transcription Factors/administration & dosage
- Transcription Factors/genetics
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Jinmiao Chen
- Boston Children's Hospital, Boston, MA, USA
- Department of Cardiovascular Surgery and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Ma
- Boston Children's Hospital, Boston, MA, USA
| | | | - Yan Sun
- Masonic Medical Research Institute, Utica, NY, USA
| | - Bing Xu
- Masonic Medical Research Institute, Utica, NY, USA
| | | | | | - Haipeng Guo
- Boston Children's Hospital, Boston, MA, USA
- Department of Critical Care Medicine, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqing Cai
- Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - Gavin Li
- Boston Children's Hospital, Boston, MA, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, Houston, TX, USA
| | - John P Cooke
- Houston Methodist Research Institute, Houston, TX, USA
| | - Chunsheng Wang
- Department of Cardiovascular Surgery and Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | - Hongbo Luo
- Boston Children's Hospital, Boston, MA, USA
| | - William T Pu
- Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Zhiqiang Lin
- Boston Children's Hospital, Boston, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| |
Collapse
|
15
|
Yu CW. Does thrombectomy inhibit effect of ischaemic postconditioning in STEMI? True or not? Heart 2019; 106:3-5. [PMID: 31611324 PMCID: PMC6952833 DOI: 10.1136/heartjnl-2019-315389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Cheol Woong Yu
- Cardiology, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
16
|
Nepper-Christensen L, Høfsten DE, Helqvist S, Lassen JF, Tilsted HH, Holmvang L, Pedersen F, Joshi F, Sørensen R, Bang L, Bøtker HE, Terkelsen CJ, Maeng M, Jensen LO, Aarøe J, Kelbæk H, Køber L, Engstrøm T, Lønborg J. Interaction of ischaemic postconditioning and thrombectomy in patients with ST-elevation myocardial infarction. Heart 2019; 106:24-32. [PMID: 31315939 DOI: 10.1136/heartjnl-2019-314952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The Third Danish Study of Optimal Acute Treatment of Patients with ST-segment Elevation Myocardial Infarction - Ischaemic Postconditioning (DANAMI-3-iPOST) did not show improved clinical outcome in patients with ST-segment elevation myocardial infarction (STEMI) treated with ischaemic postconditioning. However, the use of thrombectomy was frequent and thrombectomy may in itself diminish the effect of ischaemic postconditioning. We evaluated the effect of ischaemic postconditioning in patients included in DANAMI-3-iPOST stratified by the use of thrombectomy. METHODS Patients with STEMI were randomised to conventional primary percutaneous coronary intervention (PCI) or ischaemic postconditioning plus primary PCI. The primary endpoint was a combination of all-cause mortality and hospitalisation for heart failure. RESULTS From March 2011 until February 2014, 1234 patients were included with a median follow-up period of 35 (interquartile range 28 to 42) months. There was a significant interaction between ischaemic postconditioning and thrombectomy on the primary endpoint (p=0.004). In patients not treated with thrombectomy (n=520), the primary endpoint occurred in 33 patients (10%) who underwent ischaemic postconditioning (n=326) and in 35 patients (18%) who underwent conventional treatment (n=194) (adjusted hazard ratio (HR) 0.55 (95%confidence interval (CI) 0.34 to 0.89), p=0.016). In patients treated with thrombectomy (n=714), there was no significant difference between patients treated with ischaemic postconditioning (n=291) and conventional PCI (n=423) on the primary endpoint (adjusted HR 1.18 (95% CI 0.62 to 2.28), p=0.62). CONCLUSIONS In this post-hoc study of DANAMI-3-iPOST, ischaemic postconditioning, in addition to primary PCI, was associated with reduced risk of all-cause mortality and hospitalisation for heart failure in patients with STEMI not treated with thrombectomy. TRIAL REGISTRATION NUMBER NCT01435408.
Collapse
Affiliation(s)
- Lars Nepper-Christensen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dan Eik Høfsten
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Flensted Lassen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Henrik Tilsted
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frants Pedersen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Francis Joshi
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke Sørensen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lia Bang
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Michael Maeng
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Lisette Okkels Jensen
- Department of Cardiology, Catheterisation Lab, Odense University Hospital, Odense, Denmark
| | - Jens Aarøe
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Kelbæk
- Department of Cardiology, Roskilde University Hospital, Roskilde, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Lønborg
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Influence of Cardiovascular Risk Factors, Comorbidities, Medication Use and Procedural Variables on Remote Ischemic Conditioning Efficacy in Patients with ST-Segment Elevation Myocardial Infarction. Int J Mol Sci 2019; 20:ijms20133246. [PMID: 31269650 PMCID: PMC6650921 DOI: 10.3390/ijms20133246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Remote ischemic conditioning (RIC) confers cardioprotection in patients with ST-segment elevation myocardial infarction (STEMI). Despite intense research, the translation of RIC into clinical practice remains a challenge. This may, at least partly, be due to confounding factors that may modify the efficacy of RIC. The present review focuses on cardiovascular risk factors, comorbidities, medication use and procedural variables which may modify the efficacy of RIC in patients with STEMI. Findings of such efficacy modifiers are based on subgroup and post-hoc analyses and thus hold risk of type I and II errors. Although findings from studies evaluating influencing factors are often ambiguous, some but not all studies suggest that smoking, non-statin use, infarct location, area-at-risk of infarction, pre-procedural Thrombolysis in Myocardial Infarction (TIMI) flow, ischemia duration and coronary collateral blood flow to the infarct-related artery may influence on the cardioprotective efficacy of RIC. Results from the on-going CONDI2/ERIC-PPCI trial will determine any clinical implications of RIC in the treatment of patients with STEMI and predefined subgroup analyses will give further insight into influencing factors on the efficacy of RIC.
