1
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|
2
|
Zeng J, Zheng Y, Dong S, Ding T, Zhang S, Li K, Liu H, Fang Q, Yuan S, Wei Y, Li J, Liu T. Andrographolide inhibits Burkitt's lymphoma by binding JUN and CASP3 proteins. Cancer Chemother Pharmacol 2024; 93:381-391. [PMID: 38148335 PMCID: PMC10950985 DOI: 10.1007/s00280-023-04626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Burkitt's lymphoma, one of the most common subtypes of pediatric malignant lymphoma, is notorious for its swift onset, aggressive proliferation, pronounced invasiveness, and marked malignancy. The therapeutic landscape for Burkitt's lymphoma currently falls short of providing universally effective and tolerable solutions. Andrographolide, a primary active component of Andrographis paniculata, is renowned for its properties of heat-clearing, detoxification, inflammation reduction, and pain relief. It is predominantly used in treating bacterial and viral infections of the upper respiratory tract, as well as dysentery. Various reports highlight the antitumor effects of andrographolide. Yet, its specific impact and the underlying mechanism of action on Burkitt's lymphoma remain an uncharted area of research. METHOD We employed network pharmacology to pinpoint the targets of andrographolide's action on Burkitt's lymphoma and the associated pathways. We then evaluated the impact of andrographolide on Burkitt's lymphoma using both in vitro and in vivo patient-derived xenograft (PDX) models. Concurrently, we confirmed the molecular targets of andrographolide in Burkitt's lymphoma through immunofluorescence assays. RESULT Utilizing network pharmacology, we identified 15 relevant targets, 60 interrelationships between these targets, and numerous associated signaling pathways for andrographolide's action on Burkitt's lymphoma. In vitro efficacy tests using High-throughput Drug Sensitivity Testing and in vivo PDX model evaluations revealed that andrographolide effectively curtailed the growth of Burkitt's lymphoma. Moreover, we observed a increased in the expression of JUN (c-Jun) and CASP3 (Caspase 3) proteins in Burkitt's lymphoma cells treated with andrographolide. CONCLUSION Andrographolide inhibits the growth of Burkitt's lymphoma by inhibiting JUN and CASP3 proteins.
Collapse
Affiliation(s)
- Junquan Zeng
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, Ji'an, 343000, China
| | - Yongliang Zheng
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, Ji'an, 343000, China
| | - Si Dong
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, Ji'an, 343000, China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, China
| | - Ting Ding
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, Ji'an, 343000, China
| | - Shouhua Zhang
- Department of General Surgery, The Affliated Children's Hospital of Medical College, Nangchang, 330000, China
| | - Kuangfan Li
- Department of General Surgery, The Affliated Children's Hospital of Medical College, Nangchang, 330000, China
| | - Haiyun Liu
- Department of Laboratory, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nangchang, 330000, China
| | - Quangang Fang
- Department of Laboratory, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nangchang, 330000, China
| | - Sheng Yuan
- Department of Pathology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nangchang, 330000, China
| | - Yujing Wei
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 1666, Diezihu Avenue, Nangchang, 330000, Jiangxi, China
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Tingting Liu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 1666, Diezihu Avenue, Nangchang, 330000, Jiangxi, China.
| |
Collapse
|
3
|
Krishnan D, Babu S, Raju R, Veettil MV, Prasad TSK, Abhinand CS. Epstein-Barr Virus: Human Interactome Reveals New Molecular Insights into Viral Pathogenesis for Potential Therapeutics and Antiviral Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:32-44. [PMID: 38190109 DOI: 10.1089/omi.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Host-virus Protein-Protein Interactions (PPIs) play pivotal roles in biological processes crucial for viral pathogenesis and by extension, inform antiviral drug discovery and therapeutics innovations. Despite efforts to develop the Epstein-Barr virus (EBV)-host PPI network, there remain significant knowledge gaps and a limited number of interacting human proteins deciphered. Furthermore, understanding the dynamics of the EBV-host PPI network in the distinct lytic and latent viral stages remains elusive. In this study, we report a comprehensive map of the EBV-human protein interactions, encompassing 1752 human and 61 EBV proteins by integrating data from the public repository HPIDB (v3.0) as well as curated high-throughput proteomic data from the literature. To address the stage-specific nature of EBV infection, we generated two detailed subset networks representing the latent and lytic stages, comprising 747 and 481 human proteins, respectively. Functional and pathway enrichment analysis of these subsets uncovered the profound impact of EBV proteins on cancer. The identification of highly connected proteins and the characterization of intrinsically disordered and cancer-related proteins provide valuable insights into potential therapeutic targets. Moreover, the exploration of drug-protein interactions revealed notable associations between hub proteins and anticancer drugs, offering novel perspectives for controlling EBV pathogenesis. This study represents, to the best of our knowledge, the first comprehensive investigation of the two distinct stages of EBV infection using high-throughput datasets. This makes a contribution to our understanding of EBV-host interactions and provides a foundation for future drug discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Chandran S Abhinand
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
4
|
Muriuki BM, Forconi CS, Kirwa EK, Maina TK, Ariera BO, Bailey JA, Ghansah A, Moormann AM, Ong’echa JM. Evaluation of KIR3DL1/KIR3DS1 allelic polymorphisms in Kenyan children with endemic Burkitt lymphoma. PLoS One 2023; 18:e0275046. [PMID: 37647275 PMCID: PMC10468049 DOI: 10.1371/journal.pone.0275046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Endemic Burkitt lymphoma (eBL) is a fast-growing germinal center B cell lymphoma, affecting 5-10 per 100,000 children annually, in the equatorial belt of Africa. We hypothesize that co-infections with Plasmodium falciparum (Pf) malaria and Epstein-Barr virus (EBV) impair host natural killer (NK) and T cell responses to tumor cells, and thus increase the risk of eBL pathogenesis. NK cell education is partially controlled by killer immunoglobulin-like receptors and variable expression of KIR3DL1 has been associated with other malignancies. Here, we investigated whether KIR3D-mediated mechanisms contribute to eBL, by testing for an association of KIR3DL1/KIR3DS1 genotypes with the disease in 108 eBL patients and 99 healthy Kenyan children. KIR3DL1 allelic typing and EBV loads were assessed by PCR. We inferred previously observed phenotypes from the genotypes. The frequencies of KIR3DL1/KIR3DL1 and KIR3DL1/KIR3DS1 did not differ significantly between cases and controls. Additionally, none of the study participants was homozygous for KIR3DS1 alleles. EBV loads did not differ by the KIR3DL1 genotypes nor were they different between eBL survivors and non-survivors. Our results suggest that eBL pathogenesis may not simply involve variations in KIR3DL1 and KIR3DS1 genotypes. However, considering the complexity of the KIR3DL1 locus, this study could not exclude a role for copy number variation in eBL pathogenesis.
Collapse
Affiliation(s)
- Beatrice M. Muriuki
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Catherine S. Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Erastus K. Kirwa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Titus K. Maina
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Bonface O. Ariera
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States of America
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - John M. Ong’echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| |
Collapse
|
5
|
Ruzzi F, Semprini MS, Scalambra L, Palladini A, Angelicola S, Cappello C, Pittino OM, Nanni P, Lollini PL. Virus-like Particle (VLP) Vaccines for Cancer Immunotherapy. Int J Mol Sci 2023; 24:12963. [PMID: 37629147 PMCID: PMC10454695 DOI: 10.3390/ijms241612963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer vaccines are increasingly being studied as a possible strategy to prevent and treat cancers. While several prophylactic vaccines for virus-caused cancers are approved and efficiently used worldwide, the development of therapeutic cancer vaccines needs to be further implemented. Virus-like particles (VLPs) are self-assembled protein structures that mimic native viruses or bacteriophages but lack the replicative material. VLP platforms are designed to display single or multiple antigens with a high-density pattern, which can trigger both cellular and humoral responses. The aim of this review is to provide a comprehensive overview of preventive VLP-based vaccines currently approved worldwide against HBV and HPV infections or under evaluation to prevent virus-caused cancers. Furthermore, preclinical and early clinical data on prophylactic and therapeutic VLP-based cancer vaccines were summarized with a focus on HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC) and Alma Mater Institute on Healthy Planet, University of Bologna, 40126 Bologna, Italy; (F.R.); (M.S.S.); (L.S.); (S.A.); (C.C.); (O.M.P.); (P.N.)
| |
Collapse
|
6
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529123. [PMID: 37645778 PMCID: PMC10461923 DOI: 10.1101/2023.02.19.529123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.
Collapse
|
7
|
Reyes ME, Zanella L, Riquelme I, Buchegger K, Mora-Lagos B, Guzmán P, García P, Roa JC, Ili CG, Brebi P. Exploring the Genetic Diversity of Epstein-Barr Virus among Patients with Gastric Cancer in Southern Chile. Int J Mol Sci 2023; 24:11276. [PMID: 37511034 PMCID: PMC10378801 DOI: 10.3390/ijms241411276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The Epstein-Barr virus (EBV) has been associated with gastric cancer (GC), one of the deadliest malignancies in Chile and the world. Little is known about Chilean EBV strains. This study aims to investigate the frequency and genetic diversity of EBV in GC in patients in southern Chile. To evaluate the prevalence of EBV in GC patients from the Chilean population, we studied 54 GC samples using the gold standard detection method of EBV-encoded small RNA (EBER). The EBV-positive samples were subjected to amplification and sequencing of the Epstein-Barr virus nuclear protein 3A (EBNA3A) gene to evaluate the genetic diversity of EBV strains circulating in southern Chile. In total, 22.2% of the GC samples were EBV-positive and significantly associated with diffuse-type histology (p = 0.003). Phylogenetic analyses identified EBV-1 and EBV-2 in the GC samples, showing genetic diversity among Chilean isolates. This work provides important information for an epidemiological follow-up of the different EBV subtypes that may cause GC in southern Chile.
