1
|
Soliman MM, El-Shatoury EH, El-Araby MMI. Antibacterial and anticancer activities of three novel lectin-conjugated chitosan nanoparticles. Appl Microbiol Biotechnol 2024; 108:524. [PMID: 39601890 PMCID: PMC11602803 DOI: 10.1007/s00253-024-13344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
To the best of our knowledge, this is the first attempt to synthesize, characterize, and determine the antibacterial and anticancer effects of three novel conjugates of plant lectins: phytohemagglutinin lectin (PHA), soybean agglutinin (SBA), and peanut agglutinin (PNA) with chitosan nanoparticles (CHNPs). The lectin concentration within prepared conjugates was estimated using nannodrop, and the highest concentration was 0.96 mg/ml in PHA-CHNPs. SDS-PAGE showed the molecular weights of conjugates ranged from 26.9 to 63.9 kDa. UV spectrophotometer recorded the absorbance peaks of conjugates somewhere between 200 and 230 nm. Hemagglutination analysis verified the presence of actively binding lectins. The three conjugates showed strong antibacterial activity against Gram-positive and Gram-negative bacteria compared to pure lectins and chitosan nanoparticles. The highest inhibition zone was 55.67 ± 4.04, 38.67 ± 5.51, and 37.33 ± 2.52 for PHA-CHNPs against Enterococcus faecalis, Salmonella typhimurium, and Shigella sonnei, respectively, followed by 36.3 ± 0.15 for PNA-CHNPs against Staphylococcus aureus. The lowest MIC was 1.5 µg/ml for PHA-CHNPs against Enterococcus faecalis, followed by 12 µg/ml for PNA-CHNPs and SBA-CHNPs against Salmonella typhimurium and Enterococcus faecalis, respectively. TEM microphotographs show the conjugation pattern between lectins and chitosan nanoparticles and the morphological differences between control, treated bacteria, and cancer cells. Moreover, 100 μg/ml of PHA-CHNPs affect tongue carcinoma (HNO-97), colorectal cancer (HT-29), and human melanoma (A375) cancer cell lines, reducing cell viability by 38.78 ± 1.85%, 49.88 ± 1.11%, and 66.92 ± 3.60%, respectively. This study develops three innovative conjugates of lectin chitosan nanoparticles that need to be tested as potential antibacterial and anticancer agents for medical and cancer therapy applications. KEY POINTS: • Lectin-conjugated chitosan nanoparticles exhibit antibacterial activity. • All conjugates are safe for oral epithelial cells and human skin fibroblasts. • The PHA-CHNP conjugates have anticancer activity against HNO-97, HT-29, and A375.
Collapse
|
2
|
Bao X, Yu H, Chen Z, Chen W, Xiao Y, Wu X, Li Z. C1GALT1-mediated O-glycan T antigen increase enhances the migration and invasion ability of gastric cancer cells. Biochem Biophys Res Commun 2024; 734:150641. [PMID: 39243676 DOI: 10.1016/j.bbrc.2024.150641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Gastric cancer (GC) is one of the most aggressive and lethal diseases in the world. Cancer metastasis is the mainly leading cause of death in GC patients. Aberrant Protein O-glycosylation is closely associated with tumor occurrence and metastasis. However, the effect of aberrant O-glycosylation on the progress of GC is not completely clear. This study aimed to investigate the biological function and its underlying effects mechanism of core 1 β 1, 3-galactosyltransferase 1 (C1GALT1) C1GALT1-mediated O-glycan T antigen on GC progress. We conducted data mining analysis that C1GALT1 was obviously up-regulated in GC tissues than in para-carcinoma tissues. Elevated expression of C1GALT1 was closely associated with advanced TNM stage, lymph node metastasis, histological grade, and poor overall survival. In addition, C1GALT1 overexpression could promote GC cell proliferation, migration, and invasion, which was due to C1GALT1 overexpression-mediated O-glycan T antigen increase. Moreover, MUC1 was predicted to be a new downstream target of C1GALT1, which may be abnormally O-glycosylated by C1GALT1 thereby activating the cell adhesion signaling pathway. In conclusion, our studies proved that C1GALT1-mediated O-glycosylation increase could promote the metastasis of gastric cancer cells. These discoveries hint that C1GALT1 may serve as a novel therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Xiaojuan Bao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhuo Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yaqing Xiao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xin Wu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
3
|
Liu J, Zhou Z, Bo Y, Yan Q, Su X. Harnessing CRISPR/Cas12a Activity and DNA-Based Ultrabright FluoroCube for In Situ Imaging of Metabolically Labeled Cell Membrane Glycoproteins. NANO LETTERS 2024; 24:14236-14243. [PMID: 39470128 DOI: 10.1021/acs.nanolett.4c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Fluorescence imaging of cell membrane glycoproteins based on metabolic labeling faces challenges including the sensitivity and spatial specificity and the use of a high concentration of unnatural sugars. To overcome these limitations, we developed a method for in situ imaging of cell membrane glycoproteins by operating Cas12a activity, and employing the ultrabright DNA nanostructure, FluoroCube (FC), as a signal reporter. Following Cas12a activation, we observed stable and intense fluorescence signals within 15 min. The combination of bright FC and Cas12a's amplification capability allows for effective imaging with only 5 μM of unnatural sugars and a brief 24-h incubation. Computational modeling demonstrates that Cas12a specifically cleaves FC in the 11-17 nm range of the glycosylation site, enabling spatially precise imaging. This approach successfully enabled fluorescence imaging of glycoproteins across various cell lines and the detection of changes in glycoprotein levels induced by drugs.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyan Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Bo
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Zhao H, Zhou Y, Gu Q, Lin Y, Lan M. An explore method for quick screening biomarkers based on effective enrichment capacity and data mining. J Chromatogr A 2024; 1736:465413. [PMID: 39368193 DOI: 10.1016/j.chroma.2024.465413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Protein glycosylation acts as a crucial role in regulating protein function and maintaining cellular homeostasis. Efficient peptide enrichment can be utilized to effectively solve the inherent challenges of protein glycosylation analysis to search unknown cancer biomarkers. In this research, a low dimensional porous hydrophilic nanosheets with a multi-level porous structure (Co-MOF-SiO2@HA) was synthetized via an easy one-pot method for the efficient enrichment of the N-glycopeptides in the digests of complex biosamples. The synthetized nanosheets Co-MOF-SiO2@HA demonstrated excellent enriching performances including a high enrichment capacity (300 mg g-1 calculated), a spectacular selectivity (IgG digests and BSA digests at the molar ratio of 1/1200), and an excellent spatial confinement ability (IgG digests, IgG and BSA at the molar ratio of 1/1000/1000). As an explore result, after the enrichment of human colorectal cancer tissue and human healthy tissue by the nanosheets, several proteins related to cancers and one protein directly related to well-known human colorectal cancer were identified by detecting the corresponding glycopeptides. It presented the potential value of the feasibility of this analysis mode by nanosheets Co-MOF-SiO2@HA in proteomic analysis.
