1
|
Sancassiani F, Carta MG, Primavera D, Tusconi M, Urban A, Atzori L, Ferreli C, Cantone E, Cuccu GV, Kalcev G, Orrù G, Cabitza F, Dursun SM, Aviles Gonzalez CI, Fragoso Castilla PJ, Giraldo Jaramillo S, Cossu G, Scano A. The Breathomics Profile of Volatile Sulfur Compounds in the Bipolar Spectrum, Does It Represent a Potential Tool for Early Diagnosis? J Clin Med 2025; 14:2025. [PMID: 40142833 PMCID: PMC11942791 DOI: 10.3390/jcm14062025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Emerging laboratory technologies, such as breathomics, may enhance the early diagnosis of psychiatric disorders, including Bipolar Disorder (BD). This study investigates the detection of volatile sulfur compounds (VSCs) in exhaled breath as potential biomarkers for BD, comparing VSC levels between individuals with BD, healthy controls, and individuals with non-pathological hyperactivity. Methods: A matched case-control study was conducted involving 24 patients with BD and 95 healthy controls recruited at the University Hospital of Cagliari. Controls were selected using a matched-pair design based on age (±5 years) and sex through a block-matching technique to ensure comparability with cases. Participants underwent psychiatric interviews, completed the Mood Disorder Questionnaire (MDQ), and had their exhaled breaths analyzed for VSCs using a gas chromatograph (OralChroma™). Controls were selected and randomized for age and sex. Results: Patients with BD exhibited significantly higher levels of methyl mercaptan (CH3SH) compared to healthy controls (18.62 ± 5.04 vs. 9.45 ± 18.64 ppb, p = 0.022). Among individuals without BD, those with positive MDQ scores showed lower levels of CH3SH than those with negative scores (9.17 ± 5.42 vs. 15.05 ± 18.03); however, this difference did not reach statistical significance (p = 0.254), highlighting how the deep connection between some clinical and laboratory aspects needs to be investigated more thoroughly. Conclusions: The results suggest a correlation between oral dysbiosis and metabolic alterations in patients with BD, with CH3SH levels being higher in cases compared to controls. Further studies are needed to validate the use of VSCs as potential biomarkers for BD and to investigate their role in individuals with non-pathological hyperactivity.
Collapse
Affiliation(s)
- Federica Sancassiani
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
- PhD Program in Tropical Medicine, Universidad Popular del Cesar, Valledupar 200001, Colombia;
- Department of Nursing, Universidad Popular del Cesar, Valledupar 200001, Colombia
| | - Diego Primavera
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | | | - Antonio Urban
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
- University Hospital of Cagliari, 09042 Cagliari, Italy
| | - Laura Atzori
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (L.A.); (C.F.)
| | - Caterina Ferreli
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (L.A.); (C.F.)
| | - Elisa Cantone
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Gloria Virginia Cuccu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Goce Kalcev
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| | - Flavio Cabitza
- Fondazione per la Tutela dell’Identità Ogliastrina e della Barbagia di Seulo, Corso Vittorio Emanuele II, Perdasdefogu, 08046 Nuoro, Italy;
| | - Serdar M. Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G5, Canada;
| | | | - Pedro José Fragoso Castilla
- PhD Program in Tropical Medicine, Universidad Popular del Cesar, Valledupar 200001, Colombia;
- Microbiology Program, Universidad Popular del Cesar, Valledupar 200001, Colombia
| | | | - Giulia Cossu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato Blocco I (CA), 09042 Cagliari, Italy; (F.S.); (M.G.C.); (D.P.); (A.U.); (E.C.); (G.V.C.); (G.K.); (G.C.)
| | - Alessandra Scano
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| |
Collapse
|
2
|
Cen Z, Huang Y, Li S, Dong S, Wang W, Li X. Advancing Breathomics through Accurate Discrimination of Endogenous from Exogenous Volatiles in Breath. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18541-18553. [PMID: 39340814 DOI: 10.1021/acs.est.4c04575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Breathomics, a growing field in exposure monitoring and clinical diagnostics, has faced accuracy challenges due to unclear contributing factors. This study aims to enhance the potential of breathomics in various frontiers by categorizing exhaled volatile organic compounds (VOCs) as endogenous or exogenous. Analyzing ambient air and breath samples from 271 volunteers via TD-GC × GC-TOF MS/FID, we identify and quantify 50 common VOCs in exhaled breath. Advanced quantitative structure-property relationships and compartment models are employed to obtain VOCs kinetic parameters. This in-depth approach allows us to accurately determine the alveolar concentration of VOCs and further discern their origins, facilitating personalized application of breathomics in exposure assessment and disease diagnosis. Our findings demonstrate that prolonged external exposure turns humans into secondary pollutant sources. Analysis of endogenous VOCs reveals that internal exposure poses more significant health risks than external. Moreover, by correcting environmental backgrounds, we improve the accuracy of gastrointestinal disease diagnostic models by 15-25%. This advancement in identifying VOC origins via compartmental models promises to elevate the clinical relevance of breathomics, marking a leap forward in exposure assessment and precision medicine.
Collapse
Affiliation(s)
- Zhengnan Cen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Yuerun Huang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shangzhewen Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shanshan Dong
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Wenshan Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Institute of Eco-Chongming (IEC), Shanghai 200062, P. R. China
| |
Collapse
|
3
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
4
|
Experiences and Perspectives of GC-MS Application for the Search of Low Molecular Weight Discriminants of Schizophrenia. Molecules 2022; 28:molecules28010324. [PMID: 36615518 PMCID: PMC9822242 DOI: 10.3390/molecules28010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is one of the most severe chronic mental disorders that is currently diagnosed and categorized through subjective clinical assessment of complex symptoms. At present, there is a recognized need for an objective, unbiased clinical test for schizophrenia diagnosis at an early stage and categorization of the disease. This can be achieved by assaying low-molecular-weight biomarkers of the disease. Here we give an overview of previously conducted research on the discovery of biomarkers of schizophrenia and focus on the studies implemented with the use of GC-MS and the least invasiveness of biological samples acquisition. The presented data demonstrate that GC-MS is a powerful instrumental platform for investigating dysregulated biochemical pathways implicated in schizophrenia pathogenesis. With this platform, different research groups suggested a number of low molecular weight biomarkers of schizophrenia. However, we recognize an inconsistency between the biomarkers or biomarkers patterns revealed by different groups even in the same matrix. Moreover, despite the importance of the problem, the number of relevant studies is limited. The intensification of the research, as well as the harmonization of the analytical procedures to overcome the observed inconsistencies, can be indicated as future directions in the schizophrenia bio-markers quest.