Collapse
Affiliation(s)
- María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Louise Zanella
- Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco 4811230, Chile
- Núcleo Milenio de Sociomedicina, Santiago 7560908, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Millennium Institute on Immunology and Immunotherapy, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus-(-CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811322, Chile
| | - Bárbara Mora-Lagos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Pablo Guzmán
- Pathology Department, School of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Patricia García
- Millennium Institute on Immunology and Immunotherapy, Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Juan C Roa
- Millennium Institute on Immunology and Immunotherapy, Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Carmen Gloria Ili
- Laboratory of Integrative Biology (LIBi), Millennium Institute on Immunology and Immunotherapy, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus-(-CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Millennium Institute on Immunology and Immunotherapy, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus-(-CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
8
|
Yamaguchi A, Kato N, Sugata S, Hamada T, Furuya N, Mizumoto T, Tamaru Y, Kusunoki R, Kuwai T, Kouno H, Kido M, Ito T, Kuraoka K, Kohno H. Metastatic pancreatic ductal adenocarcinoma followed by a fatal diffuse large B-cell lymphoma: A rare case report and literature review. Medicine (Baltimore) 2023; 102:e33217. [PMID: 36961143 PMCID: PMC10036023 DOI: 10.1097/md.0000000000033217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/25/2023] Open
Abstract
RATIONALE Recently, the incidence of polyoncosis has been increasing due to advancements in treatment, such as antitumor therapy, which led to a prolonged survival. However, few patients with metastatic pancreatic ductal adenocarcinoma (PDAC) develop second tumors, which render a poor prognosis. We report a rare case of PDAC, which is metachronous with a fatal malignant lymphoma (ML). PATIENT CONCERNS A 68-year-old woman who had been monitored due to liver cirrhosis secondary to hepatitis C virus infection presented with a 10-mm pancreatic head cancer with lung metastasis and had started an anticancer therapy with gemcitabine. Approximately 18 months after diagnosis, lymphadenopathies around the pancreas were noted, which eventually spread to the entire body over time. DIAGNOSIS Diffuse large B-cell lymphoma was diagnosed using biopsies from cervical lymph nodes. INTERVENTIONS AND OUTCOMES The patient started a gemcitabine + rituximab regimen; however, the patient died from cachexia-associated lymphoma progression, not PDAC. LESSONS ML should be considered when intra-abdominal lymphadenopathies are detected in patients with pancreatic cancer, and ML should be differentiated from lymph node metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Atsushi Yamaguchi
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Naohiro Kato
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Shuhei Sugata
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Takuro Hamada
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Nao Furuya
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Takeshi Mizumoto
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yuzuru Tamaru
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Ryusaku Kusunoki
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Toshio Kuwai
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Hirotaka Kouno
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Miki Kido
- Department of Hematology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Takuo Ito
- Department of Hematology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Kazuya Kuraoka
- Department of Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Hiroshi Kohno
- Department of Gastroenterology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| |
Collapse
|
9
|
Myers JE, Schaal DL, Nkadi EH, Ward BJH, Bienkowska-Haba M, Sapp M, Bodily JM, Scott RS. Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. J Virol 2023; 97:e0103222. [PMID: 36719239 PMCID: PMC9972952 DOI: 10.1128/jvi.01032-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coinfection of human papillomavirus (HPV) and Epstein-Barr virus (EBV) has been detected in oropharyngeal squamous cell carcinoma. Although HPV and EBV replicate in differentiated epithelial cells, we previously reported that HPV epithelial immortalization reduces EBV replication within organotypic raft culture and that the HPV16 oncoprotein E7 was sufficient to inhibit EBV replication. A well-established function of HPV E7 is the degradation of the retinoblastoma (Rb) family of pocket proteins (pRb, p107, and p130). Here, we show that pRb knockdown in differentiated epithelia and EBV-positive Burkitt lymphoma (BL) reduces EBV lytic replication following de novo infection and reactivation, respectively. In differentiated epithelia, EBV immediate early (IE) transactivators were expressed, but loss of pRb blocked expression of the early gene product, EA-D. Although no alterations were observed in markers of epithelial differentiation, DNA damage, and p16, increased markers of S-phase progression and altered p107 and p130 levels were observed in suprabasal keratinocytes after pRb knockdown. In contrast, pRb interference in Akata BX1 Burkitt lymphoma cells showed a distinct phenotype from differentiated epithelia with no significant effect on EBV IE or EA-D expression. Instead, pRb knockdown reduced the levels of the plasmablast differentiation marker PRDM1/Blimp1 and increased the abundance of c-Myc protein in reactivated Akata BL with pRb knockdown. c-Myc RNA levels also increased following the loss of pRb in epithelial rafts. These results suggest that pRb is required to suppress c-Myc for efficient EBV replication in BL cells and identifies a mechanism for how HPV immortalization, through degradation of the retinoblastoma pocket proteins, interferes with EBV replication in coinfected epithelia. IMPORTANCE Terminally differentiated epithelium is known to support EBV genome amplification and virion morphogenesis following infection. The contribution of the cell cycle in differentiated tissues to efficient EBV replication is not understood. Using organotypic epithelial raft cultures and genetic interference, we can identify factors required for EBV replication in quiescent cells. Here, we phenocopied HPV16 E7 inhibition of EBV replication through knockdown of pRb. Loss of pRb was found to reduce EBV early gene expression and viral replication. Interruption of the viral life cycle was accompanied by increased S-phase gene expression in postmitotic keratinocytes, a process also observed in E7-positive epithelia, and deregulation of other pocket proteins. Together, these findings provide evidence of a global requirement for pRb in EBV lytic replication and provide a mechanistic framework for how HPV E7 may facilitate a latent EBV infection through its mediated degradation of pRb in copositive epithelia.
Collapse
Affiliation(s)
- Julia E. Myers
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
10
|
Ross AM, Leahy CI, Neylon F, Steigerova J, Flodr P, Navratilova M, Urbankova H, Vrzalikova K, Mundo L, Lazzi S, Leoncini L, Pugh M, Murray PG. Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma. Life (Basel) 2023; 13:521. [PMID: 36836878 PMCID: PMC9967091 DOI: 10.3390/life13020521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Collapse
Affiliation(s)
- Aisling M. Ross
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ciara I. Leahy
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Fiona Neylon
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| | - Patrik Flodr
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Martina Navratilova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky Univesity and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Katerina Vrzalikova
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucia Mundo
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| |
Collapse
|
11
|
Ahmed N, Abusalah MAHA, Farzand A, Absar M, Yusof NY, Rabaan AA, AlSaihati H, Alshengeti A, Alwarthan S, Alsuwailem HS, Alrumaih ZA, Alsayyah A, Yean CY. Updates on Epstein-Barr Virus (EBV)-Associated Nasopharyngeal Carcinoma: Emphasis on the Latent Gene Products of EBV. Medicina (B Aires) 2022; 59:medicina59010002. [PMID: 36676626 PMCID: PMC9863520 DOI: 10.3390/medicina59010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon type of malignancy/cancer worldwide. However, NPC is an endemic disease in southeast Asia and southern China and the reasons behind the underlying for such changes are unclear. Even though the Epstein-Barr infection (EBV) has been suggested as an important reason for undistinguishable NPC, the EBV itself is not adequate to source this type of cancer. The risk factors, for example, genetic susceptibility, and environmental factors might be associated with EBV to undertake a part in the NPC carcinogenesis. Normal healthy people have a memory B cell pool where the EBV persists, and any disturbance of this connection leads to virus-associated B cell malignancies. Less is known about the relationship between EBV and epithelial cell tumors, especially the EBV-associated nasopharyngeal carcinoma (EBVaNPC) and EBV-associated gastric carcinoma (EBVaGC). Currently, it is believed that premalignant genetic changes in epithelial cells contribute to the aberrant establishment of viral latency in these tumors. The early and late phases of NPC patients' survival rates vary significantly. The presence of EBV in all tumor cells presents prospects for the development of innovative therapeutic and diagnostic techniques, despite the fact that the virus's exact involvement in the carcinogenic process is presently not very well known. EBV research continues to shed light on the carcinogenic process, which is important for a more comprehensive knowledge of tumor etiology and the development of targeted cancer therapeutics. In order to screen for NPC, EBV-related biomarkers have been widely used in a few high-incidence locations because of their close associations with the risks of NPC. The current review highlights the scientific importance of EBV and its possible association with NPC.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Anam Farzand
- Department of Allied Health Science, Superior University, Lahore 54000, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haifa S. Alsuwailem
- Department of Medicine, College of Medicine, Princess Norah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Zainb A. Alrumaih
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
12
|
Wieland L, Schwarz T, Engel K, Volkmer I, Krüger A, Tarabuko A, Junghans J, Kornhuber ME, Hoffmann F, Staege MS, Emmer A. Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells 2022; 11:cells11223619. [PMID: 36429047 PMCID: PMC9688211 DOI: 10.3390/cells11223619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
The immune pathogenesis of multiple sclerosis (MS) is thought to be triggered by environmental factors in individuals with an unfavorable genetic predisposition. Epstein-Barr virus (EBV) infection is a major risk factor for subsequent development of MS. Human endogenous retroviruses (HERVs) can be activated by EBV, and might be a missing link between an initial EBV infection and the later onset of MS. In this study, we investigated differential gene expression patterns in EBV-immortalized lymphoblastoid B cell lines (LCL) from MS-affected individuals (MSLCL) and controls by using RNAseq and qRT-PCR. RNAseq data from LCL mapped to the human genome and a virtual virus metagenome were used to identify possible biomarkers for MS or disease-relevant risk factors, e.g., the relapse rate. We observed that lytic EBNA-1 transcripts seemed to be negatively correlated with age leading to an increased expression in LCL from younger PBMC donors. Further, HERV-K (HML-2) GAG was increased upon EBV-triggered immortalization. Besides the well-known transactivation of HERV-K18, our results suggest that another six HERV loci are up-regulated upon stimulation with EBV. We identified differentially expressed genes in MSLCL, e.g., several HERV-K loci, ERVMER61-1 and ERV3-1, as well as genes associated with relapses. In summary, EBV induces genes and HERV in LCL that might be suitable as biomarkers for MS or the relapse risk.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Schwarz
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alexander Tarabuko
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jutta Junghans
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Malte E. Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Frank Hoffmann
- Department of Neurology, Martha-Maria Hospital Halle-Dölau, 06120 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-34-5557-7280
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Sato YZ, Hock RA, Garcia RL, Dihowm F. Burkitt’s Lymphoma of the Colon: A Case Report and Review of the Texas Cancer Registry. Cureus 2022; 14:e27964. [PMID: 36120205 PMCID: PMC9466299 DOI: 10.7759/cureus.27964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2022] [Indexed: 11/05/2022] Open
|
14
|
Muhealdeen DN, Shwan A, Yaqo RT, Hassan HA, Muhammed BO, Ali RM, Hughson MD. Epstein-Barr virus and Burkitt's lymphoma. Associations in Iraqi Kurdistan and twenty-two countries assessed in the International Incidence of Childhood Cancer. Infect Agent Cancer 2022; 17:39. [PMID: 35897021 PMCID: PMC9327396 DOI: 10.1186/s13027-022-00452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Burkitt's lymphoma (BL) has worldwide variations in incidence that are related to the age of Epstein-Barr virus (EBV) infection. This study examined the age-specific incidence rate (ASIR) of BL and community EBV seropositivity in Iraqi Kurdistan and compared results with data from countries tabulated in the International Incidence of Childhood Cancer volume 3 (IICC-3). METHODS The ASIR (95% confidence intervals) of BL in Sulaimani Governorate of Iraqi Kurdistan were calculated for the years 2010-2020. Specimens from 515 outpatients were tested for IgG and IgM antibodies to EBV viral capsid antigen. RESULTS In Sulaimani, 84% of BL occurred under 20 years of age, with an ASIR of 6.2 (4.7-7.7) per million children. This ASIR was not significantly different than that of Egypt, Morocco, Israel, Spain, or France. It was slightly higher than the ASIR of the United States, the United Kingdom, and Germany and markedly higher than for Asia and South Africa. In Africa and much of Asia, early childhood EBV exposure predominates, with nearly all children being infected by 5 years of age. In Sulaimani, just over 50% of children were EBV seropositive at 3 years old and 90% seropositivity was reached at 15 years of age. In Europe and North America, seropositivity is commonly delayed until adolescence or young adulthood and adult predominates over childhood BL. CONCLUSION In the Middle East, childhood BL is relatively common and adult BL is rare. In Sulaimani, EBV seropositivity increases progressively throughout childhood and reaches 92% at mid-adolescence. This may reflect the Mid East more widely. We suggest that the high childhood and low adult BL rates may be a regional effect of a pattern of EBV exposure intermediate between early childhood and adolescent and young adult infections.
