1
|
Kyoda Y, Shibamori K, Shindo T, Maehana T, Hashimoto K, Kobayashi K, Tanaka T, Fukuta F, Masumori N. Intrinsic and extrinsic factors causing hyperplasia of the prostate. Int J Urol 2024; 31:705-717. [PMID: 38462732 PMCID: PMC11524118 DOI: 10.1111/iju.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Prostatic hyperplasia is very common in elderly men and is a typical disease that reduces quality of life. Histologically, hyperplasia of the prostate gland causes obstruction at the bladder outlet, resulting in symptoms such as a weak urine stream. Various factors have been considered to cause histological enlargement of the prostate, but the underlying cause is still unknown. The factors that cause prostate hyperplasia can be broadly classified into intrinsic and extrinsic ones. Extrinsic factors include things that we directly come into contact with such as bacteria and food. On the other hand, intrinsic factors are those that cause changes in functions originally provided in the body due to some cause, including extrinsic factors, such as chronic inflammation and an imbalance of sex hormones. A large number of reports have been made to date regarding the etiology of prostatic hyperplasia, although they have not yet clarified the fundamental cause(s). The various factors currently known should be outlined for future research. Should it be possible to prevent this highly prevalent prostatic hyperplasia which is mainly cause of dcreasing quality of life, there is no doubt that it would be a huge contribution to humanity.
Collapse
Affiliation(s)
- Yuki Kyoda
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Kosuke Shibamori
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Tetsuya Shindo
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Takeshi Maehana
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Kohei Hashimoto
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Ko Kobayashi
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Toshiaki Tanaka
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| | - Fumimasa Fukuta
- Department of UrologySteel Memorial Muroran HospitalMuroranJapan
| | - Naoya Masumori
- Department of UrologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
2
|
Su Z, Zhang Y, Cao J, Sun Y, Cai Y, Zhang B, He L, Zhang Z, Xie J, Meng Q, Luo L, Li F, Li J, Zhang J, Chen X, Hong A. Hyaluronic acid-FGF2-derived peptide bioconjugates for suppression of FGFR2 and AR simultaneously as an acne antagonist. J Nanobiotechnology 2023; 21:55. [PMID: 36803994 PMCID: PMC9938603 DOI: 10.1186/s12951-023-01812-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Acne is a chronic skin condition that has serious consequences for mental and social well-being because it frequently occurs on the face. Several acne treatment approaches have commonly been used but have been hampered by side effects or weak activity. Thus, the investigation of the safety and efficacy of anti-acne compounds is of considerable medical importance. Herein, an endogenous peptide (P5) derived from fibroblast growth factors 2 (FGF2) was conjugated to the polysaccharide hyaluronic acid (HA) to generate the bioconjugate nanoparticle HA-P5, which suppresses fibroblast growth factor receptors (FGFRs) to significantly rehabilitate acne lesions and reduce sebum accumulation in vivo and in vitro. Moreover, our results show that HA-P5 inhibits both fibroblast growth factor receptor 2 (FGFR2) and androgen receptor (AR) signalling in SZ95 cells, reverses the acne-prone transcriptome, and decreases sebum secretion. Furthermore, the cosuppression mechanism revealed that HA-P5 blocks FGFR2 activation, as well as the YTH N6-methyladenosine RNA binding protein F3 (YTHDF3) downstream molecules, including an N6-methyladenosine (m6A) reader that facilitates AR translation. More importantly, a significant difference between HA-P5 and the commercial FGFR inhibitor AZD4547 is that HA-P5 does not trigger the overexpression of aldo-keto reductase family 1 member C3 (AKR1C3), which blocks acne treatment by catalyzing the synthesis of testosterone. Overall, we demonstrate that a polysaccharide-conjugated and naturally derived oligopeptide HA-P5 can alleviate acne and act as an optimal FGFR2 inhibitor and reveal that YTHDF3 plays a crucial role in signalling between FGFR2 and AR.