Collapse
|
5
|
Khan MS, Cuda S, Karere GM, Cox LA, Bishop AC. Breath biomarkers of insulin resistance in pre-diabetic Hispanic adolescents with obesity. Sci Rep 2022; 12:339. [PMID: 35013420 PMCID: PMC8748903 DOI: 10.1038/s41598-021-04072-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance (IR) affects a quarter of the world's adult population and is a major factor in the pathogenesis of cardio-metabolic disease. In this pilot study, we implemented a non-invasive breathomics approach, combined with random forest machine learning, to investigate metabolic markers from obese pre-diabetic Hispanic adolescents as indicators of abnormal metabolic regulation. Using the ReCIVA breathalyzer device for breath collection, we have identified a signature of 10 breath metabolites (breath-IR model), which correlates with Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (R = 0.95, p < 0.001). A strong correlation was also observed between the breath-IR model and the blood glycemic profile (fasting insulin R = 0.91, p < 0.001 and fasting glucose R = 0.80, p < 0.001). Among tentatively identified metabolites, limonene, undecane, and 2,7-dimethyl-undecane, significantly cluster individuals based on HOMA-IR (p = 0.003, p = 0.002, and p < 0.001, respectively). Our breath-IR model differentiates between adolescents with and without IR with an AUC-ROC curve of 0.87, after cross-validation. Identification of a breath signature indicative of IR shows utility of exhaled breath metabolomics for assessing systemic metabolic dysregulation. A simple and non-invasive breath-based test has potential as a diagnostic tool for monitoring IR progression, allowing for earlier detection of IR and implementation of early interventions to prevent onset of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohammad S Khan
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Suzanne Cuda
- Health and Weight Management Clinic, Children's Hospital of San Antonio, San Antonio, TX, 78207, USA
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Genesio M Karere
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Laura A Cox
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Andrew C Bishop
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
6
|
Gbaoui L, Fachet M, Lüno M, Meyer-Lotz G, Frodl T, Hoeschen C. Breathomics profiling of metabolic pathways affected by major depression: Possibilities and limitations. Front Psychiatry 2022; 13:1061326. [PMID: 36590606 PMCID: PMC9795849 DOI: 10.3389/fpsyt.2022.1061326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most common psychiatric disorders with multifactorial etiologies. Metabolomics has recently emerged as a particularly potential quantitative tool that provides a multi-parametric signature specific to several mechanisms underlying the heterogeneous pathophysiology of MDD. The main purpose of the present study was to investigate possibilities and limitations of breath-based metabolomics, breathomics patterns to discriminate MDD patients from healthy controls (HCs) and identify the altered metabolic pathways in MDD. METHODS Breath samples were collected in Tedlar bags at awakening, 30 and 60 min after awakening from 26 patients with MDD and 25 HCs. The non-targeted breathomics analysis was carried out by proton transfer reaction mass spectrometry. The univariate analysis was first performed by T-test to rank potential biomarkers. The metabolomic pathway analysis and hierarchical clustering analysis (HCA) were performed to group the significant metabolites involved in the same metabolic pathways or networks. Moreover, a support vector machine (SVM) predictive model was built to identify the potential metabolites in the altered pathways and clusters. The accuracy of the SVM model was evaluated by receiver operating characteristics (ROC) analysis. RESULTS A total of 23 differential exhaled breath metabolites were significantly altered in patients with MDD compared with HCs and mapped in five significant metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055), branched chain amino acids valine, leucine and isoleucine biosynthesis (p = 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440). Moreover, the SVM predictive model showed that butylamine (p = 0.0005, pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p = 0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential metabolites within identified clusters with HCA and altered pathways, and discriminated between patients with MDD and non-depressed ones with high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96). CONCLUSION According to the results of this study, the non-targeted breathomics analysis with high-throughput sensitive analytical technologies coupled to advanced computational tools approaches offer completely new insights into peripheral biochemical changes in MDD.
Collapse
Affiliation(s)
- Laila Gbaoui
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| | - Melanie Fachet
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| | - Marian Lüno
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Gabriele Meyer-Lotz
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Frodl
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Christoph Hoeschen
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
8
|
Breath-Taking Perspectives and Preliminary Data toward Early Detection of Chronic Liver Diseases. Biomedicines 2021; 9:biomedicines9111563. [PMID: 34829792 PMCID: PMC8615034 DOI: 10.3390/biomedicines9111563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The gold standard method for chronic liver diseases diagnosis and staging remains liver biopsy, despite the spread of less invasive surrogate modalities based on imaging and blood biomarkers. Still, more than 50% of chronic liver disease cases are detected at later stages when patients exhibit episodes of liver decompensation. Breath analysis represents an attractive means for the development of non-invasive tests for several pathologies, including chronic liver diseases. In this perspective review, we summarize the main findings of studies that compared the breath of patients with chronic liver diseases against that of control subjects and found candidate biomarkers for a potential breath test. Interestingly, identified compounds with best classification performance are of exogenous origin and used as flavoring agents in food. Therefore, random dietary exposure of the general population to these compounds prevents the establishment of threshold levels for the identification of disease subjects. To overcome this limitation, we propose the exogenous volatile organic compounds (EVOCs) probe approach, where one or multiple of these flavoring agent(s) are administered at a standard dose and liver dysfunction associated with chronic liver diseases is evaluated as a washout of ingested compound(s). We report preliminary results in healthy subjects in support of the potential of the EVOC Probe approach.
Collapse
|
9
|
Asai A, Konno M, Ozaki M, Kawamoto K, Chijimatsu R, Kondo N, Hirotsu T, Ishii H. Scent test using Caenorhabditis elegans to screen for early-stage pancreatic cancer. Oncotarget 2021; 12:1687-1696. [PMID: 34434497 PMCID: PMC8378769 DOI: 10.18632/oncotarget.28035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Although early detection and diagnosis are indispensable for improving the prognosis of patients with pancreatic cancer, both have yet to be achieved. Except for pancreatic cancer, other cancers have already been screened through scent tests using animals or microorganisms, including Caenorhabditis elegans. While such a method may greatly improve the prognosis of pancreatic cancer, no studies have investigated the same, mainly given the difficulty of collecting suitable samples from patients with early-stage pancreatic cancer. In this study, we organized a nationwide study group comprising high-volume centers throughout Japan to collect patients with very-early-stage pancreatic cancer (stage 0 or IA). We initially performed an open-label study involving 83 cases (stage 0–IV), with subsequent results showing significant differences after surgical removal in stage 0–IA (×10 dilution: p < 0.001; ×100 dilution: p < 0.001). Thereafter, a blinded study on 28 cases (11 patients with stage 0 or IA disease and 17 healthy volunteers) was conducted by comparing very-early-stage pancreatic cancer patients with healthy volunteers to determine whether C. elegans could detect the scent of cancer for the diagnosis of early-stage pancreatic cancer. Preoperative urine samples had a significantly higher chemotaxis index compared to postoperative samples in patients with pancreatic cancer [×10 dilution: p < 0.001, area under the receiver operating characteristic curve (AUC) = 0.845; ×100 dilution: p < 0.001, AUC = 0.820] and healthy volunteers (×10 dilution: p = 0.034; ×100 dilution: p = 0.088). Moreover, using the changes in preoperative and postoperative chemotaxis index, this method had a higher sensitivity for detecting early pancreatic cancer compared to existing diagnostic markers. The clinical application C. elegans for the early diagnosis of cancer can certainly be expected in the near future.