Collapse
Affiliation(s)
- Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yifan Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qinying Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yunfan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
5
|
Wei C, Zhang C, Zhou Y, Wang J, Jin Y. Progress of Exosomal LncRNAs in Pancreatic Cancer. Int J Mol Sci 2024; 25:8665. [PMID: 39201351 PMCID: PMC11354448 DOI: 10.3390/ijms25168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a prevalent malignant tumor with rising medication resistance and mortality. Due to a dearth of specific and trustworthy biomarkers and therapeutic targets, pancreatic cancer early detection and treatment are still not at their best. Exosomal LncRNAs have been found to be plentiful and persistent within exosomes, and they are capable of functioning whether the exosomes are traveling to close or distant cells. Furthermore, increasing evidence suggests that exosomal LncRNA, identified as an oncogene or tumor suppressor-control the growth, metastasis, and susceptibility of pancreatic cancer to chemotherapy and radiation therapy. Promising prospects for both antitumor targets and diagnostic biomarkers are exosomal LncRNAs. The primary features of exosomal LncRNAs, their biological roles in the onset and progression of pancreatic cancer, and their potential as therapeutic targets and diagnostic molecular markers are outlined in this review.
Collapse
Affiliation(s)
| | | | | | | | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Dai XF, Yang YX, Yang BZ. Glycosylation editing: an innovative therapeutic opportunity in precision oncology. Mol Cell Biochem 2024:10.1007/s11010-024-05033-w. [PMID: 38861100 DOI: 10.1007/s11010-024-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Cancer is still one of the most arduous challenges in the human society, even though humans have found many ways to try to conquer it. With our incremental understandings on the impact of sugar on human health, the clinical relevance of glycosylation has attracted our attention. The fact that altered glycosylation profiles reflect and define different health statuses provide novel opportunities for cancer diagnosis and therapeutics. By reviewing the mechanisms and critical enzymes involved in protein, lipid and glycosylation, as well as current use of glycosylation for cancer diagnosis and therapeutics, we identify the pivotal connection between glycosylation and cellular redox status and, correspondingly, propose the use of redox modulatory tools such as cold atmospheric plasma (CAP) in cancer control via glycosylation editing. This paper interrogates the clinical relevance of glycosylation on cancer and has the promise to provide new ideas for laboratory practice of cold atmospheric plasma (CAP) and precision oncology therapy.
Collapse
Affiliation(s)
- Xiao-Feng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yi-Xuan Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Bo-Zhi Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
7
|
Wang D, Madunić K, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. (Sialyl)Lewis Antigen Expression on Glycosphingolipids, N-, and O-Glycans in Colorectal Cancer Cell Lines is Linked to a Colon-Like Differentiation Program. Mol Cell Proteomics 2024; 23:100776. [PMID: 38670309 PMCID: PMC11128521 DOI: 10.1016/j.mcpro.2024.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Alterations in the glycomic profile are a hallmark of cancer, including colorectal cancer (CRC). While, the glycosylation of glycoproteins and glycolipids has been widely studied for CRC cell lines and tissues, a comprehensive overview of CRC glycomics is still lacking due to the usage of different samples and analytical methods. In this study, we compared glycosylation features of N-, O-glycans, and glycosphingolipid glycans for a set of 22 CRC cell lines, all measured by porous graphitized carbon nano-liquid chromatography-tandem mass spectrometry. An overall, high abundance of (sialyl)Lewis antigens for colon-like cell lines was found, while undifferentiated cell lines showed high expression of H blood group antigens and α2-3/6 sialylation. Moreover, significant associations of glycosylation features were found between the three classes of glycans, such as (sialyl)Lewis and H blood group antigens. Integration of the datasets with transcriptomics data revealed positive correlations between (sialyl)Lewis antigens, the corresponding glycosyltransferase FUT3 and transcription factors CDX1, ETS, HNF1/4A, MECOM, and MYB. This indicates a possible role of these transcription factors in the upregulation of (sialyl)Lewis antigens, particularly on glycosphingolipid glycans, via FUT3/4 expression in colon-like cell lines. In conclusion, our study provides insights into the possible regulation of glycans in CRC and can serve as a guide for the development of diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Di Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Guinevere S M Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Division of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
9
|
Arora K, Sherilraj PM, Abutwaibe KA, Dhruw B, Mudavath SL. Exploring glycans as vital biological macromolecules: A comprehensive review of advancements in biomedical frontiers. Int J Biol Macromol 2024; 268:131511. [PMID: 38615867 DOI: 10.1016/j.ijbiomac.2024.131511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricate landscape of glycans and glycoconjugates, unraveling their multifaceted roles across diverse biological dimensions. From influencing fundamental cellular processes such as signaling, recognition, and adhesion to exerting profound effects at the molecular and genetic levels, these complex carbohydrate structures emerge as linchpins in cellular functions and interactions. The structural diversity of glycoconjugates, which can be specifically classified into glycoproteins, glycolipids, and proteoglycans, underscores their importance in shaping the architecture of cells. Beyond their structural roles, these molecules also play key functions in facilitating cellular communication and modulating recognition mechanisms. Further, glycans and glycoconjugates prove invaluable as biomarkers in disease diagnostics, particularly in cancer, where aberrant glycosylation patterns offer critical diagnostic cues. Furthermore, the review explores their promising therapeutic applications, ranging from the development of glycan-based nanomaterials for precise drug delivery to innovative interventions in cancer treatment. This review endeavors to comprehensively explore the intricate functions of glycans and glycoconjugates, with the primary goal of offering valuable insights into their extensive implications in both health and disease. Encompassing a broad spectrum of biological processes, the focus of the review aims to provide a comprehensive understanding of the significant roles played by glycans and glycoconjugates.
Collapse
Affiliation(s)
- Kanika Arora
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - P M Sherilraj
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - K A Abutwaibe
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Bharti Dhruw
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India; Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad 500046, Telangana, India.
| |
Collapse
|
10
|
Ma Y, Guo W, Mou Q, Shao X, Lyu M, Garcia V, Kong L, Lewis W, Ward C, Yang Z, Pan X, Yi SS, Lu Y. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol 2024; 42:608-616. [PMID: 37217750 PMCID: PMC10663388 DOI: 10.1038/s41587-023-01801-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Little is known about the biological roles of glycosylated RNAs (glycoRNAs), a recently discovered class of glycosylated molecules, because of a lack of visualization methods. We report sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA) to visualize glycoRNAs in single cells with high sensitivity and selectivity. The signal output of ARPLA occurs only when dual recognition of a glycan and an RNA triggers in situ ligation, followed by rolling circle amplification of a complementary DNA, which generates a fluorescent signal by binding fluorophore-labeled oligonucleotides. Using ARPLA, we detect spatial distributions of glycoRNAs on the cell surface and their colocalization with lipid rafts as well as the intracellular trafficking of glycoRNAs through SNARE protein-mediated secretory exocytosis. Studies in breast cell lines suggest that surface glycoRNA is inversely associated with tumor malignancy and metastasis. Investigation of the relationship between glycoRNAs and monocyte-endothelial cell interactions suggests that glycoRNAs may mediate cell-cell interactions during the immune response.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Mingkuan Lyu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Valeria Garcia
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Carson Ward
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S Stephen Yi
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
11
|
dos Santos SN, Junior DSG, Pereira JPM, Iadocicco NM, Silva AH, do Nascimento T, Dias LAP, de Oliveira Silva FR, Ricci-Junior E, Santos-Oliveira R, Bernardes ES. Development of glycan-targeted nanoparticles as a novel therapeutic opportunity for gastric cancer treatment. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
AbstractChemotherapy resistance remains a major cause of therapeutic failure in gastric cancer. The combination of genetic material such as interference RNAs (iRNAs) to silence cancer-associated genes with chemotherapeutics has become a novel approach for cancer treatment. However, finding the right target genes and developing non-toxic, highly selective nanocarrier systems remains a challenge. Here we developed a novel sialyl-Tn-targeted polylactic acid—didodecyldimethylammonium bromide nanoparticle (PLA-DDAB) nanoparticles (NPs) loaded with dsRNA targeting ST6GalNac-I and/or galectin-3 genes. Using single photon emission computed tomography (SPECT), we have demonstrated that 99mtechnetium radiolabeled sialyl-Tn-targeted nanoparticles can reach the tumor site and downregulate ST6GalNAc-I and galectin-3 RNA expression levels when injected intravenously. Furthermore, using an in vivo gastric tumor model, these nanoparticles increased the effectiveness of 5-FU in reducing tumor growth. Our findings indicate that cancer-associated glycan-targeted NPs loaded with dsRNA targeting ST6GalNAc-I and/or galectin-3 in combination with standard chemotherapy, have the potential to become a novel therapeutic tool for gastric cancer.