Collapse
Affiliation(s)
- Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuanmeng Sun
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yuling Cai
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zilei Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lin Luo
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fu Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jingsheng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
3
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Figueroa V, Rodríguez MS, Lanari C, Lamb CA. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids 2019; 152:108492. [PMID: 31513818 DOI: 10.1016/j.steroids.2019.108492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Dysregulation of the fibroblast growth factors/fibroblast growth factor receptor (FGF/FGFR) pathway has been implicated in a wide range of human disorders and several members have been localized in the nuclear compartment. Hormone-activated steroid receptors or ligand independent activated receptors form nuclear complexes that activate gene transcription. This review aims to highlight the interplay between the steroid receptor and the FGF/FGFR pathways and focuses on the current knowledge on nuclear action of FGF members in endocrine-related tissues and cancer. The nuclear trafficking and targets of FGF/FGFR members and the available evidence on the interplay with steroid hormones and receptors is described. Finally, the data on aberrant FGF/FGFR signaling is summarized and the nuclear action of FGF members on endocrine resistant breast cancer is highlighted. Identifying the mechanisms underlying FGF-induced endocrine resistance will be important to understand how to efficiently target endocrine-related diseases and even enhance or restore endocrine sensitivity in hormone receptor positive tumors.
Collapse
Affiliation(s)
- Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Caroline Ana Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
5
|
Pathway-based expression profiling of benign prostatic hyperplasia and prostate cancer delineates an immunophilin molecule associated with cancer progression. Sci Rep 2017; 7:9763. [PMID: 28852180 PMCID: PMC5575002 DOI: 10.1038/s41598-017-10068-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Aberrant restoration of AR activity is linked with prostate tumor growth, therapeutic failures and development of castrate-resistant prostate cancer. Understanding the processes leading to AR-reactivation should provide the foundation for novel avenues of drug discovery. A differential gene expression study was conducted using biopsies from CaP and BPH patients to identify the components putatively responsible for reinstating AR activity in CaP. From the set of genes upregulated in CaP, FKBP52, an AR co-chaperone, was selected for further analysis. Expression of FKBP52 was positively correlated with that of c-Myc. The functional cross-talk between c-Myc and FKBP52 was established using c-Myc specific-siRNA to LNCaP cells that resulted in reduction of FKBP52. A non-canonical E-box sequence housing a putative c-Myc binding site was detected on the FKBP4 promoter using in silico search. LNCaP cells transfected with the FKBP52 promoter cloned in pGL3 basic showed increased luciferase activity which declined considerably when the promoter-construct was co-transfected with c-Myc specific-siRNA. ChIP-PCR confirmed the binding of c-Myc with the conserved E-box located in the FKBP52 promoter. c-Myc downregulation concomitantly affected expression of FGF8. Since expression of FGF8 is controlled by AR, our study unveiled a novel functional axis between c-Myc, AR and FGF8 operating through FKBP52.
Collapse
|
6
|
|
7
|
Valta MP, Tuomela J, Vuorikoski H, Loponen N, Väänänen RM, Pettersson K, Väänänen HK, Härkönen PL. FGF-8b induces growth and rich vascularization in an orthotopic PC-3 model of prostate cancer. J Cell Biochem 2009; 107:769-84. [PMID: 19415685 DOI: 10.1002/jcb.22175] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 8 (FGF-8) is expressed at an increased level in a high proportion of prostate cancers and it is associated with a poor prognosis of the disease. Our aim was to study the effects of FGF-8b on proliferation of PC-3 prostate cancer cells and growth of PC-3 tumors, and to identify FGF-8b-associated molecular targets. Expression of ectopic FGF-8b in PC-3 cells caused a 1.5-fold increase in cell proliferation in vitro and a four- to fivefold increase in the size of subcutaneous and orthotopic prostate tumors in nude mice. Tumors expressing FGF-8b showed a characteristic morphology with a very rich network of capillaries. This was associated with increased spread of the cancer cells to the lungs as measured by RT-qPCR of FGF-8b mRNA. Microarray analyses revealed significantly altered, up- and downregulated, genes in PC-3 cell cultures (169 genes) and in orthotopic PC-3 tumors (61 genes). IPA network analysis of the upregulated genes showed the strongest association with development, cell proliferation (CRIP1, SHC1), angiogenesis (CCL2, DDAH2), bone metastasis (SPP1), cell-to-cell signaling and energy production, and the downregulated genes associated with differentiation (DKK-1, VDR) and cell death (CYCS). The changes in gene expression were confirmed by RT-qPCR. In conclusion, our results demonstrate that FGF-8b increases the growth and angiogenesis of orthotopic prostate tumors. The associated gene expression signature suggests potential mediators for FGF-8b actions on prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Maija P Valta
