1
|
Berger D, Bauer K, Kornauth C, Gamperl S, Stefanzl G, Smiljkovic D, Sillaber C, Bettelheim P, Knöbl P, Schiefer AI, Greiner G, Thalhammer R, Hoermann G, Schwarzinger I, Staber PB, Sperr WR, Valent P. Secondary basophilic leukemia in Ph-negative myeloid neoplasms: A distinct subset with poor prognosis. Neoplasia 2021; 23:1183-1191. [PMID: 34731787 PMCID: PMC8572856 DOI: 10.1016/j.neo.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
During progression of myeloid neoplasms, the basophil compartment may expand substantially and in some of these patients, a basophilic leukemia is diagnosed. In patients with Ph-chromosome+ chronic myeloid leukemia, acceleration of disease is typically accompanied by marked basophilia. In other myeloid neoplasms, secondary leukemic expansion of basophils is rarely seen. We report on 5 patients who suffered from a myelodysplastic syndrome, myeloproliferative neoplasm, or acute leukemia and developed a massive expansion of basophils during disease progression. In 4 of 5 patients, peripheral blood basophil counts reached 40%, and the diagnosis “secondary basophilic leukemia” was established. As assessed by flow cytometry, neoplastic basophils expressed CD9, CD18, CD25, CD33, CD63, PD-L1, CD123, and CLL-1. In addition, basophils were found to display BB1 (basogranulin), 2D7, tryptase and KIT. In 4 of 5 patients the disease progressed quickly and treatment with azacitidine was started. However, azacitidine did not induce major clinical responses, and all patients died from progressive disease within 3 Y. In in vitro experiments, the patients´ cells and the basophilic leukemia cell line KU812 showed variable responses to targeted drugs, including azacitidine, venetoclax, hydroxyurea, and cytarabine. A combination of venetoclax and azacitidine induced cooperative antineoplastic effects in these cells. Together, secondary basophilic leukemia has a poor prognosis and monotherapy with azacitidine is not sufficient to keep the disease under control for longer time-periods. Whether drug combination, such as venetoclax+azacitidine, can induce better outcomes in these patients remains to be determined in future clinical studies.
Collapse
Affiliation(s)
- Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria
| | - Christoph Kornauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Stefanzl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Bettelheim
- Division of Hematology and Oncology, Elisabethinen Hospital Linz and Europa-Platz Labor Linz, Linz, Austria
| | - Paul Knöbl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Renate Thalhammer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO), Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
[The basophil: From control of immunity to control of leukemias]. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:9-25. [PMID: 34051212 DOI: 10.1016/j.pharma.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
The basophils, first described by Paul Ehlrich in 1879, are rare circulating cells, representing approximately 0.01 to 0.3% of the blood leukocytes. Until recently, these cells have been neglected because of their minority status among immune cells and because they show some similarities to mast cells residing in tissues. However, basophils and mast cells are now recognized as distinct cell lines and it appears that basophils have important and non-redundant functions, distinct from those of mast cells. On the one hand, basophils have beneficial contribution to protective immunity, in particular against parasitic infections. On the other hand, basophils are involved in the development of various benign and malignant pathologies, ranging from allergy to certain leukemias. Basophils interact with other immune cells or neoplastic cells through direct contacts or soluble mediators, such as cytokines and proteases, thus contributing to the regulation of the immune system but also to allergic responses, and probably to the process of neoplastic transformation. In this review, we will develop recent knowledge on the involvement of basophils in the modulation of innate and adaptive immunity. We will then describe the benign or malignant circumstances in which an elevation of circulating basophils can be observed. Finally, we will discuss the role played by these cells in the pathophysiology of certain leukemias, particularly during chronic myeloid leukemia.