Collapse
|
12
|
Hu H, He B, He M, Tao H, Li B. A glycosylation-related signature predicts survival in pancreatic cancer. Aging (Albany NY) 2023; 15:13710-13737. [PMID: 38048216 PMCID: PMC10756102 DOI: 10.18632/aging.205258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Tumor initiation and progression are closely associated with glycosylation. However, glycosylated molecules have not been the subject of extensive studies as prognostic markers for pancreatic cancer. The objectives of this study were to identify glycosylation-related genes in pancreatic cancer and use them to construct reliable prognostic models. MATERIALS AND METHODS The Cancer Genome Atlas and Gene Expression Omnibus databases were used to assess the differential expression of glycosylation-related genes; four clusters were identified based on consistent clustering analysis. Kaplan-Meier analyses identified three glycosylation-related genes associated with overall survival. LASSO analysis was then performed on The Cancer Genome Atlas and International Cancer Genome Consortium databases to identify glycosylation-related signatures. We identified 12 GRGs differently expressed in pancreatic cancer and selected three genes (SEL1L, TUBA1C, and SDC1) to build a prognostic model. Thereafter, patients were divided into high and low-risk groups. Eventually, we performed Quantitative real-time PCR (qRT-PCR) to validate the signature. RESULTS Clinical outcomes were significantly poorer in the high-risk group than in the low-risk group. There were also significant correlations between the high-risk group and several risk factors, including no-smoking history, drinking history, radiotherapy history, and lower tumor grade. Furthermore, the high-risk group had a higher proportion of immune cells. Eventually, three glycosylation-related genes were validated in human PC cell lines. CONCLUSION This study identified the glycosylation-related signature for pancreatic cancer. It is an effective predictor of survival and can guide treatment decisions.
Collapse
Affiliation(s)
- Huidong Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingsheng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Mingang He
- Department of Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hengmin Tao
- Department of Head and Neck Radiotherapy, Shandong Provincial ENT Hospital, Shandong University, Jinan 250117, China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
13
|
Kumarasamy G, Mohd Salim NH, Mohd Afandi NS, Hazlami Habib MA, Mat Amin ND, Ismail MN, Musa M. Glycoproteomics-based liquid biopsy: translational outlook for colorectal cancer clinical management in Southeast Asia. Future Oncol 2023; 19:2313-2332. [PMID: 37937446 DOI: 10.2217/fon-2023-0704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Colorectal cancer (CRC) signifies a significant healthcare challenge in Southeast Asia. Despite advancements in screening approaches and treatment modalities, significant medical gaps remain, ranging from prevention and early diagnosis to determining targeted therapy and establishing personalized approaches to managing CRC. There is a need to expand more validated biomarkers in clinical practice. An advanced technique incorporating high-throughput mass spectrometry as a liquid biopsy to unravel a repertoire of glycoproteins and glycans would potentially drive the development of clinical tools for CRC screening, diagnosis and monitoring, and it can be further adapted to the existing standard-of-care procedure. Therefore this review offers a perspective on glycoproteomics-driven liquid biopsy and its potential integration into the clinical care of CRC in the southeast Asia region.
Collapse
Affiliation(s)
- Gaayathri Kumarasamy
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Nurul Hakimah Mohd Salim
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nur Syafiqah Mohd Afandi
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Nor Datiakma Mat Amin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
- Nature Products Division, Forest Research Institute Malaysia, Kepong, Selangor, 52109, Malaysia
| | - Mohd Nazri Ismail
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| |
Collapse
|
14
|
Qiu P, Chen X, Xiao C, Zhang M, Wang H, Wang C, Li D, Liu J, Chen Y, Liu L, Zhao Q. Emerging glyco-risk prediction model to forecast response to immune checkpoint inhibitors in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:6411-6434. [PMID: 36757621 DOI: 10.1007/s00432-023-04626-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Aberrant glycosylation is one of the most common post-translational modifications leading to heterogeneity in colorectal cancer (CRC). This study aims to construct a risk prediction model based on glycosyltransferase to forecast the response to immune checkpoint inhibitors in CRC patients. METHODS Based on the TCGA dataset and glycosyltransferase genes, the NMF algorithm and WGCNA were used to identify molecular subtypes and co-expressed genes, respectively. Lasso and multivariate COX regression were used to identify prognostic glycosyltransferase genes and construct a glyco-risk prediction model in CRC patients. Univariate and multivariate Cox regression, Kaplan-Meier, and ROC curves were applied to further verify the prognostic performance of the model in CRC patients in the training and validation sets. We compared the responsiveness of immunotherapy and chemotherapy between the two groups. In vitro experiments and clinical specimens verified the specific function of the key glycosyltransferase genes in CRC. RESULTS The CRC cohort was divided into two subtypes with prominent differences in survival based on the well-robust seven-gene glyco-risk prediction model (composed of ALG1L2, HAS1, PYGL, COLGALT2, B3GNT4, POFUT2, and GALNT7). The nomograms based on the risk model could predict the prognosis of CRC patients independently of other clinicopathologic characteristics. Our prediction model showed a better overall prediction performance than other models. Compared with the low-risk group, the high-risk CRC patients showed a lower immune infiltration state, but a higher TMB and a lower response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 therapy. Clinical specimen validation showed an obvious difference in the expression of seven glycosyltransferase genes between the low- and high-risk groups. Significant reduction in POFUT2 expression in high-risk groups was associated with reduced N-glycans production. CONCLUSION Our study constructed a robust glyco-risk prediction model that could provide direction for immunotherapy and chemotherapy in CRC patients, which could help clinicians make personalized treatment decisions.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
15
|
Wilczak M, Surman M, Przybyło M. Altered Glycosylation in Progression and Management of Bladder Cancer. Molecules 2023; 28:molecules28083436. [PMID: 37110670 PMCID: PMC10146225 DOI: 10.3390/molecules28083436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Bladder cancer (BC) is the 10th most common malignancy worldwide, with an estimated 573,000 new cases and 213,000 deaths in 2020. Available therapeutic approaches are still unable to reduce the incidence of BC metastasis and the high mortality rates of BC patients. Therefore, there is a need to deepen our understanding of the molecular mechanisms underlying BC progression to develop new diagnostic and therapeutic tools. One such mechanism is protein glycosylation. Numerous studies reported changes in glycan biosynthesis during neoplastic transformation, resulting in the appearance of the so-called tumor-associated carbohydrate antigens (TACAs) on the cell surface. TACAs affect a wide range of key biological processes, including tumor cell survival and proliferation, invasion and metastasis, induction of chronic inflammation, angiogenesis, immune evasion, and insensitivity to apoptosis. The purpose of this review is to summarize the current information on how altered glycosylation of bladder cancer cells promotes disease progression and to present the potential use of glycans for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
