1
|
Wada M, Yamagami W. Immunotherapy for endometrial cancer. Int J Clin Oncol 2025; 30:449-456. [PMID: 38913219 DOI: 10.1007/s10147-024-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Advanced recurrent endometrial cancer (EC) has a poor prognosis and new treatment options are needed. In 2013, EC was classified by genomic analysis into four groups: the POLE ultra-mutated group, the MSI-high hypermutated group (MSI-H), the copy number low group, and the copy number high group. The prognosis differs based on the classification, which should enable the individualization of treatment. The MSI-H and POLE types can induce PD-L1 expression in cancer cells. Among the gynecological cancers, EC exhibits the highest levels of PD-1 and PD-L1 expression and has the highest proportion of MSI-H. Thus, an immune checkpoint inhibitor (ICI) is expected to be effective. The first ICI to show efficacy in recurrent EC was the anti-PD1 antibody pembrolizumab, which exhibited efficacy in MSI-H EC. The combination of pembrolizumab and the multi-kinase inhibitor lenvatinib significantly prolongs OS/PFS compared with single-agent chemotherapy in previously treated recurrent EC, regardless of MSI status. ICIs are now moving from second-line and beyond to first-line treatment regimens. The efficacy of paclitaxel plus carboplatin (TC) and ICI combinations compared with TC have been demonstrated, including an ongoing Phase III trial comparing chemotherapy with the combination of pembrolizumab and lenvatinib. Although ICIs are becoming the mainstay of EC, they cause systemic inflammatory side effects known as irAEs. The incidence of irAEs is higher for combination therapy with CT or lenvatinib compared with ICI therapy alone. Even though they are rarely fatal, irAEs should be addressed promptly.
Collapse
Affiliation(s)
- Michiko Wada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8582, Japan.
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
2
|
Smith SC, Sweeney K, Evans MG, Angara K, Reynolds C, Price B, Park SJ, Elliott A, Oberley MJ, Boikos SA, Bahrami A. Genomic Profiling Uncovers a Broader Spectrum of Dermatofibrosarcoma Protuberans: Implications for Diagnosis and Therapy. Mod Pathol 2025:100737. [PMID: 39956270 DOI: 10.1016/j.modpat.2025.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a locally aggressive cutaneous neoplasm driven by PDGFB or, rarely, PDGFD gene fusions. In some cases, DFSP progresses to a fibrosarcomatous form with metastatic potential, which may respond to tyrosine kinase inhibitors. This study explores whether comprehensive genomic profiling can reveal a broader clinical, anatomic, and pathologic spectrum for DFSP. Using the database of a large tumor sequencing reference lab, we identified tumors with PDGFB or PDGFD fusions and reviewed their histologic features, clinical information, exome sequencing data, and copy number alterations. Statistical significance was determined using Mann-Whitney U and Fisher's exact tests. A total of 59 cases with PDGFB or PDGFD fusions were identified: 55 COL1A1::PDGFB, 3 EMILIN2::PDGFD, and 1 COL1A2::PDGFB. The cohort included 51 primary tumors and 8 metastases (31 males, 28 females, median age 49 years). Primary tumors were mainly located in the skin and soft tissues, including 35 in the trunk, 9 in the head and neck, and 9 in the extremities. Additionally, 6 tumors arose in visceral organs (4 in the uterus, 1 in the cervix, and 1 in the lung). Among cases with slides available for pathology review, 21 were classified as classic DFSP and 31 as fibrosarcomatous DFSP (FS-DFSP). Notably, 21 tumors (36%) were initially misclassified, often due to atypical locations or histology. FS-DFSPs displayed a higher incidence of genomic alterations beyond PDGFB/PDGFD (75% vs. 23.8%, p=0.0005), including TERT promoter and NF1 variants, and demonstrated a significantly elevated tumor mutational burden (p=0.0037) and TERT mRNA expression (1.27 vs. 0.13 transcripts per million, p<0.0001) compared to classic DFSP. These findings underscore the value of genomic profiling for recognizing FS-DFSPs with unusual clinical or histologic features, particularly in guiding targeted therapy. Furthermore, by identifying molecular features specific to fibrosarcomatous variants, such as TERT reactivation, this study offers insights into potential molecular drivers of tumor progression in DFSP.
Collapse
Affiliation(s)
- Steven Christopher Smith
- Virginia Commonwealth University School of Medicine and VCU Massey Comprehensive Cancer Center, Richmond, VA
| | | | | | | | | | | | - Soo J Park
- University of California San Diego, Moores Cancer Center, La Jolla, CA
| | | | | | | | - Armita Bahrami
- Emory University School of Medicine and Winship Cancer Center, Atlanta, GA.
| |
Collapse
|
3
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Evans MG, Krause HB, Xiu J, Elliott A, Lou E, Ghani H, Yantiss RK, Garcia-Buitrago M, Matsubara Y, Nakamura Y, Shia J, Yaeger R, Radovich M, Bryant DA, Oberley MJ, Hechtman JF. Evidence for Unified Assessment Criteria of HER2 Immunohistochemistry in Colorectal Carcinoma. Mod Pathol 2025; 38:100654. [PMID: 39522645 DOI: 10.1016/j.modpat.2024.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Human epidermal growth factor receptor-2 (HER2) expression is an important biomarker for the management of RAS wild-type metastatic colorectal carcinoma (CRC). Immunohistochemistry (IHC) with reflex in situ hybridization (ISH) is accepted as a standard method of assessment, yet there are currently the following 2 sets of criteria used to interpret results: the HER2 Amplification for Colorectal Cancer Enhanced Stratification (HERACLES) criteria and the MyPathway criteria. The HER2 Amplification for Colorectal Cancer Enhanced Stratification criteria require ISH confirmation when IHC staining is 3+ in 10% to 49% of cells, whereas the MyPathway criteria mirror those for gastric HER2 assessment and do not recommend ISH confirmation in the previously referenced scenario. We aimed to assess the prevalence of HER2 3+ heterogeneity and its association with ERBB2 copy number amplification to evaluate the necessity of ISH testing when IHC staining is 3+ in <50% of cells. Next-generation sequencing of DNA (592-gene panel or whole exome sequencing) was performed for 13,208 CRC tumors submitted to Caris Life Sciences. HER2 (4B5) expression was tested using IHC. A subset of tumors was tested for ERBB2 amplification via chromogenic ISH and/or via next-generation sequencing (copy number amplification). χ2 tests or Fisher exact tests were applied where appropriate, with P values adjusted for multiple comparisons (P < .05). Of 13,208 CRCs with HER2 IHC, 87.4% (11,541/13,208) were negative for HER2 expression (≤3+ intensity and <10% tumor-cell staining) and 11.2% (1473/13,208) demonstrated at least low HER2 expression (1 to 2+ and ≥10%). Only 1.5% (194/13,208) of all tested tumors were either positive or heterogeneously positive for HER2 overexpression (3+ and ≥10%). Of these, 14% (28/194) had heterogenous HER2 overexpression (3+ staining of 10%-49% of cells). Among 22 HER2-positive/heterogenous cases with successful ISH testing, 100% (22/22) demonstrated amplification via ISH. Because the classification of tumors as HER2-positive/heterogenous using IHC correlated very closely with ISH positivity, our results suggest that ISH is likely unnecessary for CRCs with 3+ HER2 overexpression in 10% to 49% of neoplastic cells.
Collapse
Affiliation(s)
| | | | | | | | - Emil Lou
- University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | | | | | | | - Yuki Matsubara
- National Cancer Center Hospital East, Kashiwa-shi Chiba, Japan
| | | | - Jinru Shia
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rona Yaeger
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | |
Collapse
|
5
|
Mouawad A, Boutros M, Chartouni A, Attieh F, Kourie HR. Tumor mutational burden: why is it still a controversial agnostic immunotherapy biomarker? Future Oncol 2025; 21:493-499. [PMID: 39711461 PMCID: PMC11812421 DOI: 10.1080/14796694.2024.2444862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
For the past few years, researchers and oncologists have been pushing to find biomarkers that would help predict which treatment option would best work on a patient. Tumor Mutational Burden (TMB) is one of the latest biomarkers that is being studied and considered as a promising agnostic immunotherapy biomarker. However, it still shows controversial results in studies due to the difficulty in finding solid comparable results. This is a consequence of different cutoff definitions among many cancer types, age ranges, and the use of different sequencing assays, in addition to its association with other biomarkers such as PD-L1. Finally, the use of composite biomarkers to assess the genetic signature of a tumor might be the way forward to seriously use TMB as an agnostic biomarker.