Collapse
|
3
|
Feriel J, Depasse F, Geneviève F. How I investigate basophilia in daily practice. Int J Lab Hematol 2019; 42:237-245. [PMID: 31841278 DOI: 10.1111/ijlh.13146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 02/04/2023]
Abstract
Basophilia is a rare disorder of the complete blood count (CBC) and its management in daily practice remains unclear. Two main factors explain this situation. On the one hand, the reliability of the basophil count is insufficient, whether it is performed by a microscopic slide examination or by a hematology analyser. On the other hand, our knowledge of conditions associated with basophilia is largely based on few case reports and on reviews that refer to older reviews. The association between basophilia and myeloid neoplasm, especially chronic myeloid neoplasm, is well established. Conversely, there are conflicting data on some benign medical conditions and it remains unclear where basophilia may be present. In this review, we have investigated the medical literature to define which medical conditions can lead to basophilia and which cannot, and we propose a practical approach to manage basophilia divided into 3 steps. First, we have to check the real existence of the basophilia by getting rid of spurious basophilia. Then, we have to look for symptoms that suggest reactive basophilia and for clue of a neoplastic cause. Finally, in case of suspicion of a myeloid neoplasm or persistence of the basophilia in the absence of a reactive cause, we have to decide which examinations need to be prescribed to confirm a neoplastic basophilia.
Collapse
Affiliation(s)
- Joffrey Feriel
- Clinical Development, Diagnostica Stago, Asnieres sur Seine, France
| | - François Depasse
- Clinical Development, Diagnostica Stago, Asnieres sur Seine, France
| | - Franck Geneviève
- Hematology Laboratory, University Hospital, Angers, France.,Federation Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), Angers, France
| |
Collapse
|
4
|
Valent P, Horny H, Arock M. The underestimated role of basophils in Ph + chronic myeloid leukaemia. Eur J Clin Invest 2018; 48:e13000. [PMID: 30019447 PMCID: PMC6175372 DOI: 10.1111/eci.13000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/26/2018] [Accepted: 07/15/2018] [Indexed: 01/08/2023]
Abstract
Chronic myeloid leukaemia (CML) is a hematopoietic neoplasm defined by the chromosome translocation t(9;22) and the related oncogene, BCR-ABL1. In most patients, leukaemic cells can be kept under control using BCR-ABL1-targeting drugs. However, many patients relapse which remains a clinical challenge. In particular, patients with advanced (accelerated or blast phase) CML have a poor prognosis. So far, little is known about molecular and cellular interactions and features that contribute to disease progression and drug resistance in CML. One key prognostic factor at diagnosis is marked basophilia. However, although basophils are well-known multifunctional effector cells, their impact in CML remains uncertain. In this article, we discuss the potential role of basophils as active contributors to disease evolution and progression in CML. In particular, basophils serve as a unique source of inflammatory, angiogenic and fibrogenic molecules, such as vascular endothelial growth factor or hepatocyte growth factor. In addition, basophils provide vasoactive substances, like histamine as well as the cytokine-degrading enzyme dipeptidyl-peptidase IV which may promote stem cell mobilization and the extramedullary spread of stem and progenitor cells. Finally, basophils may produce autocrine growth factors for myeloid cells. Understanding the role of basophils in CML evolution and progression may support the development of more effective treatment concepts.
Collapse
Affiliation(s)
- Peter Valent
- Division of Hematology & HemostaseologyDepartment of Internal Medicine IMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster OncologyMedical University of ViennaViennaAustria
| | | | - Michel Arock
- LBPA CNRS UMR8113Ecole Normale Supérieure de Paris SaclayCachanFrance
- Laboratory of HematologyPitié‐Salpêtrière HospitalParisFrance
| |
Collapse
|
5
|
Krecak I, Gveric-Krecak V, Roncevic P, Basic-Kinda S, Gulin J, Lapic I, Fumic K, Ilic I, Horvat I, Zadro R, Holik H, Coha B, Peran N, Aurer I, Durakovic N. Serum chitotriosidase: a circulating biomarker in polycythemia vera. ACTA ACUST UNITED AC 2018; 23:793-802. [PMID: 29993340 DOI: 10.1080/10245332.2018.1498157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Serum chitotriosidase activity (CHIT1) is a biomarker of macrophage activation with an important role in inflammation-induced tissue remodeling and fibrosis. Macrophages have been described to play a crucial role in regulating pathological erythropoiesis in polycythemia vera (PV). The aim of this study was to evaluate CHIT1 in patients diagnosed with Philadelphia-negative myeloproliferative neoplasms (MPNs). METHODS Using fluorometric assay, we measured CHIT1 in 28 PV, 27 essential thrombocythemia (ET), 17 primary myelofibrosis (PMF), 19 patients with secondary myelofibrosis and in 25 healthy controls. RESULTS CHIT1 was significantly higher in PV (p < .001) and post-PV myelofibrosis (MF) transformation (post-PV MF) (p = .020), but not in ET (p = .080), post-ET MF transformation (p = .086), and PMF patients (p = .287), when compared to healthy controls. CHIT1 in PV was positively correlated with hemoglobin (p = .026), hematocrit (p = .012), absolute basophil count (p = .030) and the presence of reticulin fibrosis in the bone marrow (p = .023). DISCUSSION A positive correlation between CHIT1 and these distinct laboratory PV features might imply macrophages closely related to clonal erythropoiesis as cells of CHIT1 origin. In addition, a positive association between CHIT1 and reticulin fibrosis might indicate its potential role in PV progression. CONCLUSION CHIT1 might be considered as a circulating biomarker in PV. Additional studies are needed to clarify the role of CHIT1 in promoting disease progression and bone marrow fibrosis in PV.