Collapse
|
18
|
Engstrøm T, Kelbæk H, Helqvist S, Høfsten DE, Kløvgaard L, Clemmensen P, Holmvang L, Jørgensen E, Pedersen F, Saunamaki K, Ravkilde J, Tilsted HH, Villadsen A, Aarøe J, Jensen SE, Raungaard B, Bøtker HE, Terkelsen CJ, Maeng M, Kaltoft A, Krusell LR, Jensen LO, Veien KT, Kofoed KF, Torp-Pedersen C, Kyhl K, Nepper-Christensen L, Treiman M, Vejlstrup N, Ahtarovski K, Lønborg J, Køber L. Effect of Ischemic Postconditioning During Primary Percutaneous Coronary Intervention for Patients With ST-Segment Elevation Myocardial Infarction: A Randomized Clinical Trial. JAMA Cardiol 2019; 2:490-497. [PMID: 28249094 DOI: 10.1001/jamacardio.2017.0022] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Ischemic postconditioning of the heart during primary percutaneous coronary intervention (PCI) induced by repetitive interruptions of blood flow to the ischemic myocardial region immediately after reopening of the infarct-related artery may limit myocardial damage. Objective To determine whether ischemic postconditioning can improve the clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI). Design, Setting, And Participants In this multicenter, randomized clinical trial, patients with onset of symptoms within 12 hours, STEMI, and thrombolysis in myocardial infarction (TIMI) grade 0-1 flow in the infarct-related artery at arrival were randomized to conventional PCI or postconditioning. Inclusion began on March 21, 2011, through February 2, 2014, and follow-up was completed on February 2, 2016. Analysis was based on intention to treat. Interventions Patients were randomly allocated 1:1 to conventional primary PCI, including stent implantation, or postconditioning performed as 4 repeated 30-second balloon occlusions followed by 30 seconds of reperfusion immediately after opening of the infarct-related artery and before stent implantation. Main Outcome and Measures A combination of all-cause death and hospitalization for heart failure. Results During the inclusion period, 1234 patients (975 men [79.0%] and 259 women [21.0%]; mean [SD] age, 62 [11] years) underwent randomization in the trial. Median follow-up was 38 months (interquartile range, 24-58 months). The primary outcome occurred in 69 patients (11.2%) who underwent conventional primary PCI and in 65 (10.5%) who underwent postconditioning (hazard ratio, 0.93; 95% CI, 0.66-1.30; P = .66). The hazard ratios were 0.75 (95% CI, 0.49-1.14; P = .18) for all-cause death and 0.99 (95% CI, 0.60-1.64; P = .96) for heart failure. Conclusions and Relevance Routine ischemic postconditioning during primary PCI failed to reduce the composite outcome of death from any cause and hospitalization for heart failure in patients with STEMI and TIMI grade 0-1 flow at arrival. Trial Registration clinicaltrials.gov Identifier: NCT01435408.
Collapse
Affiliation(s)
- Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Kelbæk
- Department of Cardiology, Roskilde Hospital, Roskilde, Denmark
| | - Steffen Helqvist
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dan Eik Høfsten
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Kløvgaard
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Clemmensen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frants Pedersen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kari Saunamaki
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Ravkilde
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans-Henrik Tilsted
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anton Villadsen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Aarøe
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Bent Raungaard
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans E Bøtker
- Department of Cardiology, Skejby University Hospital, Skejby, Denmark
| | | | - Michael Maeng
- Department of Cardiology, Skejby University Hospital, Skejby, Denmark
| | - Anne Kaltoft
- Department of Cardiology, Skejby University Hospital, Skejby, Denmark
| | - Lars R Krusell
- Department of Cardiology, Skejby University Hospital, Skejby, Denmark
| | - Lisette O Jensen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Karsten T Veien
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Klaus Fuglsang Kofoed
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper Kyhl
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Marek Treiman
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kiril Ahtarovski
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Lønborg
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Fakhri Y, Melgaard J, Andersson HB, Schoos MM, Birnbaum Y, Graff C, Sejersten M, Kastrup J, Clemmensen P. Automatic electrocardiographic algorithm for assessing severity of ischemia in ST-segment elevation myocardial infarction. Int J Cardiol 2018; 268:18-22. [PMID: 30041784 DOI: 10.1016/j.ijcard.2018.04.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/12/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Terminal QRS distortion on the electrocardiogram (ECG) is a sign of severe ischemia in patients with STEMI and can be quantified by the Sclarovsky-Birnbaum Severity of Ischemia. Due to score complexity, it has not been applied in clinical practice. Automatic scoring of digitally recorded ECGs could facilitate clinical application. We aimed to develop an automatic algorithm for the severity of ischemia. METHODS Development set: 50 STEMI ECGs were manually (Manual-score) and automatically (Auto-score) scored by our designed algorithm. The agreement between Manual- and Auto-score was assessed by kappa statistics. Test set: ECGs from 199 STEMI patients were assigned a severity grade (severe or non-severe ischemia) by the Auto-score. Infarct size estimated by median peak Troponin T (TnT) and Creatinine Kinase Myocardial Band (CKMB) was tested between the groups. RESULTS The agreement between Manual- and Auto-score was 0.83 ((95% CI 0.55-1.00), p < 0.0001), sensitivity 75% and specificity 100%, PPV 100% and NPV 94.6%. In the test set 152 (76%) patients were male, mean age 61 ± 12 years. The Auto-score designated severe ischemia in 42 (21%) and non-severe ischemia in 157 (79%) patients. Patients with ECG signs of severe vs. non-severe ischemia had significantly higher levels of biomarkers of infarct size. In multiple linear regression, ECG sign of severe ischemia was an independent predictor for higher TnT and CKMB levels. CONCLUSION The automatic ECG algorithm for severity of ischemia in STEMI performs adequately for clinical use. Severe ischemia obtained by the Auto-score was associated with biomarker estimated larger infarct size.