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Awan AK, Iftikhar SY, Morris TM, Clarke PA, Grabowska AM, Waraich N, Watson SA. Androgen receptors may act in a paracrine manner to regulate oesophageal adenocarcinoma growth. Eur J Surg Oncol 2007; 33:561-8. [PMID: 17254742 DOI: 10.1016/j.ejso.2006.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/05/2006] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The role of androgen receptors (ARs) in tumorigenesis, including transcription of fibroblast growth factors (FGFs), is established in prostate cancer. This study examined the role of ARs and FGFs in oesophageal adenocarcinoma (EAC), where tumour incidence in males is higher. METHODS AR gene expression was analysed using quantitative RT-PCR; AR, fibroblast growth factor receptor-1 (FGFR-1) and fibroblast growth factor-8 isoform b (FGF-8b) protein by immunohistochemistry; and serum steroid levels (testosterone, progesterone, luteinising hormone and follicle stimulating hormone (FSH)) by immunoassay. A human oesophageal adenocarcinoma cell line was grown subcutaneously in nude mice. RESULTS AR gene expression was of significantly higher levels than oesophageal adenocarcinomas (n=21, p=0.002) and in the squamous carcinoma line (OE21) compared with the adenocarcinoma lines (OE33 and OE19). Median serum testosterone levels in oesophageal carcinoma patients were higher than in age-matched controls (p=0.01) and reduced postoperatively, in patients undergoing curative resection (p=0.006). No significant differences were observed in hormones except FSH, where preoperative levels were significantly higher in the EAC group. AR protein was expressed in normal oesophageal squamous epithelial cells and also in the stroma of 18/23 EAC samples. FGFR-1 protein was expressed in malignant epithelium of 23/23 tumour samples. OE19 xenografts grew faster in male versus female mice (tumour weight at day 21, 1.14 g and 0.28 g, respectively, p=0.005) and had elevated FGF receptor expression. CONCLUSIONS AR expressed in the stroma of oesophageal adenocarcinomas may induce paracrine effects following stimulation by androgens (including tumour-derived), possibly via FGFs, including FGF-8b.
Collapse
Affiliation(s)
- A K Awan
- Division of Pre-Clinical Oncology, University of Nottingham, D Floor, West Block, Queen's Medical Centre, University Hospital, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Lin Y, Liu G, Zhang Y, Hu YP, Yu K, Lin C, McKeehan K, Xuan JW, Ornitz DM, Shen MM, Greenberg N, McKeehan WL, Wang F. Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis. Development 2007; 134:723-34. [PMID: 17215304 DOI: 10.1242/dev.02765] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fibroblast growth factor (FGF) family consists of 22 members and regulates a broad spectrum of biological activities by activating diverse isotypes of FGF receptor tyrosine kinases (FGFRs). Among the FGFs, FGF7 and FGF10 have been implicated in the regulation of prostate development and prostate tissue homeostasis by signaling through the FGFR2 isoform. Using conditional gene ablation with the Cre-LoxP system in mice, we demonstrate a tissue-specific requirement for FGFR2 in urogenital epithelial cells--the precursors of prostatic epithelial cells--for prostatic branching morphogenesis and prostatic growth. Most Fgfr2 conditional null (Fgfr2(cn)) embryos developed only two dorsal prostatic (dp) and two lateral prostatic (lp) lobes. This contrasts to wild-type prostate, which has two anterior prostatic (ap), two dp, two lp and two ventral prostatic (vp) lobes. Unlike wild-type prostates, which are composed of well developed epithelial ductal networks, the Fgfr2(cn) prostates, despite retaining a compartmented tissue structure, exhibited a primitive epithelial architecture. Moreover, although Fgfr2(cn) prostates continued to produce secretory proteins in an androgen-dependent manner, they responded poorly to androgen with respect to tissue homeostasis. The results demonstrate that FGFR2 is important for prostate organogenesis and for the prostate to develop into a strictly androgen-dependent organ with respect to tissue homeostasis but not to the secretory function, implying that androgens may regulate tissue homeostasis and tissue function differently. Therefore, Fgfr2(cn) prostates provide a useful animal model for scrutinizing molecular mechanisms by which androgens regulate prostate growth, homeostasis and function, and may yield clues as to how advanced-tumor prostate cells escape strict androgen regulations.