Collapse
Affiliation(s)
- Antoine Mouawad
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Marc Boutros
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Antoine Chartouni
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Fouad Attieh
- Faculty of Medicine, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Université Saint-Joseph de Beyrouth, Beyrouth, Lebanon
| |
Collapse
|
6
|
Al-Kateb H, Knight SM, Sivasankaran G, Voss JS, Pitel BA, Blommel JH, Jerde CR, Rumilla KM, Lee JL, Mattson NR, Lauer KP, Zimmerman Zuckerman EA, Hofich CD, Milosevic D, Thompson J, Tillmans LS, Stai TT, Dasari S, Pryzbylski AL, Mullineaux LG, Ida CM, Jenkins RB, Gupta S, Kipp BR, Halling KC. Clinical Validation of the TruSight Oncology 500 Assay for the Detection and Reporting of Pan-Cancer Biomarkers. J Mol Diagn 2025:S1525-1578(25)00019-4. [PMID: 39894076 DOI: 10.1016/j.jmoldx.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
The TruSight Oncology 500 (TSO500) High-Throughput Assay is a genomic profiling assay, supported by a bioinformatic analysis pipeline to evaluate somatic single-nucleotide variations/deletions/insertions, gene amplification, microsatellite instability, tumor mutational burden (TMB), gene fusion, and splice variants in solid tumors. This study outlines the approach used by the Genomics Laboratory at the Mayo Clinic to evaluate the technical performance of TSO500. The assessment involved 104 DNA and 223 RNA samples extracted from >20 tumor types. The assay demonstrated robust performance using 40 ng of input DNA and RNA, with slightly improved results observed at 60 ng of input DNA. Tumor percentage significantly influenced assay performance, with all variants being detected at 93% and 85% and above at tumor percentage >50% and >20%, respectively. Precision exceeded 93% across all variant types, including single-nucleotide variations and deletions/insertions with a variant allele frequency of ≥5%. Accuracy was ≥97% for all variant types except for TMB, which was 83.3% when compared with the reference method. Most discordant TMB cases had scores in the range of 8 to 12 mutations per megabase. Overall, the TSO500 assay demonstrated strong performance and reliable accuracy in detecting the evaluated markers.
Collapse
Affiliation(s)
- Hussam Al-Kateb
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Shannon M Knight
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Joseph H Blommel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Calvin R Jerde
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kandeleria M Rumilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jodi L Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Nate R Mattson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kim P Lauer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | - Chris D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Dragana Milosevic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Joe Thompson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lori S Tillmans
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Tony T Stai
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Amber L Pryzbylski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa G Mullineaux
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cris M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Toboni MD, Dinkins K, Wu S, Mattox T, Oberley MJ, Thaker PH, Herzog TJ, Powell MA, Jones N. Not all uterine carcinosarcomas are created equal: Survival outcomes according to molecular characterization of uterine carcinosarcoma. Gynecol Oncol 2025; 193:89-97. [PMID: 39837013 DOI: 10.1016/j.ygyno.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
OBJECTIVES To assess if ProMisE classifier molecular subtypes are associated with differing survival outcomes in uterine carcinosarcoma (UCS) and compare these outcomes to endometrioid endometrial cancer (EEC) tumors. METHODS There were 2235 UCS and 6469 EEC tumors using next-generation sequencing of DNA, whole exome sequencing, and RNA. Microsatellite instability (MSI) was tested by IHC and NGS. Real-world overall survival (OS) was obtained from Caris Life Sciences database and paired with insurance claims data. Hazard ratios (HR) were calculated using the Cox proportional hazards model, and p-values were calculated using the log-rank test. RESULTS Of the 2235 UCS samples, 2.7 % (n = 48) were POLE mutant (MT), 7.4 % (n = 132) MSI-H, 78.2 % (n = 1402), TP53 MT, and 11.7 % (n = 210), TP53 wild type (WT). In UCS POLE MT tumors, median OS (74.8 mos; 95 % CI: 30.5-not reached [NR]; p < 0.01) was significantly longer than all other subtypes. There was no difference in median post-chemo OS between POLE MT UCS and POLE MT EEC (p = 0.75) or MSI-H UCS and MSI-H EEC (p = 0.14). TP53 MT UCS and TP53 WT UCS tumors had worse median OS compared their respective ECC subtypes (27.9 vs 35.3 mos; HR: 1.3 95 % CI (1.1-1.5); p = 0.01, 29.4 vs 70.7 mos; HR: 2.0 95 % CI (1.5-2.7); p < 0.01). HER2 negative UCS had worse post-chemo OS compared to HER2 negative EEC (32.9 vs 77 mos; HR 1.60 95 % CI (1.092-2.348); p = 0.02). CONCLUSION TP53 MT is the most common molecular UCS sub-type. Overall, UCS has tiered survival according to molecular classification, which mirrors EEC survival patterns. Despite UCS being considered a more aggressive histology, POLE MT and MSI-H outcomes when comparing UCS and EEC were not statistically different.
Collapse
Affiliation(s)
| | | | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | | | | | - Premal H Thaker
- Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | | | - Matthew A Powell
- Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | | |
Collapse
|
8
|
Guangzhao L, Xin W, Miaoqing W, Wenjuan M, Ranyi L, Zhizhong P, Rongxin Z, Gong C. IDO1 inhibitor enhances the effectiveness of PD-1 blockade in microsatellite stable colorectal cancer by promoting macrophage pro-inflammatory phenotype polarization. Cancer Immunol Immunother 2025; 74:71. [PMID: 39751692 PMCID: PMC11699167 DOI: 10.1007/s00262-024-03925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets. In vivo experiments demonstrated that the combination of IDO1 inhibition and PD-1 blockade significantly reduced tumor growth and increased immune cell infiltration, particularly pro-inflammatory macrophages and CD8+ T cells. IDO1 knockdown in CRC cell lines impaired tolerance to interferon-γ and increased apoptosis in vitro, which were rescued by the application of kynurenine, the end product of IDO1. IDO1 knockdown in MSS CRC enhanced the effectiveness of PD-1 blockade therapy in vivo. IDO1 knockdown cancer cells promoted pro-inflammatory macrophage polarization and enhanced phagocytic activity in vitro, associated with the upregulation of JAK2-STAT3-IL6 signaling pathway. These findings highlight the role of IDO1 in modulating the tumor immune microenvironment in MSS CRC and suggest that combining PD-1 blockade with IDO1 inhibition could enhance therapeutic efficacy by promoting macrophage pro-inflammatory polarization and infiltration through the JAK2-STAT3-IL6 pathway.
Collapse
Affiliation(s)
- Lv Guangzhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wang Xin
- Department of Radiotherapy, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wu Miaoqing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ma Wenjuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research Center for Cancer Guangzhou, Guangzhou, Guangdong, China
| | - Liu Ranyi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Pan Zhizhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Zhang Rongxin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Chen Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Cao Z, Deng K, Jiang J, Tian K, Wang B. Combined treatment of small cell lung cancer using radiotherapy and immunotherapy: Challenges and updates. Biomed Pharmacother 2025; 182:117727. [PMID: 39675137 DOI: 10.1016/j.biopha.2024.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2024] [Revised: 11/17/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Currently, chemotherapy remains the standard first- and second-line treatment for small cell lung cancer (SCLC). Research concerning immunotherapy has brought about a remarkable development in the treatment pattern of SCLC. Atirizumab, duvalizumab, atezolizumab, and serplulimab can significantly improve the clinical outcomes of SCLC. Given the rapidly evolving concept that combining immunotherapy with radiotherapy can increase therapeutic effectiveness, clinicians are devoted to further improving local tumor control by integrating immunotherapy with radiotherapy. This paper reviews the research progress in this field to date and explores ways to further enhance the efficacy of this combination therapy. We first discussed that immunotherapy combined with radiotherapy can improve the abscopal effect, progression-free survival, and overall survival rates of SCLC patients. Then, the biomarkers related to the radiation immune microenvironment, such as programmed death ligand-1 (PD-L1), tumor mutational burden (TMB), and the immune function of patients were discussed. Next, we explored the occurrence and underlying mechanisms of immune resistance during radiotherapy implementation. Finally, we clarified that the emerging trend of low-dose radiotherapy help overcome the inhibitory signals that limit T-cell infiltration in the tumor matrix. In summary, considering the rapid development of this field, these combined therapy strategies may have unlimited potential to further improve the efficacy of radiotherapy combined with immunotherapy for patients.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China.
| | - Kai Deng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400061, China.
| | - Jinxiu Jiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400061, China.
| | - Ke Tian
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China.
