1
|
Zhang H, Yu H, Walcott GP, Rogers JM. Ectopic foci do not co-locate with ventricular epicardial stretch during early acute regional ischemia in isolated pig hearts. Physiol Rep 2022; 10:e15492. [PMID: 36259098 PMCID: PMC9579492 DOI: 10.14814/phy2.15492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Ectopic activation during early acute regional ischemia may initiate fatal reentrant arrhythmias. However, the origin of this ectopy remains poorly understood. Studies suggest that systolic stretch arising from dyskinesia in ischemic tissue may cause ectopic depolarization due to cardiac mechanosensitivity. The aim of this study was to investigate the link between mechanical stretch and ectopic electrical activation during early acute regional ischemia. We used a recently developed optical mapping technique capable of simultaneous imaging of mechanical deformation and electrical activation in isolated hearts. Eight domestic swine hearts were prepared in left ventricular working mode (LVW), in which the left ventricle was loaded and contracting. In an additional eight non-working (NW) hearts, contraction was pharmacologically suppressed with blebbistatin and the left ventricle was not loaded. In both groups, the left anterior descending coronary artery was tied below the first diagonal branch. Positive mechanical stretch (bulging) during systole was observed in the ischemic zones of LVW, but not NW, hearts. During ischemia phase 1a (0-15 min post-occlusion), LVW hearts had more ectopic beats than NW hearts (median: 19, interquartile range: 10-28 vs. median: 2, interquartile range: 1-6; p = 0.02); but the difference during phase 1b (15-60 min post-occlusion) was not significant (median: 27, interquartile range: 22-42 vs. median: 16, interquartile range: 12-31; p = 0.37). Ectopic beats arose preferentially from the ischemic border zone in both groups (p < 0.01). In LVW hearts, local mechanical stretch was only occasionally co-located with ectopic foci (9 of 69 ectopic beats). Despite the higher rate of ectopy observed in LVW hearts during ischemia phase 1a, the ectopic beats generally did not arise by the hypothesized mechanism in which ectopic foci are generated by co-local epicardial mechanical stretch.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Han Yu
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gregory P. Walcott
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jack M. Rogers
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Cameron BA, Kai H, Kaihara K, Iribe G, Quinn TA. Ischemia Enhances the Acute Stretch-Induced Increase in Calcium Spark Rate in Ventricular Myocytes. Front Physiol 2020; 11:289. [PMID: 32372969 PMCID: PMC7179564 DOI: 10.3389/fphys.2020.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: In ventricular myocytes, spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors (“Ca2+ sparks”) is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS). In acute regional ischemia there is stretch of ischemic tissue, along with an increase in Ca2+ spark rate and ROS production, each of which has been implicated in arrhythmogenesis. Yet, whether there is an impact of ischemia on the stretch-induced increase in Ca2+ sparks and ROS has not been investigated. We hypothesized that ischemia would enhance the increase of Ca2+ sparks and ROS that occurs with stretch. Methods: Isolated ventricular myocytes from mice (male, C57BL/6J) were loaded with fluorescent dye to detect Ca2+ sparks (4.6 μM Fluo-4, 10 min) or ROS (1 μM DCF, 20 min), exposed to normal Tyrode (NT) or simulated ischemia (SI) solution (hyperkalemia [15 mM potassium], acidosis [6.5 pH], and metabolic inhibition [1 mM sodium cyanide, 20 mM 2-deoxyglucose]), and subjected to sustained stretch by the carbon fiber technique (~10% increase in sarcomere length, 15 s). Ca2+ spark rate and rate of ROS production were measured by confocal microscopy. Results: Baseline Ca2+ spark rate was greater in SI (2.54 ± 0.11 sparks·s−1·100 μm−2; n = 103 cells, N = 10 mice) than NT (0.29 ± 0.05 sparks·s−1·100 μm−2; n = 33 cells, N = 9 mice; p < 0.0001). Stretch resulted in an acute increase in Ca2+ spark rate in both SI (3.03 ± 0.13 sparks·s−1·100 μm−2; p < 0.0001) and NT (0.49 ± 0.07 sparks·s−1·100 μm−2; p < 0.0001), with the increase in SI being greater than NT (+0.49 ± 0.04 vs. +0.20 ± 0.04 sparks·s−1·100 μm−2; p < 0.0001). Baseline rate of ROS production was also greater in SI (1.01 ± 0.01 normalized slope; n = 11, N = 8 mice) than NT (0.98 ± 0.01 normalized slope; n = 12, N = 4 mice; p < 0.05), but there was an acute increase with stretch only in SI (+12.5 ± 2.6%; p < 0.001). Conclusion: Ischemia enhances the stretch-induced increase of Ca2+ sparks in ventricular myocytes, with an associated enhancement of stretch-induced ROS production. This effect may be important for premature excitation and/or in the development of an arrhythmogenic substrate in acute regional ischemia.