Collapse
Affiliation(s)
- Yama Fakhri
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Medicine, Nykøbing Falster Hospital, Nykøbing F, Denmark.
| | - Jacob Melgaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hedvig Bille Andersson
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | - Yochai Birnbaum
- Section of Cardiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Maria Sejersten
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Clemmensen
- Department of Medicine, Nykøbing Falster Hospital, Nykøbing F, Denmark; Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark; Department of General and Interventional Cardiology, University Heart Center Hamburg, Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Nepper-Christensen L, Lønborg J, Høfsten DE, Ahtarovski KA, Bang LE, Helqvist S, Kyhl K, Køber L, Kelbæk H, Vejlstrup N, Holmvang L, Engstrøm T. Benefit From Reperfusion With Primary Percutaneous Coronary Intervention Beyond 12 Hours of Symptom Duration in Patients With ST-Segment–Elevation Myocardial Infarction. Circ Cardiovasc Interv 2018; 11:e006842. [DOI: 10.1161/circinterventions.118.006842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lars Nepper-Christensen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Jacob Lønborg
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Dan E. Høfsten
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Kiril A. Ahtarovski
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Lia E. Bang
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Steffen Helqvist
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Kasper Kyhl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Henning Kelbæk
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark (H.K.)
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Lene Holmvang
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark (L.N.-C., J.L., D.E.H., K.A.A., L.E.B., S.H., K.K., L.K., N.V., L.H., T.E.)
- Department of Cardiology, University of Lund, Sweden (T.E.)
| |
Collapse
|
21
|
Reperfusing the myocardium - a damocles Sword. Indian Heart J 2018; 70:433-438. [PMID: 29961464 PMCID: PMC6034085 DOI: 10.1016/j.ihj.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
Return of blood flow after periodic ischemia is often accompanied by myocardial injury, commonly known as lethal reperfusion injury (RI). Experimental studies have shown that 50% of muscle die of ischemia and another 50% die because of reperfusion. It is characterized by myocardial, vascular, or electrophysiological dysfunction that is induced by the restoration of blood flow to previously ischemic tissue. This phenomenon reduces the efficiency of the present modalities used to combat the ischemic myocardium. Moreover, despite an improved understanding of the pathophysiology of this process and encouraging preclinical trials of multiple agents, most of the clinical trials to prevent RI have been disappointing and leaves us at ground zero to explore newer approaches.
Collapse
|
22
|
Abstract
ST-segment elevation myocardial infarction is a major cause of morbidity and mortality worldwide. Reperfusion injury (RI) following the opening of an occluded coronary artery mitigates the effect of reperfusion by further accentuating ischemic damage and increasing infarct size. Experimental studies have shown that nearly 50% of final infarct size is attributable to RI, an elusive phenomenon that remains resistant to treatment. This review proposes a hypothesis to explain the failure of strategies that have been used in an attempt to prevent RI. This hypothesis suggests that, after a certain duration of myocardial ischemia in the affected myocardium, three phases of myocardial damage occur: reversible ischemia, irreversible ischemia, and necrosis. In the reversible ischemia phase, cellular adaptive responses remain functional, and cellular repair and thus recovery of cellular functions is possible, whereas in the irreversible ischemia phase protective maneuvers fail to confer cytoprotection. Preventive therapies for RI fail because they cannot prevent cell death once cells have entered the irreversible ischemia phase, although they may succeed in postponing cell death. Failure to salvage myocardium with irreversible ischemia in addition to postponement and change in the mode of cell death (mainly from necrosis to apoptosis) by various RI preventive strategies may be the key to understanding the failure of these strategies in the clinical setting, despite their success in the reduction of infarct size in the experimental setting. Early reperfusion before large amounts of myocardium at risk reach the stage of irreversible ischemia is the best strategy for reduction of RI-related myocardial damage.