16
|
Kumari K, Kumar A, Manjur AT, Rakshit S. Bioactives Promiscuity of Mucin: Insight from Multi-Spectroscopic, Thermodynamic, and Molecular Dynamic Simulation Analyses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4589-4600. [PMID: 36917549 DOI: 10.1021/acs.langmuir.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mucosal drug delivery plays an increasing role in the clinical setting owing to mucin's advantageous biochemical and pharmacological properties. However, how this transport system recognizes different substrates remains unclear. In this study, we explore the mechanism of bioactive (quercetin and berberine) promiscuity of mucin using various spectroscopic techniques and molecular dynamics simulations. The UV-visible spectroscopy results and the decreased fluorescence intensity of mucin in the presence of the bioactive compounds via a static quenching mechanism confirmed ground-state complex formation between the bioactives and mucin. The binding constants (Kb) were evaluated at different temperatures to afford Kb values of ∼104 Lmol-1, demonstrating the moderate and reasonable affinity of the bioactives for mucin, yielding greater diffusion into the tissues. Thermodynamic analysis and molecular dynamics (MD) simulations demonstrate that mucin-bioactive complex formation occurs primarily because of electrostatic/ionic interactions, while hydrophobic interactions were also crucial in stabilizing the complex. Far-UV circular dichroism spectroscopy showed that bioactive binding induced secondary structural changes in mucin. Sitemap and MD simulation indicated the principal binding site of mucin for the bioactives. This study also provides insight into the bioactives promiscuity of mucin in the presence of a crowded environment, which is relevant to the biological activity of mucin in vivo. An in vitro drug release study revealed that crowding assisted drug release in an enhanced burst manner compared with that in a dilute buffer system. This work thus provides fresh insight into drug absorption and distribution in the native cellular environment and helps direct new drug design and use in pharmaceutical and pharmacological fields.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, MAHE, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Ahamad Tamanna Manjur
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
17
|
Borko V, Friganović T, Weitner T. Glycoproteomics meets thermodynamics: A calorimetric study of the effect of sialylation and synergistic anion on the binding of iron to human serum transferrin. J Inorg Biochem 2023; 244:112207. [PMID: 37054508 DOI: 10.1016/j.jinorgbio.2023.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.
Collapse
|
18
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
19
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
20
|
Roopashri AN, Divyashree M, Savitha J. High-sensitivity profiling of glycoproteins from ovarian cancer sera using lectin-affinity and LC-ESI-Q-TOF-MS/MS. CURRENT RESEARCH IN BIOTECHNOLOGY 2023. [DOI: 10.1016/j.crbiot.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
21
|
Establishment and validation of a plasma oncofetal chondroitin sulfated proteoglycan for pan-cancer detection. Nat Commun 2023; 14:645. [PMID: 36746966 PMCID: PMC9902466 DOI: 10.1038/s41467-023-36374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Various biomarkers targeting cell-free DNA (cfDNA) and circulating proteins have been tested for pan-cancer detection. Oncofetal chondroitin sulfate (ofCS), which distinctively modifies proteoglycans (PGs) of most cancer cells and binds specifically to the recombinant Plasmodium falciparum VAR2CSA proteins (rVAR2), is explored for its potential as a plasma biomarker in pan-cancer detection. To quantitate the plasma ofCS/ofCSPGs, we optimized an ELISA using different capture/detection pairs (rVAR2/anti-CD44, -SDC1, and -CSPG4) in a case-control study with six cancer types. We show that the plasma levels of ofCS/ofCSPGs are significantly higher in cancer patients (P values, 1.2 × 10-2 to 4.4 × 10-10). Validation studies are performed with two independent cohorts covering 11 malignant tumors. The individuals in the top decile of ofCS-CD44 have more than 27-fold cancer risk (OR = 27.8, 95%CI = 18.8-41.4, P = 2.72 × 10-62) compared with the lowest 20%. Moreover, the elevated plasma ofCS-CD44 could be detected at the early stage of pan-cancer with strong dose-dependent odds risk prediction.
Collapse
|
22
|
Expanding therapeutic strategies for intracellular bacterial infections through conjugates of apoptotic body-antimicrobial peptides. Drug Discov Today 2023; 28:103444. [PMID: 36400344 DOI: 10.1016/j.drudis.2022.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.
Collapse
|
23
|
Hořejší K, Jin C, Vaňková Z, Jirásko R, Strouhal O, Melichar B, Teneberg S, Holčapek M. Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues. J Biol Chem 2023; 299:102923. [PMID: 36681125 PMCID: PMC9976472 DOI: 10.1016/j.jbc.2023.102923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Karel Hořejší
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Department of Chemistry, České Budějovice, Czech Republic
| | - Chunsheng Jin
- University of Gothenburg, Sahlgrenska Academy, Proteomics Core Facility, Göteborg, Sweden
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic
| | - Ondřej Strouhal
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Palacký University Olomouc, Faculty of Medicine and Dentistryand University Hospital, Department of Oncology, Olomouc, Czech Republic
| | - Susann Teneberg
- University of Gothenburg, Sahlgrenska Academy, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Göteborg, Sweden.
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, , Pardubice, Czech Republic.
| |
Collapse
|
24
|
Zhou Y, Jönsson A, Sticker D, Zhou G, Yuan Z, Kutter JP, Emmer Å. Thiol-ene-based microfluidic chips for glycopeptide enrichment and online digestion of inflammation-related proteins osteopontin and immunoglobulin G. Anal Bioanal Chem 2023; 415:1173-1185. [PMID: 36607393 PMCID: PMC9817458 DOI: 10.1007/s00216-022-04498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Proteins, and more specifically glycoproteins, have been widely used as biomarkers, e.g., to monitor disease states. Bottom-up approaches based on mass spectrometry (MS) are techniques commonly utilized in glycoproteomics, involving protein digestion and glycopeptide enrichment. Here, a dual function polymeric thiol-ene-based microfluidic chip (TE microchip) was applied for the analysis of the proteins osteopontin (OPN) and immunoglobulin G (IgG), which have important roles in autoimmune diseases, in inflammatory diseases, and in coronavirus disease 2019 (COVID-19). TE microchips with larger internal surface features immobilized with trypsin were successfully utilized for OPN digestion, providing rapid and efficient digestion with a residence time of a few seconds. Furthermore, TE microchips surface-modified with ascorbic acid linker (TEA microchip) have been successfully utilized for IgG glycopeptide enrichment. To illustrate the use of the chips for more complex samples, they were applied to enrich IgG glycopeptides from human serum samples with antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dual functional TE microchips could provide high throughput for online protein digestion and glycopeptide enrichment, showing great promise for future extended applications in proteomics and the study of related diseases.