Collapse
Affiliation(s)
- Breanne A Cameron
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hiroaki Kai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiko Kaihara
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Gentaro Iribe
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Miura M, Handoh T, Taguchi Y, Hasegawa T, Takahashi Y, Morita N, Matsumoto A, Shindoh C, Sato H. Transient Elevation of Glucose Increases Arrhythmia Susceptibility in Non-Diabetic Rat Trabeculae With Non-Uniform Contraction. Circ J 2020; 84:551-558. [PMID: 32092718 DOI: 10.1253/circj.cj-19-0715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In non-diabetic patients with acute coronary syndrome, stress hyperglycemia occasionally occurs and is related to their mortality. Whether transient elevation of glucose affects arrhythmia susceptibility in non-diabetic hearts with non-uniform contraction was examined. METHODS AND RESULTS Force, intracellular Ca2+([Ca2+]i), and membrane potential were measured in trabeculae from rat hearts. Non-uniform contraction was produced by a jet of paralyzing solution. Ca2+waves and arrhythmias were induced by electrical stimulation (2.0 mmol/L [Ca2+]o). The activity of Ca2+/calmodulin-dependent protein kinaseII (CaMKII) was measured. An elevation of glucose from 150 to 400 mg/dL increased the velocity of Ca2+waves and the number of spontaneous action potentials triggered by electrical stimulation. Besides, the elevation of glucose increased the CaMKII activity. In the presence of 1 μmol/L KN-93, the elevation of glucose did not increase the velocity of Ca2+waves and the number of triggered action potentials. In addition, in the presence of 1 μmol/L autocamtide-2 related inhibitory peptide or 50 μmol/L diazo-5-oxonorleucine, the elevation of glucose did not increase the number of triggered action potentials. Furthermore, the elevation of glucose by adding L-glucose did not increase their number. CONCLUSIONS In non-diabetic hearts with non-uniform contraction, transient elevation of glucose increases the velocity of Ca2+waves by activating CaMKII,probably through glycosylation with O-linked β-N-acetylglucosamine, thereby increasing arrhythmia susceptibility.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Tetsuya Handoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Yuhto Taguchi
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Taiki Hasegawa
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Yui Takahashi
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Natsuki Morita
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Ayana Matsumoto
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Chiyohiko Shindoh
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| | - Haruka Sato
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine
| |
Collapse
|
5
|
Regional increase in ROS within stretched region exacerbates arrhythmias in rat trabeculae with nonuniform contraction. Pflugers Arch 2018; 470:1349-1357. [DOI: 10.1007/s00424-018-2152-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
|
6
|
Mechano-electrical feedback in the clinical setting: Current perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:365-375. [DOI: 10.1016/j.pbiomolbio.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
7
|
Schönleitner P, Schotten U, Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648626 DOI: 10.1016/j.pbiomolbio.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In cardiac myocytes, calcium (Ca2+) signalling is tightly controlled in dedicated microdomains. At the dyad, i.e. the narrow cleft between t-tubules and junctional sarcoplasmic reticulum (SR), many signalling pathways combine to control Ca2+-induced Ca2+ release during contraction. Local Ca2+ gradients also exist in regions where SR and mitochondria are in close contact to regulate energetic demands. Loss of microdomain structures, or dysregulation of local Ca2+ fluxes in cardiac disease, is often associated with oxidative stress, contractile dysfunction and arrhythmias. Ca2+ signalling at these microdomains is highly mechanosensitive. Recent work has demonstrated that increasing mechanical load triggers rapid local Ca2+ releases that are not reflected by changes in global Ca2+. Key mechanisms involve rapid mechanotransduction with reactive oxygen species or nitric oxide as primary signalling molecules targeting SR or mitochondria microdomains depending on the nature of the mechanical stimulus. This review summarizes the most recent insights in rapid Ca2+ microdomain mechanosensitivity and re-evaluates its (patho)physiological significance in the context of historical data on the macroscopic role of Ca2+ in acute force adaptation and mechanically-induced arrhythmias. We distinguish between preload and afterload mediated effects on local Ca2+ release, and highlight differences between atrial and ventricular myocytes. Finally, we provide an outlook for further investigation in chronic models of abnormal mechanics (eg post-myocardial infarction, atrial fibrillation), to identify the clinical significance of disturbed Ca2+ mechanosensitivity for arrhythmogenesis.