Collapse
Affiliation(s)
- Ivan Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Velka Gveric-Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Pavle Roncevic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Sandra Basic-Kinda
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Josipa Gulin
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ivana Lapic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ksenija Fumic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia.,d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| | - Ivana Ilic
- e Department of Pathology and Cytology, University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Ivana Horvat
- g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Renata Zadro
- d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia.,g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Hrvoje Holik
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Bozena Coha
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Nena Peran
- i Department of Laboratory Diagnostics , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Igor Aurer
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Nadira Durakovic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
6
|
Lucijanic M, Livun A, Stoos-Veic T, Pejsa V, Jaksic O, Cicic D, Lucijanic J, Romic Z, Orehovec B, Aralica G, Miletic M, Kusec R. High absolute basophil count is a powerful independent predictor of inferior overall survival in patients with primary myelofibrosis. Hematology 2017; 23:201-207. [PMID: 28906207 DOI: 10.1080/10245332.2017.1376843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Marko Lucijanic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Ana Livun
- Divison of Molecular Diagnosis and Genetics, Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Zagreb, Croatia
| | - Tajana Stoos-Veic
- Department of Clinical Cytology and Cytometry, University Hospital Dubrava, Zagreb, Croatia
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Vlatko Pejsa
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ozren Jaksic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - David Cicic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | | | - Zeljko Romic
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Zagreb, Croatia
| | - Biserka Orehovec
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Zagreb, Croatia
| | - Gorana Aralica
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Pathology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Marko Miletic
- Radiology Department, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Rajko Kusec
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
- Divison of Molecular Diagnosis and Genetics, Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Langabeer SE, Haslam K. Molecular Investigation of a Suspected Myeloproliferative Neoplasm in Patients with Basophilia. J Clin Diagn Res 2017; 11:EL01. [PMID: 28571160 DOI: 10.7860/jcdr/2017/25738.9522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Stephen E Langabeer
- Clinical Scientist, Department of Cancer Molecular Diagnostics, St. James's Hospital, Dublin, Ireland
| | - Karl Haslam
- Clinical Scientist, Department of Cancer Molecular Diagnostics, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Valent P, Sotlar K, Blatt K, Hartmann K, Reiter A, Sadovnik I, Sperr WR, Bettelheim P, Akin C, Bauer K, George TI, Hadzijusufovic E, Wolf D, Gotlib J, Mahon FX, Metcalfe DD, Horny HP, Arock M. Proposed diagnostic criteria and classification of basophilic leukemias and related disorders. Leukemia 2017; 31:788-797. [PMID: 28090091 DOI: 10.1038/leu.2017.15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
Abstract
Basophils form a distinct cell lineage within the hematopoietic cell family. In various myeloid neoplasms, including chronic myeloid leukemia, basophilia is frequently seen. Acute and chronic basophilic leukemias, albeit rare, have also been described. However, no generally accepted criteria and classification of basophilic leukemias have been presented to date. To address this unmet need, a series of Working Conferences and other meetings were organized between March 2015 and March 2016. The current article provides a summary of consensus statements from these meetings, together with proposed criteria to delineate acute basophilic leukemia (ABL) from chronic basophilic leukemia (CBL) and primary forms of the disease where no preceding myeloid malignancy is detected, from the more common 'secondary' variants. Moreover, the term hyperbasophilia (HB) is proposed for cases with a persistent peripheral basophil count ⩾1000 per μl of blood. This condition, HB, is highly indicative of the presence of an underlying myeloid neoplasm. Therefore, HB is an important checkpoint in the diagnostic algorithm and requires a detailed hematologic investigation. In these patients, an underlying myeloid malignancy is often found and is then labeled with the appendix -baso, whereas primary cases of ABL or CBL are very rare. The criteria and classification proposed in this article should facilitate the diagnosis and management of patients with unexplained basophilia and basophil neoplasms in routine practice, and in clinical studies.