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China.
| |
Collapse
|
10
|
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408069. [PMID: 39535476 PMCID: PMC11727298 DOI: 10.1002/advs.202408069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies with imaging phenotypes. However, with advancements in medical imaging, high-throughput omics technologies, and artificial intelligence, both the concept and application of radiogenomics have significantly broadened. In this review, the history of radiogenomics is enumerated, related omics technologies, the five basic workflows and their applications across tumors, the role of AI in radiogenomics, the opportunities and challenges from tumor heterogeneity, and the applications of radiogenomics in tumor immune microenvironment. The application of radiogenomics in positron emission tomography and the role of radiogenomics in multi-omics studies is also discussed. Finally, the challenges faced by clinical transformation, along with future trends in this field is discussed.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Tianxiang Li
- Department of UltrasoundState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical. SciencesPeking Union Medical CollegeBeijing100730China
| | - Bingxin Gong
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Sichen Wang
- School of Life Science and TechnologyComputational Biology Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Chuansheng Zheng
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| |
Collapse
|
11
|
Ciracì P, Studiale V, Taravella A, Antoniotti C, Cremolini C. Late-line options for patients with metastatic colorectal cancer: a review and evidence-based algorithm. Nat Rev Clin Oncol 2025; 22:28-45. [PMID: 39558030 DOI: 10.1038/s41571-024-00965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Over the past few years, several novel systemic treatments have emerged for patients with treatment-refractory metastatic colorectal cancer, thus making selection of the most effective later-line therapy a challenge for medical oncologists. Over the past decade, regorafenib and trifluridine-tipiracil were the only available drugs and often provided limited clinical benefit compared to best supportive care. Results from subsequent practice-changing trials opened several novel therapeutic avenues, both for unselected patients (such as trifluridine-tipiracil plus bevacizumab or fruquintinib) and for subgroups defined by the presence of actionable alterations in their tumours (such as HER2-targeted therapies or KRASG12C inhibitors) or with no acquired mechanisms of resistance to the previously received targeted agents in circulating tumour DNA (such as retreatment with anti-EGFR antibodies). In this Review, we provide a comprehensive overview of advances in the field over the past few years and offer a practical perspective on translation of the most relevant results into the daily management of patients with metastatic colorectal cancer using an evidence-based algorithm. Finally, we discuss some of the most appealing ongoing areas of research and highlight approaches with the potential to further expand the therapeutic armamentarium.
Collapse
Affiliation(s)
- Paolo Ciracì
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vittorio Studiale
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ada Taravella
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Matsumoto H, Nagano H, Kyutoku T, Yamashita M. Genetic Analysis of Melanoma Types Using Japanese Genomic Database. Laryngoscope 2025; 135:134-139. [PMID: 39119775 PMCID: PMC11635135 DOI: 10.1002/lary.31676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES The purpose of this study is to compare genetic mutations, tumor mutation burden (TMB), and the effects of molecular targeted drugs and immune checkpoint inhibitors (ICIs) in head and neck mucosal melanoma (HNMUM) with those in skin melanoma (SKM) and ocular melanoma (OM). METHODS Data were analyzed for 72 consecutive patients with HNMUM, including 366 with SKM and 31 with OM, registered at the Japan National Cancer Center, Center for Cancer Genomics and Advanced Therapeutics (C-CAT) between June 2019 and October 2023. Genetic alterations and TMB were determined by FoundationOne CDx next-generation sequencing. RESULTS The top 10 mutations in HNMUM were RAD21 (47.2%), NBN (45.8%), MYC (40.3%), LYN (31.9%), NRAS (29.1%), IRF4 (23.6%), DAXX (22.2%), KIT (22.2%), NOTCH3 (20.8%), and DDR1 (19.4%), with 16.6 ± 0.8 (mean ± SEM) mutations/individual. In SKM, BRAF (p = 0.04) mutation was associated with a significantly better prognosis. The TMB values were 5.7 ± 2.1 (mean ± SEM) in HNMUM, 4.1 ± 0.2 in SKM, and 3.4 ± 0.9 in OM, with no significant differences among the three groups. The median survival time for patients with distant metastases was 803 (95% confidence interval: 539-NA) days for HNMUM, 1413 (831-2172) days for SKM, and 1138 (438-NA) days for OM. CONCLUSIONS The top 10 mutations in HNMUM are closer to those in OM than those in SKM. There was no significant difference in TMB values or survival rates with regard to the therapeutic effect of ICIs among the diseases, which suggests that current treatment of HNMUM with ICIs is appropriate. LEVEL OF EVIDENCE 3 Laryngoscope, 135:134-139, 2025.
Collapse
Affiliation(s)
- Hayato Matsumoto
- Department of Otolaryngology Head and Neck SurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Hiromi Nagano
- Department of Otolaryngology Head and Neck SurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Takayuki Kyutoku
- Department of Otolaryngology Head and Neck SurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| | - Masaru Yamashita
- Department of Otolaryngology Head and Neck SurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
| |
Collapse
|
13
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
14
|
Nishino T, Yumura M, Sunami K, Kubo T, Ichikawa H, Yasuda T, Furukawa E, Nagai M, Yatabe Y, Kato M, Kohno T. Leveraging non-coding regions to guarantee the accuracy of small-sized panel-based tumor mutational burden estimates. Cancer Sci 2024; 115:4045-4053. [PMID: 39351646 PMCID: PMC11611766 DOI: 10.1111/cas.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 12/06/2024] Open
Abstract
Accurate estimation of tumor mutational burden (TMB) as a predictor of responsiveness to immune checkpoint inhibitors in gene panel assays requires an adequate panel size. The current calculations of TMB only consider coding regions, while most of gene panel assays interrogate non-coding regions. Leveraging the non-coding regions is a potential solution to address this panel size limitation. However, the impact of including non-coding regions on the accuracy of TMB estimates remains unclear. This study investigated the validity of leveraging non-coding regions to supplement panel size using the OncoGuide NCC Oncopanel System (NOP). The aim of this study was to evaluate test performance against orthogonal assays and the association with responsiveness to immune checkpoint inhibitors was not included in the evaluation. We compared TMB status and values between TMB calculated only from coding regions (NOP-coding) and from both coding and non-coding regions (NOP-overall) using whole exome sequencing (WES) and FoundationOne®CDx (F1CDx) assay. Our findings revealed that NOP-overall significantly improved the overall percent agreement (OPA) with TMB status compared with NOP-coding for both WES (OPA: 96.7% vs. 73.3%, n = 30) and F1CDx (OPA: 90.0% vs. 73.3%). Additionally, the mean difference in TMB values compared with WES was lower for NOP-overall (3.55 [95% CI: 0.98-6.13]) than for NOP-coding (6.22 [95% CI: 3.73-8.70]). These results exemplify the utility of incorporating non-coding regions to maintain accurate TMB estimates in small-sized panels.