Collapse
Affiliation(s)
- Ayumu Asai
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Artificial Intelligence Research Center, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Masamitsu Konno
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Present address: Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miyuki Ozaki
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Koichi Kawamoto
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Present address: Kinnki Regional Bureau of Health and Welfare, Osaka, Japan
| | - Ryota Chijimatsu
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nobuaki Kondo
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | - Takaaki Hirotsu
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research (CoMIT), Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
The Trained Sniffer Dog Could Accurately Detect the Urine Samples from the Patients with Cervical Cancer, and Even Cervical Intraepithelial Neoplasia Grade 3: A Pilot Study. Cancers (Basel) 2020; 12:cancers12113291. [PMID: 33172075 PMCID: PMC7694610 DOI: 10.3390/cancers12113291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Tumor detection by dog sniffing is a possible new method in cancer diagnosis. The aim of this study is to assess whether a trained dog can distinguish urine samples from cervical cancer patients. Urine samples were collected from 34 with cervical cancer, 49 patients with CIN3, 49 with benign uterine diseases, and 63 healthy volunteers. In all 83 test runs, one positive sample among five samples were presented to the dog. The trained dog accurately distinguished the urine sample of a cancer patient from those of the controls. This study showed that cancer detection by dog sniffing can be a non-invasive, cost-effective screening technique for cervical cancer. Abstract (1) Background: Previous reports have indicated that cancers of the stomach, lung, and pancreas can be detected by dog sniffing, but results have been varied. Here, a highly trained dog was used to determine whether urine from patients with cervical premalignant lesions and malignant tumors have a cancer-specific scent. (2) Methods: A total of 195 urine samples were collected from patients with cervical cancer, cervical intraepithelial neoplasia grade 3 (CIN3), benign uterine diseases, and healthy volunteers. Each test was performed using one urine sample from a cancer patient and four samples from different controls. Each of the five urine samples was placed in a separate box. When the cancer sniffing dog stopped and sat in front of the box with a sample from a cancer patient, the test was considered as positive. (3) Results: 83 patients with cervical cancer (34 cases of cervical cancer and 49 cases of cervical intraepithelial neoplasia grade 3), 49 patients with uterine benign diseases, and 63 healthy volunteers were enrolled, and their urine samples were collected. In 83 times out of 83 runs in a double-blind test, the trained dog could correctly identify urine samples of cervical cancer patients. (4) Conclusion: A trained dog could accurately distinguish the urine of all patients with cervical cancer or CIN3, regardless of the degree of cancer progression.
Collapse
|
11
|
Muraviev AV, Konnov D, Vodopyanov KL. Broadband high-resolution molecular spectroscopy with interleaved mid-infrared frequency combs. Sci Rep 2020; 10:18700. [PMID: 33122659 PMCID: PMC7596569 DOI: 10.1038/s41598-020-75704-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Traditionally, there has been a trade-off in spectroscopic measurements between high resolution, broadband coverage, and acquisition time. Originally envisioned for precision spectroscopy of the hydrogen atom in the ultraviolet, optical frequency combs are now commonly used for probing molecular ro-vibrational transitions throughout broad spectral bands in the mid-infrared providing superior resolution, speed, and the capability of referencing to the primary frequency standards. Here we demonstrate the acquisition of 2.5 million spectral data points over the continuous wavelength range of 3.17-5.13 µm (frequency span 1200 cm-1, sampling point spacing 13-21 MHz), via interleaving comb-tooth-resolved spectra acquired with a highly-coherent broadband dual-frequency-comb system based on optical subharmonic generation. With the original comb-line spacing of 115 MHz, overlaying eight spectra with gradually shifted comb lines we fully resolve the amplitude and phase spectra of molecules with narrow Doppler lines, such as carbon disulfide (CS2) and its three isotopologues.
Collapse
Affiliation(s)
- A V Muraviev
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - D Konnov
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - K L Vodopyanov
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
12
|
Mirzaei H, O'Brien A, Tasnim N, Ravishankara A, Tahmooressi H, Hoorfar M. Topical review on monitoring tetrahydrocannabinol in breath. J Breath Res 2020; 14:034002. [PMID: 31842004 DOI: 10.1088/1752-7163/ab6229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Legalization of cannabis for recreational use has compelled governments to seek new tools to accurately monitor Δ9-tetrahydrocannabinol (Δ9-THC) and understand its effect on impairment. Various methods have been employed to measure Δ9-THC, and its respective metabolites, in different biological matrices. Recently, breath analysis has gained interest as a non-invasive method for the detection of chemicals that are either produced as part of biological processes or are absorbed from the environment. Existing breath analyzers function by analyzing previously collected samples or by direct real-time analysis. Portable hand-held devices are of particular interest for law enforcement and personal use. This paper reviews and compares both commercially available and prototype devices that proclaim Δ9-THC detection in exhaled breath using methods such as Field Asymmetric Ion Mobility Spectrometry, Semiconductor-Enriched Single-Walled Carbon Nanotube chemiresistors, Liquid Chromatography Tandem-mass Spectrometry, microfluidic-based artificial olfaction, and optical-based gas sensing.
Collapse
|
13
|
Selvaraj R, Vasa NJ, Nagendra SMS, Mizaikoff B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020; 25:molecules25092227. [PMID: 32397389 PMCID: PMC7249025 DOI: 10.3390/molecules25092227] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Human exhaled breath consists of more than 3000 volatile organic compounds, many of which are relevant biomarkers for various diseases. Although gas chromatography has been the gold standard for volatile organic compound (VOC) detection in exhaled breath, recent developments in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC) optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques has to be overcome for translating these techniques into more widespread real-time clinical use.
Collapse
Affiliation(s)
- Ramya Selvaraj
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
- Correspondence:
| | - Nilesh J. Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
| | - S. M. Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
14
|
Dumitras DC, Petrus M, Bratu AM, Popa C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020; 25:E1728. [PMID: 32283766 PMCID: PMC7180475 DOI: 10.3390/molecules25071728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
In this review, applications of near-infrared photoacoustic spectroscopy are presented as an opportunity to evaluate human respiration because the measurement of breath is fast, intact and simple to implement. Recently, analytical methods for measuring biomarkers in exhaled air have been extensively developed. With laser-based photoacoustic spectroscopy, volatile organic compounds can be identified with high sensitivity, at a high rate, and with very good selectivity. The literature review has shown the applicability of near-infrared photoacoustic spectroscopy to one of the problems of the real world, i.e., human health. In addition, the review will consider and explore different breath sampling methods for human respiration analysis.
Collapse
Affiliation(s)
- Dan C. Dumitras
- University “Politehnica” of Bucharest, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Mioara Petrus
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Ana-Maria Bratu
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Cristina Popa
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| |
Collapse
|
15
|
Quintero M, Stanisic D, Cruz G, Pontes JGM, Costa TBBC, Tasic L. Metabolomic Biomarkers in Mental Disorders: Bipolar Disorder and Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:271-293. [PMID: 30747428 DOI: 10.1007/978-3-030-05542-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric disorders are some of the most impairing human diseases. Among them, bipolar disorder and schizophrenia are the most common. Both have complicated diagnostics due to their phenotypic, biological, and genetic heterogeneity, unknown etiology, and the underlying biological pathways, and molecular mechanisms are still not completely understood. Given the multifactorial complexity of these disorders, identification and implementation of metabolic biomarkers would assist in their early detection and diagnosis and facilitate disease monitoring and treatment responses. To date, numerous studies have utilized metabolomics to better understand psychiatric disorders, and findings from these studies have begun to converge. In this chapter, we briefly describe some of the metabolomic biomarkers found in these two disorders.
Collapse
Affiliation(s)
- Melissa Quintero
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Cruz
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João G M Pontes
- Laboratory of Microbial Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tássia Brena Barroso Carneiro Costa
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
16
|
Fitzgerald J, Fenniri H. Cutting Edge Methods for Non-Invasive Disease Diagnosis Using E-Tongue and E-Nose Devices. BIOSENSORS 2017; 7:E59. [PMID: 29215588 PMCID: PMC5746782 DOI: 10.3390/bios7040059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/26/2017] [Accepted: 12/02/2017] [Indexed: 02/07/2023]
Abstract
Biomimetic cross-reactive sensor arrays (B-CRSAs) have been used to detect and diagnose a wide variety of diseases including metabolic disorders, mental health diseases, and cancer by analyzing both vapor and liquid patient samples. Technological advancements over the past decade have made these systems selective, sensitive, and affordable. To date, devices for non-invasive and accurate disease diagnosis have seen rapid improvement, suggesting a feasible alternative to current standards for medical diagnostics. This review provides an overview of the most recent B-CRSAs for diagnostics (also referred to electronic noses and tongues in the literature) and an outlook for future technological development.