Collapse
Affiliation(s)
- Patrick Schönleitner
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Uli Schotten
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Gudrun Antoons
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| |
Collapse
|
8
|
The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol 2013; 39:25-35. [DOI: 10.1007/s10840-013-9852-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
|
9
|
Quinn TA, Kohl P. Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:257-68. [PMID: 23046620 PMCID: PMC3526794 DOI: 10.1016/j.pbiomolbio.2012.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022]
Abstract
Cardiac pacemaker cells exhibit spontaneous, rhythmic electrical excitation, termed automaticity. This automatic initiation of action potentials requires spontaneous diastolic depolarisation, whose rate determines normal rhythm generation in the heart. Pacemaker mechanisms have been split recently into: (i) cyclic changes in trans-sarcolemmal ion flows (termed the ‘membrane-clock’), and (ii) rhythmic intracellular calcium cycling (the ‘calcium-clock’). These two ‘clocks’ undoubtedly interact, as trans-sarcolemmal currents involved in pacemaking include calcium-carrying mechanisms, while intracellular calcium cycling requires trans-sarcolemmal ion flux as the mechanism by which it affects membrane potential. The split into separate ‘clocks’ is, therefore, somewhat arbitrary. Nonetheless, the ‘clock’ metaphor has been conceptually stimulating, in particular since there is evidence to support the view that either ‘clock’ could be sufficient in principle to set the rate of pacemaker activation. Of course, the same has also been shown for sub-sets of ‘membrane-clock’ ion currents, illustrating the redundancy of mechanisms involved in maintaining such basic functionality as the heartbeat, a theme that is common for vital physiological systems. Following the conceptual path of identifying individual groups of sub-mechanisms, it is important to remember that the heart is able to adapt pacemaker rate to changes in haemodynamic load, even after isolation or transplantation, and on a beat-by-beat basis. Neither the ‘membrane-’ nor the ‘calcium-clock’ do, as such, inherently account for this rapid adaptation to circulatory demand (cellular Ca2+ balance changes over multiple beats, while variation of sarcolemmal ion channel presence takes even longer). This suggests that a third set of mechanisms must be involved in setting the pace. These mechanisms are characterised by their sensitivity to the cyclically changing mechanical environment, and – in analogy to the above terminology – this might be considered a ‘mechanics-clock’. In this review, we discuss possible roles of mechano-sensitive mechanisms for the entrainment of membrane current dynamics and calcium-handling. This can occur directly via stretch-activation of mechano-sensitive ion channels in the sarcolemma and/or in intracellular membrane compartments, as well as by modulation of ‘standard’ components of the ‘membrane-’ or ‘calcium-clock’. Together, these mechanisms allow rapid adaptation to changes in haemodynamic load, on a beat-by-beat basis. Additional relevance arises from the fact that mechano-sensitivity of pacemaking may help to explain pacemaker dysfunction in mechanically over- or under-loaded tissue. As the combined contributions of the various underlying oscillatory mechanisms are integrated at the pacemaker cell level into a single output – a train of pacemaker action potentials – we will not adhere to a metaphor that implies separate time-keeping units (‘clocks’), and rather focus on cardiac pacemaking as the result of interactions of a set of coupled oscillators, whose individual contributions vary depending on the pathophysiological context. We conclude by considering the utility and limitations of viewing the pacemaker as a coupled system of voltage-, calcium-, and mechanics-modulated oscillators that, by integrating a multitude of inputs, offers the high level of functional redundancy that is vitally important for cardiac automaticity.