Collapse
Affiliation(s)
- Dana N. Muhealdeen
- Sulaimani University College of Medicine, Sulaymaniyah, Iraq
- Hiwa Cancer Hospital, Sulaymaniyah, Iraq
| | - Alan Shwan
- Hiwa Cancer Hospital, Sulaymaniyah, Iraq
| | | | - Hemin A. Hassan
- Sulaimani University College of Medicine, Sulaymaniyah, Iraq
- Hiwa Cancer Hospital, Sulaymaniyah, Iraq
| | | | - Rawa M. Ali
- Sulaimani University College of Medicine, Sulaymaniyah, Iraq
- Hiwa Cancer Hospital, Sulaymaniyah, Iraq
| | | |
Collapse
|
15
|
Ancos-Pintado R, Bragado-García I, Morales ML, García-Vicente R, Arroyo-Barea A, Rodríguez-García A, Martínez-López J, Linares M, Hernández-Sánchez M. High-Throughput CRISPR Screening in Hematological Neoplasms. Cancers (Basel) 2022; 14:3612. [PMID: 35892871 PMCID: PMC9329962 DOI: 10.3390/cancers14153612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
CRISPR is becoming an indispensable tool in biological research, revolutionizing diverse fields of medical research and biotechnology. In the last few years, several CRISPR-based genome-targeting tools have been translated for the study of hematological neoplasms. However, there is a lack of reviews focused on the wide uses of this technology in hematology. Therefore, in this review, we summarize the main CRISPR-based approaches of high throughput screenings applied to this field. Here we explain several libraries and algorithms for analysis of CRISPR screens used in hematology, accompanied by the most relevant databases. Moreover, we focus on (1) the identification of novel modulator genes of drug resistance and efficacy, which could anticipate relapses in patients and (2) new therapeutic targets and synthetic lethal interactions. We also discuss the approaches to uncover novel biomarkers of malignant transformations and immune evasion mechanisms. We explain the current literature in the most common lymphoid and myeloid neoplasms using this tool. Then, we conclude with future directions, highlighting the importance of further gene candidate validation and the integration and harmonization of the data from CRISPR screening approaches.
Collapse
Affiliation(s)
- Raquel Ancos-Pintado
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - Irene Bragado-García
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Andrés Arroyo-Barea
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, CIBERONC, ES 28041 Madrid, Spain; (R.A.-P.); (M.L.M.); (R.G.-V.); (A.R.-G.); (J.M.-L.); (M.L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain; (I.B.-G.); (A.A.-B.)
| |
Collapse
|
16
|
Yang T, You C, Meng S, Lai Z, Ai W, Zhang J. EBV Infection and Its Regulated Metabolic Reprogramming in Nasopharyngeal Tumorigenesis. Front Cell Infect Microbiol 2022; 12:935205. [PMID: 35846746 PMCID: PMC9283984 DOI: 10.3389/fcimb.2022.935205] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Viral oncogenes may drive cellular metabolic reprogramming to modulate the normal epithelia cell malignant transformation. Understanding the viral oncogene-mediated signaling transduction dysregulation that involves in metabolic reprogramming may provide new therapeutic targets for virus-associated cancer treatment. Latent EBV infection and expression of viral oncogenes, including latent membrane proteins 1 and 2 (LMP1/2), and EBV-encoded BamH I-A rightward transcripts (BART) microRNAs (miR-BARTs), have been demonstrated to play fundamental roles in altering host cell metabolism to support nasopharyngeal carcinoma (NPC) pathogenesis. Yet, how do EBV infection and its encoded oncogenes facilitated the metabolic shifting and their roles in NPC carcinogenesis remains unclear. In this review, we will focus on delineating how EBV infection and its encoded oncoproteins altered the metabolic reprograming of infected cells to support their malignances. Furthermore, based on the understanding of the host's metabolic signaling alterations induced by EBV, we will provide a new perspective on the interplay between EBV infection and these metabolic pathways and offering a potential therapeutic intervention strategy in the treatment of EBV-associated malignant diseases.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Chanping You
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuhui Meng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
17
|
Sheikh IN, Elgehiny A, Ragoonanan D, Mahadeo KM, Nieto Y, Khazal S. Management of Aggressive Non-Hodgkin Lymphomas in the Pediatric, Adolescent, and Young Adult Population: An Adult vs. Pediatric Perspective. Cancers (Basel) 2022; 14:2912. [PMID: 35740580 PMCID: PMC9221186 DOI: 10.3390/cancers14122912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a broad entity which comprises a number of different types of lymphomatous malignancies. In the pediatric and adolescent population, the type and prognosis of NHL varies by age and gender. In comparison to adults, pediatric and adolescent patients generally have better outcomes following treatment for primary NHL. However, relapsed/refractory (R/R) disease is associated with poorer outcomes in many types of NHL such as diffuse large B cell lymphoma and Burkitt lymphoma. Newer therapies have been approved in the use of primary NHL in the pediatric and adolescent population such as Rituximab and other therapies such as chimeric antigen receptor T-cell (CAR T-cell) therapy are under investigation for the treatment of R/R NHL. In this review, we feature the characteristics, diagnosis, and treatments of the most common NHLs in the pediatric and adolescent population and also highlight the differences that exist between pediatric and adult disease. We then detail the areas of treatment advances such as immunotherapy with CAR T-cells, brentuximab vedotin, and blinatumomab as well as cell cycle inhibitors and describe areas where further research is needed. The aim of this review is to juxtapose established research regarding pediatric and adolescent NHL with recent advancements as well as highlight treatment gaps where more investigation is needed.
Collapse
Affiliation(s)
- Irtiza N. Sheikh
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Amr Elgehiny
- Department of Pediatrics, McGovern Medical School, The University of Texas at Houston Health Science Center, Houston, TX 77030, USA;
| | - Dristhi Ragoonanan
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Kris M. Mahadeo
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Yago Nieto
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sajad Khazal
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| |
Collapse
|
18
|
Enhancer RNA AL928768.3 from the IGH Locus Regulates MYC Expression and Controls the Proliferation and Chemoresistance of Burkitt Lymphoma Cells with IGH/MYC Translocation. Int J Mol Sci 2022; 23:ijms23094624. [PMID: 35563017 PMCID: PMC9103539 DOI: 10.3390/ijms23094624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
Chromosomal rearrangements leading to the relocation of proto-oncogenes into transcription-active regions are found in various types of tumors. In particular, the transfer of proto-oncogenes to the locus of heavy chains of immunoglobulins (IGH) is frequently observed in B-lymphomas. The increased expression of the MYC proto-oncogene due to IGH/MYC translocation is detected in approximately 85% of Burkitt lymphoma cases. The regulatory mechanisms affecting the oncogenes upon translocation include non-coding enhancer RNAs (eRNAs). We conducted a search for the eRNAs that may affect MYC transcription in the case of IGH/MYC translocation in Burkitt lymphoma, looking for potentially oncogenic eRNAs located at the IGH locus and predominantly expressed in B cells. Overexpression and knockdown of our primary candidate eRNA AL928768.3 led to the corresponding changes in the expression of MYC proto-oncogene in Burkitt lymphoma cells. Furthermore, we demonstrated that AL928768.3 knockdown decreased lymphoma cell proliferation and resistance to chemotherapy. Significant effects were observed only in cell lines bearing IGH/MYC abnormality but not in B-cell lines without this translocation nor primary B-cells. Our results indicate that AL928768.3 plays an important role in the development of Burkitt’s lymphoma and suggest it and similar, yet undiscovered eRNAs as potential tissue-specific targets for cancer treatment.
Collapse
|
19
|
Woerner J, Huang Y, Hutter S, Gurnari C, Sánchez JMH, Wang J, Huang Y, Schnabel D, Aaby M, Xu W, Thorat V, Jiang D, Jha BK, Koyuturk M, Maciejewski JP, Haferlach T, LaFramboise T. Circulating microbial content in myeloid malignancy patients is associated with disease subtypes and patient outcomes. Nat Commun 2022; 13:1038. [PMID: 35210415 PMCID: PMC8873459 DOI: 10.1038/s41467-022-28678-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although recent work has described the microbiome in solid tumors, microbial content in hematological malignancies is not well-characterized. Here we analyze existing deep DNA sequence data from the blood and bone marrow of 1870 patients with myeloid malignancies, along with healthy controls, for bacterial, fungal, and viral content. After strict quality filtering, we find evidence for dysbiosis in disease cases, and distinct microbial signatures among disease subtypes. We also find that microbial content is associated with host gene mutations and with myeloblast cell percentages. In patients with low-risk myelodysplastic syndrome, we provide evidence that Epstein-Barr virus status refines risk stratification into more precise categories than the current standard. Motivated by these observations, we construct machine-learning classifiers that can discriminate among disease subtypes based solely on bacterial content. Our study highlights the association between the circulating microbiome and patient outcome, and its relationship with disease subtype.
Collapse
Affiliation(s)
- Jakob Woerner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Yidi Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | | | - Carmelo Gurnari
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | | | - Janet Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Yimin Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Daniel Schnabel
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Michael Aaby
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Wanying Xu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Vedant Thorat
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Dongxu Jiang
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | - Babal K Jha
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | - Mehmet Koyuturk
- Department of Computer Science, Case Western Reserve University, Cleveland, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | | | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
20
|
Schmiester M, Tranter E, Lorusso A, Blaschke F, Geisel D, Bullinger L, Damm F, Na IK. Acute left ventricular insufficiency in a Burkitt Lymphoma patient with myocardial involvement and extensive local tumor cell lysis: a case report. BMC Cardiovasc Disord 2022; 22:31. [PMID: 35120455 PMCID: PMC8815241 DOI: 10.1186/s12872-022-02480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background Burkitt lymphoma (BL) is a rare disease with the sporadic variant accounting for less than 1% of adult non-Hodgkin lymphomas. BL usually presents with an abdominal bulk, but extranodal disease affecting the bone marrow and central nervous system is common. Cardiac manifestations, however, are exceedingly rare, with less than 30 cases reported in the literature. Case presentation We report on a 54-year-old male patient with a six week-long history of paranasal sinus swelling, fatigue and dyspnea on exertion. Stage IV sporadic BL with extensive lymphonodal and cardiovascular involvement was diagnosed. Manifestations included supra- and infradiaphragmatic lymphadenopathy as well as infiltration of the aortic root, the pericardium, the right atrium and the right ventricle. EBV-reactivation was detected, which is uncommon in the sporadic subtype. After initial full-dose chemotherapy with very good BL control, the patient developed acute, but fully reversible cardiac insufficiency. Myocardial lymphoma involvement receded completely during the following two therapy cycles, while cardiac function periodically deteriorated shortly after chemotherapy administration and quickly recovered thereafter. Interestingly, the decline in cardiac function lessened with decreasing myocardial lymphoma manifestation. Once the cardiovascular BL infiltration was resolved, cardiac function remained stable throughout further treatment. Following seven cycles of chemotherapy and mediastinal radiation, the patient is now in continued complete remission. Conclusions Although rare, cardiac involvement in BL can quickly become life-threatening due to rapid lymphoma doubling time and should therefore be considered at initial diagnosis. This case suggests an association between myocardial infiltration, chemotherapy associated tumor cell lysis and transient deterioration of cardiac function until the damage caused by the underlying lymphoma could be restored. While additional studies are needed to further elucidate the mechanisms of acute cardiac insufficiency due to lymphoma lysis in the infiltrated structures, prompt BL control and full recovery of the patient supports courageous treatment start despite extensive cardiovascular involvement.