Collapse
Affiliation(s)
- Yongshun Lin
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A and M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Armstrong K, Robson CN, Leung HY. NF-kappaB activation upregulates fibroblast growth factor 8 expression in prostate cancer cells. Prostate 2006; 66:1223-34. [PMID: 16683270 DOI: 10.1002/pros.20376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fibroblast growth factor 8 (FGF8) is over-expressed in prostate cancer (CaP) correlating with high-grade disease and reduced survival. The role of acetylation in transcriptional regulation of FGF8 was investigated using the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA). METHODS FGF8 transcriptional response to TSA was investigated by gene reporter assays, RT-PCR, and Western blotting. Chromatin immunoprecipitation (ChIP) assays were also performed. RESULTS FGF8 is upregulated in response to TSA treatment along with NF-kappaB transcriptional activity. Over-expression of p65 activated FGF8 transcription. ChIP assays revealed p65 recruitment to the fgf8 promoter, containing putative NF-kappaB binding sites, post TSA stimulation. PI-3K activity is required for TSA mediated FGF8 upregulation. CONCLUSION Using TSA treatment in prostate cancer cells, a requirement of PI-3K activity in mediating TSA function is demonstrated and a novel role for NF-kappaB in the regulation of FGF8 expression is uncovered.
Collapse
Affiliation(s)
- Kelly Armstrong
- Urology Research Group, Northern Institute for Cancer Research, University of Newcastle upon Tyne, Medical School, Framlington Place, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
11
|
Gnanapragasam VJ, Robson CN, Neal DE, Leung HY. Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene 2002; 21:5069-80. [PMID: 12140757 DOI: 10.1038/sj.onc.1205663] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 04/17/2002] [Accepted: 05/10/2002] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 8 (FGF8) has been shown to play a key role in prostate carcinogenesis. It was initially cloned as an androgen induced protein in mouse mammary cancer SC3 cells. In this study, we examined if FGF8 was also regulated by the androgen receptor in human prostate cancer. FGF8b protein expression in resected clinical prostate cancer correlated closely with expression of the androgen receptor (AR). In the androgen sensitive CWR22 prostate xenograft, we observed up-regulation of FGF8b immunoreactivity in testosterone supplemented mice while castration markedly reduced its signal. Furthermore, FGF8b protein expression in AR positive LNCaP cells was similarly enhanced by androgens. The proximal promoter of the human FGF8 gene was cloned into a luciferase reporter construct (FGF8.luc). FGF8.luc activity in AR positive LNCaP and SC3 cells was increased 2.5-fold by androgens. In AR negative DU145 cells, maximal induction of FGF8.luc required both co-transfection of the AR and the presence of androgens. The anti-androgen bicalutamide completely abolished AR mediated FGF8.luc induction. Deletion constructs from FGF8.luc have further defined an active promoter region and an androgen responsive region. Nucleotide analysis of this androgen responsive region has revealed putative androgen response elements. Finally, using ChIP assays we confirmed in vivo interaction between the AR and the androgen responsive region of the FGF8 promoter. Taken together these data provide first evidence that expression of the mitogen FGF8 in prostate cancer is, at least in part, regulated by the androgen receptor at the transcriptional level.