Collapse
|
23
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
24
|
Engstrøm T, Nepper-Christensen L, Helqvist S, Kløvgaard L, Holmvang L, Jørgensen E, Pedersen F, Saunamaki K, Tilsted HH, Steensberg A, Fabricius S, Mouritzen U, Vejlstrup N, Ahtarovski KA, Göransson C, Bertelsen L, Kyhl K, Olivecrona G, Kelbæk H, Lassen JF, Køber L, Lønborg J. Danegaptide for primary percutaneous coronary intervention in acute myocardial infarction patients: a phase 2 randomised clinical trial. Heart 2018; 104:1593-1599. [PMID: 29602883 DOI: 10.1136/heartjnl-2017-312774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Reperfusion immediately after reopening of the infarct-related artery in ST-segment elevation myocardial infarction (STEMI) may cause myocardial damage in addition to the ischaemic insult (reperfusion injury). The gap junction modulating peptide danegaptide has in animal models reduced this injury. We evaluated the effect of danegaptide on myocardial salvage in patients with STEMI. METHODS In addition to primary percutaneous coronary intervention in STEMI patients with thrombolysis in myocardial infarction flow 0-1, single vessel disease and ischaemia time less than 6 hours, we tested, in a clinical proof-of-concept study, the therapeutic potential of danegaptide at two-dose levels. Primary outcome was myocardial salvage evaluated by cardiac MRI after 3 months. RESULTS From November 2013 to August 2015, a total of 585 patients were randomly enrolled in the trial. Imaging criteria were fulfilled for 79 (high dose), 80 (low dose) and 84 (placebo) patients eligible for the per-protocol analysis. Danegaptide did not affect the myocardial salvage index (danegaptide high (63.9±14.9), danegaptide low (65.6±15.6) and control (66.7±11.7), P=0.40), final infarct size (danegaptide high (19.6±11.4 g), danegaptide low (18.6±9.6 g) and control (21.4±15.0 g), P=0.88) or left ventricular ejection fraction (danegaptide high (53.9%±9.5%), danegaptide low (52.7%±10.3%) and control (52.1%±10.9%), P=0.64). There was no difference between groups with regard to clinical outcome. CONCLUSIONS Administration of danegaptide to patients with STEMI did not improve myocardial salvage. TRIAL REGISTRATION NUMBER NCT01977755; Pre-results.
Collapse
Affiliation(s)
- Thomas Engstrøm
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, University of Lund, Lund, Sweden
| | | | - Steffen Helqvist
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Kløvgaard
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frants Pedersen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kari Saunamaki
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hans-Henrik Tilsted
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kiril A Ahtarovski
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Göransson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Litten Bertelsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Kyhl
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Kelbæk
- Department of Cardiology, Zealand University Hospital, Roskilde, Denmark
| | - Jens Flensted Lassen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Lønborg
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Pagliaro P, Femminò S, Popara J, Penna C. Mitochondria in Cardiac Postconditioning. Front Physiol 2018; 9:287. [PMID: 29632499 PMCID: PMC5879113 DOI: 10.3389/fphys.2018.00287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a pivotal role in cardioprotection. Here we report some fundamental studies which considered the role of mitochondrial components (connexin 43, mitochondrial KATP channels and mitochondrial permeability transition pore) in postconditioning cardioprotection. We briefly discuss the role of mitochondria, reactive oxygen species and gaseous molecules in postconditioning. Also the effects of anesthetics-used as cardioprotective substances-is briefly considered in the context of postconditioning. The role of mitochondrial postconditioning signaling in determining the limitation of cell death is underpinned. Issues in clinical translation are briefly considered. The aim of the present mini-review is to discuss in a historical perspective the role of main mitochondria mechanisms in cardiac postconditioning.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Jasmin Popara
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Sinning C, Westermann D, Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives. Biomark Med 2017; 11:11031-1040. [DOI: 10.2217/bmm-2017-0110] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress remains a major contributor to myocardial injury after ischemia followed by reperfusion (I/R) as the reperfusion of the myocardial infarction (MI) area inevitably leads to a cascade of I/R injury. This review focused on concepts of the antioxidative defense system and elucidates recent research using antioxidants like vitamin C, E and β-carotene or essential trace elements to activate compounds of antioxidative pathways in the circulation. In this context, important defense mechanisms like superoxide dismutase and glutathione peroxidase will be described. Furthermore, the different mechanisms through which myocardial protection can be addressed, like ischemic postconditioning in myocardial infarction or adjunctive measures like targeted temperature management as well as new theories, including the role of iron in I/R injury, will be discussed.