Collapse
Affiliation(s)
- Jessica Fitzgerald
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Hicham Fenniri
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
17
|
DeMartino AW, Souza ML, Ford PC. Uncaging carbon disulfide. Delivery platforms for potential pharmacological applications: a mechanistic approach. Chem Sci 2017; 8:7186-7196. [PMID: 29081951 PMCID: PMC5633850 DOI: 10.1039/c7sc02727c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/03/2017] [Indexed: 01/30/2023] Open
Abstract
We describe the kinetics of the formation and decay of a series of dithiocarbamates under physiological conditions. The goal is to provide a toolbox of compounds that release CS2 by well-defined kinetics in such media. Carbon disulfide is a known environmental toxin, but there is fragmentary evidence suggesting that CS2 may have bioregulatory and/or therapeutic roles in mammalian biology. Further investigation of such roles will require methodologies for controlled delivery of this bioactive small molecule to specific targets. Reported here are mechanistic and computational studies of CS2 release from a series of dithiocarbamate anions (DTCs), where R2N represents several different secondary amido groups. The various DTCs under physiologically relevant conditions show a tremendous range of reactivities toward CS2 dissociation with decay lifetimes ranging from ∼2 s for imidazolidyldithiocarbamate (ImDTC-) to ∼300 s for diisopropyldithiocarbamate (DIDTC-) to >24 h for pyrrolidinyldithiocarbamate (PDTC-) in pH 7.4 phosphate buffer solution at 37 °C. Thus, by making the correct choice of these tools, one can adjust the flux of CS2 in a biological experiment, while the least reactive DTCs could serve as controls for evaluating the potential effects of the dithiocarbamate functionality itself. Kinetics studies and density functional calculations are used to probe the mechanism of DTC- decay. In each case, the rate of CS2 dissociation is acid dependent; however, the DFT studies point to a mechanistic pathway for ImDTC- that is different than those for DIDTC-. The role of general acid catalysis is also briefly probed.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , CA 93106-9510 , USA .
| | - Maykon Lima Souza
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , CA 93106-9510 , USA .
| | - Peter C Ford
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , CA 93106-9510 , USA .
| |
Collapse
|
18
|
Li W, Liu H, Xie D, He Z, Pi X. Lung Cancer Screening Based on Type-different Sensor Arrays. Sci Rep 2017; 7:1969. [PMID: 28512336 PMCID: PMC5434050 DOI: 10.1038/s41598-017-02154-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
In recent years, electronic nose (e-nose) systems have become a focus method for diagnosing pulmonary diseases such as lung cancer. However, principles and patterns of sensor responses in traditional e-nose systems are relatively homogeneous. Less study has been focused on type-different sensor arrays. In this paper, we designed a miniature e-nose system using 14 gas sensors of four types and its subsequent analysis of 52 breath samples. To investigate the performance of this system in identifying and distinguishing lung cancer from other respiratory diseases and healthy controls, five feature extraction algorithms and two classifiers were adopted. Lastly, the influence of type-different sensors on the identification ability of e-nose systems was analyzed. Results indicate that when using the LDA fuzzy 5-NN classification method, the sensitivity, specificity and accuracy of discriminating lung cancer patients from healthy controls with e-nose systems are 91.58%, 91.72% and 91.59%, respectively. Our findings also suggest that type-different sensors could significantly increase the diagnostic accuracy of e-nose systems. These results showed e-nose system proposed in this study was potentially practicable in lung cancer screening with a favorable performance. In addition, it is important for type-different sensors to be considered when developing e-nose systems.
Collapse
Affiliation(s)
- Wang Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China
- Artificial Intelligence of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, Sichuan Province, P.R. China
| | - Hongying Liu
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China.
- Chongqing Engineering Research Center of Medical Electronics, Chongqing, P.R. China.
| | - Dandan Xie
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China
| | - Zichun He
- Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, P.R. China
| | - Xititan Pi
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, P.R. China.
- Key Laboratories for National Defense Science and Technology of Innovative Micro-Nano Devices and System Technology, Chongqing University, Chongqing, P.R. China.
| |
Collapse
|
19
|
Tao W, Lin P, Liu S, Xie Q, Ke S, Zeng X. 1-Butyl-3-Methylimidazolium Tetrafluoroborate Film as a Highly Selective Sensing Material for Non-Invasive Detection of Acetone Using a Quartz Crystal Microbalance. SENSORS 2017; 17:s17010194. [PMID: 28117697 PMCID: PMC5298767 DOI: 10.3390/s17010194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 01/12/2023]
Abstract
Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF₄]), a type of room temperature ionic liquid (RTIL), as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM) for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF₄] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF₄]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis.
Collapse
Affiliation(s)
- Wenyan Tao
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 510081, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 510081, China.
| | - Sili Liu
- Department of Biomedical Engineering, the Chinese University of Hong Kong, Shatin, Hong Kong 999077, China.
| | - Qingji Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410082, China.
| | - Shanming Ke
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 510081, China.
| | - Xierong Zeng
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 510081, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
20
|
DeMartino AW, Zigler DF, Fukuto JM, Ford PC. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chem Soc Rev 2017; 46:21-39. [DOI: 10.1039/c6cs00585c] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The overview presented here has the goal of examining whether carbon disulfide (CS2) may play a role as an endogenously generated bioregulator and/or has therapeutic value.
Collapse
Affiliation(s)
- Anthony W. DeMartino
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - David F. Zigler
- Department of Chemistry & Biochemistry
- California Polytechnic State University
- San Luis Obispo
- USA
| | - Jon M. Fukuto
- Department of Chemistry
- Sonoma State University
- Rohnert Park
- USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| |
Collapse
|
21
|
Fitzgerald JE, Bui ETH, Simon NM, Fenniri H. Artificial Nose Technology: Status and Prospects in Diagnostics. Trends Biotechnol 2016; 35:33-42. [PMID: 27612567 DOI: 10.1016/j.tibtech.2016.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/22/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022]
Abstract
Biomimetic crossreactive sensor arrays have been used to detect and analyze a wide variety of vapor and liquid components in applications such as food science, public health and safety, and diagnostics. As technology has advanced over the past three decades, these systems have become selective, sensitive, and affordable. Currently, the need for noninvasive and accurate devices for early disease diagnosis remains a challenge. This Opinion article provides an overview of the various types of biomimetic crossreactive sensor arrays (also referred to as electronic noses or tongues in the literature), their current use and future directions, and an outlook for future technological development.
Collapse
Affiliation(s)
- Jessica E Fitzgerald
- Department of Bioengineering and Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Eric T H Bui
- Harvard Medical School, Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital and Harvard Medical School, 1 Bowdoin Square, Boston, MA 02114, USA
| | - Naomi M Simon
- Harvard Medical School, Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital and Harvard Medical School, 1 Bowdoin Square, Boston, MA 02114, USA
| | - Hicham Fenniri
- Department of Bioengineering and Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA.
| |
Collapse
|
22
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
23
|
Righettoni M, Ragnoni A, Güntner AT, Loccioni C, Pratsinis SE, Risby TH. Monitoring breath markers under controlled conditions. J Breath Res 2015; 9:047101. [DOI: 10.1088/1752-7155/9/4/047101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015; 5:140-63. [PMID: 25738426 PMCID: PMC4381294 DOI: 10.3390/metabo5010140] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 11/16/2022] Open
Abstract
Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs) and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.