Collapse
Affiliation(s)
- Vincent J Gnanapragasam
- Prostate Research Group, School of Surgical Sciences, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
12
|
Vicente Rodríguez J. [Treatment of benign prostatic hypertrophy: present situation and future prospects]. Actas Urol Esp 2002; 26:481-90. [PMID: 12224431 DOI: 10.1016/s0210-4806(02)72816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Review article offering an up-to-date view and a forecast for the future evolution of a disease which over the last few years has been the subject of increasingly scientific thoroughness. It deals with the natural history of the disease and the application of basic knowledge from other fields. It establishes the importance of a therapeutic evaluation of the results obtained with alternative medical and surgical approaches in the management of this entity. This review of benign prostate hyperplasia analyses the present realities and the future perspectives of the disease. It includes the most important contributions from international consensus and recommendations, and evaluation of the impact of drug treatment, the discredit of alternative options, the contribution of basic sciences to the understanding of the development of prostate cancer and the future of surgical management (TUR) and its alternatives.
Collapse
|
13
|
Zammit C, Coope R, Gomm JJ, Shousha S, Johnston CL, Coombes RC. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer. Br J Cancer 2002; 86:1097-103. [PMID: 11953856 PMCID: PMC2364190 DOI: 10.1038/sj.bjc.6600213] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 01/22/2002] [Accepted: 01/24/2002] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.
Collapse
Affiliation(s)
- C Zammit
- Cancer Research (UK) Laboratories, Department of Cancer Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | |
Collapse
|
14
|
Franco R, Fernandez-Vazquez A, Rodriguez-Peralto JL, Bellas C, López-Ríos F, Sáez A, Villuendas R, Navarrete M, Fernandez I, Zarco C, Piris MA. Cutaneous follicular B-cell lymphoma: description of a series of 18 cases. Am J Surg Pathol 2001; 25:875-83. [PMID: 11420458 DOI: 10.1097/00000478-200107000-00005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lack of precise and homogeneous criteria for the recognition of primary cutaneous follicular lymphoma has hindered gaining data on the frequency and clinical and molecular features of this entity. In the course of a review of a series of primary cutaneous lymphoma from different Spanish hospitals, we collected a series of 18 cases of primary cutaneous follicular lymphoma and analyzed its clinical, morphologic, and biologic characteristics. In this review only cases with a follicular pattern of growth, germinal center cytology, and restriction to the skin in a minimum follow-up of 6 months have been included. Cases of primary cutaneous follicular lymphoma were characterized by the expression of classic markers of the germinal center, such as bcl6, CD10, and the presence of aggregates of follicular dendritic cells. They frequently express bcl2 protein, although classical t(14;18) was not found in any of the cases analyzed. Analysis of the bcl6 noncoding first exon showed somatic mutations in two of four cases analyzed, as would be expected in lymphoma deriving from the germinal center. Clinically, most cases showed initial involvement of the head and neck, with relapses in eight cases (involving the skin in five cases, both skin and lymph node in two cases, and lymph node in one case). No death attributable to the tumor was recorded. These data seem to imply that follicular lymphoma may present initially in the skin, lacking the characteristic t(14;18) and having a relatively indolent course. Recognition of these tumors and elucidation of their molecular alterations could lead to properly adapted staging and treatment protocols for these patients.