Collapse
Affiliation(s)
- Christoph Sinning
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Dirk Westermann
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Peter Clemmensen
- Department of General & Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- Department of Regional Health Research, Faculty of Health Sciences, Nykøbing Falster & Odense, Denmark
| |
Collapse
|
27
|
Hortmann M, Robinson S, Mohr M, Haenel D, Mauler M, Stallmann D, Reinoehl J, Duerschmied D, Peter K, Bode C, Ahrens I. Circulating HtrA2 as a novel biomarker for mitochondrial induced cardiomyocyte apoptosis and ischemia-reperfusion injury in ST-segment elevation myocardial infarction. Int J Cardiol 2017; 243:485-491. [DOI: 10.1016/j.ijcard.2017.05.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 11/16/2022]
|
28
|
Lønborg J, Engstrøm T, Ahtarovski KA, Nepper-Christensen L, Helqvist S, Vejlstrup N, Kyhl K, Schoos MM, Ghotbi A, Göransson C, Bertelsen L, Holmvang L, Pedersen F, Jørgensen E, Saunamäki K, Clemmensen P, De Backer O, Kløvgaard L, Høfsten DE, Køber L, Kelbæk H. Myocardial Damage in Patients With Deferred Stenting After STEMI. J Am Coll Cardiol 2017; 69:2794-2804. [DOI: 10.1016/j.jacc.2017.03.601] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022]
|
29
|
Hortmann M, Robinson S, Mohr M, Mauler M, Stallmann D, Reinöhl J, Duerschmied D, Peter K, Carr J, Gibson CM, Bode C, Ahrens I. The mitochondria-targeting peptide elamipretide diminishes circulating HtrA2 in ST-segment elevation myocardial infarction. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 8:695-702. [PMID: 28534645 DOI: 10.1177/2048872617710789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The extent of myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI) depends on both the time to reperfusion as well as injury induced by ischaemia-reperfusion resulting in a cascade of cellular and humoral reactions. As a consequence of ischaemia-reperfusion in the heart, the high-temperature requirement serine peptidase 2 (HtrA2) is translocated from the mitochondria to the cytosol, whereupon it induces protease activity-dependent apoptosis mediated via caspases. Myocardial damage induced by reperfusion cannot be monitored due to a current lack in specific biomarkers. We examined the serum level of HtrA2 as a potentially novel biomarker for mitochondrial-induced cardiomyocyte apoptosis. METHODS After informed consent, peripheral blood was obtained from patients (n=19) with first-time acute anterior STEMI after percutaneous coronary intervention. Within this group, 10 of the patients received the mitochondria-targeting peptide elamipretide (phase 2a clinical study EMBRACE (NCT01572909)). Blood was also obtained from a control group of healthy donors (n=16). The serum level of HtrA2 was measured by an enzyme-linked immunosorbent assay (ELISA). In a murine model of myocardial ischaemia-reperfusion injury, HtrA2 was determined in plasma by ELISA after left anterior descending artery occlusion. RESULTS HtrA2 median was significantly increased in patients with STEMI compared to healthy controls 392.4 (240.7-502.8) pg/mL vs. 1805.5 (981.3-2220.1) pg/mL (P⩽0.05). Elamipretide significantly reduced the HtrA2 median serum level after myocardial infarction 1805.5 (981.3-2220.1) pg/mL vs. 496.5 (379.4-703.8) pg/mL (P⩽0.05). Left anterior descending artery occlusion in mice significantly increased HtrA2 mean in plasma (117.4 fg/ml±SEM 28.1 vs. 525.2 fg/ml±SEM 96; P⩽0.05). CONCLUSION Compared to healthy controls, we found significantly increased serum levels of HtrA2 in patients with STEMI. The result was validated in a murine model of myocardial ischaemia-reperfusion injury. In humans the increased serum level was significantly reduced by the mitochondria-targeting peptide elamipretide. In conclusion, HtrA2 is detectable in serum of patients with STEMI and might present a novel biomarker for mitochondrial-induced cardiomyocyte apoptosis. Consequently, HtrA2 may also show promise as a biomarker for the identification of ischaemia-reperfusion injury. However, this must be validated in a lager clinical trial.
Collapse
Affiliation(s)
- Marcus Hortmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Samuel Robinson
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany.,Department of Medicine, Monash University, Australia
| | - Moritz Mohr
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Maximillian Mauler
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Daniela Stallmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Jochen Reinöhl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Karlheinz Peter
- Department of Medicine, Monash University, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - James Carr
- Stealth BioTherapeutics Inc., Newton, USA
| | | | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany
| | - Ingo Ahrens
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Germany.,Augustinerinnen Hospital, Cologne, Academic Teaching Hospital University of Cologne, Germany
| |
Collapse
|
30
|
Ren M, Liu Y, Zhao H, Dong S, Jiang Z, Li K, Tian J. Adenosine triphosphate postconditioning is associated with better preserved global and regional cardiac function during myocardial ischemia and reperfusion: a speckle tracking imaging-based echocardiologic study. Cardiovasc Ther 2017; 34:343-51. [PMID: 27328167 DOI: 10.1111/1755-5922.12205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Effects of ischemic postconditioning (IPostC) and adenosine triphosphate (ATP)-mediated pharmacologic postconditioning (ATP-PPostC) on cardiac function were evaluated by speckle tracking imaging (STI)-based echocardiography. AIMS A myocardial I/R model was induced in rabbits by reversible ligation of the left ventricular branch of coronary artery. Rabbits were randomized into three groups: ischemia and reperfusion (IR) (no further intervention), IPostC, and ATP-PPostC groups. Cardiac function was evaluated by conventional and STI-based echocardiography. Myocardial necrosis, apoptosis, and myocardial mRNAs of apoptosis-related proteins (Bcl-2 and Bax) were evaluated. RESULTS Speckle tracking imaging (STI)-based echocardiography revealed that IPostC and ATP-PPostC were associated with better preserved global and regional cardiac function, as indicated by significantly increased GLSrsys, GLSrd, GLSsys, SrLsys, SrLd, and SLsys in both groups (all P<.5). Subsequent pathologic studies indicate that the percentage of necrotic myocardium and permillage of apoptotic cells were significantly lower in the IPostC and ATP-PPostC groups than in the IR group (all P<.05). Moreover, both IPostC and ATP-PPostC were associated with increased Bcl-2 mRNA levels and reduced Bax mRNA levels. CONCLUSIONS IPostC and ATP-PPostC may exert cardioprotective functions by better preservation of cardiac function during the I/R process and at least partly via attenuation of myocardial apoptosis.