Collapse
Affiliation(s)
- T Alexander Quinn
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
10
|
Miura M, Hirose M, Endoh H, Wakayama Y, Sugai Y, Nakano M, Fukuda K, Shindoh C, Shirato K, Shimokawa H. Acceleration of Ca2+ waves in monocrotaline-induced right ventricular hypertrophy in the rat. Circ J 2011; 75:1343-9. [PMID: 21467666 DOI: 10.1253/circj.cj-10-1050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Triggered arrhythmias arise from delayed afterdepolarizations (DADs), with Ca(2+) waves playing an important role in their formation. In ventricular hypertrophy, however, it remains unclear how Ca(2+) waves change their propagation features and affect arrhythmogenesis. We addressed this important issue in a rat model of hypertrophy. METHODS AND RESULTS Rats were given a subcutaneous injection of 60 mg/kg monocrotaline (MCT-rats) or solvent (Ctr-rats). After 4 weeks, MCT-rats showed high right ventricular (RV) pressure and RV hypertrophy. Trabeculae were dissected from 36 right ventricles. The force was measured using a silicon strain gauge and regional intracellular Ca(2+) ([Ca(2+)](i)) was determined using microinjected fura-2. Reproducible Ca(2+) waves were induced by stimulus trains (2 Hz, 7.5s). MCT-rats showed a higher diastolic [Ca(2+)](i) and faster and larger Ca(2+) waves (P<0.01). The velocity and amplitude of Ca(2+) waves were correlated with the diastolic [Ca(2+)](i) both in the Ctr- and MCT-rats. The velocity of Ca(2+) waves in the MCT-rats was larger at the given amplitude of Ca(2+) waves than that in the Ctr-rats (P < 0.01). The amplitude of DADs was correlated with the velocity and amplitude of Ca(2+) waves in the Ctr- and MCT-rats. CONCLUSIONS The results suggest that an increase in diastolic [Ca(2+)](i) and an increase in Ca(2+) sensitivity of the sarcoplasmic reticulum Ca(2+) release channel accelerate Ca(2+) waves in ventricular hypertrophy, thereby causing arrhythmogenesis.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miura M, Nishio T, Hattori T, Murai N, Stuyvers BD, Shindoh C, Boyden PA. Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. Circulation 2010; 121:2711-7. [PMID: 20547931 DOI: 10.1161/circulationaha.109.907717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Arrhythmias are benign or lethal, depending on their sustainability and frequency. To determine why lethal arrhythmias are prone to occur in diseased hearts, usually characterized by nonuniform muscle contraction, we investigated the effect of nonuniformity on sustainability and frequency of triggered arrhythmias. METHODS AND RESULTS Force, membrane potential, and intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in 51 rat ventricular trabeculae. Nonuniform contraction was produced by exposing a restricted region of muscle to a jet of 20 mmol/L 2,3-butanedione monoxime (BDM) or 20 mumol/L blebbistatin. Sustained arrhythmias (>10 seconds) could be induced by stimulus trains for 7.5 seconds only with the BDM or blebbistatin jet (100 nmol/L isoproterenol, 1.0 mmol/L [Ca(2+)](o), 24 degrees C). During sustained arrhythmias, Ca(2+) surges preceded synchronous increases in [Ca(2+)](i), whereas the stoppage of the BDM jet made the Ca(2+) surges unclear and arrested sustained arrhythmias (n=6). With 200 nmol/L isoproterenol, 2.5 mmol/L [Ca(2+)](o), and the BDM jet, lengthening or shortening of the muscle during sustained arrhythmias accelerated or decelerated their cycle in both the absence (n=10) and presence (n=10) of 100 mumol/L streptomycin, a stretch-activated channel blocker, respectively. The maximum rate of force relaxation correlated inversely with the change in cycle lengths (n=14; P<0.01). Sustained arrhythmias with the BDM jet were significantly accelerated by 30 mumol/L SCH00013, a Ca(2+) sensitizer of myofilaments (n=10). CONCLUSIONS These results suggest that nonuniformity of muscle contraction is an important determinant of the sustainability and frequency of triggered arrhythmias caused by the surge of Ca(2+) dissociated from myofilaments in cardiac muscle.