Collapse
Affiliation(s)
- P Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - K Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - K Blatt
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - K Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - A Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - I Sadovnik
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - W R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - P Bettelheim
- Division of Laboratory Medicine, Elisabethinen Hospital Linz, Linz, Austria
| | - C Akin
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - K Bauer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - T I George
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - E Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - D Wolf
- Medical Clinic III for Oncology, Haematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - J Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - F-X Mahon
- Laboratoire d'Hématologie, CHU de Bordeaux, France
| | - D D Metcalfe
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - H-P Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - M Arock
- LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| |
Collapse
|
9
|
Abstract
SUMMARY Mast cell leukemia (MCL) is a rare subtype of systemic mastocytosis. In MCL the numbers of mast cells exceed 19% of nucleated cells in bone marrow and/or 10% of circulating leukocytes in peripheral blood. Primary MCL must be distinguished from secondary MCL evolving from another subvariant of systemic mastocytosis or from mast cell sarcoma. Acute MCL with a poor prognosis is distinguished from the more indolent chronic MCL. Serum tryptase is significantly elevated in almost all MCL patients and activating point mutations at codon 816 of KIT (usually KIT D816V) are encountered in about 70%. Regarding differential diagnosis, other ‘tryptase-positive’ or ‘metachromatic’ leukemias must be considered, including myelomastocytic leukemia and tryptase-positive acute myeloid leukemia but also acute and chronic basophilic leukemias.
Collapse
Affiliation(s)
- Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Reiter
- III Medical Clinic, University Hospital Mannheim, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| |
Collapse
|
10
|
Bhaskar A, Raturi K, Dang S, Gabrani R. Current perspectives on the therapeutic aspects of chronic myelogenous leukemia. Expert Opin Ther Pat 2014; 24:1117-27. [DOI: 10.1517/13543776.2014.953056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Standards and impact of hematopathology in myelodysplastic syndromes (MDS). Oncotarget 2011; 1:483-96. [PMID: 21317447 DOI: 10.18632/oncotarget.101104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The diagnosis, classification, and prognostication of patients with myelodysplastic syndromes (MDS) are usually based on clinical parameters, analysis of peripheral blood and bone marrow smears, and cytogenetic determinants. However, a thorough histologic and immunohistochemical examination of the bone marrow is often required for a final diagnosis and exact classification in these patients. Notably, histology and immunohistology may reveal dysplasia in megakaryocytes or other bone marrow lineages and/or the presence of clusters of CD34-positive precursor cells. In other cases, histology may reveal an unrelated or co-existing hematopoietic neoplasm, or may support the conclusion the patient is suffering from acute myeloid leukemia rather than MDS. Moreover, histologic investigations and immunohistology may reveal an increase in tryptase-positive cells, a coexisting systemic mastocytosis, or bone marrow fibrosis, which is of prognostic significance. To discuss diagnostic algorithms, terminologies, parameters, and specific issues in the hematopathologic evaluation of MDS, a Working Conference involving a consortium of US and EU experts, was organized in June 2010. The outcomes of the conference and resulting recommendations provided by the faculty, are reported in this article. These guidelines should assist in the diagnosis, classification, and prognostication in MDS in daily practice as well as in clinical trials.