Collapse
|
25
|
Wang T, Chen H. Carbon disulfide mediates socially-acquired nicotine self-administration. PLoS One 2014; 9:e115222. [PMID: 25532105 PMCID: PMC4274004 DOI: 10.1371/journal.pone.0115222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022] Open
Abstract
The social environment plays a critical role in smoking initiation as well as relapse. We previously reported that rats acquired nicotine self-administration with an olfactogustatory cue only when another rat consuming the same cue was present during self-administration. Because carbon disulfide (CS2) mediates social learning of food preference in rodents, we hypothesized that socially acquired nicotine self-administration is also mediated by CS2. We tested this hypothesis by placing female adolescent Sprague-Dawley rats in operant chambers equipped with two lickometers. Licking on the active spout meeting a fixed-ratio 10 schedule triggered the concurrent delivery of an i.v. infusion (saline, or 30 µg/kg nicotine, free base) and an appetitive olfactogustatory cue containing CS2 (0–500 ppm). Rats that self-administered nicotine with the olfactogustatory cue alone licked less on the active spout than on the inactive spout. Adding CS2 to the olfactogustatory cue reversed the preference for the spouts. The group that received 500 ppm CS2 and the olfactogustatory cue obtained a significantly greater number of nicotine infusions than other groups. After extinction training, the original self-administration context reinstated nicotine-seeking behavior in all nicotine groups. In addition, in rats that received the olfactogustatory cue and 500 ppm CS2 during SA, a social environment where the nicotine-associated olfactory cue is present, induced much stronger drug-seeking behavior compared to a social environment lacking the olfactogustatory cue. These data established that CS2 is a critical signal that mediates social learning of nicotine self-administration with olfactogustatory cues in rodents. Additionally, these data showed that the social context can further enhance the drug-seeking behavior induced by the drug-taking environment.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
26
|
Adiguzel Y, Kulah H. Breath sensors for lung cancer diagnosis. Biosens Bioelectron 2014; 65:121-38. [PMID: 25461148 DOI: 10.1016/j.bios.2014.10.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/15/2022]
Abstract
The scope of the applications of breath sensors is abundant in disease diagnosis. Lung cancer diagnosis is a well-fitting health-related application of this technology, which is of utmost importance in the health sector, because lung cancer has the highest death rate among all cancer types, and it brings a high yearly global burden. The aim of this review is first to provide a rational basis for the development of breath sensors for lung cancer diagnostics from a historical perspective, which will facilitate the transfer of the idea into the rapidly evolving sensors field. Following examples with diagnostic applications include colorimetric, composite, carbon nanotube, gold nanoparticle-based, and surface acoustic wave sensor arrays. These select sensor applications are widened by the state-of-the-art developments in the sensors field. Coping with sampling sourced artifacts and cancer staging are among the debated topics, along with the other concerns like proteomics approaches and biomimetic media utilization, feature selection for data classification, and commercialization.
Collapse
Affiliation(s)
- Yekbun Adiguzel
- Department of Biophysics, School of Medicine, Istanbul Kemerburgaz University, Mahmutbey Dilmenler Caddesi, No. 26, 34217 Bagcilar, Istanbul, Turkey.
| | - Haluk Kulah
- METU-MEMS Research and Application Center, Middle East Technical University (METU), Ankara, Turkey; METU BioMEMS, Electrical and Electronics Engineering Department, METU, Universiteler Mah., Dumlupınar Bulv. No. 1, 06800 Çankaya, Ankara, Turkey.
| |
Collapse
|
27
|
Buljubasic F, Buchbauer G. The scent of human diseases: a review on specific volatile organic compounds as diagnostic biomarkers. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3219] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fanis Buljubasic
- General Hospital Mannheim, Department of Internal Medicine, Division of Pulmonology; University of Heidelberg; Germany
| | - Gerhard Buchbauer
- General Hospital Mannheim, Department of Internal Medicine, Division of Pulmonology; University of Heidelberg; Germany
| |
Collapse
|
28
|
Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 2014; 6:357-76. [PMID: 24471956 DOI: 10.4155/bio.13.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For the last few decades intense scientific research has been placed on the relationship between trace substances found in exhaled breath such as volatile organic compounds (VOC) and a wide range of local or systemic diseases. Although currently there is no general consensus, results imply that VOC have a different profile depending on the organ or disease that generates them. The association between a specific pathology and exhaled breath odor is particularly evident in patients with medical conditions such as liver, renal or oral diseases. In other cases the unpleasant odors can be associated with the whole body and have a genetic underlying cause. The present review describes the current advances in identifying and quantifying VOC used as biomarkers for a number of systemic diseases. A special focus will be placed on volatiles that characterize unpleasant breath 'fingerprints' such as fetor hepaticus; uremic fetor; fetor ex ore or trimethylaminuria.
Collapse
|
29
|
Mochalski P, Unterkofler K, Španěl P, Smith D, Amann A. Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1683-1690. [PMID: 24975248 PMCID: PMC4142009 DOI: 10.1002/rcm.6947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The reactions of NO(+) with volatile organic compounds (VOCs) in Selective Reagent Ionization Time-of-Flight Mass Spectrometry (SRI-TOF-MS) reactors are relatively poorly known, inhibiting their use for trace gas analysis. The rationale for this product ion distribution study was to identify the major product ions of the reactions of NO(+) ions with 13 organosulfur compounds and 2 organoselenium compounds in an SRI-TOF-MS instrument and thus to prepare the way for their analysis in exhaled breath, in skin emanations and in the headspace of urine, blood and cell and bacterial cultures. METHODS Product ion distributions have been investigated by a SRI-TOF-MS instrument at an E/N in the drift tube reactor of 130 Td for both dry air and humid air (4.9% absolute humidity) used as the matrix gas. The investigated species were five monosulfides (dimethyl sulfide, ethyl methyl sulfide, methyl propyl sulfide, allyl methyl sulfide and methyl 5-methyl-2-furyl sulfide), dimethyl disulfide, dimethyl trisulfide, thiophene, 2-methylthiophene, 3-methylthiophene, methanethiol, allyl isothiocyanate, dimethyl sulfoxide, and two selenium compounds - dimethyl selenide and dimethyl diselenide. RESULTS Charge transfer was seen to be the dominant reaction mechanism in all reactions under study forming the M(+) cations. For methanethiol and allyl isothiocyanate significant fractions were also observed of the stable adduct ions NO(+) M, formed by ion-molecule association, and [M-H](+) ions, formed by hydride ion transfer. Several other minor product channels are seen for most reactions indicating that the nascent excited intermediate (NOM)(+) * adduct ions partially fragment along other channels, most commonly by the elimination of neutral CH3 , CH4 and/or C2 H4 species that are probably bound to an NO molecule. Humidity had little effect on the product ion distributions. CONCLUSIONS The findings of this study are of particular importance for data interpretation in studies of volatile organosulfur and volatile organoselenium compounds employing SRI-TOF-MS in the NO(+) mode.