Collapse
Affiliation(s)
- Min Ren
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Liu
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Shixia Dong
- Department of Special Diagnosis, PLA 313 Hospital, Huludao, China
| | - Zhonghui Jiang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Keting Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
31
|
Chen Y, Meng G, Bai W, Ma Y, Xie L, Altaf N, Qian Y, Han Y, Ji Y. Aliskiren protects against myocardial ischaemia-reperfusion injury via an endothelial nitric oxide synthase dependent manner. Clin Exp Pharmacol Physiol 2017; 44:266-274. [PMID: 27809355 DOI: 10.1111/1440-1681.12692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/11/2016] [Accepted: 10/29/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Yu Chen
- Department of Anaesthesia; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Guoliang Meng
- Department of Pharmacology; School of Pharmacy; Nantong University; Nantong China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Wenli Bai
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Yan Ma
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Naila Altaf
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| | - Yanning Qian
- Department of Anaesthesia; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Yi Han
- Department of Geriatrics; First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; School of Pharmacy; Nanjing Medical University; Nanjing China
| |
Collapse
|
32
|
Understanding pacing postconditioning-mediated cardiac protection: a role of oxidative stress and a synergistic effect of adenosine. J Physiol Biochem 2016; 73:175-185. [PMID: 27864790 DOI: 10.1007/s13105-016-0535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
We and others have demonstrated a protective role for pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury in the heart; however, the underlying mechanisms behind these protective effects are not completely understood. In this study, we wanted to further characterize PPC-mediated cardiac protection, specifically identify optimal pacing sites; examine the role of oxidative stress; and test the existence of a potential synergistic effect between PPC and adenosine. Isolated rat hearts were subjected to coronary occlusion followed by reperfusion. PPC involved three, 30 s, episodes of alternating left ventricular (LV) and right atrial (RA) pacing. Multiple pacing protocols with different pacing electrode locations were used. To test the involvement of oxidative stress, target-specific agonists or antagonists were infused at the beginning of reperfusion. Hemodynamic data were digitally recorded, and cardiac enzymes, oxidant, and antioxidant status were chemically measured. Pacing at the LV or RV but not at the heart apex or base significantly (P < 0.001) protected against ischemia-reperfusion injury. PPC-mediated protection was completely abrogated in the presence of reactive oxygen species (ROS) scavenger, ebselen; peroxynitrite (ONOO-) scavenger, uric acid; and nitric oxide synthase inhibitor, L-NAME. Nitric oxide (NO) donor, snap, however significantly (P < 0.05) protected the heart against I/R injury in the absence of PPC. The protective effects of PPC were significantly improved by adenosine. PPC-stimulated protection can be achieved by alternating LV and RA pacing applied at the beginning of reperfusion. NO, ROS, and the product of their interaction ONOO- play a significant role in PPC-induced cardiac protection. Finally, the protective effects of PPC can be synergized with adenosine.
Collapse
|
33
|
Babiker F, Al-Jarallah A, Joseph S. The Interplay between the Renin Angiotensin System and Pacing Postconditioning Induced Cardiac Protection. PLoS One 2016; 11:e0165777. [PMID: 27814397 PMCID: PMC5096684 DOI: 10.1371/journal.pone.0165777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests a cardioprotective role of pacing postconditioning (PPC) maneuvers in animal models and more recently in humans. The procedure however remains to be optimized and its interaction with physiological systems remains to be further explored. The renin angiotensin system (RAS) plays a dual role in ischemia/reperfusion (I/R) injury. The interaction between RAS and PPC induced cardiac protection is however not clearly understood. We have recently demonstrated that angiotensin (1–7) via Mas receptor played a significant role in PPC mediated cardiac protection against I/R injury. Objective The objective of this study was to investigate the role of angiotensin converting enzyme (ACE)—chymase—angiotensin II (Ang II)—angiotensin receptor 1 (AT1) axes of RAS in PPC mediated cardiac protection. Methods Isolated rat hearts were subjected to I/R (control) or PPC in the presence or absence of Ang II, chymostatin (inhibitor of locally produced Ang II), ACE blocker (captopril) or AT1 antagonist (irbesartan). Hemodynamics data was computed digitally and infarct size was determined histologically using TTC staining and biochemically by measuring creatine kinase (CK) and lactate dehydrogenase levels. Results Cardiac hemodynamics were significantly (P<0.001) improved and infarct size and cardiac enzymes were significantly (P<0.001) reduced in hearts subjected to PPC relative to hearts subjected to I/R injury. Exogenous administration of Ang II did not affect I/R injury or PPC mediated protection. Nonetheless inhibition of endogenously synthesized Ang II protected against I/R induced cardiac damage yet did not block or augment the protective effects of PPC. The administration of AT1 antagonist did not alleviate I/R induced damage. Interestingly it abrogated PPC induced cardiac protection in isolated rat hearts. Finally, PPC induced protection and blockade of locally produced Ang II involved enhanced activation of ERK1/2 and Akt components of the reperfusion injury salvage kinase (RISK) pathway. Conclusions This study demonstrate a novel role of endogenously produced Ang II in mediating I/R injury and highlights the significance of AT1 signaling in PPC mediated cardiac protection in isolated rodents hearts ex vivo. The interaction between Ang II-AT1 and PPC appears to involve alterations in the activation state of ERK1/2 and Akt components of the RISK pathway.