Collapse
|
12
|
Horny HP, Sotlar K, Valent P. Eosinophil, basophil, and mast cell infiltrates in the bone marrow: crossing the boundaries of diagnosis. J Hematop 2011. [DOI: 10.1007/s12308-011-0094-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Valent P, Orazi A, Büsche G, Schmitt-Gräff A, George TI, Sotlar K, Streubel B, Beham-Schmid C, Cerny-Reiterer S, Krieger O, van de Loosdrecht A, Kern W, Ogata K, Wimazal F, Csomor J, Várkonyi J, Sperr WR, Werner M, Kreipe H, Hans-Peter H. Standards and impact of hematopathology in myelodysplastic syndromes (MDS). Oncotarget 2010; 1:483-496. [PMID: 21317447 PMCID: PMC3248141 DOI: 10.18632/oncotarget.185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
The diagnosis, classification, and prognostication of patients with myelodysplastic syndromes (MDS) are usually based on clinical parameters, analysis of peripheral blood and bone marrow smears, and cytogenetic determinants. However, a thorough histologic and immunohistochemical examination of the bone marrow is often required for a final diagnosis and exact classification in these patients. Notably, histology and immunohistology may reveal dysplasia in megakaryocytes or other bone marrow lineages and/or the presence of clusters of CD34-positive precursor cells. In other cases, histology may reveal an unrelated or co-existing hematopoietic neoplasm, or may support the conclusion the patient is suffering from acute myeloid leukemia rather than MDS. Moreover, histologic investigations and immunohistology may reveal an increase in tryptase-positive cells, a coexisting systemic mastocytosis, or bone marrow fibrosis, which is of prognostic significance. To discuss diagnostic algorithms, terminologies, parameters, and specific issues in the hematopathologic evaluation of MDS, a Working Conference involving a consortium of US and EU experts, was organized in June 2010. The outcomes of the conference and resulting recommendations provided by the faculty, are reported in this article. These guidelines should assist in the diagnosis, classification, and prognostication in MDS in daily practice as well as in clinical trials.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| | - Attilio Orazi
- New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Tracy I. George
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl Sotlar
- Institute of Pathology, University of Munich
| | | | | | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Otto Krieger
- First Department of Internal Medicine, Elisabethinen Hospital Linz, Austria
| | | | | | - Kiyoyuki Ogata
- Division of Hematology, Department of Medicine, Nippon Medical School, Tokyo, Japan
| | - Friedrich Wimazal
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
- Department of Obstetrics and Gynaecology, Medical University of Vienna
| | - Judit Csomor
- Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Judit Várkonyi
- Department of Hematology, Semmelweis University, Budapest, Hungary
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Martin Werner
- Department of Pathology, University of Freiburg, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
14
|
Valent P. Standard treatment of Ph+ CML in 2010: how, when and where not to use what BCR/ABL1 kinase inhibitor? Eur J Clin Invest 2010; 40:918-31. [PMID: 20597967 DOI: 10.1111/j.1365-2362.2010.02328.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic myeloid leukaemia (CML) is a haematopoietic neoplasm characterised by the BCR/ABL1 oncoprotein. In chronic phase CML, the neoplastic clone exhibits multilineage differentiation and maturation capacity. The BCR/ABL1 kinase blocker imatinib shows major antileukaemic effects in most patients and is considered standard frontline therapy. However, not all patients have a long-lasting response to imatinib. Notably, resistance to imatinib has been recognised as an emerging problem and challenge in CML. Whereas CML stem cells are considered to exhibit intrinsic resistance, acquired resistance may, in addition, develop in subclones over time, resulting in an overt relapse. A key trigger of resistance in subclones are BCR/ABL1 mutations. For such patients, novel multikinase inhibitors such as nilotinib, dasatinib, bosutinib or bafetinib, which block the kinase activity of various BCR/ABL1 mutants, have been developed and reportedly exert antileukaemic effects in drug-resistant cells. For highly resistant patients, haematopoietic stem cell transplantation is an alternative option. Treatment decisions and the selection of drugs are based on the presence and type of BCR/ABL1 mutation(s), phase of disease, other disease-related variables and patient-related factors including age, compliance and co-morbidity. The current review provides an overview on standards in the diagnosis and therapy in CML, with special reference to novel BCR/ABL1 inhibitors.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Haematology & Hemostaseology, Medical University of Vienna and Ludwig Boltzmann Cluster Oncology, Vienna, Austria.