Collapse
Affiliation(s)
- Paweł Mochalski
- Breath Research Institute of the University of InnsbruckRathausplatz 4, A-6850, Dornbirn, Austria
| | - Karl Unterkofler
- Breath Research Institute of the University of InnsbruckRathausplatz 4, A-6850, Dornbirn, Austria
- Vorarlberg University of Applied SciencesHochschulstr. 1, A-6850, Dornbirn, Austria
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech RepublicDolejškova 3, 18223, Prague 8, Czech Republic
| | - David Smith
- Institute for Science and Technology in Medicine, Medical School, Keele UniversityThornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| | - Anton Amann
- Breath Research Institute of the University of InnsbruckRathausplatz 4, A-6850, Dornbirn, Austria
- Univ.-Clinic for Anesthesia and Intensive Care, Innsbruck Medical UniversityAnichstr, 35, A-6020, Innsbruck, Austria
| |
Collapse
|
30
|
Lipid peroxidation in psychiatric illness: overview of clinical evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:828702. [PMID: 24868318 PMCID: PMC4020299 DOI: 10.1155/2014/828702] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022]
Abstract
The brain is known to be sensitive to oxidative stress and lipid peroxidation. While lipid peroxidation has been shown to contribute to many disease processes, its role in psychiatric illness has not been investigated until recently. In this paper, we provide an overview of lipid peroxidation in the central nervous system as well as clinical data supporting a link between lipid peroxidation and disorders such as schizophrenia, bipolar disorder, and major depressive disorder. These data support further investigation of lipid peroxidation in the effort to uncover therapeutic targets and biomarkers of psychiatric disease.
Collapse
|
31
|
Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis. Bioanalysis 2014; 6:843-57. [DOI: 10.4155/bio.14.26] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The volatile metabolites present in trace amounts in exhaled breath of healthy individuals and patients, for example those with advanced chronic kidney disease (CKD), can now be detected and quantified by sensitive analytical techniques. In this review, special attention is given to the major retention metabolites resulting from dialysis-dependent CKD stage 5 and especially ammonia, as a potential estimator of the severity of uremia. However, other biomarkers are important, including the hydrocarbons isoprene, ethane and pentane, in that they are likely to indicate tissue injury associated with the dialysis treatment itself. Evaluation of over-hydration, a serious complication of CKD stage5 can be improved by analysis of deuterium in exhaled water vapor after ingestion of a known amount of deuterated water, so providing total body water measurements at the bedside to support clinical management of volume status.
Collapse
|
32
|
Pereira J, Silva CL, Perestrelo R, Gonçalves J, Alves V, Câmara JS. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Anal Bioanal Chem 2014; 406:2101-22. [DOI: 10.1007/s00216-013-7527-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022]
|
33
|
Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine (Lond) 2013; 8:785-806. [PMID: 23656265 DOI: 10.2217/nnm.13.64] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The importance of developing new diagnostic and detection technologies for the growing number of clinical challenges is rising each year. Here, we present a concise, yet didactic review on a new diagnostics frontier based on the detection of disease-related volatile organic compounds (VOCs) by means of nanomaterial-based sensors. Nanomaterials are ideal for such sensor arrays because they are easily fabricated, chemically versatile and can be integrated into currently available sensing platforms. Following a general introduction, we provide a brief description of the VOC-related diseases concept. Then, we focus on detection of VOC-related diseases by selective and crossreactive sensing approaches, through chemical, optical and mechanical transducers incorporating the most important classes of nanomaterials. Selected examples of the integration of nanomaterials into selective sensors and crossreactive sensor arrays are given. We conclude with a brief discussion on the integration possibilities of different types of nanomaterials into sensor arrays, and the expected outcomes and limitations.
Collapse
Affiliation(s)
- Yoav Y Broza
- Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200002, Israel
| | | |
Collapse
|
34
|
Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:200-6. [PMID: 23470289 DOI: 10.1016/j.pnpbp.2013.02.015] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 01/13/2023]
Abstract
The etiopathogenic mechanisms of schizophrenia are to date unknown, although several hypotheses have been suggested. Accumulating evidence suggests that excessive free radical production or oxidative stress may be involved in the pathophysiology of schizophrenia as evidenced by increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. This review aims to summarize the basic molecular mechanisms of free radical metabolism, the impaired antioxidant defense system and membrane pathology in schizophrenia, their interrelationships with the characteristic clinical symptoms and the implications for antipsychotic treatments. In schizophrenia, there is accumulating evidence of altered antioxidant enzyme activities and increased levels of lipid peroxidation, as well as altered levels of plasma antioxidants. Moreover, free radical-mediated abnormalities may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment with antipsychotic drugs, as well as the development of tardive dyskinesia (TD). Finally, the potential therapeutic strategies implicated by the accumulating data on oxidative stress mechanisms for the treatment of schizophrenia are discussed.
Collapse
Affiliation(s)
- Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Psychiatry Research Center, Beijing Hui Long Guan Hospital, Peking University, Beijing 100096, China
| | | | | |
Collapse
|
35
|
Dryahina K, Španěl P, Pospíšilová V, Sovová K, Hrdlička L, Machková N, Lukáš M, Smith D. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1983-1992. [PMID: 23939966 DOI: 10.1002/rcm.6660] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Inflammatory bowel disease has a relatively large incidence in modern populations and the current diagnostic methods are either invasive or have limited sensitivity or specificity. Thus, there is a need for new non-invasive methods for its diagnosis and therapeutic monitoring, and breath analysis represents a promising direction in this area of research. Specifically, a method is needed for the absolute quantification of pentane in human breath. METHODS Selected ion flow tube mass spectrometry (SIFT-MS) has been used to study the kinetics of the O2(+) reaction with pentane. Product ions at m/z 42 and 72 were chosen as characteristic ions useful for the quantification of pentane and the reactivity of these ions with water vapour was characterized. A pilot study has been carried out of pentane in the exhaled breath of patients with Crohn's disease (CD) and ulcerative colitis (UC) and of healthy volunteers. RESULTS Accurate data on the kinetics of the gas phase reaction of the O2(+•) ions with pentane have been obtained: rate coefficient 8 × 10(-10) cm(3) s(-1) (±5%) and branching ratios into the following product ions C5H12(+•) (m/z 72, 31%); C4H9(+) (m/z 57, 8%); C3H7(+) (m/z 43, 40%), C3H6(+•) (m/z 42, 21%). A method of calculation of absolute pentane concentration in exhaled breath was formulated using the count rates of the ions at m/z 32, 42, 55 and 72. Pentane was found to be significantly elevated in the breath of both the CD (mean 114 ppbv) and the UC patients (mean 84 ppbv) relative to the healthy controls (mean 40 ppbv). CONCLUSIONS SIFT-MS can be used to quantify pentane in human breath in real time avoiding sample storage. This method of analysis can ultimately form the basis of non-invasive screening of inflammatory processes, including inflammatory bowel disease.
Collapse
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Modak AS. Regulatory issues on breath tests and updates of recent advances on [
13
C]-breath tests. J Breath Res 2013; 7:037103. [DOI: 10.1088/1752-7155/7/3/037103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Harvey-Woodworth CN. Dimethylsulphidemia: the significance of dimethyl sulphide in extra-oral, blood borne halitosis. Br Dent J 2013; 214:E20. [DOI: 10.1038/sj.bdj.2013.329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2012] [Indexed: 12/15/2022]
|
38
|
Wong RPM, Flematti GR, Davis TME. Investigation of volatile organic biomarkers derived from Plasmodium falciparum in vitro. Malar J 2012; 11:314. [PMID: 22958460 PMCID: PMC3468367 DOI: 10.1186/1475-2875-11-314] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/04/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND There remains a need for techniques that improve the sensitive detection of viable Plasmodium falciparum as part of diagnosis and therapeutic monitoring in clinical studies and usual-care management of malaria infections. A non-invasive breath test based on P. falciparum-associated specific volatile organic compounds (VOCs) could fill this gap and provide insights into parasite metabolism and pathogenicity. The aim of this study was to determine whether VOCs are present in the headspace above in vitro P. falciparum cultures. METHODS A novel, custom-designed apparatus was developed to enable efficient headspace sampling of infected and non-infected cultures. Conditions were optimized to support cultures of high parasitaemia (>20%) to improve the potential detection of parasite-specific VOCs. A number of techniques for VOC analysis were investigated including solid phase micro-extraction using two different polarity fibres, and purge and trap/thermal desorption, each coupled to gas chromatography-mass spectrometry. Each experiment and analysis method was performed at least on two occasions. VOCs were identified by comparing their mass spectra against commercial mass spectral libraries. RESULTS No unique malarial-specific VOCs could be detected relative to those in the control red blood cell cultures. This could reflect sequestration of VOCs into cell membranes and/or culture media but solvent extractions of supernatants and cell lysates using hexane, dichloromethane and ethyl acetate also showed no obvious difference compared to control non-parasitized cultures. CONCLUSIONS Future in vivo studies analysing the breath of patients with severe malaria who are harbouring a parasite biomass that is significantly greater than achievable in vitro may yet reveal specific clinically-useful volatile chemical biomarkers.