Collapse
Affiliation(s)
- R Franco
- Molecular Pathology Program of the Centro Nacional de Investigaciones Oncologicas-Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Valve EM, Nevalainen MT, Nurmi MJ, Laato MK, Martikainen PM, Härkönen PL. Increased expression of FGF-8 isoforms and FGF receptors in human premalignant prostatic intraepithelial neoplasia lesions and prostate cancer. J Transl Med 2001; 81:815-26. [PMID: 11406643 DOI: 10.1038/labinvest.3780291] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
SUMMARY Fibroblast growth factor 8 (FGF-8) is implicated in growth of prostate cancer. Alternative splicing of the human FGF-8 gene potentially allows coding for four protein isoforms (a, b, e, and f). These isoforms differ in their binding to FGF receptors (FGFR) and in their mitogenic and transforming capacity in transfection assays. Here, we used RT-PCR and immunohistochemistry to study the expression of FGF-8 and FGFR isoforms in human prostate cancer (n = 31). Nonmalignant prostate specimens from cystoprostatectomies (n = 24) were examined as controls. Most prostate cancer samples and some control prostates also contained prostatic intraepithelial neoplasia (PIN) lesions. FGF-8a and e were expressed at significantly higher frequencies in prostate cancer (FGF-8a, 55%; FGF-8e, 45%) than in control samples (FGF-8a, 17%, p = 0.0052; FGF-8e, 8%, p = 0.0031). On the contrary, FGF-8b was found at an equal frequency in prostate cancer (55%) and in control prostates (50%). Furthermore, a combination of two or three FGF-8 isoforms (a, b, and/or e) was also expressed at a higher frequency in prostate cancer than in control samples (45% and 8%, respectively, p = 0.0031). Immunohistochemistry with an antibody recognizing all FGF-8 isoforms was more strongly immunoreactive in prostate cancer cells and PIN lesions than in normal-type epithelium. The receptor splicing variants FGFR1IIIc and FGFR2IIIc, which are activated by FGF-8, were found both in prostate cancer and control samples. Interestingly, immunoreactivity for FGFR1 and FGFR2 was much stronger in prostate cancer cells and PIN than in normal epithelium. These results demonstrate, for the first time, that FGF-8 isoforms and their receptors FGFR1IIIc and FGFR2IIIc are expressed at an increased level not only in prostate cancer but also in premalignant PIN lesions. These data suggest that FGF-8 may have an important autocrine role in the development of human prostate cancer. In addition to FGF-8b, the FGF-8 isoforms a and e may be involved in this process.
Collapse
Affiliation(s)
- E M Valve
- Department of Anatomy and MediCity Research Laboratory, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Mattila MM, Ruohola JK, Valve EM, Tasanen MJ, Seppänen JA, Härkönen PL. FGF-8b increases angiogenic capacity and tumor growth of androgen-regulated S115 breast cancer cells. Oncogene 2001; 20:2791-804. [PMID: 11420691 DOI: 10.1038/sj.onc.1204430] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2000] [Revised: 02/27/2001] [Accepted: 03/05/2001] [Indexed: 11/10/2022]
Abstract
Fibroblast growth factor 8 (FGF-8) is a secreted heparin-binding protein, which has transforming potential. Alternative splicing of the mouse Fgf-8 gene potentially codes for eight protein isoforms (a-h) which differ in their transforming capacity in transfected cells. S115 mouse mammary tumor cells express a transformed phenotype and secrete FGF-8 in an androgen-dependent manner. In order to study the role of FGF-8 isoforms in the induction of transformed phenotype of breast cancer cells, we over-expressed FGF-8 isoforms a, b and e in S115 cells. Over-expression of FGF-8b, but not FGF-8a or FGF-8e, induced androgen and anchorage independent growth of S115 cells. FGF-8b-transfected S115 cells formed rapidly growing tumors with increased vascularization when injected s.c. into nude mice. FGF-8a also slightly increased tumor growth and probably tumor vascularization but FGF-8e was not found to have any effects. The angiogenic activity of FGF-8b and heparin-binding growth factor fraction (HBGF) of S115 cell conditioned media was tested in in vitro and in vivo models for angiogenesis using immortomouse brain capillary endothelial cells (IBEC) and chorion allantoic membrane (CAM) assays. Recombinant FGF-8b protein was able to stimulate proliferation, migration, and vessel-like tube formation of IBECs. In addition, stimulatory effect of S115-HBGF on IBE cell proliferation was evident. A positive angiogenic response to FGF-8b was also seen in CAM assay. The results demonstrate that the expression of Fgf-8b is able to promote vessel formation. Angiogenic capacity probably markedly contributes to the ability of FGF-8b to increase tumor growth of androgen-regulated S115 mouse breast cancer cells.
Collapse
Affiliation(s)
- M M Mattila
- Institute of Biomedicine, Department of Anatomy, University of Turku, 20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|