Collapse
Affiliation(s)
- Maren Schmiester
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Eva Tranter
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessandro Lorusso
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Geisel
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Fierti AO, Yakass MB, Okertchiri EA, Adadey SM, Quaye O. The Role of Epstein-Barr Virus in Modulating Key Tumor Suppressor Genes in Associated Malignancies: Epigenetics, Transcriptional, and Post-Translational Modifications. Biomolecules 2022; 12:biom12010127. [PMID: 35053275 PMCID: PMC8773690 DOI: 10.3390/biom12010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is ubiquitous and carried by approximately 90% of the world’s adult population. Several mechanisms and pathways have been proposed as to how EBV facilitates the pathogenesis and progression of malignancies, such as Hodgkin’s lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, and gastric cancers, the majority of which have been linked to viral proteins that are expressed upon infection including latent membrane proteins (LMPs) and Epstein-Barr virus nuclear antigens (EBNAs). EBV expresses microRNAs that facilitate the progression of some cancers. Mostly, EBV induces epigenetic silencing of tumor suppressor genes, degradation of tumor suppressor mRNA transcripts, post-translational modification, and inactivation of tumor suppressor proteins. This review summarizes the mechanisms by which EBV modulates different tumor suppressors at the molecular and cellular levels in associated cancers. Briefly, EBV gene products upregulate DNA methylases to induce epigenetic silencing of tumor suppressor genes via hypermethylation. MicroRNAs expressed by EBV are also involved in the direct targeting of tumor suppressor genes for degradation, and other EBV gene products directly bind to tumor suppressor proteins to inactivate them. All these processes result in downregulation and impaired function of tumor suppressors, ultimately promoting malignances.
Collapse
|
22
|
Janjetovic S, Hinke J, Balachandran S, Akyüz N, Behrmann P, Bokemeyer C, Dierlamm J, Murga Penas EM. Non-Random Pattern of Integration for Epstein-Barr Virus with Preference for Gene-Poor Genomic Chromosomal Regions into the Genome of Burkitt Lymphoma Cell Lines. Viruses 2022; 14:v14010086. [PMID: 35062290 PMCID: PMC8781420 DOI: 10.3390/v14010086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Epstein-Barr virus (EBV) is an oncogenic virus found in about 95% of endemic Burkitt lymphoma (BL) cases. In latently infected cells, EBV DNA is mostly maintained in episomal form, but it can also be integrated into the host genome, or both forms can coexist in the infected cells. Methods: In this study, we mapped the chromosomal integration sites of EBV (EBV-IS) into the genome of 21 EBV+ BL cell lines (BL-CL) using metaphase fluorescence in situ hybridization (FISH). The data were used to investigate the EBV-IS distribution pattern in BL-CL, its relation to the genome instability, and to assess its association to common fragile sites and episomes. Results: We detected a total of 459 EBV-IS integrated into multiple genome localizations with a preference for gene-poor chromosomes. We did not observe any preferential affinity of EBV to integrate into common and rare fragile sites or enrichment of EBV-IS at the chromosomal breakpoints of the BL-CL analyzed here, as other DNA viruses do. Conclusions: We identified a non-random integration pattern into 13 cytobands, of which eight overlap with the EBV-IS in EBV-transformed lymphoblastoid cell lines and with a preference for gene- and CpGs-poor G-positive cytobands. Moreover, it has been demonstrated that the episomal form of EBV interacts in a non-random manner with gene-poor and AT-rich regions in EBV+ cell lines, which may explain the observed affinity for G-positive cytobands in the EBV integration process. Our results provide new insights into the patterns of EBV integration in BL-CL at the chromosomal level, revealing an unexpected connection between the episomal and integrated forms of EBV.
Collapse
Affiliation(s)
- Snjezana Janjetovic
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.J.); (J.H.); (N.A.); (P.B.); (C.B.)
- Clinic of Hematology and Stem Cell Transplantation, HELIOS Clinic Berlin-Buch, 13125 Berlin, Germany
| | - Juliane Hinke
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.J.); (J.H.); (N.A.); (P.B.); (C.B.)
- Department for Psychiatry, Albertinen Hospital, 22459 Hamburg, Germany
| | - Saranya Balachandran
- Institute of Human Genetics, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24118 Kiel, Germany;
| | - Nuray Akyüz
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.J.); (J.H.); (N.A.); (P.B.); (C.B.)
| | - Petra Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.J.); (J.H.); (N.A.); (P.B.); (C.B.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.J.); (J.H.); (N.A.); (P.B.); (C.B.)
| | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.J.); (J.H.); (N.A.); (P.B.); (C.B.)
- Correspondence: (J.D.); (E.M.M.P.); Tel.: +49-451-500-50438 (E.M.M.P.)
| | - Eva Maria Murga Penas
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (S.J.); (J.H.); (N.A.); (P.B.); (C.B.)
- Institute of Human Genetics, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24118 Kiel, Germany;
- Correspondence: (J.D.); (E.M.M.P.); Tel.: +49-451-500-50438 (E.M.M.P.)
| |
Collapse
|
23
|
Santisteban-Espejo A, Perez-Requena J, Atienza-Cuevas L, Moran-Sanchez J, Fernandez-Valle MDC, Bernal-Florindo I, Romero-Garcia R, Garcia-Rojo M. Prognostic Role of the Expression of Latent-Membrane Protein 1 of Epstein–Barr Virus in Classical Hodgkin Lymphoma. Viruses 2021; 13:v13122523. [PMID: 34960792 PMCID: PMC8706848 DOI: 10.3390/v13122523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The prognostic impact of the presence of Epstein–Barr virus (EBV) in classical Hodgkin lymphoma (cHL) is controversial. Previous studies reported heterogeneous results, rendering difficult the clinical validation of EBV as a prognostic biomarker in this lymphoma. The objective of this study was to evaluate the survival impact of the expression of EBV Latent-Membrane Protein 1 (EBV-LMP1) in tumoral Hodgkin–Reed–Sternberg (HRS) cells of primary diagnostic samples of cHL. Formalin-Fixed Paraffin-Embedded (FFPE) lymph node samples from 88 patients with cHL were analyzed. Patients were treated with the standard first-line chemotherapy (CT) with Adriamycin, Bleomycin, Vinblastine and Dacarbazine (ABVD) followed by radiotherapy. The Kaplan–Meier method and the Cox proportional hazards model were used for carrying out the survival analysis. In order to investigate whether the influence of EBV was age-dependent, analyses were performed both for patients of all ages and for age-stratified subgroups. In bivariate analysis, the expression of EBV was associated with older age (p = 0.011), mixed cellularity subtype cHL (p < 0.001) and high risk International Prognostic Score (IPS) (p = 0.023). Overall survival (OS) and progression-free survival (PFS) were associated with the presence of bulky disease (p = 0.009) and advanced disease at diagnosis (p = 0.016). EBV-positive cases did not present a significantly lower OS and PFS in comparison with EBV-negative cases, for all ages and when stratifying for age. When adjusted for covariates, absence of bulky disease at diagnosis (HR: 0.102, 95% CI: 0.02–0.48, p = 0.004) and limited disease stages (I–II) (HR: 0.074, 95% CI: 0.01–0.47, p = 0.006) were associated with a significant better OS. For PFS, limited-disease stages also retained prognostic impact in the multivariate Cox regression (HR: 0.145, 95% CI: 0.04–0.57, p = 0.006). These results are of importance as the early identification of prognostic biomarkers in cHL is critical for guiding and personalizing therapeutic decisions. The prognostic role of EBV in cHL could be modulated by the type of CT protocol employed and interact with the rest of presenting features.
Collapse
Affiliation(s)
- Antonio Santisteban-Espejo
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
- Department of Medicine, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain;
- Correspondence:
| | - Jose Perez-Requena
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
| | - Lidia Atienza-Cuevas
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
| | - Julia Moran-Sanchez
- Department of Medicine, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain;
- Department of Hematology and Hemotherapy, Puerta del Mar University Hospital, 11009 Cadiz, Spain;
| | | | - Irene Bernal-Florindo
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
| | - Raquel Romero-Garcia
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
| | - Marcial Garcia-Rojo
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain; (J.P.-R.); (L.A.-C.); (M.G.-R.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain; (I.B.-F.); (R.R.-G.)
| |
Collapse
|
24
|
Pagan L, Ederveen RAM, Huisman BW, Schoones JW, Zwittink RD, Schuren FHJ, Rissmann R, Piek JMJ, van Poelgeest MIE. The Human Vulvar Microbiome: A Systematic Review. Microorganisms 2021; 9:2568. [PMID: 34946169 PMCID: PMC8705571 DOI: 10.3390/microorganisms9122568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
The link between cancer and the microbiome is a fast-moving field in research. There is little knowledge on the microbiome in ((pre)malignant) conditions of the vulvar skin. This systematic review aims to provide an overview of the literature regarding the microbiome composition of the healthy vulvar skin and in (pre)malignant vulvar disease. This study was performed according to the PRISMA guidelines. A comprehensive, electronic search strategy was used to identify original research articles (updated September 2021). The inclusion criteria were articles using culture-independent methods for microbiome profiling of the vulvar region. Ten articles were included. The bacterial composition of the vulva consists of several genera including Lactobacillus, Corynebacterium, Staphylococcus and Prevotella, suggesting that the vulvar microbiome composition shows similarities with the corresponding vaginal milieu. However, the vulvar microbiome generally displayed higher diversity with commensals of cutaneous and fecal origin. This is the first systematic review that investigates the relationship between microbiome and vulvar (pre)malignant disease. There are limited data and the level of evidence is low with limitations in study size, population diversity and methodology. Nevertheless, the vulvar microbiome represents a promising field for exploring potential links for disease etiology and targets for therapy.
Collapse
Affiliation(s)
- Lisa Pagan
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (L.P.); (B.W.H.); (M.I.E.v.P.)