Collapse
Affiliation(s)
- Takahiro Nishino
- Department of Laboratory MedicineNational Cancer Center HospitalTokyoJapan
| | | | - Kuniko Sunami
- Department of Laboratory MedicineNational Cancer Center HospitalTokyoJapan
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Takashi Kubo
- Department of Laboratory MedicineNational Cancer Center HospitalTokyoJapan
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| | - Hitoshi Ichikawa
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| | | | - Eisaku Furukawa
- Division of BioinformaticsNational Cancer Center Research InstituteTokyoJapan
| | - Momoko Nagai
- Division of BioinformaticsNational Cancer Center Research InstituteTokyoJapan
| | - Yasushi Yatabe
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Mamoru Kato
- Division of BioinformaticsNational Cancer Center Research InstituteTokyoJapan
| | - Takashi Kohno
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
- Division of Translational GenomicsNational Cancer Center Exploratory Oncology Research & Clinical Trial CenterTokyoJapan
| |
Collapse
|
15
|
Colomer R, González-Farré B, Ballesteros AI, Peg V, Bermejo B, Pérez-Mies B, de la Cruz S, Rojo F, Pernas S, Palacios J. Biomarkers in breast cancer 2024: an updated consensus statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clin Transl Oncol 2024; 26:2935-2951. [PMID: 38869741 PMCID: PMC11564209 DOI: 10.1007/s12094-024-03541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024]
Abstract
This revised consensus statement of the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Pathological Anatomy (SEAP) updates the recommendations for biomarkers use in the diagnosis and treatment of breast cancer that we first published in 2018. The expert group recommends determining in early breast cancer the estrogen receptor (ER), progesterone receptor (PR), Ki-67, and Human Epidermal growth factor Receptor 2 (HER2), as well as BReast CAncer (BRCA) genes in high-risk HER2-negative breast cancer, to assist prognosis and help in indicating the therapeutic options, including hormone therapy, chemotherapy, anti-HER2 therapy, and other targeted therapies. One of the four available genetic prognostic platforms (Oncotype DX®, MammaPrint®, Prosigna®, or EndoPredict®) may be used in ER-positive patients with early breast cancer to establish a prognostic category and help decide with the patient whether adjuvant treatment may be limited to hormonal therapy. In second-line advanced breast cancer, in addition, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and estrogen receptor 1 (ESR1) should be tested in hormone-sensitive cases, BRCA gene mutations in HER2-negative cancers, and in triple-negative breast cancer (TNBC), programmed cell death-1 ligand (PD-L1). Newer biomarkers and technologies, including tumor-infiltrating lymphocytes (TILs), homologous recombination deficiency (HRD) testing, serine/threonine kinase (AKT) pathway activation, and next-generation sequencing (NGS), are at this point investigational.
Collapse
Affiliation(s)
- Ramon Colomer
- UAM Personalised Precision Medicine Chair & Medical Oncology Department, La Princesa University Hospital and Research Institute, C/Diego de León, 62, 28006, Madrid, Spain.
| | | | | | - Vicente Peg
- Pathological Anatomy Service, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Begoña Bermejo
- Medical Oncology Department, Biomedical Research Institute INCLIVA, Medicine Department of the University of Valencia and Clinic University Hospital, Valencia, Spain
| | - Belén Pérez-Mies
- Pathological Anatomy Service, Ramón y Cajal University Hospital, Faculty of Medicine, University of Alcalá, IRYCIS and CIBERONC, Madrid, Spain
| | - Susana de la Cruz
- Medical Oncology Department, Navarra University Hospital, Navarre, Spain
| | - Federico Rojo
- Anatomy Service, Fundación Jiménez Díaz University Hospital and CIBERONC, Madrid, Spain
| | - Sonia Pernas
- Oncology Department, Catalan Institute of Oncology (ICO)-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - José Palacios
- Pathological Anatomy Service, Department of Pathology, Ramón y Cajal University Hospital, Faculty of Medicine, University of Alcalá, IRYCIS and CIBERONC, Ctra. Colmenar Viejo, Km 9,1, 28034, Madrid, Spain.
| |
Collapse
|
16
|
Morgenstern-Kaplan D, Kareff SA, Trabolsi A, Rodriguez E, Krause H, Ribeiro JR, Tan H, Antonarakis ES, Lou E, Nagasaka M, Algaze S, Lenz HJ, Liu SV, Halmos B, Hoon DSB, Seeber A, Ma PC, El-Deiry WS, Vanderwalde AM, Lopes G. Genomic, immunologic, and prognostic associations of TROP2 (TACSTD2) expression in solid tumors. Oncologist 2024; 29:e1480-e1491. [PMID: 38986529 PMCID: PMC11546728 DOI: 10.1093/oncolo/oyae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND TROP2 (TACSTD2) expression is associated with decreased overall survival (OS) in some solid tumors, and the TROP2-targeting antibody-drug conjugate (ADC) sacituzumab govitecan has been approved in breast and urothelial carcinomas. We aimed to explore the multi-omic landscape associated with TACSTD2 gene expression in various solid tumors to identify patients most likely to benefit from this approach. METHODS Breast (N = 11 246), colorectal (N = 15 425), hepatocellular (N = 433), pancreatic (N = 5488), and urothelial (N = 4125) tumors were stratified into quartiles by TACSTD2 gene expression, analyzed by next-generation DNA sequencing, whole transcriptome sequencing, and immunohistochemistry at Caris Life Sciences (Phoenix, AZ). Survival data were obtained from insurance claims, and Kaplan-Meier estimates were calculated for molecularly defined cohorts. RESULTS Several pathogenic mutations were associated with TACSTD2-high tumors, including TP53 in breast, colorectal (CRC), pancreatic, and hepatocellular cancers; KRAS in pancreatic and CRC cancers; ARID1A and FGFR3 in urothelial cancer; and CTNNB1 in hepatocellular cancer. TACSTD2-low breast tumors were enriched for copy number amplifications in CCND1 and FGF/R family member genes. TACSTD2 high was generally associated with more immune cell infiltration and greater T-cell inflammation scores. Patients with TACSTD2-high breast, CRC, and pancreatic cancers demonstrated a significantly shorter OS than TACSTD2-low tumors. This was restricted to CRC with microsatellite stable tumors and patients with pancreatic cancer with KRAS-mutant tumors. Patients with breast cancer with TACSTD2-high tumors also experienced significantly worse OS following immune checkpoint inhibitors. CONCLUSIONS TACSTD2 expression is associated with key driver alterations and a more active immune microenvironment, suggesting possible combinatorial strategies with TROP2-targeting ADCs plus immunotherapy in various solid tumors.
Collapse
Affiliation(s)
- Dan Morgenstern-Kaplan
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Samuel A Kareff
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Asaad Trabolsi
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Estelamari Rodriguez
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Harris Krause
- Caris Life Sciences, Phoenix, AZ 85040, United States
| | | | - Heng Tan
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | | | - Emil Lou
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, United States
| | - Misako Nagasaka
- Division of Hematology/Oncology, University of California Irvine School of Medicine, Orange, CA 92617, United States
| | - Sandra Algaze
- Division of Medical Oncology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, United States
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, United States
| | - Stephen V Liu
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, United States
| | - Balazs Halmos
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, United States
| | - Dave S B Hoon
- Saint John’s Cancer Institute, Providence Health System, Santa Monica, CA 90404, United States
| | - Andreas Seeber
- Tyrolean Cancer Research Institute, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Patrick C Ma
- Division of Hematology/Oncology, Penn State Cancer Institute, Hershey, PA 17033, United States
| | - Wafik S El-Deiry
- Legorreta Cancer Center, Warren Alpert Medical School of Brown University, Providence, RI 02912, United States
| | | | - Gilberto Lopes
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| |
Collapse
|
17
|
Sawa YC, Jia L, Krause H, Meagher M, Millard F, Elliott A, Lafin JT, Jamieson C, Antonarakis ES, D'Souza A, Giannikou K, Amatruda JF, Daneshmand S, McKay RR, Oberley M, Nabhan C, Bagrodia A. Driver mutations associated with signatures of platinum sensitivity in germ cell tumors. NPJ Precis Oncol 2024; 8:249. [PMID: 39488665 PMCID: PMC11531533 DOI: 10.1038/s41698-024-00727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
We sought to evaluate the genomic and transcriptomic landscapes in primary and metastatic germ cell tumors (GCTs; N = 138) to uncover factors that drive cisplatin resistance. Prevalence was calculated for platinum-resistant alterations (PRAs; KRAS, TP53, and KIT mutations, and MDM2 amplification) and high copy number amplifications (CNA ≥ 6 copies). Tumors were designated as chemo-naïve (PreC, N = 66) or post-chemotherapy (PostC, N = 17). A transcriptomic signature associated with platinum sensitivity (PSS, high suggests increased sensitivity) was applied. KIT mutations were observed in 14.5% of primary versus 1.8% of met and 0% of lymph. TP53 mutations were identified in 10% of primary GCTs versus 17% of met and 16.7% of lymph. MDM2 CNAs were similar between sites. PRA-positive PreC GCTs had significantly lower average PSS scores compared to PRA-negative tumors. Lower PSS scores in chemo-naïve tumors were associated with PRAs, suggesting a potential mechanism for platinum resistance.