| |
Collapse
|
15
|
Valent P, Cerny-Reiterer S, Herrmann H, Mirkina I, George TI, Sotlar K, Sperr WR, Horny HP. Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells. Best Pract Res Clin Haematol 2010; 23:369-78. [PMID: 21112036 DOI: 10.1016/j.beha.2010.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mast cells (MC) are specialized immune cells that play a key role in anaphylactic reactions. Growth, differentiation, and function of these cells are regulated by a complex network of cytokines, surface receptors, signaling molecules, the microenvironment, and the genetic background. A number of previous and more recent data suggest that MC are heterogeneous in terms of cytokine-regulation, expression of cytoplasmic and cell surface antigens, and response to ligands. MC heterogeneity is often organ-specific and is considered to be related to MC plasticity, disease-associated factors, and the maturation stage of the cells. The stem cell factor (SCF) receptor KIT (CD117) is expressed on all types of MC independent of maturation and activation-status. In systemic mastocytosis (SM), KIT is often expressed in MC in a mutated and constitutively activated form. In these patients, MC aberrantly display CD2 and CD25, diagnostic markers of neoplastic MC in all SM variants. In advanced SM, MC co-express substantial amounts of CD30, whereas CD2 expression on MC may be decreased compared to indolent SM. Other surface molecules, such as CD63 or CD203c, are overexpressed on neoplastic MC in SM, and are further upregulated upon cross-linking of the IgE receptor. Some of the cell surface antigens expressed on MC or their progenitors may serve as therapeutic targets in the future. These targets include CD25, CD30, CD33, CD44, and CD117/KIT. The current article provides an overview on cell surface antigens and target receptors expressed by MC in physiologic and reactive tissues, and in patients with SM, with special reference to phenotypic heterogeneity and clinical implications.
Collapse
Affiliation(s)
- Peter Valent
- Ludwig Boltzmann Cluster Oncology, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vales A, Kondo R, Aichberger KJ, Mayerhofer M, Kainz B, Sperr WR, Sillaber C, Jäger U, Valent P. Myeloid leukemias express a broad spectrum of VEGF receptors including neuropilin-1 (NRP-1) and NRP-2. Leuk Lymphoma 2009; 48:1997-2007. [DOI: 10.1080/10428190701534424] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Valent P, Lion T, Wolf D, Sillaber C, Agis H, Petzer A, Lang A, Kalhs P, Geissler D, Greil R, Linkesch W, Burgstaller S, Thaler J, Gastl G. Diagnostic algorithms, monitoring, prognostication, and therapy in chronic myeloid leukemia (CML): a proposal of the Austrian CML platform. Wien Klin Wochenschr 2008; 120:697-709. [DOI: 10.1007/s00508-008-1100-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Hadzijusufovic E, Rebuzzi L, Gleixner KV, Ferenc V, Peter B, Kondo R, Gruze A, Kneidinger M, Krauth MT, Mayerhofer M, Samorapoompichit P, Greish K, Iyer AK, Pickl WF, Maeda H, Willmann M, Valent P. Targeting of heat-shock protein 32/heme oxygenase-1 in canine mastocytoma cells is associated with reduced growth and induction of apoptosis. Exp Hematol 2008; 36:1461-70. [PMID: 18723263 DOI: 10.1016/j.exphem.2008.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Advanced mast cell (MC) neoplasms are usually resistant to conventional therapy. Therefore, current research focuses on new targets in neoplastic MC and development of respective targeted drugs. Mastocytomas in dogs often behave as aggressive tumors. We report that heat-shock protein 32 (Hsp32), also known as heme oxygenase-1, is a survival-enhancing molecule and new target in canine mastocytoma cells. MATERIALS AND METHODS As assessed by reverse transcriptase polymerase chain reaction, Northern blotting, immunocytochemistry, and Western blotting, primary neoplastic dog MC, and the canine mastocytoma-derived cell line C2 expressed Hsp32 mRNA and the Hsp32 protein in a constitutive manner. RESULTS The KIT-targeting drug midostaurin inhibited expression of Hsp32, as well as survival in C2 cells. Confirming the functional role of Hsp32, the inhibitory effect of midostaurin on C2 cells was markedly reduced by the Hsp32-inductor hemin. Two pharmacologic Hsp32-inhibitors, styrene maleic-acid micelle-encapsulated ZnPP (SMA-ZnPP) and pegylated zinc-protoporphyrin (PEG-ZnPP) were applied. Both drugs were found to inhibit proliferation of C2 cells as well as growth of primary neoplastic canine MC. The growth-inhibitory effects of SMA-ZnPP and PEG-ZnPP were dose- and time-dependent (IC(50): 1-10 muM) and found to be associated with induction of apoptosis. CONCLUSIONS Hsp32 is an important survival factor and interesting new target in neoplastic canine MC. Trials with Hsp32-targeted drugs are now warranted to define the clinical efficacy of these drugs.