- Department of Gynecology and Obstetrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Roos A. M. Ederveen
- Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands;
- Department of Obstetrics and Gynaecology and Catharina Cancer Institute, Catharina Ziekenhuis, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands;
| | - Bertine W. Huisman
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (L.P.); (B.W.H.); (M.I.E.v.P.)
- Department of Gynecology and Obstetrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jan W. Schoones
- Directorate of Research Policy (Formerly: Walaeus Library), Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Romy D. Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Frank H. J. Schuren
- Netherlands Organisation for Applied Scientific Research, TNO, 3704 HE Zeist, The Netherlands;
- Leiden Skin Institute, 2333 CL Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (L.P.); (B.W.H.); (M.I.E.v.P.)
- Leiden Skin Institute, 2333 CL Leiden, The Netherlands
- Leiden Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jurgen M. J. Piek
- Department of Obstetrics and Gynaecology and Catharina Cancer Institute, Catharina Ziekenhuis, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands;
| | - Mariëtte I. E. van Poelgeest
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (L.P.); (B.W.H.); (M.I.E.v.P.)
- Department of Gynecology and Obstetrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
25
|
Broecker F, Moelling K. The Roles of the Virome in Cancer. Microorganisms 2021; 9:microorganisms9122538. [PMID: 34946139 PMCID: PMC8706120 DOI: 10.3390/microorganisms9122538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Viral infections as well as changes in the composition of the intestinal microbiota and virome have been linked to cancer. Moreover, the success of cancer immunotherapy with checkpoint inhibitors has been correlated with the intestinal microbial composition of patients. The transfer of feces-which contain mainly bacteria and their viruses (phages)-from immunotherapy responders to non-responders, known as fecal microbiota transplantation (FMT), has been shown to be able to convert some non-responders to responders. Since phages may also increase the response to immunotherapy, for example by inducing T cells cross-reacting with cancer antigens, modulating phage populations may provide a new avenue to improve immunotherapy responsiveness. In this review, we summarize the current knowledge on the human virome and its links to cancer, and discuss the potential utility of bacteriophages in increasing the responder rate for cancer immunotherapy.
Collapse
Affiliation(s)
- Felix Broecker
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
- Correspondence: (F.B.); (K.M.)
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Gloriastr. 30, CH-8006 Zurich, Switzerland
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
- Correspondence: (F.B.); (K.M.)
| |
Collapse
|
26
|
Ciftciler R, Ciftciler AE. The importance of microbiota in hematology. Transfus Apher Sci 2021; 61:103320. [PMID: 34801432 DOI: 10.1016/j.transci.2021.103320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/20/2023]
Abstract
Whilst particular infectious bacteria are well-established to be associated with hematological diseases, more recent interest has focused on the entire microbial community of mucosal surfaces. In particular, the link between hematology and the microbiota (defined as the total assemblage of microorganisms in a mucosal environment)/ microbiome (i.e. the entire ecological habitat, including organisms, their genomes and environmental conditions) is becoming more well-known. Dysbiosis, or a change in the microbiome, has been linked to the development of neoplasms, infections, inflammatory illnesses, and immune-mediated disorders, according to growing data. Microbiota may influence distant tumor microenvironment through a variety of methods, including cytokine release control, dendritic cell activation, and T-cell lymphocyte stimulation. There are numerous major implications to study the microbiome in patients with benign and malignant hematologic disorders. In this review, we investigated the structure and function of the microbiome in patients with benign and malignant hematological diseases. Chemotherapy and immunosuppressive agents used in treatment of these benign and malignant hematological diseases may cause or exacerbate dysbiosis and infectious problems. After understanding the importance of microbiota in hematological diseases, we think that use of probiotics and dietary prebiotic substances targeting microbiota modification aiming to improve hematological disease outcomes should be investigated in future studies.
Collapse
Affiliation(s)
- Rafiye Ciftciler
- Aksaray University Training and Research Hospital, Department of Hematology, Aksaray, Turkey.
| | | |
Collapse
|
27
|
Pourghasemian M, Danandeh Mehr A, Alavizadeh E, Behzadi F, Roosta Y. Primary bilateral ovarian involvement in Burkitt's lymphoma with an adnexal Torsion-like manifestation: A case report. Clin Case Rep 2021; 9:e05058. [PMID: 34786198 PMCID: PMC8577239 DOI: 10.1002/ccr3.5058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Burkitt's lymphoma (BL) is defined as a highly invasive B-cell lymphoma with a poor prognosis. Primary bilateral ovarian mass without involvement of other organs is a rare manifestation of BL. Our report was a case of an EBV positive Burkitt's lymphoma, which initially presented with ovarian mass and adnexal torsion.
Collapse
Affiliation(s)
- Mehdi Pourghasemian
- Department of Internal MedicineSchool of Medicine and Allied Medical ScienceImam Khomeini HospitalArdabil University of Medical SciencesArdabilIran
| | - Amin Danandeh Mehr
- Department of Internal MedicineSchool of Medicine and Allied Medical ScienceImam Khomeini HospitalArdabil University of Medical SciencesArdabilIran
| | - Elaheh Alavizadeh
- Department of Internal MedicineSchool of Medicine and Allied Medical ScienceImam Khomeini HospitalArdabil University of Medical SciencesArdabilIran
| | - Farhad Behzadi
- Department of Internal MedicineSchool of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Yousef Roosta
- Department of Internal MedicineSchool of MedicineUrmia University of Medical SciencesUrmiaIran
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research CenterClinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
28
|
Rochford R. Reframing Burkitt lymphoma: virology not epidemiology defines clinical variants. ANNALS OF LYMPHOMA 2021; 5:22. [PMID: 34888589 PMCID: PMC8654190 DOI: 10.21037/aol-21-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 1964, Epstein-Barr virus (EBV) was identified in a biopsy from a patient with Burkitt lymphoma (BL) launching a new field of study into this ubiquitous human virus. Almost 60 years later, insights into the role of EBV in lymphomagenesis are still emerging. While all BL carry the hallmark c-myc translocation, the epidemiologic classification of BL (e.g., endemic, sporadic or immunodeficiency-associated) has traditionally been used to define BL clinical variants. However, recent studies using molecular methods to characterize the transcriptional and genetic landscape of BL have identified several unique features are observed that distinguish EBV+ BL including a high level of activation induced deaminase mutation load, evidence of antigen selection in the B cell receptor, and a decreased mutation frequency of TCF3/ID3, all found predominantly in EBV+ compared to EBV- BL. In this review, the focus will be on summarizing recent studies that have done in depth characterization of genetic and transcriptional profiles of BL, describing the differences and similarities of EBV+ and EBV- BL, and what they reveal about the etiology of BL. The new studies put forth a compelling argument that the association with EBV should be the defining etiologic feature of clinical variants of BL. This reframing of BL has important implications for therapeutic interventions for BL that distinguish the EBV+ from the EBV- lymphomas.
Collapse
Affiliation(s)
- Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Quercetin as a Novel Therapeutic Approach for Lymphoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3157867. [PMID: 34381559 PMCID: PMC8352693 DOI: 10.1155/2021/3157867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
Lymphoma is a name for malignant diseases of the lymphatic system including Hodgkin's lymphoma and non-Hodgkin's lymphoma. Although several approaches are used for the treatment of these diseases, some of them are not successful and have serious adverse effects. Therefore, other effective treatment methods might be interesting. Studies have indicated that plant ingredients play a key role in treating several diseases. Some plants have already shown a potential therapeutic effect on many malignant diseases. Quercetin is a flavonoid found in different plants and could be useful in the treatment of different malignant diseases. Quercetin has its antimalignant effects through targeting main survival pathways activated in tumor cells. In vitro/in vivo experimental studies have demonstrated that quercetin possesses a cytotoxic effect on lymphoid cancer cells. Regardless of the optimum results that have been obtained from both in vitro/in vivo studies, few clinical studies have analyzed the antitumor effects of quercetin in lymphoid cancers. Thus, it seems that more clinical studies should introduce quercetin as a therapeutic, alone or in combination with other chemotherapy agents. Here, in this study, we reviewed the anticancer effects of quercetin and highlighted the potential therapeutic effects of quercetin in various types of lymphoma.
Collapse
|
30
|
Looi CK, Hii LW, Chung FFL, Mai CW, Lim WM, Leong CO. Roles of Inflammasomes in Epstein-Barr Virus-Associated Nasopharyngeal Cancer. Cancers (Basel) 2021; 13:1786. [PMID: 33918087 PMCID: PMC8069343 DOI: 10.3390/cancers13081786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.
Collapse
Affiliation(s)
- Chin King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organisation, CEDEX 08 Lyon, France;
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
31
|
Aresu L, Agnoli C, Nicoletti A, Fanelli A, Martini V, Bertoni F, Marconato L. Phenotypical Characterization and Clinical Outcome of Canine Burkitt-Like Lymphoma. Front Vet Sci 2021; 8:647009. [PMID: 33816589 PMCID: PMC8010238 DOI: 10.3389/fvets.2021.647009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
In dogs, Burkitt-like lymphoma (B-LL) is rare tumor and it is classified as a high-grade B-cell malignancy. The diagnosis is challenging because of the similar histologic appearance with other histotypes, no defined phenotypical criteria and poorly described clinical aspects. The aim of the study was to provide a detailed description of clinical and morphological features, as well as immunophenotypical profile of B-LL in comparison with the human counterpart. Thirteen dogs with histologically proven B-LL, for which a complete staging and follow-up were available, were retrospectively selected. Immunohistochemical expression of CD20, PAX5, CD3, CD10, BCL2, BCL6, MYC, and caspase-3 was evaluated. Histologically, all B-LLs showed a diffuse architecture with medium to large-sized cells, high mitotic rate and diffuse starry sky appearance. B-phenotype of neoplastic cells was confirmed both by flow-cytometry and immunohistochemistry. Conversely, B-LLs were negative for BCL2 and MYC, whereas some cases co-expressed BCL6 and CD10, suggesting a germinal center B-cell origin. Disease stage was advanced in the majority of cases. All dogs received CHOP-based chemotherapy with or without immunotherapy. Despite treatment, prognosis was poor, with a median time to progression and survival of 130 and 228 days, respectively. Nevertheless, ~30% of dogs survived more than 1 year. An increased apoptotic index, a high turnover index and caspase-3 index correlated with shorter survival. In conclusion, canine B-LL shows phenotypical differences with the human counterpart along with features that might help to differentiate this entity from diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Chiara Agnoli
- Department of Medical Veterinary Science, University of Bologna, Bologna, Italy
| | - Arturo Nicoletti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Valeria Martini
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Laura Marconato
- Department of Medical Veterinary Science, University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Wang Y, Zhang B, Lin C, Liu Y, Yang M, Peng Y, Wang X. Dissecting Role of Charged Residue from Transmembrane Domain 5 of Latent Membrane Protein 1 via In Silico Simulations and Wet-Lab Experiments. J Phys Chem B 2021; 125:2124-2133. [PMID: 33595309 DOI: 10.1021/acs.jpcb.0c10708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charged residues are frequently found in the transmembrane segments of membrane proteins, which reside in the hydrophobic bilayer environment. Charged residues are critical for the function of membrane protein. However, studies of their role in protein oligomerization are limited. By taking the fifth transmembrane domain (TMD5) of latent membrane protein 1 from the Epstein-Barr virus as a prototype model, in silico simulations and wet-lab experiments were performed to investigate how the charged states affect transmembrane domain oligomerization. Molecular dynamics (MD) simulations showed that the D150-protonated TMD5 trimer was stable, whereas unprotonated D150 created bends in the helices which distort the trimeric structure. D150 was mutated to asparagine to mimic the protonated D150 in TMD5, and the MD simulations of different D150N TMD5 trimers supported that the protonation state of D150 was critical for the trimerization of TMD5. In silico mutations found that D150N TMD5 preferred to interact with TMD5 to form the heterotrimer (1 D150N TMD5:2 protonated TMD5s) rather than the heterotrimer (2 D150N TMD5s:1 protonated TMD5). D150R TMD5 interacted with TMD5 to form the heterotrimer (1 D150R TMD5:2 protonated TMD5). These in silico results imply that D150N TMD5 and D150R TMD5 peptides may be probes for disrupting TMD5 trimerization, which was supported by the dominant-negative ToxR assay in bacterial membranes. In all, this study elucidates the role of charged residues at the membrane milieu in membrane protein oligomerization and provides insight into the development of oligomerization-regulating peptides for modulating transmembrane domain lateral interactions.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022
| | - Bo Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui China, 230026
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022
| | - Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Min Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui China, 230026
| |
Collapse
|
33
|
Blackburn NB, Leandro AC, Nahvi N, Devlin MA, Leandro M, Martinez Escobedo I, Peralta JM, George J, Stacy BA, deMaar TW, Blangero J, Keniry M, Curran JE. Transcriptomic Profiling of Fibropapillomatosis in Green Sea Turtles ( Chelonia mydas) From South Texas. Front Immunol 2021; 12:630988. [PMID: 33717164 PMCID: PMC7943941 DOI: 10.3389/fimmu.2021.630988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.