Collapse
Affiliation(s)
- Yun Cheng Sawa
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | - Liwei Jia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Margaret Meagher
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | - Frederick Millard
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | | | - John T Lafin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Jamieson
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | | | - Anishka D'Souza
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Krinio Giannikou
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Paediatrics and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Siamak Daneshmand
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rana R McKay
- Department of Urology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | | - Aditya Bagrodia
- Department of Urology, University of California San Diego, La Jolla, CA, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Menzel M, Martis-Thiele M, Goldschmid H, Ott A, Romanovsky E, Siemanowski-Hrach J, Seillier L, Brüchle NO, Maurer A, Lehmann KV, Begemann M, Elbracht M, Meyer R, Dintner S, Claus R, Meier-Kolthoff JP, Blanc E, Möbs M, Joosten M, Benary M, Basitta P, Hölscher F, Tischler V, Groß T, Kutz O, Prause R, William D, Horny K, Goering W, Sivalingam S, Borkhardt A, Blank C, Junk SV, Yasin L, Moskalev EA, Carta MG, Ferrazzi F, Tögel L, Wolter S, Adam E, Matysiak U, Rosenthal T, Dönitz J, Lehmann U, Schmidt G, Bartels S, Hofmann W, Hirsch S, Dikow N, Göbel K, Banan R, Hamelmann S, Fink A, Ball M, Neumann O, Rehker J, Kloth M, Murtagh J, Hartmann N, Jurmeister P, Mock A, Kumbrink J, Jung A, Mayr EM, Jacob A, Trautmann M, Kirmse S, Falkenberg K, Ruckert C, Hirsch D, Immel A, Dietmaier W, Haack T, Marienfeld R, Fürstberger A, Niewöhner J, Gerstenmaier U, Eberhardt T, Greif PA, Appenzeller S, Maurus K, Doll J, Jelting Y, Jonigk D, Märkl B, Beule D, Horst D, Wulf AL, Aust D, Werner M, Reuter-Jessen K, Ströbel P, Auber B, Sahm F, Merkelbach-Bruse S, Siebolts U, Roth W, Lassmann S, Klauschen F, Gaisa NT, Weichert W, Evert M, Armeanu-Ebinger S, Ossowski S, Schroeder C, Schaaf CP, Malek N, Schirmacher P, Kazdal D, Pfarr N, Budczies J, Stenzinger A. Benchmarking whole exome sequencing in the German network for personalized medicine. Eur J Cancer 2024; 211:114306. [PMID: 39293347 DOI: 10.1016/j.ejca.2024.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis. METHODS To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics. Somatic and germline variants, copy-number alterations (CNAs), and complex biomarkers were investigated. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. The raw data were collected and re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability. RESULTS The mean positive percentage agreement (PPA) of somatic variant calling was 76 % while the positive predictive value (PPV) was 89 % in relation to a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88 % for all and 97 % for the clinically relevant variants. CNA calls were concordant for 82 % of genomic regions. Homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94 %, 93 %, and 93 % of calls, respectively. Variability of CNAs and complex biomarkers did not decrease considerably after harmonization of the bioinformatic processing and was hence attributed mainly to wet-lab differences. CONCLUSION Continuous optimization of bioinformatic workflows and participating in round robin tests are recommended.
Collapse
Affiliation(s)
- Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany.
| | - Mihaela Martis-Thiele
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Germany
| | - Hannah Goldschmid
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany
| | - Alexander Ott
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Eva Romanovsky
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany
| | - Janna Siemanowski-Hrach
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lancelot Seillier
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Joint Research Center Computational Biomedicine, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Nadina Ortiz Brüchle
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Angela Maurer
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Kjong-Van Lehmann
- Joint Research Center Computational Biomedicine, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Cancer Research Center Cologne-Essen, University Hospital Cologne, Germany; Machine Learning in Cancer Genetis and Precision Medicine, University RWTH Aachen, Aachen, Germany
| | - Matthias Begemann
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Institute for Human Genetics and Genomic Medicine., University Hospital RWTH Aachen, Aachen, Germany; NGS diagnostic centre, University Hospital RWTH Aachen, Aachen, Germany
| | - Miriam Elbracht
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Institute for Human Genetics and Genomic Medicine., University Hospital RWTH Aachen, Aachen, Germany
| | - Robert Meyer
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | | | - Rainer Claus
- Pathology, Faculty of Medicine, University of Augsburg, Germany; Comprehensive Cancer Center, Faculty of Medicine, University of Augsburg, Germany
| | - Jan P Meier-Kolthoff
- Chair of Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science, University of Augsburg, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Markus Möbs
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Maria Joosten
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Manuela Benary
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Patrick Basitta
- Universitätsklinikum Bonn, Molekularpathologische Diagnostik, Institut für Pathologie, Venusberg Campus 1, 53127 Bonn, Germany
| | - Florian Hölscher
- Universitätsklinikum Bonn, Molekularpathologische Diagnostik, Institut für Pathologie, Venusberg Campus 1, 53127 Bonn, Germany
| | - Verena Tischler
- Universitätsklinikum Bonn, Molekularpathologische Diagnostik, Institut für Pathologie, Venusberg Campus 1, 53127 Bonn, Germany
| | - Thomas Groß
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Oliver Kutz
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Germany; National Center for Tumor Diseases (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rebecca Prause
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Germany; National Center for Tumor Diseases (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kai Horny
- Center for Personalized Medicine Oncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | | | - Sugirthan Sivalingam
- Institute of Human Genetics, Medical Faculty, University Hospital of Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, HHU Düsseldorf, Germany; German Cancer Consortium (DKTK), partner site Essen-Düsseldorf, Germany
| | - Cornelia Blank
- Institute of Human Genetics, Medical Faculty, University Hospital of Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefanie V Junk
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, HHU Düsseldorf, Germany
| | - Layal Yasin
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, HHU Düsseldorf, Germany
| | - Evgeny A Moskalev
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Center for Personalized Medicine (ZPM), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Maria Giulia Carta
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Center for Personalized Medicine (ZPM), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Center for Personalized Medicine (ZPM), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany; Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Lars Tögel
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Center for Personalized Medicine (ZPM), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Steffen Wolter
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Germany; Center for Personalized Medicine (ZPM), partner site Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Freiburg, Germany
| | - Eugen Adam
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Germany; Center for Personalized Medicine (ZPM), partner site Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Freiburg, Germany
| | - Uta Matysiak
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Germany; Center for Personalized Medicine (ZPM), partner site Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Freiburg, Germany
| | - Tessa Rosenthal
- Institut für Pathologie, Universitätsmedizin Göttingen, Germany
| | - Jürgen Dönitz
- Institut für Bioinformatik, Universitätsmedizin Göttingen, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stephan Bartels
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Steffen Hirsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kirsten Göbel
- Department of Neuropathology, University Hospital Heidelberg, Germany
| | - Rouzbeh Banan
- Department of Neuropathology, University Hospital Heidelberg, Germany
| | - Stefan Hamelmann
- Department of Neuropathology, University Hospital Heidelberg, Germany
| | - Annette Fink
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany
| | - Markus Ball
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany
| | - Jan Rehker
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michael Kloth
- Institut für Pathologie, Universitätsmedizin Mainz, Germany
| | - Justin Murtagh
- Institut für Pathologie, Universitätsmedizin Mainz, Germany
| | - Nils Hartmann
- Institut für Pathologie, Universitätsmedizin Mainz, Germany
| | - Phillip Jurmeister
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich, Partner Site, Munich, Germany
| | - Andreas Mock
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich, Partner Site, Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich, Partner Site, Munich, Germany
| | - Andreas Jung
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich, Partner Site, Munich, Germany
| | - Eva-Maria Mayr
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Germany