Collapse
Affiliation(s)
- Yuye Zhou
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Alexander Jönsson
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Drago Sticker
- Novo Nordisk A/S, Biophysics and Formulation, 2760, Måløv, Denmark
| | - Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Zishuo Yuan
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Åsa Emmer
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
25
|
Saha S, Pradhan N, B N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol 2023; 88:138-156. [PMID: 36584960 DOI: 10.1016/j.semcancer.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Cancer is not a hard-wired phenomenon but an evolutionary disease. From the onset of carcinogenesis, cancer cells continuously adapt and evolve to satiate their ever-growing proliferation demands. This results in the formation of multiple subtypes of cancer cells with different phenotypes, cellular compositions, and consequently displaying varying degrees of tumorigenic identity and function. This phenomenon is referred to as cancer plasticity, during which the cancer cells exist in a plethora of cellular states having distinct phenotypes. With the advent of modern technologies equipped with enhanced resolution and depth, for example, single-cell RNA-sequencing and advanced computational tools, unbiased cancer profiling at a single-cell resolution are leading the way in understanding cancer cell rewiring both spatially and temporally. In this review, the processes and mechanisms that give rise to cancer plasticity include both intrinsic genetic factors such as epigenetic changes, differential expression due to changes in DNA, RNA, or protein content within the cancer cell, as well as extrinsic environmental factors such as tissue perfusion, extracellular milieu are detailed and their influence on key cancer plasticity hallmarks such as epithelial-mesenchymal transition (EMT) and cancer cell stemness (CSCs) are discussed. Due to therapy evasion and drug resistance, tumor heterogeneity caused by cancer plasticity has major therapeutic ramifications. Hence, it is crucial to comprehend all the cellular and molecular mechanisms that control cellular plasticity. How this process evades therapy, and the therapeutic avenue of targeting cancer plasticity must be diligently investigated.
Collapse
Affiliation(s)
- Shubhraneel Saha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha B
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravikiran Mahadevappa
- Department of Biotechnology, School of Science, Gandhi Institute of Technology and Management, Deemed to be University, Bengaluru, Karnataka 562163, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
26
|
Fucosylated haptoglobin is a novel predictive marker of hepatocellular carcinoma after hepatitis C virus elimination in patients with advanced liver fibrosis. PLoS One 2022; 17:e0279416. [PMID: 36542633 PMCID: PMC9770342 DOI: 10.1371/journal.pone.0279416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with advanced fibrosis are at risk for developing hepatocellular carcinoma (HCC) even after hepatitis C virus (HCV) elimination. We previously reported that serum fucosylated haptoglobin (Fuc-Hp) levels increase as the disease progresses from chronic hepatitis to cirrhosis and then HCC. However, it remains unclear whether serum Fuc-Hp levels can stratify the risk of HCC occurrence after a sustained virological response (SVR) is achieved with direct-acting antivirals (DAAs) in patients with advanced liver fibrosis. METHODS Among 3,550 patients with chronic hepatitis C treated with DAAs at Osaka University Hospital and related hospitals, the stored sera of 140 patients who were diagnosed with F3 or F4 by liver biopsy before DAA treatment, achieved SVR, and had no history of HCC were available at both baseline and the end of treatment (EOT). We measured the Fuc-Hp levels in these samples. RESULTS The median serum levels of Fuc-Hp at EOT were significantly lower than those at baseline. During the 54.4-month follow-up period, 16 of 140 patients developed HCC. Multivariate Cox proportional hazards analysis revealed that high Fuc-Hp at EOT, high body mass index (BMI), and low albumin at EOT were independent risk factors for HCC occurrence. Patients with all three factors-high Fuc-Hp, high BMI, and low albumin-had a higher incidence of HCC than patients without these factors. CONCLUSIONS High serum Fuc-Hp levels at EOT were an independent risk factor for HCC occurrence after SVR. Combined with BMI and albumin, Fuc-Hp can stratify the risk of HCC occurrence among those with advanced fibrosis.
Collapse
|
27
|
Protein Glycosylation as Biomarkers in Gynecologic Cancers. Diagnostics (Basel) 2022; 12:diagnostics12123177. [PMID: 36553184 PMCID: PMC9777642 DOI: 10.3390/diagnostics12123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Gynecologic cancers are the leading cause of death in women. Endometrial, ovarian, and cervical cancer are the three main types of gynecologic cancers. Poor prognoses and high mortality rates of advanced-stage cancer are still challenges of all three types. Diagnostic tools for early cancer detection could be the cornerstone for further cancer treatment and prevention. Glycosylation plays a vital role in cell proliferation, adhesion, motility, and angiogenesis, and is aberrantly expressed in cancer cells. Alterations of glycosylation may represent promising biomarkers with potential diagnostic and monitoring applications, as well as disease prognosis. Many glycosylated biomarkers, including glycoprotein, glycan, and enzyme, were discovered and well-studied for application in gynecologic cancers. Some of them have been developed as targets for cancer treatment. The use of certain biomarkers for diagnostics and monitoring of gynecologic cancers has clinical advantages, as it is quantitative, comparable, convenient, and inexpensive. However, one of the single markers have sufficient sensitivity for the screening of gynecologic cancers. In this review, we introduced the details of glycosylation and the current application of glycosylated biomarkers in these three cancers. Moreover, we also reviewed the different roles of each biomarker in other cancers and aimed to understand these glycosylated biomarkers comprehensively.
Collapse
|
28
|
Rosato F, Pasupuleti R, Tomisch J, Meléndez AV, Kolanovic D, Makshakova ON, Wiltschi B, Römer W. A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death. J Transl Med 2022; 20:578. [PMID: 36494671 PMCID: PMC9733292 DOI: 10.1186/s12967-022-03794-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aberrant glycosylation patterns play a crucial role in the development of cancer cells as they promote tumor growth and aggressiveness. Lectins recognize carbohydrate antigens attached to proteins and lipids on cell surfaces and represent potential tools for application in cancer diagnostics and therapy. Among the emerging cancer therapies, immunotherapy has become a promising treatment modality for various hematological and solid malignancies. Here we present an approach to redirect the immune system into fighting cancer by targeting altered glycans at the surface of malignant cells. We developed a so-called "lectibody", a bispecific construct composed of a lectin linked to an antibody fragment. This lectibody is inspired by bispecific T cell engager (BiTEs) antibodies that recruit cytotoxic T lymphocytes (CTLs) while simultaneously binding to tumor-associated antigens (TAAs) on cancer cells. The tumor-related glycosphingolipid globotriaosylceramide (Gb3) represents the target of this proof-of-concept study. It is recognized with high selectivity by the B-subunit of the pathogen-derived Shiga toxin, presenting opportunities for clinical development. METHODS The lectibody was realized by conjugating an anti-CD3 single-chain antibody fragment to the B-subunit of Shiga toxin to target Gb3+ cancer cells. The reactive non-canonical amino acid azidolysine (AzK) was inserted at predefined single positions in both proteins. The azido groups were functionalized by bioorthogonal conjugation with individual linkers that facilitated selective coupling via an alternative bioorthogonal click chemistry reaction. In vitro cell-based assays were conducted to evaluate the antitumoral activity of the lectibody. CTLs, Burkitt´s lymphoma-derived cells and colorectal adenocarcinoma cell lines were screened in flow cytometry and cytotoxicity assays for activation and lysis, respectively. RESULTS This proof-of-concept study demonstrates that the lectibody activates T cells for their cytotoxic signaling, redirecting CTLs´ cytotoxicity in a highly selective manner and resulting in nearly complete tumor cell lysis-up to 93%-of Gb3+ tumor cells in vitro. CONCLUSIONS This research highlights the potential of lectins in targeting certain tumors, with an opportunity for new cancer treatments. When considering a combinatorial strategy, lectin-based platforms of this type offer the possibility to target glycan epitopes on tumor cells and boost the efficacy of current therapies, providing an additional strategy for tumor eradication and improving patient outcomes.