Collapse
Affiliation(s)
- Nicholas B. Blackburn
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, United States
| | | | - Marcelo Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | | | - Juan M. Peralta
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jeff George
- Sea Turtle Inc., South Padre Island, TX, United States
| | - Brian A. Stacy
- National Marine Fisheries Service, Office of Protected Resources, University of Florida, Gainesville, FL, United States
| | | | - John Blangero
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Megan Keniry
- Department of Biology, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Joanne E. Curran
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
34
|
Yang YC, Sugden B. Epstein-Barr Virus Limits the Accumulation of IPO7, an Essential Gene Product. Front Microbiol 2021; 12:643327. [PMID: 33664726 PMCID: PMC7920963 DOI: 10.3389/fmicb.2021.643327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 01/19/2023] Open
Abstract
Epstein-Barr virus (EBV) encodes more than 40 miRNAs that target cellular mRNAs to aid its infection, replication, and maintenance in individual cells and in its human host. Importin-7 (IPO7), also termed Imp7 or RanBPM7, is a nucleocytoplasmic transport protein that has been frequently identified as a target for two of these viral miRNAs. How the viral life cycle might benefit from regulating IPO7 has been unclear, though. We demonstrate with CRISPR-Cas9 mutagenesis that IPO7 is essential in at least three cells lines and that increasing its levels of expression inhibits growth of infected cells. EBV thus regulates the level of IPO7 to limit its accumulation consistent with its being required for survival of its host cell.
Collapse
Affiliation(s)
- Ya-Chun Yang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A, Rawla P. Epidemiology of Non-Hodgkin's Lymphoma. Med Sci (Basel) 2021; 9:medsci9010005. [PMID: 33573146 PMCID: PMC7930980 DOI: 10.3390/medsci9010005] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Non-Hodgins’s lymphoma (NHL) is the most common hematological malignancy worldwide, accounting for nearly 3% of cancer diagnoses and deaths. NHL is the seventh most prevalent cancer and has the sixth highest mortality among cancers in the US. NHL accounts for 4% of US cancer diagnoses, and incidence has increased 168% since 1975 (while survival has improved 158%). NHL is more common among men, those >65 years old, and those with autoimmune disease or a family history of hematological malignancies. NHL is a heterogenous disease, with each subtype associated with different risk factors. Marginal zone lymphoma (MZL) is strongly associated with Sjogren’s syndrome (SS) and Hashimoto’s thyroiditis, while peripheral T-cell lymphoma (PTCL) is most associated with celiac disease. Occupational exposures among farm workers or painters increases the risk of most of the common subtypes. Prior radiation treatment, obesity, and smoking are most highly associated with diffuse large B-cell lymphoma (DLBCL), while breast implants have been rarely associated with anaplastic large cell lymphoma (ALCL). Infection with Epstein–Barr Virus (EBV) is strongly associated with endemic Burkitts lymphoma. HIV and human herpes virus 8 (HHV-8), is predisposed to several subtypes of DLBCL, and human T-cell lymphoma virus (HTLV-1) is a causative agent of T-cell lymphomas. Obesity and vitamin D deficiency worsen NHL survival. Atopic diseases and alcohol consumption seem to be protective against NHL.
Collapse
Affiliation(s)
- Krishna C. Thandra
- Department of Pulmonary and Critical Care Medicine, Sentara Virginia Beach General Hospital, Virginia Beach, VA 23455, USA
- Correspondence: ; Tel.: +1-757-481-2515
| | - Adam Barsouk
- Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, PA 19107, USA;
| | - Kalyan Saginala
- Plains Regional Medical Group Internal Medicine, Clovis, NM 88101, USA;
| | - Sandeep Anand Padala
- Department of Medicine, Nephrology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Alexander Barsouk
- Hematologist-Oncologist, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Prashanth Rawla
- Department of Medicine, Sovah Health, Martinsville, VA 24112, USA;
| |
Collapse
|
36
|
Burkitt's lymphoma in pregnant woman: Difficult management of a rare case. Int J Surg Case Rep 2020; 77S:S147-S151. [PMID: 33191188 PMCID: PMC7876741 DOI: 10.1016/j.ijscr.2020.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Burkitt’s lymphoma, an aggressive non-Hodgkin lymphoma, is extremely rare during pregnancy. Lymphoma of the small intestine is often overlooked in the early stages of the disease. We described a multidisciplinary approach, cesarean section with surgical intestinal exploration.
Introduction Burkitt’s lymphoma (BL), an aggressive subtype of non-Hodgkin lymphoma (NHL), is extremely rare during pregnancy. In the case of bowel localization, diagnosis can be very difficult. Moreover, signs and symptoms of the primary small intestine lymphoma are nonspecific, mostly attributable to the “mass effect” of the tumor. The most frequent symptom is abdominal cramp-like pain, associated with nausea and vomiting. Presentation of case We report a rare case of a 37-year-old pregnant woman, at the 33rd week of gestation, with an abdominal-pelvic mass of uncertain nature. Surgical strategy consisted of a two-step procedure, which involved a cesarean section and typing of the mass: extemporaneous examination hypothesized intestinal lymphoma. The definitive histological examination confirmed the diagnosis of rare case of BL in pregnancy. Discussion The clinical case reported, representing a rare occurrence of BL in pregnancy, was associated with difficult interpretation and complex management. Lymphoma of the small intestine is often overlooked in the early stages of the disease, due to the fact that symptoms are non-specific and consequently underestimated. In our case, based on gestational age, it was possible to perform a multidisciplinary approach, a cesarean section with surgical intestinal exploration, achieving at the same time delivery of the child and a definitive diagnosis of BL with intestinal involvement. Conclusion The involvement of multiple professionals is undoubtedly the best way to deal with the above referred to situation, with the main point being to keep in mind the possibility of this type of occurrence.
Collapse
|
37
|
Langat S, Njuguna F, Kaspers G, Mostert S. Health insurance coverage for vulnerable children: two HIV orphans with Burkitt lymphoma and their quest for health insurance coverage in Kenya. BMJ Case Rep 2020; 13:13/8/e230508. [PMID: 32843443 DOI: 10.1136/bcr-2019-230508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The United Nations and WHO have summoned governments from low-income and middle-income countries to institute universal health coverage and thereby improve their population's healthcare access and outcomes. Until now, few countries responded favourably to this international plea. The HIV/AIDS epidemic, a major global public health challenge, resulted in over 11 million orphans in sub-Saharan Africa. Extended families have taken responsibility for more than 90% of these children. HIV orphans are likely to be poorer and less healthy. Burkitt lymphoma is the most common childhood cancer in sub-Saharan Africa. If orphans need lifesaving chemotherapy, appointing legal guardians becomes necessary to access health insurance. However, rules and regulations involved may be unclear and costly. This hinders its access for poor families who need it most. Uninsured children risk hospital detention over unpaid medical bills and have lower survival. Our case report depicts the quest for health insurance coverage of two HIV orphans with Burkitt lymphoma in Kenya.
Collapse
Affiliation(s)
- Sandra Langat
- Department of Pediatrics, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Festus Njuguna
- Department of Pediatrics, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Gertjan Kaspers
- Department of Pediatric Oncology-Hematology, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Saskia Mostert
- Department of Pediatric Oncology-Hematology, Amsterdam University Medical Center, Amsterdam, The Netherlands .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
38
|
Almeida JFM, Proenca-Modena JL, Bufalo NE, Peres KC, de Souza Teixeira E, Teodoro L, Beck RM, Moraes AP, Tincani AJ, Arns CW, Ward LS. Epstein-Barr virus induces morphological and molecular changes in thyroid neoplastic cells. Endocrine 2020; 69:321-330. [PMID: 32166585 DOI: 10.1007/s12020-020-02253-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
Although the evolution of differentiated thyroid cancer (DTC) is usually indolent, some tumors grow fast, metastasize, and may be fatal. Viruses have been associated with many human tumors, especially the Epstein-Barr virus (EBV), which shows a high viral load in DTC. In order to evaluate the ability of the virus to cause morphological and molecular changes in neoplastic thyroid cell lines TPC-1, BCPAP, and 8505C, a viral adaptation was performed for the analysis of EBV cytopathic effect (CPE), viral kinetics and gene expression analysis of oncogenes KRAS, NRAS, HRAS, and TP53. Comparison of inoculated cells with non-inoculated control cells showed that all tumor cell lines were permissive to the virus. The virus caused CPE in the TPC-1 and 8505C, but not in BCPAP cells. Viral kinetic was similar in both BCPAP and 8505C with a point of eclipse at 24 h post infection. TPC-1 cell line displayed a decreasing growth curve, with highest viral load right after inoculation, which decreased over time. There was hyperexpression of TP53 and NRAS in BCPAP cell (p = 0.012 and p = 0.0344, respectively). The 8505C cell line presented NRAS hyperexpression (p = 0.0255), but lower TP53 expression (p = 0.0274). We concluded that neoplastic thyroid cell lines are permissive to EBV that the virus presents different viral kinetic patterns in different cell lines and produces a CPE on both well-differentiated and undifferentiated thyroid cell lines. We also demonstrated that EBV interferes in oncogene expression in thyroid neoplastic cell lines, suggesting that these effects could be related to different tumor progression patterns.