| | - Anne Jacob
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Germany
| | - Marcel Trautmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany; West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Santina Kirmse
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany; West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Kim Falkenberg
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany; West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Christian Ruckert
- Centre of Medical Genetics, Department of Medical Genetics, University and University Hospital Münster, Münster, Germany
| | - Daniela Hirsch
- Institute of Pathology, University of Regensburg, Germany
| | - Alexander Immel
- Institute of Pathology, University of Regensburg, Germany; Centrum für Translationale Onkologie, Universitätsklinikum Regensburg, Germany
| | | | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ralf Marienfeld
- Institute of Pathology, University Hospital Ulm, Germany; Centers for Personalized Medicine (ZPM), Ulm, Germany
| | - Axel Fürstberger
- Institute of Pathology, University Hospital Ulm, Germany; Centers for Personalized Medicine (ZPM), Ulm, Germany
| | - Jakob Niewöhner
- Institute of Pathology, University Hospital Ulm, Germany; Centers for Personalized Medicine (ZPM), Ulm, Germany
| | - Uwe Gerstenmaier
- Institute of Pathology, University Hospital Ulm, Germany; Centers for Personalized Medicine (ZPM), Ulm, Germany
| | - Timo Eberhardt
- Centers for Personalized Medicine (ZPM), Ulm, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Philipp A Greif
- German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich, Partner Site, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, Germany
| | - Katja Maurus
- Institute of Pathology, University of Wuerzburg, Germany
| | - Julia Doll
- Institute of Pathology, University of Wuerzburg, Germany
| | - Yvonne Jelting
- Institute of Human Genetics, University of Wuerzburg, Germany
| | - Danny Jonigk
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - Bruno Märkl
- Pathology, Faculty of Medicine, University of Augsburg, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Anna-Lena Wulf
- Universitätsklinikum Bonn, Molekularpathologische Diagnostik, Institut für Pathologie, Venusberg Campus 1, 53127 Bonn, Germany
| | - Daniela Aust
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Institut für Pathologie, Universitätsklinikum Carl Gustav Carus der TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Germany; Center for Personalized Medicine (ZPM), partner site Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | | | - Philipp Ströbel
- Institut für Pathologie, Universitätsmedizin Göttingen, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Germany; CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Udo Siebolts
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Wilfried Roth
- Institut für Pathologie, Universitätsmedizin Mainz, Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany; Center for Personalized Medicine (ZPM), Freiburg, Germany
| | - Frederick Klauschen
- Department of Human Genetics, Hannover Medical School, Hannover, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Wilko Weichert
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Germany
| | - Sorin Armeanu-Ebinger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | | - Nisar Malek
- Centers for Personalized Medicine (ZPM), Germany; Department of Gastroenterology, Tübingen University Hospital, Tübingen, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Centers for Personalized Medicine (ZPM), Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany.
| |
Collapse
|
19
|
Nguyen K, Fama K, Mercado G, Myat Y, Thein K. Histology Agnostic Drug Development: An Updated Review. Cancers (Basel) 2024; 16:3642. [PMID: 39518080 PMCID: PMC11544807 DOI: 10.3390/cancers16213642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advancements in oncology have led to the development of histology-agnostic therapies, which target genetic alterations irrespective of the tumor's tissue of origin. This review aimed to provide a comprehensive update on the current state of histology-agnostic drug development, focusing on key therapies, including pembrolizumab, larotrectinib, entrectinib, dostarlimab, dabrafenib plus trametinib, selpercatinib, trastuzumab deruxtecan, and reprotrectinib. We performed a detailed analysis of each therapy's mechanism of action, clinical trial outcomes, and associated biomarkers. The review further explores challenges in drug resistance, such as adaptive signaling pathways and neoantigen variability, as well as diagnostic limitations in identifying optimal patient populations. While these therapies have demonstrated efficacy in various malignancies, significant hurdles remain, including intratumoral heterogeneity and resistance mechanisms that diminish treatment effectiveness. We propose considerations for refining trial designs and emerging biomarkers, such as tumor neoantigen burden, to enhance patient selection. These findings illustrate the transformative potential of histology-agnostic therapies in precision oncology but highlight the need for continued research to optimize their use and overcome existing barriers.
Collapse
Affiliation(s)
- Kevin Nguyen
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
| | - Karina Fama
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
| | - Guadalupe Mercado
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
| | - Yin Myat
- University College Dublin School of Medicine, Belfield, D04 V1W8 Dublin, Ireland
- One Brooklyn Health—Interfaith Medical Center Campus, 1545, Atlantic Avenue, Brooklyn, NY 11213, USA
| | - Kyaw Thein
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
- Comprehensive Cancer Centers of Nevada—Central Valley, 3730 S Eastern Ave, Las Vegas, NV 89169, USA
- Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas (UNLV), 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
20
|
Kleandrova VV, Cordeiro MNDS, Speck-Planche A. Perturbation Theory Machine Learning Model for Phenotypic Early Antineoplastic Drug Discovery: Design of Virtual Anti-Lung-Cancer Agents. APPLIED SCIENCES 2024; 14:9344. [DOI: 10.3390/app14209344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
Abstract
Lung cancer is the most diagnosed malignant neoplasm worldwide and it is associated with great mortality. Currently, developing antineoplastic agents is a challenging, time-consuming, and costly process. Computational methods can speed up the early discovery of anti-lung-cancer chemicals. Here, we report a perturbation theory machine learning model based on a multilayer perceptron (PTML-MLP) model for phenotypic early antineoplastic drug discovery, enabling the rational design and prediction of new molecules as virtual versatile inhibitors of multiple lung cancer cell lines. The PTML-MLP model achieved an accuracy above 80%. We applied the fragment-based topological design (FBTD) approach to physicochemically and structurally interpret the PTML-MLP model. This enabled the extraction of suitable fragments with a positive influence on anti-lung-cancer activity against the different lung cancer cell lines. By following the aforementioned interpretations, we could assemble several suitable fragments to design four novel molecules, which were predicted by the PTML-MLP model as versatile anti-lung-cancer agents. Such predictions of potent multi-cellular anticancer activity against diverse lung cancer cell lines were rigorously confirmed by a well-established virtual screening tool reported in the literature. The present work envisages new opportunities for the application of PTML models to accelerate early antineoplastic discovery from phenotypic assays.
Collapse
Affiliation(s)
- Valeria V. Kleandrova
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - M. Natália D. S. Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Alejandro Speck-Planche
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Yu L, Zhang Y, Wang D, Li L, Zhang R, Li J. Harmonizing tumor mutational burden analysis: Insights from a multicenter study using in silico reference data sets in clinical whole-exome sequencing (WES). Am J Clin Pathol 2024; 162:408-419. [PMID: 38733635 DOI: 10.1093/ajcp/aqae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES Tumor mutational burden (TMB) is a significant biomarker for predicting immune checkpoint inhibitor response, but the clinical performance of whole-exome sequencing (WES)-based TMB estimation has received less attention compared to panel-based methods. This study aimed to assess the reliability and comparability of WES-based TMB analysis among laboratories under routine testing conditions. METHODS A multicenter study was conducted involving 24 laboratories in China using in silico reference data sets. The accuracy and comparability of TMB estimation were evaluated using matched tumor-normal data sets. Factors such as accuracy of variant calls, limit of detection (LOD) of WES test, size of regions of interest (ROIs) used for TMB calculation, and TMB cutoff points were analyzed. RESULTS The laboratories consistently underestimated the expected TMB scores in matched tumor-normal samples, with only 50% falling within the ±30% TMB interval. Samples with low TMB score (<2.5) received the consensus interpretation. Accuracy of variant calls, LOD of the WES test, ROI, and TMB cutoff points were important factors causing interlaboratory deviations. CONCLUSIONS This study highlights real-world challenges in WES-based TMB analysis that need to be improved and optimized. This research will aid in the selection of more reasonable analytical procedures to minimize potential methodologic biases in estimating TMB in clinical exome sequencing tests. Harmonizing TMB estimation in clinical testing conditions is crucial for accurately evaluating patients' response to immunotherapy.