Collapse
Affiliation(s)
- Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
ter Keurs HEDJ, Diao N, Deis NP. Nonuniform activation and the mechanics of myocardial trabeculae with fast or slow myosin. Ann N Y Acad Sci 2010; 1188:165-76. [PMID: 20201900 DOI: 10.1111/j.1749-6632.2009.05097.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Left ventricular (LV) wall motion abnormalities reflect regional nonuniform contraction which may be arrhythmogenic. We studied sarcomere mechanics and force development (F) in uniform and nonuniform trabeculae using a model in which half of the muscle can be rendered weak by exposure to low [Ca2+]o. Stretch allowed the weak muscle segment to generate a force that was four-fold higher than force when the whole muscle was exposed to low [Ca2+]o. The sarcomere force-velocity relationships (FSVR) and the force-sarcomere-length relationships (FSLR) explained the force increase in the weak segment and the decrease of force in the strong segment such that both carried the same force. Correction for muscle stiffness converted the FSVR into a [Ca2+]o-independent linear FVRXB for "the single cross-bridge (XB)." Stretch increased XB force<10% above FXB-max, but recruited more XBs by feedback of V to the rate of XB, weakening (g=g0+g1V). The g1 here was indistinguishable from g1 of XBs in slow myosin of aged animals. The mechanics of nonuniform muscle can be explained by a linear FVRXB combined with the effect of V on the XB weakening rate.
Collapse
Affiliation(s)
- Henk E D J ter Keurs
- Department of Cardiac Sciences of the Libin Institute at the Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
13
|
Jie X, Gurev V, Trayanova N. Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ Res 2009; 106:185-92. [PMID: 19893011 DOI: 10.1161/circresaha.109.210864] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Although ventricular premature beats (VPBs) during acute regional ischemia have been linked to mechanical stretch of ischemic tissue, whether and how ischemia-induced mechanical dysfunction can induce VPBs and facilitate their degradation into reentrant arrhythmias has not been yet addressed. OBJECTIVE This study used a novel multiscale electromechanical model of the rabbit ventricles to investigate the origin of and the substrate for spontaneous arrhythmias arising from ischemia-induced electrophysiological and mechanical changes. METHODS AND RESULTS Two stages of ischemia were simulated. Dynamic mechanoelectrical feedback was modeled as spatially and temporally nonuniform membrane currents through mechanosensitive channels, the conductances of which depended on local strain rate. Our results reveal that both strains and strain rates were significantly larger in the central ischemic zone than in the border zone. However, in both ischemia stages, a VPB originated from the ischemic border in the left ventricular apical endocardium because of mechanically induced suprathreshold depolarizations. It then traveled fully intramurally until emerging from the ischemic border on the anterior epicardium. Reentry was formed only in the advanced ischemia stage as the result of a widened temporal excitable gap. Mechanically induced delayed afterdepolarization-like events contributed to the formation of reentry by further decreasing the already reduced-by-hyperkalemia local excitability, causing extended conduction block lines and slowed conduction in the ischemic region. CONCLUSIONS Mechanically induced membrane depolarizations in the ischemic region are the mechanism by which mechanical activity contributes to both the origin of and substrate for spontaneous arrhythmias under the conditions of acute regional ischemia.