Collapse
Affiliation(s)
- Jacqueline Fátima Martins Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca), Department of Medical Clinic, Faculty of Medical Sciences, State University of Campinas (FCM-Unicamp), Campinas, SP, Brazil.
| | - José Luiz Proenca-Modena
- Emerging virus Research Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (IB-Unicamp), Campinas, SP, Brazil
| | - Natássia Elena Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca), Department of Medical Clinic, Faculty of Medical Sciences, State University of Campinas (FCM-Unicamp), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics (Gemoca), Department of Medical Clinic, Faculty of Medical Sciences, State University of Campinas (FCM-Unicamp), Campinas, SP, Brazil
| | - Elisângela de Souza Teixeira
- Laboratory of Cancer Molecular Genetics (Gemoca), Department of Medical Clinic, Faculty of Medical Sciences, State University of Campinas (FCM-Unicamp), Campinas, SP, Brazil
| | - Larissa Teodoro
- Laboratory of Cancer Molecular Genetics (Gemoca), Department of Medical Clinic, Faculty of Medical Sciences, State University of Campinas (FCM-Unicamp), Campinas, SP, Brazil
| | - Raíssa Marques Beck
- Animal Virology Laboratory-Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (IB-Unicamp), Campinas, SP, Brazil
| | - Ana Paula Moraes
- Animal Virology Laboratory-Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (IB-Unicamp), Campinas, SP, Brazil
| | - Alfio José Tincani
- Head and Neck Surgery Department-State University of Campinas, University Clinical Hospital (HC-Unicamp), Campinas, SP, Brazil
| | - Clarice Weis Arns
- Animal Virology Laboratory-Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (IB-Unicamp), Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics (Gemoca), Department of Medical Clinic, Faculty of Medical Sciences, State University of Campinas (FCM-Unicamp), Campinas, SP, Brazil
| |
Collapse
|
39
|
Cancer Patients Have a Higher Risk Regarding COVID-19 - and Vice Versa? Pharmaceuticals (Basel) 2020; 13:ph13070143. [PMID: 32640723 PMCID: PMC7408191 DOI: 10.3390/ph13070143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The world is currently suffering from a pandemic which has claimed the lives of over 230,000 people to date. The responsible virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causes the coronavirus disease 2019 (COVID-19), which is mainly characterized by fever, cough and shortness of breath. In severe cases, the disease can lead to respiratory distress syndrome and septic shock, which are mostly fatal for the patient. The severity of disease progression was hypothesized to be related to an overshooting immune response and was correlated with age and comorbidities, including cancer. A lot of research has lately been focused on the pathogenesis and acute consequences of COVID-19. However, the possibility of long-term consequences caused by viral infections which has been shown for other viruses are not to be neglected. In this regard, this opinion discusses the interplay of SARS-CoV-2 infection and cancer with special focus on the inflammatory immune response and tissue damage caused by infection. We summarize the available literature on COVID-19 suggesting an increased risk for severe disease progression in cancer patients, and we discuss the possibility that SARS-CoV-2 could contribute to cancer development. We offer lines of thought to provide ideas for urgently needed studies on the potential long-term effects of SARS-CoV-2 infection.
Collapse
|
40
|
Prognostic Significance of Granuloma and Amyloid Deposition in Nasopharyngeal Carcinoma. Head Neck Pathol 2020; 15:153-162. [PMID: 32562216 PMCID: PMC8010042 DOI: 10.1007/s12105-020-01194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The significance of granuloma and amyloid deposition in primary nasopharyngeal carcinoma (NPC) has yet to be investigated. This study aimed to evaluate their clinicopathologic associations. The histopathologic findings of 747 consecutive patients with primary NPC were retrospectively reviewed between January 2001 and December 2015. The presence of granulomas and amyloid deposits was observed in 68 (9.1%) and 62 (8.3%) patients, respectively. Granulomas were significantly associated with lower T classification, N classification, and overall TNM stage (p = 0.014, p = 0.006, and p = 0.001, respectively). Their presence was an independent predictor of overall survival (p = 0.033), disease-free survival (p = 0.034), and recurrence-free survival (p = 0.040). Conversely, amyloid deposition was not a predictor in any survival analyses. The present study demonstrated the prevalence of granuloma and amyloid deposition in the largest single institution cohort of primary NPC patients so far. Our results provide evidence that granulomas are significantly associated with better prognosis and treatment outcome. Further studies are needed to elucidate the mechanism of action of granuloma formation on the anti-tumor immunity of NPC.
Collapse
|
41
|
Azevedo MM, Pina-Vaz C, Baltazar F. Microbes and Cancer: Friends or Faux? Int J Mol Sci 2020; 21:ijms21093115. [PMID: 32354115 PMCID: PMC7247677 DOI: 10.3390/ijms21093115] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most aggressive and deadly diseases in the world, representing the second leading cause of death. It is a multifactorial disease, in which genetic alterations play a key role, but several environmental factors also contribute to its development and progression. Infections induced by certain viruses, bacteria, fungi and parasites constitute risk factors for cancer, being chronic infection associated to the development of certain types of cancer. On the other hand, susceptibility to infectious diseases is higher in cancer patients. The state of the host immune system plays a crucial role in the susceptibility to both infection and cancer. Importantly, immunosuppressive cancer treatments increase the risk of infection, by decreasing the host defenses. Furthermore, alterations in the host microbiota is also a key factor in the susceptibility to develop cancer. More recently, the identification of a tumor microbiota, in which bacteria establish a symbiotic relationship with cancer cells, opened a new area of research. There is evidence demonstrating that the interaction between bacteria and cancer cells can modulate the anticancer drug response and toxicity. The present review focuses on the interaction between microbes and cancer, specifically aiming to: (1) review the main infectious agents associated with development of cancer and the role of microbiota in cancer susceptibility; (2) highlight the higher vulnerability of cancer patients to acquire infectious diseases; (3) document the relationship between cancer cells and tissue microbiota; (4) describe the role of intratumoral bacteria in the response and toxicity to cancer therapy.
Collapse
Affiliation(s)
- Maria Manuel Azevedo
- Department of Microbiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Agrupamento de Escolas D. Maria II, 4760-067 V.N. Famalicão, Portugal
- Correspondence: ; Tel.: +351-22-551-36
| | - Cidália Pina-Vaz
- Department of Microbiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4835-258 Guimarães, Portugal
| |
Collapse
|
42
|
Rosas D, Yepes I, Tschanz J, Wariboko M, Sandoval-Sus JD. Epstein-Barr Virus: From Kissing Disease to Broken Heart. Cureus 2020; 12:e7704. [PMID: 32431983 PMCID: PMC7233509 DOI: 10.7759/cureus.7704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 11/05/2022] Open
Abstract
We present a case of a 59 year old female patient that presented with exertional chest pain and palpitations. A workup revealed an EKG with signs of right ventricular hypertrophy, a high Pro-BNP and 3 sets of negative troponin levels. A CT scan of the chest was negative for pulmonary embolism (PE) but revealed a nodular thickening of the atrial septum with right atrial extension encasing the right coronary artery. A CT scan of the abdomen and pelvis with IV contrast revealed several nodular foci scattered in the subcutaneous fat of the abdominal wall bilaterally. An initial transthoracic echocardiogram (TTE) revealed thickening of the interatrial septum with a mass protruding from the interatrial septum into the left atrium and a secondary pedunculated mass protruding from the interatrial septum into the right atrium with significant obstruction within the right atrium. An ultrasound-guided biopsy of the soft tissue nodule in the right anterior abdominal wall and subcutaneous tissue showed the classical starry sky appearance pattern confirmed later to be a Burkitt lymphoma. The patient received chemotherapy and follow up CT of the abdomen and pelvis reported resolution of the soft tissue density involving the partially visualized portions of the heart. Although rare, cardiac lymphomas should be considered in the differential diagnosis of patients with identified cardiac masses. As the initial presentation is usually composed by non-specific symptoms, a detailed clinical history can identify certain constitutional symptoms and a thorough physical exam can lead to the suspicion of cardiac structural pathology prompting the need for the appropriate chest imaging. Further characterization may need TTE or TEE which are more sensitive and specific due to the tri-dimensional and temporal quality of the imaging. Appropriate biopsy with pathology and molecular studies are of utmost importance in making an accurate diagnosis in order to select the best management for this highly aggressive malignancy.
Collapse
Affiliation(s)
- Daniel Rosas
- Internal Medicine, Memorial Healthcare, Sunrise, USA
| | - Isaac Yepes
- Internal Medicine, Memorial Hospital West Healthcare System, Pembroke Pines, USA
| | - Jacqueline Tschanz
- Internal Medicine, Memorial Hospital West Healthcare System, Pembroke Pines, USA
| | - Minaba Wariboko
- Cardiology, Memorial Hospital West Healthcare System, Pembroke Pines, USA
| | - Jose D Sandoval-Sus
- Malignant Hematology & Cellular Therapy, Moffitt Cancer Center at Memorial Healthcare System, Pembroke Pines, USA
| |
Collapse
|
43
|
Epstein Barr Virus-associated Pediatric Neoplasms. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2020. [DOI: 10.5812/pedinfect.94371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Mechanistic Insights into Chemoresistance Mediated by Oncogenic Viruses in Lymphomas. Viruses 2019; 11:v11121161. [PMID: 31888174 PMCID: PMC6950054 DOI: 10.3390/v11121161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Viral lymphomagenesis induced by infection with oncogenic viruses, such as Kaposi’s sarcoma associated herpesvirus (KSHV), Epstein–Barr virus (EBV) and human T-cell leukemia virus (HTLV-1), represents a group of aggressive malignancies with a diverse range of pathological features. Combined chemotherapy remains the standard of care for these virus-associated lymphomas; however, frequent chemoresistance is a barrier to achieving successful long-term disease-free survival. There is increasing evidence that indicates virus-associated lymphomas display more resistance to cytotoxic chemotherapeutic agents than that observed in solid tumors. Although the tumor microenvironment and genetic changes, such as key oncogene mutations, are closely related to chemoresistance, some studies demonstrate that the components of oncogenic viruses themselves play pivotal roles in the multidrug chemoresistance of lymphoma cells. In this review, we summarize recent advances in the understanding of the mechanisms through which oncogenic viruses mediate lymphoma cell chemoresistance, with a particular focus on KSHV and EBV, two major oncogenic viruses. We also discuss the current challenges to overcome these obstacles in the treatment of virus-associated lymphomas.