Collapse
Affiliation(s)
- Francesca Rosato
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rajeev Pasupuleti
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Jana Tomisch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Dajana Kolanovic
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Birgit Wiltschi
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Ma W, Zhu L, Song S, Liu B, Gu J. Identification and Validation of Glycosyltransferases Correlated with Cuproptosis as a Prognostic Model for Colon Adenocarcinoma. Cells 2022; 11:cells11233728. [PMID: 36496988 PMCID: PMC9737711 DOI: 10.3390/cells11233728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Cuproptosis is a newly defined programmed cell death pattern and is believed to play an important role in tumorigenesis and progression. In addition, many studies have shown that glycosylation modification is of vital importance in tumor progression. However, it remains unclear whether glycosyltransferases, the most critical enzymes involved in glycosylation modification, are associated with cuproptosis. In this study, we used bioinformatic methods to construct a signature of cuproptosis-related glycosyltransferases to predict the prognosis of colon adenocarcinoma patients. We found that cuproptosis was highly correlated with four glycosyltransferases in COAD, and our model predicted the prognosis of COAD patients. Further analysis of related functions revealed the possibility that cuproptosis-related glycosyltransferase Exostosin-like 2 (EXTL2) participated in tumor immunity.
Collapse
Affiliation(s)
| | | | | | - Bo Liu
- Correspondence: (S.S.); (B.L.)
| | | |
Collapse
|
30
|
Lectin-Based Study Reveals the Presence of Disease-Relevant Glycoepitopes in Bladder Cancer Cells and Ectosomes. Int J Mol Sci 2022; 23:ijms232214368. [PMID: 36430846 PMCID: PMC9699364 DOI: 10.3390/ijms232214368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Bladder cancer is a malignancy that remains a therapeutic challenge and requires the identification of new biomarkers and mechanisms of progression. Several studies showed that extracellular vesicles promote angiogenesis, migration and metastasis, and inhibit apoptosis in bladder cancer. This effect may depend on their glycosylation status. Thus, the aim of this study was to compare glycosylation profiles of T-24 urothelial bladder cancer cells, HCV-29 normal ureter epithelial cells, and ectosomes released by both cell lines using lectin blotting and flow cytometry. Ectosomes displayed distinct total and surface glycosylation profiles with abundance of β-1,6-branched glycans and sialilated structures. Then, it was investigated whether the glycosylation status of the T-24 and HCV-29 cells is responsible for the effect exerted by ectosomes on the proliferation and migration of recipient cells. Stronger proproliferative and promigratory activity of T-24-derived ectosomes was observed in comparison to ectosomes from HCV-29 cells. When ectosomes were isolated from DMJ-treated cells, the aforementioned effects were diminished, suggesting that glycans carried by ectosomes were involved in modulation of recipient cell function. HCV-29- and T-24-derived ectosomes also increased the viability and motility of endothelial HUVEC cells and Hs27 fibroblasts. This supports the hypothesis that ectosomes can modulate the function of various cells present in the tumor microenvironment.
Collapse
|
31
|
Huang J, Li M, Mei B, Li J, Zhu Y, Guo Q, Huang J, Zhang G. Whole-cell tumor vaccines desialylated to uncover tumor antigenic Gal/GalNAc epitopes elicit anti-tumor immunity. J Transl Med 2022; 20:496. [PMID: 36316782 PMCID: PMC9620617 DOI: 10.1186/s12967-022-03714-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aberrant sialoglycans on the surface of tumor cells shield potential tumor antigen epitopes, escape recognition, and suppress activation of immunocytes. α2,3/α2,6Gal- and α2,6GalNAc (Gal/GalNAc)-linked sialic acid residues of sialoglycans could affect macrophage galactose-type lectins (MGL) mediated-antigen uptake and presentation and promote sialic acid-binding immunoglobulin-like lectins (Siglecs) mediated-immunosuppression. Desialylating sialoglycans on tumor cells could present tumor antigens with Gal/GalNAc residues and overcome glyco-immune checkpoints. Thus, we explored whether vaccination with desialylated whole-cell tumor vaccines (DWCTVs) triggers anti-tumor immunity in ovarian cancer (OC). METHODS Sialic acid (Sia) and Gal/GalNAc residues on OC A2780, OVCAR3, and ID8 cells treated with α2-3 neuraminidase (α2-3NA) and α2-6NA, and Sigec-9 or Siglec-E and MGL on DCs pulsed with desialylated OC cells were identified using flow cytometry (FCM); RT-qPCR determined IFNG expression of T cells, TRBV was sequenced using Sanger sequencing and cytotoxicity of αβ T cells was measured with LDH assay; Anti-tumor immunity in vivo was validated via vaccination with desialylated whole-cell ID8 vaccine (ID8 DWCTVs). RESULTS Gal/GalNAc but not Sia residues were significantly increased in the desialylated OC cells. α2-3NA-modified DWCTV increased MGL but decreased Siglec-9 or Siglec E expression on DCs. MGLbright/Siglec-9dim DCs significantly up-regulated IFNG expression and CD4/CD8 ratio of T cells and diversified the TCR repertoire of αβ T-cells that showed enhanced cytotoxic activity. Vaccination with α2-3NA-modified ID8 DWCTVs increased MGLbright/Siglec-Edim DCs in draining lymph nodes, limited tumor growth, and extended survival in tumor-challenged mice. CONCLUSION Desialylated tumor cell vaccine could promote anti-tumor immunity and provide a strategy for OC immunotherapy in a clinical setting.
Collapse
Affiliation(s)
- Jianmei Huang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Meiying Li
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Bingjie Mei
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junyang Li
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhu
- grid.54549.390000 0004 0369 4060Department of Ultrasound, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiaoshan Guo
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Jianming Huang
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China ,grid.54549.390000 0004 0369 4060Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
32
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
33
|
Quirino MWL, Albuquerque APB, De Souza MFD, Da Silva Filho AF, Martins MR, Da Rocha Pitta MG, Pereira MC, De Melo Rêgo MJB. alpha2,3 sialic acid processing enzymes expression in gastric cancer tissues reveals that ST3Gal3 but not Neu3 are associated with Lauren's classification, angiolymphatic invasion and histological grade. Eur J Histochem 2022; 66. [PMID: 36172711 PMCID: PMC9577379 DOI: 10.4081/ejh.2022.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/27/2022] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Despite progress in the last decades, there are still no reliable biomarkers for the diagnosis of and prognosis for GC. Aberrant sialylation is a widespread critical event in the development of GC. Neuraminidases (Neu) and sialyltransferases (STs) regulate the ablation and addition of sialic acid during glycoconjugates biosynthesis, and they are a considerable source of biomarkers in various cancers. This study retrospectively characterized Neu3 and ST3Gal3 expression by immunohistochemistry in 71 paraffin-embedded GC tissue specimens and analyzed the relationship between their expression and the clinicopathological parameters. Neu3 expression was markedly increased in GC tissues compared with non-tumoral tissues (p<0.0001). Intratumoral ST3Gal3 staining was significantly associated with intestinal subtype (p=0.0042) and was negatively associated with angiolymphatic invasion (p=0.0002) and higher histological grade G3 (p=0.0066). Multivariate analysis revealed that ST3Gal3 positivity is able to predict Lauren's classification. No associations were found between Neu3 staining and clinical parameters. The in silico analysis of mRNA expression in GC validation cohorts corroborates the significant ST3Gal3 association with higher histological grade observed in our study. These findings suggest that ST3Gal3 expression may be an indicator for aggressiveness of primary GC.