Collapse
Affiliation(s)
- Xiao Jie
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
14
|
Ter Keurs HEDJ, Shinozaki T, Zhang YM, Wakayama Y, Sugai Y, Kagaya Y, Miura M, Boyden PA, Stuyvers BDM, Landesberg A. Sarcomere mechanics in uniform and nonuniform cardiac muscle: a link between pump function and arrhythmias. Ann N Y Acad Sci 2008; 1123:79-95. [PMID: 18375580 DOI: 10.1196/annals.1420.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Starling's law and the end-systolic pressure-volume relationship (ESPVR) reflect the effect of sarcomere length (SL) on the development of stress (sigma) and shortening by myocytes in the uniform ventricle. We show here that tetanic contractions of rat cardiac trabeculae exhibit a sigma-SL relationship at saturating [Ca2+] that depends on sarcomere geometry in a manner similar to that of skeletal sarcomeres and the existence of opposing forces in cardiac muscle shortened below slack length. The sigma-SL -[Ca2+](free) relationships (sigma-SL-Ca relationships) at submaximal [Ca2+] in intact and skinned trabeculae were similar, although the sensitivity for Ca2+ of intact muscle was higher. We analyzed the mechanisms underlying the sigma-SL-Ca relationship by using a kinetic model assuming that the rates of Tn-C Ca2+ binding and/or cross-bridge (XB) cycling are determined by either the SL, [Ca2+], or sigma. We analyzed the correlation between the model results and steady-state sigma measurements at varied SL at [Ca2+] from skinned rat cardiac trabeculae to test the hypotheses that the dominant feedback mechanism is SL-, sigma-, or [Ca2+]-dependent, and that the feedback mechanism regulates Tn-C Ca2+ affinity, XB kinetics, or the unitary XB force. The analysis strongly suggests that the feedback of the number of strong XBs to cardiac Tn-C Ca2+ affinity is the dominant mechanism regulating XB recruitment. Using this concept in a model of twitch-sigma accurately reproduced the sigma-SL-Ca relationship and the time courses of twitch sigma and the intracellular [Ca2+]i. The foregoing concept has equally important repercussions for the nonuniformly contracting heart, in which arrhythmogenic Ca2+ waves arise from weakened areas in the cardiac muscle. These Ca2+ waves can reversibly be induced with nonuniform excitation-contraction coupling (ECC) by the cycle of stretch and release in the border zone between the damaged and intact regions. Stimulus trains induced propagating Ca2+ waves and reversibly induced arrhythmias. We hypothesize that rapid force loss by the sarcomeres in the border zone during relaxation causes Ca2+ release from Tn-C and initiates Ca2+ waves propagated by the sarcoplasmic reticulum (SR). Modeling of the response of the cardiac twitch to rapid force changes using the feedback concept uniquely predicts the occurrence of [Ca2+]i transients as a result of accelerated Ca2+ dissociation from Tn-C. These results are consistent with the hypothesis that a force feedback to Ca2+ binding by Tn-C is responsible for Starling's law and the ESPVR in the uniform myocardium and leads to a surge of Ca2+ released by the myofilaments during relaxation in the nonuniform myocardium, which initiates arrhythmogenic propagating Ca2+ release by the SR.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Physiology, School of Medicine, University of Calgary, 3330 Hospital Dr., N.W., Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Miura M, Wakayama Y, Endoh H, Nakano M, Sugai Y, Hirose M, ter Keurs HE, Shimokawa H. Spatial non-uniformity of excitation-contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle. Cardiovasc Res 2008; 80:55-61. [DOI: 10.1093/cvr/cvn162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