Collapse
|
45
|
Williams AP, Stewart JE, Stafman LL, Aye JM, Mroczek-Musulman E, Ren C, Yoon K, Whelan K, Beierle EA. Corruption of neuroblastoma patient derived xenografts with human T cell lymphoma. J Pediatr Surg 2019; 54:2117-2119. [PMID: 30391152 PMCID: PMC6476711 DOI: 10.1016/j.jpedsurg.2018.10.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patient derived xenografts (PDXs) provide a unique opportunity for investigators to study tumor cell activity, response to therapeutics, and resistance patterns without exposing the human patient to experimental compounds, and thereby play a crucial role in pre-clinical evaluation of new therapies. It has been reported that PDXs may undergo a transformation to lymphoma, most commonly associated with Epstein Barr virus (EBV). If the character of a xenograft becomes compromised and remains undetected, it could have a detrimental impact on the research community as a whole. Our lab has established a number of pediatric solid tumor PDXs which accurately recapitulate the human tumors following several passages. One particular neuroblastoma PDX was noted to grow quickly and with an unusual phenotype, leading us to hypothesize that this PDX had undergone a transformation. METHODS The PDX in question was investigated with histology, immunohistochemistry (IHC), EBER in situ hybridization, and PCR to determine its identity. RESULTS Histology on the tumor revealed a small, round blue cell tumor similar to the original neuroblastoma from which it was derived. IHC staining showed that the tumor was composed of lymphocytes that were CD3 positive, <5% CD4 positive, and CD20 negative. The cells were Epstein Barr virus negative. PCR demonstrated that the tumor was human and not murine in origin. CONCLUSION These findings indicate that a human T Cell lymphoma developed in place of this neuroblastoma PDX. Changes in PDX identity such as this one will significantly impact studies utilizing pediatric PDXs and the mechanism by which this occurred warrants further investigation.
Collapse
Affiliation(s)
- Adele P Williams
- University of Alabama at Birmingham, Department of Surgery, Birmingham, AL
| | - Jerry E. Stewart
- University of Alabama at Birmingham, Department of Surgery, Birmingham, AL
| | - Laura L. Stafman
- University of Alabama at Birmingham, Department of Surgery, Birmingham, AL
| | - Jamie M Aye
- University of Alabama at Birmingham, Department of Hematology Oncology, Birmingham, AL
| | | | - Changchun Ren
- University of Alabama at Birmingham, Department of Neonatology, Birmingham, AL
| | - Karina Yoon
- University of Alabama at Birmingham, Department of Pharmacology, Birmingham, AL
| | - Kimberly Whelan
- University of Alabama at Birmingham, Department of Hematology Oncology, Birmingham, AL
| | | |
Collapse
|
46
|
Wang Y, Peng Y, Zhang B, Zhang X, Li H, Wilson AJ, Mineev KS, Wang X. Targeting trimeric transmembrane domain 5 of oncogenic latent membrane protein 1 using a computationally designed peptide. Chem Sci 2019; 10:7584-7590. [PMID: 31588309 PMCID: PMC6761861 DOI: 10.1039/c9sc02474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
A peptide inhibitor was designed in silico and validated experimentally to disrupt homotrimeric transmembrane helix assembly.
Protein–protein interactions are involved in diverse biological processes. These interactions are therefore vital targets for drug development. However, the design of peptide modulators targeting membrane-based protein–protein interactions is a challenging goal owing to the lack of experimentally-determined structures and efficient protocols to probe their functions. Here we employed rational peptide design and molecular dynamics simulations to design a membrane-insertable peptide that disrupts the strong trimeric self-association of the fifth transmembrane domain (TMD5) of the oncogenic Epstein–Barr virus (EBV) latent membrane protein-1 (LMP-1). The designed anti-TMD5 peptide formed 1 : 2 heterotrimers with TMD5 in micelles and inhibited TMD5 oligomerization in bacterial membranes. Moreover, the designed peptide inhibited LMP-1 homotrimerization based on NF-κB activity in EVB positive lymphoma cells. The results indicated that the designed anti-TMD5 peptide may represent a promising starting point for elaboration of anti-EBV therapeutics via inhibition of LMP-1 oligomerization. To the best of our knowledge, this represents the first example of disrupting homotrimeric transmembrane helices using a designed peptide inhibitor.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510060 , China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals , Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences , Changchun , Jilin 130112 , China
| | - Bo Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaozheng Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Hongyuan Li
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK.,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , 117997 , Russian
| | - Xiaohui Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,Department of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
47
|
Kalisz K, Alessandrino F, Beck R, Smith D, Kikano E, Ramaiya NH, Tirumani SH. An update on Burkitt lymphoma: a review of pathogenesis and multimodality imaging assessment of disease presentation, treatment response, and recurrence. Insights Imaging 2019; 10:56. [PMID: 31115699 PMCID: PMC6529494 DOI: 10.1186/s13244-019-0733-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Burkitt lymphoma (BL) is a highly aggressive, rapidly growing B cell non-Hodgkin lymphoma, which manifests in several subtypes including sporadic, endemic, and immunodeficiency-associated forms. Pathologically, BL is classically characterized by translocations of chromosomes 8 and 14 resulting in upregulation of the c-myc protein transcription factor with upregulation of cell proliferation. BL affects nearly every organ system, most commonly the abdomen and pelvis in the sporadic form. Imaging using a multimodality approach plays a crucial role in the management of BL from diagnosis, staging, and evaluation of treatment response to therapy-related complications with ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography playing roles. In this article, we review the pathobiology and classification of BL, illustrate a multimodality imaging approach in evaluating common and uncommon sites of involvement within the trunk and head and neck, and review common therapies and treatment-related complications.
Collapse
Affiliation(s)
- Kevin Kalisz
- Department of Radiology, Duke University, Durham, NC, USA
| | - Francesco Alessandrino
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA. .,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rose Beck
- Department of Pathology, UH Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel Smith
- Department of Radiology, UH Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Elias Kikano
- Department of Radiology, UH Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Nikhil H Ramaiya
- Department of Radiology, UH Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sree Harsha Tirumani
- Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, UH Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
48
|
Mapekula L, Ramorola BR, Goolam Hoosen T, Mowla S. The interplay between viruses & host microRNAs in cancer - An emerging role for HIV in oncogenesis. Crit Rev Oncol Hematol 2019; 137:108-114. [PMID: 31014506 DOI: 10.1016/j.critrevonc.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Human cancers attributed to viral infections represent a growing proportion of the global cancer burden, with these types of cancers being the leading cause of morbidity and mortality in some regions. The concept that viruses play a causal role in human cancers is not new, but the mechanism thereof, while well described for some viruses, still remains elusive and complex for others, especially in the case of HIV-associated B-cell derived cancers. In the last decade, compelling evidence has demonstrated that cellular microRNAs are deregulated in cancers, with an increasing number of studies identifying microRNAs as potential biomarkers for human cancer diagnosis, prognosis and therapeutic targets or tools. Recent research demonstrates that viruses and viral components manipulate host microRNA expressions to their advantage, and the emerging picture suggests that the virus/microRNA pathway interaction is defined by a plethora of complex mechanisms. In this review, we highlight the current knowledge on virus/microRNA pathway interactions in the context of cancer and provide new insights on HIV as an oncogenic virus.
Collapse
Affiliation(s)
- L Mapekula
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - B R Ramorola
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - T Goolam Hoosen
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - S Mowla
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
49
|
Turro J, Singh P, Sarao MS, Tadepalli S, Cheriyath P. Adult Burkitt lymphoma- an Island between lymphomas and leukemias. J Community Hosp Intern Med Perspect 2019; 9:25-28. [PMID: 30788071 PMCID: PMC6374956 DOI: 10.1080/20009666.2019.1574545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Background: Burkitt lymphoma is a rare, aggressive and rapidly fatal, B-cell non-Hodgkin’s lymphoma. It has an incidence of 0.4/100,000 age-adjusted to the USA standard population. Here we describe the case of a 77-year-old patient who presented with Burkitt lymphoma. Case: A 77-year-old male presented to his primary care physician with fatigue and listlessness and was referred to the hospital with a white blood cell count (WBC)-23.7 K/uL (neutrophils 37%, lymphocyte 11%, blasts 9%) and platelets-19 K/uL. During his stay in the hospital, repeat investigations revealed WBC-29.9 K/uL (neutrophils 22%, lymphocyte 27%, atypical lymphocytes 5%, blasts 20%) and platelets-10 K/uL with no evidence of mucosal bleeds, neck or abdominal masses or generalized lymphadenopathy. Bone marrow aspirate revealed the presence of MYC rearrangements (8q24) on flow cytometry and fluorescent in-situ hybridization (FISH), indicative but not typical of BL. He was transfused with platelets due to a rapidly deteriorating platelet count and episodes of epistaxis. He was discharged after four days with a plan of outpatient chemotherapy over a period of 4 months. An Ommaya reservoir was placed in the right ventricle for intrathecal chemotherapy. After four months of chemotherapy, computerized tomography of the chest, abdomen, and pelvis confirmed remission. A magnetic resonance imaging of the brain a month after completion of chemotherapy revealed metastatic lymphoma in the temporal, parietal and occipital lobes. He was discharged to hospice for palliative care. Conclusion: Unconventional presentations, as seen in our case of a leukemia-like picture in the absence of a bulky disease, are the quagmire that might delay aggressive management and result in poorer outcomes.
Collapse
Affiliation(s)
- James Turro
- Department of Internal Medicine, Hackensack Meridian Health- Ocean Medical Centre, Brick, NJ, USA
| | - Pratiksha Singh
- Department of Internal Medicine, Hackensack Meridian Health- Ocean Medical Centre, Brick, NJ, USA
| | - Manbeer Singh Sarao
- Department of Internal Medicine, Hackensack Meridian Health- Ocean Medical Centre, Brick, NJ, USA
| | - Satish Tadepalli
- Department of Internal Medicine, Hackensack Meridian Health- Ocean Medical Centre, Brick, NJ, USA
| | - Pramil Cheriyath
- Department of Internal Medicine, Hackensack Meridian Health- Ocean Medical Centre, Brick, NJ, USA
| |
Collapse
|
50
|
Kumarasinghe N, Moss WN. Analysis of a structured intronic region of the LMP2 pre-mRNA from EBV reveals associations with human regulatory proteins and nuclear actin. BMC Res Notes 2019; 12:33. [PMID: 30658689 PMCID: PMC6339298 DOI: 10.1186/s13104-019-4070-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023] Open
Abstract
Objective The pre-mRNA of the Epstein–Barr virus LMP2 (latent membrane protein 2) has a region of unusual RNA structure that partially spans two consecutive exons and the entire intervening intron; suggesting RNA folding might affect splicing—particularly via interactions with human regulatory proteins. To better understand the roles of protein associations with this structured intronic region, we undertook a combined bioinformatics (motif searching) and experimental analysis (biotin pulldowns and RNA immunoprecipitations) of protein binding. Result Characterization of the ribonucleoprotein composition of this region revealed several human proteins as interactors: regulatory proteins hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1), hnRNP U, HuR (human antigen R), and PSF (polypyrimidine tract-binding protein-associated splicing factor), as well as, unexpectedly, the cytoskeletal protein actin. Treatment of EBV-positive cells with drugs that alter actin polymerization specifically showed marked effects on splicing in this region. This suggests a potentially novel role for nuclear actin in regulation of viral RNA splicing. Electronic supplementary material The online version of this article (10.1186/s13104-019-4070-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nuwanthika Kumarasinghe
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA.
| |
Collapse
|