Collapse
Affiliation(s)
- Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
- * E-mail:
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| | - Shaji Joseph
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
34
|
Atrial natriuretic peptide therapy and in-hospital mortality in acute myocardial infarction patients undergoing percutaneous coronary intervention. Int J Cardiol 2016; 222:163-170. [DOI: 10.1016/j.ijcard.2016.07.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 02/01/2023]
|
35
|
Belardi JA, Albertal M. Ischemic Postconditioning: Not Giving Up Yet. Catheter Cardiovasc Interv 2016; 88:514-515. [PMID: 27759929 DOI: 10.1002/ccd.26788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 11/10/2022]
Abstract
Ischemic postconditioning protects against reperfusion injury. Adjunctive use of manual thrombus aspiration improves reperfusion results in patients undergoing primary angioplasty. Combining both strategies (ischemic postconditioning and thrombus aspiration) may have additive effects in terms of myocardial salvage. The PORT trial will study the role of ischemic postconditioning in patients undergoing primary angioplasty with thrombus aspiration.
Collapse
Affiliation(s)
- Jorge A Belardi
- Department of Interventional Cardiology and Endovascular Therapeutics, Instituto Cardiovascular de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mariano Albertal
- Department of Interventional Cardiology and Endovascular Therapeutics, Instituto Cardiovascular de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
36
|
Liu X, Xu D, Wang Y, Chen T, Wang Q, Zhang J, You T, Zhu L. Glaucocalyxin A Ameliorates Myocardial Ischemia-Reperfusion Injury in Mice by Suppression of Microvascular Thrombosis. Med Sci Monit 2016; 22:3595-3604. [PMID: 27716735 PMCID: PMC5056535 DOI: 10.12659/msm.898015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background The aim of this study was to evaluate the cardio-protective roles of glaucocalyxin A (GLA) in myocardial ischemia-reperfusion injury and to explore the underlying mechanism. Material/Methods Myocardial ischemia-reperfusion in wild-type C57BL/6J mice was induced by transient ligation of the left anterior descending artery. GLA or vehicle (solvent) was administrated intraperitoneally to the mice before reperfusion started. After 24 h of myocardial reperfusion, ischemic size was revealed by Evans blue/TTC staining. Cardiac function was evaluated by echocardiography and microvascular thrombosis was assessed by immunofluorescence staining of affected heart tissue. We also measured the phosphorylation of AKT, ERK, P-GSK-3β, and cleaved caspase 3 in the myocardium. Results Compared to the solvent-treated control group, GLA administration significantly reduced infarct size (GLA 13.85±2.08% vs. Control 18.95±0.97%, p<0.05) and improved left ventricular ejection fraction (LVEF) (GLA 53.13±1.11% vs. Control 49.99±1.25%, p<0.05) and left ventricular fractional shortening (LVFS) (28.34±0.71% vs. Control 25.11±0.74%, p<0.05) in mice subjected to myocardial ischemia-reperfusion. GLA also attenuated microvascular thrombosis (P<0.05) and increased the phosphorylation of pro-survival kinase AKT (P<0.05) and GSK-3β (P<0.05) in the myocardium upon reperfusion injury. Conclusions Administration of GLA before reperfusion ameliorates myocardial ischemia-reperfusion injury in mice. The cardio-protective roles of GLA may be mediated through the attenuation of microvascular thrombosis.
Collapse
Affiliation(s)
- Xiaohui Liu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Dongzhou Xu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Yuxin Wang
- Department of Pathology, Jilin Hospital of Chinese Armed Police Force, Changchun, Jilin, China (mainland)
| | - Ting Chen
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Qi Wang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Jian Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Tao You
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Li Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
37
|
Yingzhong C, Lin C, Chunbin W. Clinical effects of cyclosporine A on reperfusion injury in myocardial infarction: a meta-analysis of randomized controlled trials. SPRINGERPLUS 2016; 5:1117. [PMID: 27478734 PMCID: PMC4949180 DOI: 10.1186/s40064-016-2751-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/04/2016] [Indexed: 11/10/2022]
Abstract
Reperfusion therapy is the most crucial strategy for rescuing ischemic myocardium and reducing infarction size. Cyclosporine A (CsA) can protect against reperfusion-induced myocardial necrosis. However, the clinical effects of CsA on myocardial infarction (MI) remain uncertain. This study investigated the effects of CsA on reperfusion injury (RI) in MI. We searched for and included articles regarding randomized controlled trials investigating the effect of CsA in patients with MI from PubMed, EMBASE, and Cochrane Library databases for an analysis. We then performed quality assessment, subgroup, sensitivity, and publication bias analyses. Of the 277 potentially relevant articles retrieved from the databases, only five were eligible for our meta-analysis. Compared with the placebos used in these studies, CsA did not reduce all-cause mortality [rate ratio (RR) 1.10, 95 % confidence interval (CI) 0.75-1.61; P = 0.533; I (2) = 0 %) or adverse clinical events (RR 1.0, 95 % CI 0.89-1.13; P = 0.381; I (2) = 6.5 %). In the CsA treatment groups, improvement in left ventricular ejection fraction (weighted mean difference = 1.91; 95 % CI 0.89, 2.92; P = 0.064) and reduction in MI size (standard mean difference = -0.41, 95 % CI -0.84 to 0.02; P = 0.519; I (2) = 0.0 %) were minimal. The current meta-analysis indicates that CsA treatment does not reduce all-cause mortality and adverse clinical events in MI and that CsA may not have significant clinical effects on RI in MI.