ter Keurs HE, Shinozaki T, Zhang YM, Zhang ML, Wakayama Y, Sugai Y, Kagaya Y, Miura M, Boyden PA, Stuyvers BD, Landesberg A. Sarcomere mechanics in uniform and non-uniform cardiac muscle: A link between pump function and arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:312-31. [DOI: 10.1016/j.pbiomolbio.2008.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Ter Keurs HEDJ, Wakayama Y, Miura M, Stuyvers BD, Boyden PA, Landesberg A. Spatial Nonuniformity of Contraction Causes Arrhythmogenic Ca2+Waves in Rat Cardiac Muscle. Ann N Y Acad Sci 2006; 1047:345-65. [PMID: 16093510 DOI: 10.1196/annals.1341.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Landesberg and Sideman's four state model of the cardiac cross-bridge (XB) hypothesizes a feedback of force development to Ca(2+) binding by troponin C (TnC). We have further modeled this behavior and observed that the force (F)-Ca(2+) relationship as well as the F-sarcomere length (SL) relationship and the time course of F and Ca(2+) transients in cardiac muscle can be reproduced faithfully by a single effect of F on deformation of the TnC-Ca complex and, thereby, on the dissociation rate of Ca(2+). Furthermore, this feedback predicts that rapid decline of F in the activated sarcomere causes release of Ca(2+) from TnC-Ca(2+), which is sufficient to initiate arrhythmogenic Ca(2+) release from the sarcoplasmic reticulum (SR). This work investigated the initiation of Ca(2+) waves underlying triggered propagated contractions (TPCs) in rat cardiac trabeculae under conditions that simulate functional nonuniformity caused by mechanical or ischemic local damage of the myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small constant flow jet of solution that reduces excitation-contraction coupling in myocytes within that segment. Force was measured, and SL as well as [Ca(2+)](i) were measured regionally. When the jet contained caffeine, 2,3-butanedione monoxime or low-[Ca(2+)], muscle-twitch F decreased and the sarcomeres in the exposed segment were stretched by shortening the normal regions outside the jet. During relaxation, the sarcomeres in the exposed segment shortened rapidly. Short trains of stimulation at 2.5 Hz reproducibly caused Ca(2+) waves to rise from the borders exposed to the jet. Ca(2+) waves started during F relaxation of the last stimulated twitch and propagated into segments both inside and outside of the jet. Arrhythmias, in the form of nondriven rhythmic activity, were triggered when the amplitude of the Ca(2+) wave increased by raising [Ca(2+)](o). The arrhythmias disappeared when the muscle uniformity was restored by turning the jet off. These results show that nonuniform contraction can cause Ca(2+) waves underlying TPCs, and suggest that Ca(2+) dissociated from myofilaments plays an important role in the initiation of arrhythmogenic Ca(2+) waves.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Health Sciences Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Wakayama Y, Miura M, Stuyvers BD, Boyden PA, ter Keurs HEDJ. Spatial Nonuniformity of Excitation–Contraction Coupling Causes Arrhythmogenic Ca
2+
Waves in Rat Cardiac Muscle. Circ Res 2005; 96:1266-73. [PMID: 15933267 DOI: 10.1161/01.res.0000172544.56818.54] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ waves underlying triggered propagated contractions (TPCs) are initiated in damaged regions in cardiac muscle and cause arrhythmias. We studied Ca2+ waves underlying TPCs in rat cardiac trabeculae under experimental conditions that simulate the functional nonuniformity caused by local mechanical or ischemic local damage of myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small jet of solution with a composition that reduces excitation-contraction coupling (ECC) in myocytes within that segment. The jet solution contained either caffeine (5 mmol/L), 2,3-butanedione