Collapse
Affiliation(s)
- Lijia Yu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuanfeng Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Duo Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lin Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
22
|
Hamid MA, Pammer LM, Lentner TK, Doleschal B, Gruber R, Kocher F, Gasser E, Jöbstl A, Seeber A, Amann A. Immunotherapy for Microsatellite-Stable Metastatic Colorectal Cancer: Can we close the Gap between Potential and Practice? Curr Oncol Rep 2024; 26:1258-1270. [PMID: 39080202 PMCID: PMC11480176 DOI: 10.1007/s11912-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/11/2024] [Indexed: 10/17/2024]
Abstract
PURPOSE OF REVIEW This review will explore various strategies to rendering MSS mCRCs susceptible to ICI. Moreover, we will provide an overview of potential biomarkers that may aid to better patient selection, and discuss ongoing efforts in this area of research. RECENT FINDINGS Colorectal cancer (CRC) ranks among the top three most common cancers worldwide. While significant advances in treatment strategies have improved the prognosis for patients in the early stages of the disease, treatment options for metastatic CRC (mCRC) remain limited. Although immune checkpoint inhibitors (ICI) have revolutionized the treatment of several malignancies, its efficacy in mCRC is largely confined to patients exhibiting a high microsatellite instability status (MSI-H). However, the vast majority of mCRC patients do not exhibit a MSI-H, but are microsatellite stable (MSS). In these patients ICIs are largely ineffective. So far, ICIs do not play a crucial role in patients with MSS mCRC, despite the promising data for inducing long-term remissions in other tumour entities. For this reason, novel treatment strategies are needed to overcome the primary resistance upon ICI in patients with MSS.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa K Lentner
- Clinical Department for Internal Medicine, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth Gasser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Jöbstl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
23
|
Marks JA, Gandhi N, Halmos B, Marmarelis ME, Yeon Kim S, Bazhenova L, Ramalingam SS, Xiu J, Walker P, Oberley MJ, Ma PC, Liu SV. Molecular profiling METex14+ non-small cell lung cancer (NSCLC): Impact of histology. Lung Cancer 2024; 196:107935. [PMID: 39241297 DOI: 10.1016/j.lungcan.2024.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES MET exon 14 skipping alterations (METex14+) represent a heterogeneous subgroup of non-small cell lung cancer (NSCLC) with distinct biological and genomic features. We characterized this heterogeneity in a large cohort, integrating genomic and transcriptomic profiling with clinical outcomes, to elucidate the histologic and molecular traits and survival patterns of METex14+ NSCLC. MATERIALS AND METHODS NSCLC tissue samples (n = 28,739) underwent DNA-based next-generation sequencing (592 genes, NextSeq) or whole-exome sequencing (NovaSeq), RNA-sequencing including whole transcriptome sequencing (WTS, NovaSeq), and PD-L1 IHC (Dako 22C3) at Caris Life Sciences. Immune cell fractions were estimated from bulk RNA sequencing (quanTIseq). Real-world survival data (mOS) was calculated from insurance claims. Statistical analyses employed Chi-square, Fisher's exact, or Mann-Whitney U and log-rank tests and were corrected for hypothesis testing where applicable. RESULTS A total of 711 METex14+ cases were detected. Of 575 cases of defined histology, 77 (13.6 %) were squamous (Sq), 474 (82.3 %) were nSq (non-squamous), and 24 (4.1 %) were adenosquamous. Mutations in POT1 and BRCA2 were enriched, and amplifications in MDM2, HMGA2, CDK4, and MET were common in METex14+ tumors. TMB-high and TP53 mutated tumors were reduced in METex14+ independent of histology. KEAP1 (2.1 vs 14.7 %) and STK11 mutations (0.8 vs 17.1 %) were reduced only in METex14+ nSq (vs METex14+ Sq, q < 0.05). While the prevalence of PD-L1 high tumors was enriched in METex14+ independent of histology, T-cell inflamed tumors were enriched only in nSq METex14+. B-cells and CD8+ T-cells (1.07-1.43-fold) were enriched in nSq METex14+, and dendritic cells (0.32 fold) were reduced only in METex14+ Sq. METex14+ tumors had a modest improvement in mOS compared to METex14- tumors (mOS = 22.9 m vs 18.6 m, HR = 0.914, p = 0.04). Moreover, METex14+ tumors who received immunotherapy (IO) had a modest improvement in survival (mOS = 27.5 m vs 21.8 m; HR = 0.803, p = 0.03) compared to those who did not receive IO. METex14+ nSq tumors were associated with improved mOS compared to METex14+ Sq tumors (mOS = 27.7 vs 8.9 m, HR = 0.493, p < 0.0001). CONCLUSION METex14+ alterations are a heterogeneous subgroup of NSCLC. Our analysis reveals that METex14+ nSq exhibit improved survival compared to METex14+ Sq. The distinct genomic and transcriptomic variations across histologies warrant clinical consideration.
Collapse
Affiliation(s)
- Jennifer A Marks
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Nishant Gandhi
- Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ 85040 USA.
| | - Balazs Halmos
- Montefiore Medical Center, Albert Einstein Cancer Center, 1575 Blondell Ave, Bronx, NY 10461, USA.
| | - Melina E Marmarelis
- University of Pennsylvania, 3400 Civic Center Boulevard West Pavilion, 2nd Floor, Philadelphia, PA 19104, USA.
| | - So Yeon Kim
- Yale University, 333 Cedar St, New Haven, CT 06510, USA.
| | - Lyudmila Bazhenova
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, San Diego, CA 92037, USA.
| | - Suresh S Ramalingam
- Winship Cancer Institute of Emory University, 1365 Clifton Rd NE Building C, Atlanta, GA 30322, USA.
| | - Joanne Xiu
- Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ 85040 USA.
| | - Phillip Walker
- Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ 85040 USA.
| | | | - Patrick C Ma
- Penn State Cancer Institute, 400 University Dr, Hershey, PA 17033, USA.
| | - Stephen V Liu
- Georgetown University, 3800 Reservoir Rd NW, Washington, D.C 20007, USA.