Collapse
Affiliation(s)
- Chen Yingzhong
- Cardiovascular Disease Research Institute, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Sichuan, China
| | - Cai Lin
- Cardiovascular Disease Research Institute, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Sichuan, China
| | - Wang Chunbin
- Cardiovascular Disease Research Institute, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Sichuan, China ; Department of Cardiology, The Third People's Hospital of Chengdu, Chengdu, 610031 Sichuan China
| |
Collapse
|
38
|
Intravenous Beta-Blockers for Cardioprotection in STEMI. J Am Coll Cardiol 2016; 67:2716-2718. [DOI: 10.1016/j.jacc.2016.03.532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 11/21/2022]
|
39
|
The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8254942. [PMID: 27200148 PMCID: PMC4856919 DOI: 10.1155/2016/8254942] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ischaemia/reperfusion (I/R) injury of the heart represents a major health burden mainly associated with acute coronary syndromes. While timely coronary reperfusion has become the established routine therapy in patients with ST-elevation myocardial infarction, the restoration of blood flow into the previously ischaemic area is always accompanied by myocardial injury. The central mechanism involved in this phenomenon is represented by the excessive generation of reactive oxygen species (ROS). Besides their harmful role when highly generated during early reperfusion, minimal ROS formation during ischaemia and/or at reperfusion is critical for the redox signaling of cardioprotection. In the past decades, mitochondria have emerged as the major source of ROS as well as a critical target for cardioprotective strategies at reperfusion. Mitochondria dysfunction associated with I/R myocardial injury is further described and ultimately analyzed with respect to its role as source of both deleterious and beneficial ROS. Furthermore, the contribution of ROS in the highly investigated field of conditioning strategies is analyzed. In the end, the vascular sources of mitochondria-derived ROS are briefly reviewed.
Collapse
|
40
|
Sridhar J, Shahlaee A, Rahimy E, Hong BK, Khan MA, Maguire JI, Dunn JP, Mehta S, Ho AC. Optical Coherence Tomography Angiography and En Face Optical Coherence Tomography Features of Paracentral Acute Middle Maculopathy. Am J Ophthalmol 2015; 160:1259-1268.e2. [PMID: 26386158 DOI: 10.1016/j.ajo.2015.09.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To characterize the optical coherence tomography (OCT) angiography, en face OCT, and microperimetry features of paracentral acute middle maculopathy in both the acute phase and after resolution, and to propose a classification of distinct subtypes of this entity. DESIGN Retrospective observational case series. METHODS Clinical histories, high-resolution digital color imaging, spectral-domain OCT images, fluorescein angiography, OCT angiography images, and en face OCT images of 16 patients with paracentral acute middle maculopathy were evaluated. Microperimetry was available in 6 patients. RESULTS The most common referring diagnoses were isolated branch retinal arterial occlusion (5/16), combined central retinal vein and cilioretinal artery occlusion (4/16), and isolated central retinal vein occlusion (4/16). All patients demonstrated hyperreflective plaque-like lesions at the level of the inner nuclear layer on spectral-domain OCT, with no fluorescein angiographic correlate. OCT angiography demonstrated variable areas of capillary dropout within the superficial and deep retinal capillary plexi in these areas. En face OCT highlighted confluent areas of middle retina hyperreflectivity corresponding to these lesions. Three distinct en face OCT patterns were observed: arteriolar, fern-like, and globular. Microperimetry demonstrated relative scotomas mapping to the area of middle retinal hyperreflectivity seen on en face OCT. CONCLUSIONS Paracentral acute middle maculopathy may be best evaluated with the use of en face OCT imaging, which corresponds to subjective and objective visual field defects. En face OCT appearance may be used to classify paracentral acute maculopathy into distinct subtypes.
Collapse
|
41
|
Yang F, Xi L. Postconditioning of ischemic heart by intermittent ventricular pacing at the beginning of reperfusion: novel mechanisms and potential utilities in interventional cardiology settings. Am J Physiol Heart Circ Physiol 2015; 310:H1-3. [PMID: 26566731 DOI: 10.1152/ajpheart.00835.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Feiyan Yang
- Department of Cardiology, Central Hospital of Wuhan, Wuhan, China
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; and
| |
Collapse
|