Collapse
Affiliation(s)
- Michael W L Quirino
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Amanda P B Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Maria F D De Souza
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Antônio F Da Silva Filho
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | | | - Maira G Da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Moacyr J B De Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| |
Collapse
|
34
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
35
|
Mechref Y, Peng W, Gautam S, Ahmadi P, Lin Y, Zhu J, Zhang J, Liu S, Singal AG, Parikh ND, Lubman DM. Mass spectrometry based biomarkers for early detection of HCC using a glycoproteomic approach. Adv Cancer Res 2022; 157:23-56. [PMID: 36725111 PMCID: PMC10014290 DOI: 10.1016/bs.acr.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related mortality worldwide and 80%-90% of HCC develops in patients that have underlying cirrhosis. Better methods of surveillance are needed to increase early detection of HCC and the proportion of patients that can be offered curative therapies. Recent work in novel mass spec-based methods for glycomic and glycopeptide analysis for discovery and confirmation of markers for early detection of HCC versus cirrhosis is reviewed in this chapter. Results from recent work in these fields by several groups and the progress made in developing markers of early HCC which can outperform the current serum-based markers are described and discussed. Also, recent developments in isoform analysis of glycans and glycopeptides and in various mass spec fragmentation methods will be described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States.
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
36
|
Tamoxifen-resistant breast cancer cells exhibit reactivity with Wisteria floribunda agglutinin. PLoS One 2022; 17:e0273513. [PMID: 36006984 PMCID: PMC9409572 DOI: 10.1371/journal.pone.0273513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications of cell surface proteins involved in the proliferation, metastasis and treatment resistance of cancer cells. However, little is known about the role of glycosylation as the mechanism of breast cancer cell resistance to endocrine therapy. Herein, we aimed to identify the glycan profiles of tamoxifen-resistant human breast cancer cells, and their potential as predictive biomarkers for endocrine therapy. We established tamoxifen-resistant cells from estrogen receptor-positive human breast cancer cell lines, and their membrane-associated proteins were subjected to lectin microarray analysis. To confirm differential lectin binding to cellular glycoproteins, we performed lectin blotting analyses after electrophoretic separation of the glycoproteins. Mass spectrometry of the tryptic peptides of the lectin-bound glycoproteins was further conducted to identify glycoproteins binding to the above lectins. Finally, expression of the glycans that were recognized by a lectin was investigated using clinical samples from patients who received tamoxifen treatment after curative surgery. Lectin microarray analysis revealed that the membrane fractions of tamoxifen-resistant breast cancer cells showed increased binding to Wisteria floribunda agglutinin (WFA) compared to tamoxifen-sensitive cells. Glycoproteins seemed to be responsible for the differential WFA binding and the results of mass spectrometry revealed several membrane glycoproteins, such as CD166 and integrin beta-1, as candidates contributing to increased WFA binding. In clinical samples, strong WFA staining was more frequently observed in patients who had developed distant metastasis during tamoxifen treatment compared with non-relapsed patients. Therefore, glycans recognized by WFA are potentially useful as predictive markers to identify the tamoxifen-resistant and relapse-prone subset of estrogen receptor-positive breast cancer patients.
Collapse
|
37
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
38
|
Scott E, Garnham R, Cheung K, Duxfield A, Elliott DJ, Munkley J. Pro-Survival Factor EDEM3 Confers Therapy Resistance in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23158184. [PMID: 35897761 PMCID: PMC9332126 DOI: 10.3390/ijms23158184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is the most common cancer in men, and it is primarily driven by androgen steroid hormones. The glycosylation enzyme EDEM3 is controlled by androgen signalling and is important for prostate cancer viability. EDEM3 is a mannosidase that trims mannose from mis-folded glycoproteins, tagging them for degradation through endoplasmic reticulum-associated degradation. Here, we find that EDEM3 is upregulated in prostate cancer, and this is linked to poorer disease-free survival. Depletion of EDEM3 from prostate cancer cells induces an ER stress transcriptomic signature, and EDEM3 overexpression is cyto-protective against ER stressors. EDEM3 expression also positively correlates with genes involved in the unfolded protein response in prostate cancer patients, and its expression can be induced through exposure to radiation. Importantly, the overexpression of EDEM3 promotes radio-resistance in prostate cancer cells and radio-resistance can be reduced through depletion of EDEM3. Our data thus implicate increased levels of EDEM3 with a role in prostate cancer pathology and reveal a new therapeutic opportunity to sensitise prostate tumours to radiotherapy.
Collapse
Affiliation(s)
- Emma Scott
- Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, UK; (R.G.); (A.D.); (D.J.E.)
- Correspondence: (E.S.); (J.M.)
| | - Rebecca Garnham
- Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, UK; (R.G.); (A.D.); (D.J.E.)
| | - Kathleen Cheung
- Bioinformatic Support Unit, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, UK;
| | - Adam Duxfield
- Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, UK; (R.G.); (A.D.); (D.J.E.)
| | - David J. Elliott
- Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, UK; (R.G.); (A.D.); (D.J.E.)
| | - Jennifer Munkley
- Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, UK; (R.G.); (A.D.); (D.J.E.)
- Correspondence: (E.S.); (J.M.)
| |
Collapse
|
39
|
An Integrative Glycomic Approach for Quantitative Meat Species Profiling. Foods 2022; 11:foods11131952. [PMID: 35804766 PMCID: PMC9265272 DOI: 10.3390/foods11131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.
Collapse
|
40
|
Phang R, Lin CH. Synthesis of Type-I and Type-II LacNAc-Repeating Oligosaccharides as the Backbones of Tumor-Associated Lewis Antigens. Front Immunol 2022; 13:858894. [PMID: 35281035 PMCID: PMC8905443 DOI: 10.3389/fimmu.2022.858894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022] Open
Abstract
Type-I and Type-II LacNAc are Gal-GlcNAc disaccharides bearing a β1,3- or β1,4-linkage respectively. They exist as the backbones of Lewis antigens that are highly expressed in several cancers. Owing to the promise of developing carbohydrate-based anti-cancer vaccines, glycan synthesis at a large scale is indeed an important task. Synthesis of Type-I and Type-II tandem repeat oligomers has been hampered by the presence of GlcNAc residues. Particularly, N-protecting group plays a determining role in affecting glycosyl donor’s reactivity and acceptor’s nucleophilicity. This review discusses several representative studies that assembled desirable glycans in an efficient manner, such as chemoselective one-pot synthesis and chemoenzymatic methods. Additionally, we also highlight solutions that have been offered to tackle long-lasting problems, e.g., prevention of the oxazoline formation and change of donor/acceptor reactivity. In retrospect of scientific achievements, we present the current restrictions and remaining challenges in this less explored frontier.