Collapse
Affiliation(s)
- Emir Hadzijusufovic
- Department of Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Valent P, Agis H, Sperr W, Sillaber C, Horny HP. Diagnostic and prognostic value of new biochemical and immunohistochemical parameters in chronic myeloid leukemia. Leuk Lymphoma 2008; 49:635-8. [PMID: 18398724 DOI: 10.1080/10428190701858849] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic myeloid leukemia (CML) is a stem-cell disease characterized by multilineage expansion of clonal BCR/ABL+ cells. Transformation from chronic into accelerated and blast phase of CML is usually associated with drug resistance and is accompanied by typical clinical and/or laboratory features, such as splenomegaly, increase in precursor cells, disturbed megakaryopoiesis, basophilia or marrow fibrosis. Because of new treatment options, early recognition of disease-acceleration is of importance. In this article, we review most recent developments in diagnostic procedures employing basophil-related biochemical and histopathological markers. These tests are useful to quantitate basophil-lineage cells in the peripheral blood in CML, to determine and quantify basophilia in the bone marrow, and to detect focal accumulations of blast cells and megakaryocytes as well as increased angiogenesis and fibrosis in bone marrow sections. Application of these markers may assist in determining the phase of disease and may help to better predict the prognosis in individual patients.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
20
|
Wimazal F, Baumgartner C, Sonneck K, Zauner C, Geissler P, Schur S, Samorapoompichit P, Müllauer L, Födinger M, Agis H, Sperr WR, Valent P. Mixed-lineage eosinophil/basophil crisis in MDS: a rare form of progression. Eur J Clin Invest 2008; 38:447-55. [PMID: 18445043 DOI: 10.1111/j.1365-2362.2008.01950.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Basophilic crisis and eosinophilia are well recognized features of advanced chronic myeloid leukaemia. In other myeloid neoplasms, however, transformation with marked basophilia and eosinophilia is considered unusual. DESIGN We examined the long-term follow-up of 322 patients with de novo myelodysplastic syndromes (MDS) to define the frequency of basophilic, eosinophilic and mixed lineage (basophilic and eosinophilic) transformation. RESULTS Of all patients, only one developed mixed lineage crisis (>or= 20% basophils and >or= 20% eosinophils). In this patient, who initially suffered from chronic myelomonocytic leukaemia, basophils increased to 48% and eosinophils up to 31% at the time of progression. Mixed lineage crisis was not accompanied by an increase in blast cells or organomegaly. The presence of BCR/ABL and other relevant fusion gene products (FIP1L1/PDGFRA, AML1/ETO, PML/RAR alpha, CBF beta/MYH11) were excluded by PCR. Myelomastocytic transformation/myelomastocytic leukaemia and primary mast cell disease were excluded by histology, KIT mutation analysis, electron microscopy and immunophenotyping. Basophils were thus found to be CD123+, CD203c+, BB1+, KIT- cells, and to express a functional IgE-receptor. Among the other patients with MDS examined, 4(1.2%) were found to have marked basophilia (>or= 20%) and 7(2.1%) were found to have massive eosinophilia ( >or= 20%), whereas mixed-lineage crisis was detected in none of them. CONCLUSIONS Mixed basophil/eosinophil crisis may develop in patients with MDS but is an extremely rare event.