monoxime (BDM; 20 mmol/L), or low Ca2+ concentration ([Ca2+]; 0.2 mmol/L). Force was measured with a silicon strain gauge and sarcomere length with laser diffraction techniques in 15 trabeculae. Simultaneously, [Ca2+]i was measured locally using epifluorescence of Fura-2. The jet of solution was applied perpendicularly to a small muscle region (200 to 300 microm) at constant flow. When the jet contained caffeine, BDM, or low [Ca2+], during the stimulated twitch, muscle-twitch force decreased and the sarcomeres in the exposed segment were stretched by shortening normal regions outside the jet. Typical protocols for TPC induction (7.5 s-2.5 Hz stimulus trains at 23 degrees C; [Ca2+]o=2.0 mmol/L) reproducibly generated Ca2+ waves that arose from the border between shortening and stretched regions. Such Ca2+ waves started during force-relaxation of the last stimulated twitch of the train and propagated (0.2 to 2.8 mm/sec) into segments both inside and outside of the jet. Arrhythmias, in the form of nondriven rhythmic activity, were induced when the amplitude of the Ca2+-wave was increased by raising [Ca2+]o. Arrhythmias disappeared rapidly when uniformity of ECC throughout the muscle was restored by turning the jet off. These results show, for the first time, that nonuniform ECC can cause Ca2+ waves underlying TPCs and suggest that Ca2+ dissociated from myofilaments plays an important role in the initiation of Ca2+ waves.
Collapse
Affiliation(s)
- Yuji Wakayama
- First Department of Internal Medicine, Tohoku University School of Medicine, Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
19
|
Ooie T, Takahashi N, Saikawa T, Iwao T, Hara M, Sakata T. Suppression of cesium-induced ventricular tachyarrhythmias by atrial natriuretic peptide in rabbits. J Card Fail 2000; 6:250-6. [PMID: 10997752 DOI: 10.1054/jcaf.2000.9673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Intravenous injection of cesium chloride (Cs) causes ventricular tachyarrhythmias in rabbits. We investigated whether these tachyarrhythmias were caused by increased pressure load and whether they could be suppressed by atrial natriuretic peptide (ANP). METHODS AND RESULTS Cs was injected in a bolus dose (1.5 mmol/kg), which was repeated 20 minutes later. Rabbits were then divided into 3 groups: control, ANP-treated, and hydralazine-treated groups. ANP or hydralazine was administered between the first and second Cs injections. The experiments were performed during intrinsic sinus rhythm (protocol A) or during ventricular pacing (protocol B). In protocol A, the second injection of Cs in the control group induced early afterdepolarizations and ventricular tachycardia, which were preceded by a marked increase in left ventricular end-diastolic pressure (LVEDP). Both ANP and hydralazine significantly suppressed Cs-induced increase in LVEDP. The arrhythmia score after the second injection of Cs was significantly lower in the ANP-treated and hydralazine-treated group compared with the control group (P < .005 and P < .05, respectively). In protocol B, the duration of left ventricular monophasic action potential and early afterdepolarization amplitude before and/or after the injections of Cs did not differ significantly between control and ANP-treated groups. CONCLUSIONS Our results suggest that increased pressure load may play a role in the arrhythmogenic effect of Cs. The protective effect of ANP against Cs-induced ventricular tachycardia may be explained in part by a reduction in pressure overload. However, this effect might also be explained by the diverse action of ANP on the cardiovascular system.
Collapse
Affiliation(s)
- T Ooie
- Department of Internal Medicine I, School of Medicine, Oita Medical University, Hasama, Japan
| | | | | | | | | | | |
Collapse
|