Collapse
Affiliation(s)
- Riping Phang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Xie X, Li J, Zhen X, Chen L, Yuan W, Feng Q, Liu X. Rational construction of fluorescent molecular imprinted polymers for highly efficient glycoprotein detection. Anal Chim Acta 2022; 1209:339875. [DOI: 10.1016/j.aca.2022.339875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 11/01/2022]
|
42
|
Simultaneous analysis of cellular glycoproteome and phosphoproteome in cervical carcinoma by one-pot specific enrichment. Anal Chim Acta 2022; 1195:338693. [DOI: 10.1016/j.aca.2021.338693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023]
|
43
|
A novel graphene oxide/chitosan foam incorporated with metal–organic framework stationary phase for simultaneous enrichment of glycopeptide and phosphopeptide with high efficiency. Anal Bioanal Chem 2022; 414:2251-2263. [DOI: 10.1007/s00216-021-03861-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 01/07/2023]
|
44
|
Abrantes R, Duarte HO, Gomes C, Wälchli S, Reis CA. CAR-Ts: new perspectives in cancer therapy. FEBS Lett 2022; 596:403-416. [PMID: 34978080 DOI: 10.1002/1873-3468.14270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a promising anticancer treatment that exploits the host's immune system to fight cancer. CAR-T cell therapy relies on immune cells being modified to express an artificial receptor targeting cancer-specific markers, and infused into the patients where they will recognize and eliminate the tumour. Although CAR-T cell therapy has produced encouraging outcomes in patients with haematologic malignancies, solid tumours remain challenging to treat, mainly due to the lack of cancer-specific molecular targets and the hostile, often immunosuppressive, tumour microenvironment. CAR-T cell therapy also depends on the quality of the injected product, which is closely connected to CAR design. Here, we explain the technology of CAR-Ts, focusing on the composition of CARs, their application, and limitations in cancer therapy, as well as on the current strategies to overcome the challenges encountered. We also address potential future targets to overcome the flaws of CAR-T cell technology in the treatment of cancer, emphasizing glycan antigens, the aberrant forms of which attain high tumour-specific expression, as promising targets for CAR-T cell therapy.
Collapse
Affiliation(s)
- Rafaela Abrantes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
| | - Henrique O Duarte
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Catarina Gomes
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Norway
| | - Celso A Reis
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
45
|
Wu J, Li N, Huang X, Chen J, Jia Y, He Z, Mo T, He L, Wang Y, Zhang H. Proteomic Quantification of Lysine Acetylation and Succinylation Profile Alterations in Lung Adenocarcinomas of Non-Smoking Females. Yonago Acta Med 2022; 65:132-147. [PMID: 35611055 DOI: 10.33160/yam.2022.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jun Wu
- Department of Respiratory medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Ning Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Xiaoqin Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jianming Chen
- Department of Respiratory medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yufang Jia
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zhan He
- Department of Respiratory medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Ting Mo
- Department of Respiratory medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Liuyan He
- Department of Respiratory medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yajun Wang
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Haitao Zhang
- Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
46
|
Soares da Silva ML. Ferrocene‐derivative Electrochemical Probe for the Selective Detection of Carcinoma‐associated STn Antigen. ELECTROANAL 2021. [DOI: 10.1002/elan.202100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Luísa Soares da Silva
- Centro de Investigaciones Químicas Universidad Autónoma del Estado de Hidalgo Carr. Pachuca-Tulancingo km 4.5 42076 Pachuca Hidalgo México
| |
Collapse
|
47
|
Stergiou N, Urschbach M, Gabba A, Schmitt E, Kunz H, Besenius P. The Development of Vaccines from Synthetic Tumor-Associated Mucin Glycopeptides and their Glycosylation-Dependent Immune Response. CHEM REC 2021; 21:3313-3331. [PMID: 34812564 DOI: 10.1002/tcr.202100182] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Tumor-associated carbohydrate antigens are overexpressed as altered-self in most common epithelial cancers. Their glycosylation patterns differ from those of healthy cells, functioning as an ID for cancer cells. Scientists have been developing anti-cancer vaccines based on mucin glycopeptides, yet the interplay of delivery system, adjuvant and tumor associated MUC epitopes in the induced immune response is not well understood. The current state of the art suggests that the identity, abundancy and location of the glycans on the MUC backbone are all key parameters in the cellular and humoral response. This review shares lessons learned by us in over two decades of research in glycopeptide vaccines. By bridging synthetic chemistry and immunology, we discuss efforts in designing synthetic MUC1/4/16 vaccines and focus on the role of glycosylation patterns. We provide a brief introduction into the mechanisms of the immune system and aim to promote the development of cancer subunit vaccines.
Collapse
Affiliation(s)
- Natascha Stergiou
- Radionuclide Center, Radiology and Nuclear medicine Amsterdam UMC, VU University, De Boelelaan 1085c, 1081 HV, Amsterdam, the Netherlands
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Adele Gabba
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- Institute of Immunology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Horst Kunz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
48
|
Mehta K, Patel K, Pandya S, Patel P. Altered mRNA Expression of Fucosyltransferases and Fucosidase Predicts Prognosis in Human Oral Carcinoma. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:123-131. [PMID: 34703796 PMCID: PMC8496247 DOI: 10.22088/ijmcm.bums.10.2.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Aberrant protein glycosylation is known to be associated with the development of various cancers. Although fucosylation is essential for normal biological functions, alterations in fucosylation are strongly implicated in cancer and increasing metastatic potential. Altered fucosyltarnsferases (FUTs) and fucosidases are found to be involved in many types of malignancies. In this study, we examined the mRNA expressions of fucosidase (FUCA1) and FUTs (FUTs (FUT3, FUT4, FUT5, FUT6, FUT8) in human oral cancer tissues. All FUTs and FUCA1 were significantly (P ≤0.05) down-regulated in malignant tissues in comparison with their adjacent normal tissues. The relationship between the clinicopathological parameters and the expression of FUTs and FUCA1 revealed that higher mRNA levels of FUT4, FUT5, and FUT8 and lower levels of FUT3 were associated with progression of disease and lymph node metastasis in oral carcinoma indicating their role in oral cancer progression. Collectively, results suggest that elevated mRNA levels of FUT4, FUT5 and FUT8 may be used as worst prognostic indicators for oral carcinoma.
Collapse
Affiliation(s)
- Kruti Mehta
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India.,Life Science Department, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Kinjal Patel
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India
| | - Shashank Pandya
- Surgical Oncology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India
| | - Prabhudas Patel
- Molecular Oncology Laboratory, Cancer Biology Department, The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad, Gujarat, India.,Life Science Department, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
49
|
Aziz F, Khan I, Shukla S, Dey DK, Yan Q, Chakraborty A, Yoshitomi H, Hwang SK, Sonwal S, Lee H, Haldorai Y, Xiao J, Huh YS, Bajpai VK, Han YK. Partners in crime: The Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer. Pharmacol Ther 2021; 232:107994. [PMID: 34571111 DOI: 10.1016/j.pharmthera.2021.107994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China.
| | - Imran Khan
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Debasish Kumar Dey
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China
| | | | - Hisae Yoshitomi
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
50
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|