Collapse
Affiliation(s)
- F Wimazal
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Horny HP, Sotlar K, Valent P. Diagnostic value of histology and immunohistochemistry in myelodysplastic syndromes. Leuk Res 2007; 31:1609-16. [PMID: 17604834 DOI: 10.1016/j.leukres.2007.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
The histologic and immunohistochemical analysis of the bone marrow yields important information for the diagnosis of myelodysplastic syndromes (MDS), thereby often exceeding the information obtained by cytological analysis of smears. Notably, tissue-fibrosis, angiogenesis, or the abnormal localization of megakaryocytes and CD34+ progenitor cells can only be assessed histologically. Many of these parameters are also of prognostic significance. Moreover, evaluation of bone marrow histology is of crucial importance in cases with dry-tap or blood-contaminated marrow-smears, especially in hypoplastic states. Histologic/immunohistochemical investigation of the bone marrow therefore is strongly recommended for patients with (suspected) MDS, the minimum marker-panel suggested being CD31, CD34, and tryptase.
Collapse
|
22
|
Valent P, Akin C, Escribano L, Födinger M, Hartmann K, Brockow K, Castells M, Sperr WR, Kluin-Nelemans HC, Hamdy NAT, Lortholary O, Robyn J, van Doormaal J, Sotlar K, Hauswirth AW, Arock M, Hermine O, Hellmann A, Triggiani M, Niedoszytko M, Schwartz LB, Orfao A, Horny HP, Metcalfe DD. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest 2007; 37:435-53. [PMID: 17537151 DOI: 10.1111/j.1365-2362.2007.01807.x] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although a classification for mastocytosis and diagnostic criteria are available, there remains a need to define standards for the application of diagnostic tests, clinical evaluations, and treatment responses. To address these demands, leading experts discussed current issues and standards in mastocytosis in a Working Conference. The present article provides the resulting outcome with consensus statements, which focus on the appropriate application of clinical and laboratory tests, patient selection for interventional therapy, and the selection of appropriate drugs. In addition, treatment response criteria for the various clinical conditions, disease-specific symptoms, and specific pathologies are provided. Resulting recommendations and algorithms should greatly facilitate the management of patients with mastocytosis in clinical practice, selection of patients for therapies, and the conduct of clinical trials.
Collapse
Affiliation(s)
- P Valent
- Department of Internal Medicine I, Division of Haematology and Haemostaseology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aichberger KJ, Mayerhofer M, Vales A, Krauth MT, Gleixner KV, Bilban M, Esterbauer H, Sonneck K, Florian S, Derdak S, Pickl WF, Agis H, Falus A, Sillaber C, Valent P. The CML-related oncoprotein BCR/ABL induces expression of histidine decarboxylase (HDC) and the synthesis of histamine in leukemic cells. Blood 2006; 108:3538-47. [PMID: 16849647 DOI: 10.1182/blood-2005-12-028456] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basophil numbers are typically elevated in chronic myeloid leukemia (CML) and increase during disease progression. Histamine is an essential mediator and marker of basophils and is highly up-regulated in CML. We examined the biochemical basis of histamine synthesis in CML cells. The CML-specific oncoprotein BCR/ABL was found to promote expression of histidine decarboxylase (HDC) and synthesis of histamine in Ba/F3 cells. Moreover, the BCR/ABL tyrosine kinase inhibitors imatinib (STI571) and nilotinib (AMN107) decreased histamine levels and HDC mRNA expression in BCR/ABL-transformed Ba/F3 cells, in the CML-derived basophil cell line KU812, and in primary CML cells. Synthesis of histamine was found to be restricted to the basophil compartment of the CML clone and to depend on signaling through the PI3-kinase pathway. CML cells also expressed histamine receptors (HRs), including HR-1, HR-2, HR-4, and histamine-binding CYP450 isoenzymes which also serve as targets of HR antagonists. The HR-1 antagonists loratadine and terfenadine, which bind to CYP450, were found to counteract proliferation of CML cells, whereas no growth inhibition was observed with the HR-1 antagonist fexofenadine which is not targeted or metabolized by CYP450. Moreover, DPPE, an inhibitor of histamine-binding CYP450 isoenzymes, produced growth inhibition in CML cells. Together, these data show that BCR/ABL promotes histamine production in CML cells and that certain HR-targeting drugs exert antileukemic effects on CML cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Leukemic
- Histamine/biosynthesis
- Histamine Antagonists/pharmacology
- Histidine Decarboxylase/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Oncogene Proteins
- Phosphatidylinositol 3-Kinases/metabolism
- Receptors, Histamine/analysis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Karl J Aichberger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, AKH-Wien, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|