Collapse
Affiliation(s)
- Rina P M Wong
- University of Western Australia, School of Medicine and Pharmacology, Fremantle Hospital, PO Box 480, Fremantle, WA 6959, Australia
| | | | | |
Collapse
|
39
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
40
|
Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem 2011; 150:257-66. [DOI: 10.1093/jb/mvr090] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
41
|
Sonoda H, Kohnoe S, Yamazato T, Satoh Y, Morizono G, Shikata K, Morita M, Watanabe A, Morita M, Kakeji Y, Inoue F, Maehara Y. Colorectal cancer screening with odour material by canine scent detection. Gut 2011; 60:814-9. [PMID: 21282130 PMCID: PMC3095480 DOI: 10.1136/gut.2010.218305] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Early detection and early treatment are of vital importance to the successful treatment of various cancers. The development of a novel screening method that is as economical and non-invasive as the faecal occult blood test (FOBT) for early detection of colorectal cancer (CRC) is needed. A study was undertaken using canine scent detection to determine whether odour material can become an effective tool in CRC screening. DESIGN Exhaled breath and watery stool samples were obtained from patients with CRC and from healthy controls prior to colonoscopy. Each test group consisted of one sample from a patient with CRC and four control samples from volunteers without cancer. These five samples were randomly and separately placed into five boxes. A Labrador retriever specially trained in scent detection of cancer and a handler cooperated in the tests. The dog first smelled a standard breath sample from a patient with CRC, then smelled each sample station and sat down in front of the station in which a cancer scent was detected. RESULTS 33 and 37 groups of breath and watery stool samples, respectively, were tested. Among patients with CRC and controls, the sensitivity of canine scent detection of breath samples compared with conventional diagnosis by colonoscopy was 0.91 and the specificity was 0.99. The sensitivity of canine scent detection of stool samples was 0.97 and the specificity was 0.99. The accuracy of canine scent detection was high even for early cancer. Canine scent detection was not confounded by current smoking, benign colorectal disease or inflammatory disease. CONCLUSIONS This study shows that a specific cancer scent does indeed exist and that cancer-specific chemical compounds may be circulating throughout the body. These odour materials may become effective tools in CRC screening. In the future, studies designed to identify cancer-specific volatile organic compounds will be important for the development of new methods for early detection of CRC.
Collapse
Affiliation(s)
- Hideto Sonoda
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan.
| | - Shunji Kohnoe
- Department of Surgery and Science, Kyushu University at Fukuoka, Fukuoka, Japan,Department of General Surgery, Fukuoka Dental College Hospital at Fukuoka, Fukuoka, Japan
| | - Tetsuro Yamazato
- Department of Internal Medicine, Arita Kyoritsu Hospital at Arita, Saga, Japan
| | - Yuji Satoh
- St. Sugar Cancer Sniffing Dog Training Center at Minamibousou, Chiba, Japan
| | - Gouki Morizono
- Department of General Surgery, Arita Kyoritsu Hospital at Arita, Saga, Japan
| | - Kentaro Shikata
- Department of Internal Medicine, Fukuoka Dental College Hospital at Fukuoka, Fukuoka, Japan
| | - Makoto Morita
- Department of General Surgery, Fukuoka Dental College Hospital at Fukuoka, Fukuoka, Japan
| | - Akihiro Watanabe
- Department of General Surgery, Fukuoka Dental College Hospital at Fukuoka, Fukuoka, Japan
| | - Masaru Morita
- Department of Surgery and Science, Kyushu University at Fukuoka, Fukuoka, Japan
| | - Yoshihiro Kakeji
- Department of Surgery and Science, Kyushu University at Fukuoka, Fukuoka, Japan
| | - Fumio Inoue
- Department of General Surgery, Arita Kyoritsu Hospital at Arita, Saga, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Kyushu University at Fukuoka, Fukuoka, Japan
| |
Collapse
|
42
|
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:1105-76. [PMID: 22346620 PMCID: PMC3274093 DOI: 10.3390/s110101105] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/20/2022]
Abstract
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Manuela Baietto
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; E-Mail:
| |
Collapse
|
43
|
Guo D, Zhang D, Li N, Zhang L, Yang J. A novel breath analysis system based on electronic olfaction. IEEE Trans Biomed Eng 2010; 57. [PMID: 20667805 DOI: 10.1109/tbme.2010.2055864] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Certain gases in the breath are known to be indicators of the presence of diseases and clinical conditions. These gases have been identified as biomarkers using equipments such as gas chromatography (GC) and electronic nose (e-nose). GC is very accurate but is expensive, time consuming, and non-portable. E-nose has the advantages of low-cost and easy operation, but is not particular for analyzing breath odor and hence has a limited application in diseases diagnosis. This article proposes a novel system that is special for breath analysis. We selected chemical sensors that are sensitive to the biomarkers and compositions in human breath, developed the system, and introduced the odor signal preprocessing and classification method. To evaluate the system performance, we captured breath samples from healthy persons and patients known to be afflicted with diabetes, renal disease, and airway inflammation repectively and conducted experiments on medical treatment evaluation and disease identification. The results show that the system is not only able to distinguish between breath samples from subjects suffering from various diseases or conditions (diabetes, renal disease, and airway inflammation) and breath samples from healthy subjects, but in the case of renal failure is also helpful in evaluating the efficacy of hemodialysis (treatment for renal failure).
Collapse
|
44
|
Wang C, Sahay P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. SENSORS (BASEL, SWITZERLAND) 2009; 9:8230-62. [PMID: 22408503 PMCID: PMC3292105 DOI: 10.3390/s91008230] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 12/27/2022]
Abstract
Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.
Collapse
Affiliation(s)
- Chuji Wang
- Department of Physics and Astronomy and The Institute for Clean Energy Technology, Mississippi State University, Starkville, MS 39759, USA
| | - Peeyush Sahay
- Department of Physics and Astronomy and The Institute for Clean Energy Technology, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
45
|
Mochalski P, Wzorek B, Sliwka I, Amann A. Improved pre-concentration and detection methods for volatile sulphur breath constituents. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1856-66. [PMID: 19493705 DOI: 10.1016/j.jchromb.2009.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/15/2009] [Accepted: 05/08/2009] [Indexed: 01/23/2023]
Abstract
Suitability of different types of pre-concentration (solid phase microextraction and sorbent trapping) and detection (flame photometric detector (FPD) and mass selective detector (MSD)) for gas chromatographic determination of sulphur-containing compounds (H2S, MeSH, EtSH, DMS, COS and CS2) in breath-gas was assessed in this study. Several factors like influence of humidity, influence of oxygen, or stability of target compounds in extraction vessels (SPME vials and sorbent tubes) were investigated. Despite poor stability of VSCs in SPME vials and matrix effects (unfavorable influence of humidity), SPME was found to be a fast and reliable enrichment method, which coupled with mass selective detector provided satisfactory LODs of target compounds at the ppt level (from 0.15 ppb for CS2 to 2.3 ppb for H2S). Application of sorbent trapping with two-bed sorbent tubes containing Tenax TA and Carboxen 1000 gave excellent LODs (0.03-0.3 ppb for 200 ml sample and MSD). Stability of investigated VSCs in sorbents was found to be very poor (30-40% losses after 2 h). FPD showed satisfactory sensitivity only when it was coupled with sorbent trapping. Breath samples were collected into Tedlar bags in a CO2-controlled manner. Humidity was removed during sampling (permeation dryer--Nafion) to avoid unfavorable water dependent effects during analysis.
Collapse
Affiliation(s)
- Paweł Mochalski
- Institute of Nuclear Physics PAN, Radzikowskiego 152, PL-31342 Kraków, Poland.
| | | | | | | |
Collapse
|
46
|
Mochalski P, Wzorek B, Śliwka I, Amann A. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:189-96. [DOI: 10.1016/j.jchromb.2008.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/25/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
|
47
|
Bloor RN, Spanĕl P, Smith D. Quantification of breath carbon disulphide and acetone following a single dose of disulfiram (Antabuse) using selected ion flow tube mass spectrometry (SIFT-MS). Addict Biol 2006; 11:163-9. [PMID: 16800830 DOI: 10.1111/j.1369-1600.2006.00015.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Selected ion flow tube mass spectrometry (SIFT-MS) has been used to measure simultaneously the concentrations of both carbon disulphide and acetone in exhaled breath following the ingestion of a single dose of disulfiram (Antabuse). Carbon disulphide is a product of the metabolism of disulfiram and is excreted mainly through the lungs. Acetone is a product of normal metabolism and appears in the breath of all individuals. These breath analyses were performed in single exhalations and the results were available in real time. The levels of breath acetone and carbon disulphide were compared with levels obtained from a control subject who had not ingested disulfiram. Breath carbon disulphide was seen to increase from 15 p.p.b. to 618 p.p.b. over a 28-hour period, in the single individual tested, following ingestion of disulfiram, while acetone levels increased from 300 p.p.b. (normal) to over 4000 p.p.b. (greatly elevated). No such increases were seen in the breath of the control subject over the same period. An obvious positive correlation between breath carbon disulphide and acetone concentrations following disulfiram ingestion is seen and discussed.
Collapse
Affiliation(s)
- Roger N Bloor
- Academic Psychiatry Unit, Keele University Medical School, Academic Suite, Harplands Hospital, UK
| | | | | |
Collapse
|
48
|
Lechner M, Moser B, Niederseer D, Karlseder A, Holzknecht B, Fuchs M, Colvin S, Tilg H, Rieder J. Gender and age specific differences in exhaled isoprene levels. Respir Physiol Neurobiol 2006; 154:478-83. [PMID: 16510318 DOI: 10.1016/j.resp.2006.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/13/2006] [Accepted: 01/16/2006] [Indexed: 11/21/2022]
Abstract
The analysis of volatile organic compounds (VOC) in the human breath has attracted a considerable amount of clinical and scientific interest during the last decade. In our study, we turned our attention to gender and age specific differences of exhaled volatile compounds, particularly on isoprene which is one of the most abundant organic molecules found in human exhaled air. A total of 126 test persons were enrolled in the study: 66 females and 60 males. Moreover, the participants were classified into six groups with regard to their age. In a standardized setting all of them had to exhale the endexpiratory breath into a sample bag. The volatile compounds at m/z values from 21 to 229 were analyzed by using proton-transfer-reaction-mass-spectrometry. Isoprene (at m/z 69) was found to be highly significantly (p<0.001) elevated in the exhaled air of male subjects. Furthermore, it could be shown that 19-29 years old subjects exhale significantly lower levels of isoprene than older adults (p=0.002). No significant differences between groups were detected for any other measured mass. In conclusion, the present study demonstrates gender and age specific differences of isoprene levels in the exhaled air. These findings may be of potential clinical relevance regarding the multifaceted roles of isoprene, representing both indicator and effector molecule.
Collapse
Affiliation(s)
- Matthias Lechner
- Department of Hygiene, Microbiology, and Social Medicine, Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lechner M, Karlseder A, Niederseer D, Lirk P, Neher A, Rieder J, Tilg H. H. pylori infection increases levels of exhaled nitrate. Helicobacter 2005; 10:385-90. [PMID: 16181348 DOI: 10.1111/j.1523-5378.2005.00345.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Helicobacter pylori infection is one of the most common chronic bacterial infections worldwide. Despite the existence of a breath test for the diagnosis of H. pylori infection, no study has described the composition of volatile compounds, especially the levels of nitrate, in the exhaled air of patients with H. pylori infection. MATERIALS AND METHODS The volatile compounds in the exhaled air of 14 patients suffering from H. pylori gastritis and 11 controls were analyzed using proton transfer reaction-mass spectrometry. Gastric biopsy was used to establish diagnosis of current H. pylori infection. RESULTS Comparing mass spectra between groups, Mass 28 (hydrogen cyanide, HCN) and Mass 64 (hydrogen nitrate, H2NO3) were found to be significantly elevated in patients with H. pylori infection. CONCLUSIONS The main result of the present study is that in H. pylori-infected patients, levels of exhaled hydrogen nitrate and hydrogen cyanide are found to be significantly elevated. However, further studies are necessary to find out whether the differences in the detected mass spectrum are specific enough to differentiate patients with H. pylori gastritis from healthy controls.
Collapse
Affiliation(s)
- Matthias Lechner
- Department of Hygiene, Microbiology and Social Medicine, Section Hygiene and Medical Microbiology, Medical University of Innsbruck, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
50
|
Statheropoulos M, Sianos E, Agapiou A, Georgiadou A, Pappa A, Tzamtzis N, Giotaki H, Papageorgiou C, Kolostoumbis D. Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 822:112-7. [PMID: 15996539 DOI: 10.1016/j.jchromb.2005.05.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/19/2005] [Accepted: 05/21/2005] [Indexed: 10/25/2022]
Abstract
A preliminary investigation on the possibility of using volatile organic compounds (VOCs) determination of expired air, blood and urine, for the early location of entrapped people in earthquakes, has been carried out. A group of 15 healthy subjects has been sampled. The identification of a common "core" of substances might provide indications of human presence that can be used for the development of a real time field analytical method for the on site detection of entrapped people. Expired air samples have been analyzed by thermal desorption GC/MS and VOCs from blood and urine by headspace SPME-GC/MS. Acetone was the only compound found common in all three matrices. Isoprene was found in both expired air and blood samples. Acetone and isoprene along with a number of saturated hydrocarbons were among the major constituents identified in expired air analysis. Various ketones (2-pentanone, 4-heptanone, 2-butanone) were also determined over urine specimens. Using the techniques and methods of field analytical chemistry and technology appears to be the proper approach for applying the results of the present study in real situations.
Collapse
Affiliation(s)
- M Statheropoulos
- National Technical University of Athens (NTUA), School of Chemical Engineering, Sector I, 9 Iroon Polytechniou Str., Athens 157 73, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|