| |
Collapse
|
24
|
Budczies J, Kazdal D, Menzel M, Beck S, Kluck K, Altbürger C, Schwab C, Allgäuer M, Ahadova A, Kloor M, Schirmacher P, Peters S, Krämer A, Christopoulos P, Stenzinger A. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat Rev Clin Oncol 2024; 21:725-742. [PMID: 39192001 DOI: 10.1038/s41571-024-00932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Tumour mutational burden (TMB), defined as the total number of somatic non-synonymous mutations present within the cancer genome, varies across and within cancer types. A first wave of retrospective and prospective research identified TMB as a predictive biomarker of response to immune-checkpoint inhibitors and culminated in the disease-agnostic approval of pembrolizumab for patients with TMB-high tumours based on data from the Keynote-158 trial. Although the applicability of outcomes from this trial to all cancer types and the optimal thresholds for TMB are yet to be ascertained, research into TMB is advancing along three principal avenues: enhancement of TMB assessments through rigorous quality control measures within the laboratory process, including the mitigation of confounding factors such as limited panel scope and low tumour purity; refinement of the traditional TMB framework through the incorporation of innovative concepts such as clonal, persistent or HLA-corrected TMB, tumour neoantigen load and mutational signatures; and integration of TMB with established and emerging biomarkers such as PD-L1 expression, microsatellite instability, immune gene expression profiles and the tumour immune contexture. Given its pivotal functions in both the pathogenesis of cancer and the ability of the immune system to recognize tumours, a profound comprehension of the foundational principles and the continued evolution of TMB are of paramount relevance for the field of oncology.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Christian Altbürger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumour Diseases at Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| |
Collapse
|
25
|
Ali-Fehmi R, Krause HB, Morris RT, Wallbillich JJ, Corey L, Bandyopadhyay S, Kheil M, Elbashir L, Zaiem F, Quddus MR, Abada E, Herzog T, Karnezis AN, Antonarakis ES, Kasi PM, Wei S, Swensen J, Elliott A, Xiu J, Hechtman J, Spetzler D, Abraham J, Radovich M, Sledge G, Oberley MJ, Bryant D. Analysis of Concordance Between Next-Generation Sequencing Assessment of Microsatellite Instability and Immunohistochemistry-Mismatch Repair From Solid Tumors. JCO Precis Oncol 2024; 8:e2300648. [PMID: 39565978 PMCID: PMC11594015 DOI: 10.1200/po.23.00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE The new CAP guideline published in August 2022 recommends using immunohistochemistry (IHC) to test for mismatch repair defects in gastroesophageal (GE), small bowel (SB), or endometrial carcinoma (EC) cancers over next-generation sequencing assessment of microsatellite instability (NGS-MSI) for immune checkpoint inhibitor (ICI) therapy eligibility and states there is a preference to use IHC over NGS-MSI in colorectal carcinoma (CRC). METHODS We assessed the concordance of NGS-MSI and IHC-MMR from a very large cohort across the spectrum of solid tumors. RESULTS Of the over 190,000 samples with both NGS-MSI and IHC-MMR about 1,160 were initially flagged as discordant. Of those samples initially flagged as discordant, 50.9% remained discordant after being reviewed by an additional pathologist. This resulted in a final discordance rate of 0.31% (590/191,767). Among CRC, GE, SB and EC, 55.4% of mismatch repair proficient/MSI high (MMRp/MSI-H) tumors had at least one somatic pathogenic mutation in an MMR gene or POLE. Mismatch repair deficient/microsatellite stable (MMRd/MSS) tumors had a significantly lower rate of high tumor mutational burden than MMRp/MSI-H tumors. Across all solid tumors, MMRd/MSI-H tumors had significantly longer overall survival (OS; hazard ratio [HR], 1.47, P < .001) and post-ICI survival (HR, 1.82, P < .001) as compared with MMRp/MSS tumors. The OS for the MMRd/MSS group was slightly worse compared to the MMRp/MSI-H tumors, but this difference was not statistically significant (HR, 0.73, P = .058), with a similar pattern when looking at post-ICI survival (HR, 0.43, P = .155). CONCLUSION This study demonstrates that NGS-MSI is noninferior to IHC-MMR and can identify MSI-H tumors that IHC-MMR is unable to detect and conversely IHC-MMR can identify MMRd tumors that NGS-MSI misses.
Collapse
Affiliation(s)
| | | | - Robert T. Morris
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - John J. Wallbillich
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Logan Corey
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Sudeshna Bandyopadhyay
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Mira Kheil
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Leana Elbashir
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - Fadi Zaiem
- Karmanos Cancer Institute, Detroit, MI
- Wayne State University School of Medicine, Detroit, MI
| | - M. Ruhul Quddus
- Women & Infants Hospital/Alpert Medical School of Brown University, Providence, RI
| | - Evi Abada
- Karmanos Cancer Institute, Detroit, MI
- Women & Infants Hospital/Alpert Medical School of Brown University, Providence, RI
| | - Thomas Herzog
- University of Cincinnati Medical Center, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Heeke AL, Sha W, Feldman R, Fisher J, Hadzikadic-Gusic L, Symanowski JT, White RL, Tan AR. The Genomic Landscape of Breast Cancer in Young and Older Women. Clin Breast Cancer 2024; 24:630-638.e3. [PMID: 39174364 DOI: 10.1016/j.clbc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2023] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Young women with breast cancer (YWBC; ≤40 years) often have a poorer prognosis than older women with breast cancer (OWBC; ≥65 years). We explored molecular features of tumors from YWBC and OWBC to identify a biologic connection for these patterns. MATERIALS AND METHODS We retrospectively analyzed the molecular profiles of 1879 breast tumors. Testing included immunohistochemistry (IHC), in situ hybridization (ISH), and next-generation sequencing. Statistical analyses included Pearson's chi2 test for comparisons, with significance defined as FDR (false discovery rate)-P < .05. RESULTS TP53 and BRCA1 somatic mutations were more common in YWBC tumors than in OWBC tumors (53%, 42%; P = .0001, FDR-P = .0025 and 7%, 2%; P = .0001, FDR-P = .0025; respectively). Conversely, OWBC tumors had higher androgen receptor expression (55%, 45%; P = .0002, FDR-P = .0025) higher PD-L1 expression detected by IHC (8%, 5%; P = .0476, FDR-P = .2754), and more frequent PIK3CA mutations (33%, 17%; P = < .0001, FDR-P = < .0001). Among HR+/HER2- samples, YWBC had more gene amplifications in FGF3 (27%, 10%; P = .0353, FDR-P = .2462), FGF4 (27%, 9%; P = .0218, FDR-P = .1668), FGF19 (30%, 12%; P = .034, FDR-P = .2462) and CCND1 (37%, 18%; P = .0344, FDR-P = .2462) than OWBC. CONCLUSIONS Our data suggest distinct molecular aberrations exist between YWBC and OWBC. Exploiting these molecular changes could refine our treatment strategies in YWBC and OWBC.
Collapse
Affiliation(s)
- Arielle L Heeke
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC.
| | - Wei Sha
- Department of Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | | | - Julie Fisher
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Lejla Hadzikadic-Gusic
- Division of Surgical Oncology, Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - James T Symanowski
- Department of Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Richard L White
- Division of Surgical Oncology, Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Antoinette R Tan
- Department of Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute, Atrium Health, Charlotte, NC; Sandra Levine Young Women's Breast Cancer Program, Levine Cancer Institute, Atrium Health, Charlotte, NC
| |
Collapse
|
27
|
Ren L, Shi L, Zheng Y. Reference Materials for Improving Reliability of Multiomics Profiling. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:487-521. [PMID: 39723231 PMCID: PMC11666855 DOI: 10.1007/s43657-023-00153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2024]
Abstract
High-throughput technologies for multiomics or molecular phenomics profiling have been extensively adopted in biomedical research and clinical applications, offering a more comprehensive understanding of biological processes and diseases. Omics reference materials play a pivotal role in ensuring the accuracy, reliability, and comparability of laboratory measurements and analyses. However, the current application of omics reference materials has revealed several issues, including inappropriate selection and underutilization, leading to inconsistencies across laboratories. This review aims to address these concerns by emphasizing the importance of well-characterized reference materials at each level of omics, encompassing (epi-)genomics, transcriptomics, proteomics, and metabolomics. By summarizing their characteristics, advantages, and limitations along with appropriate performance metrics pertinent to study purposes, we provide an overview of how omics reference materials can enhance data quality and data integration, thus fostering robust scientific investigations with omics technologies.
Collapse
Affiliation(s)
- Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
- Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
- International Human Phenome Institutes, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
28
|
Wang C, Lv L, Ma P, Zhang Y, Li M, Deng J, Zhang Y. Identification of immunity- and ferroptosis-related signature genes as potential design targets for mRNA vaccines in AML patients. Aging (Albany NY) 2024; 16:11939-11954. [PMID: 39213256 PMCID: PMC11386918 DOI: 10.18632/aging.206068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Immune-associated ferroptosis plays an important role in the progression of acute myeloid leukemia (AML); however, the targets that play key roles in this process are currently unknown. This limits the development of mRNA vaccines based on immune-associated ferroptosis for clinical therapeutic applications. In this study, based on the rich data resources of the TCGA-LAML cohort, we analyzed the tumor mutational burden (TMB), gene mutation status, and associations between immune and ferroptosis genes to reveal the disease characteristics of AML patients. To gain a deeper understanding of differentially expressed genes, we applied the Limma package for differential expression analysis and integrated data sources such as ImmPort Shared Data and FerrDb V2. Moreover, we established gene modules related to TMB according to weighted gene coexpression network analysis (WGCNA) and explored the functions of these modules in AML and their relationships with TMB. We focused on the top 30 most frequent genes through a detailed survey of missense mutations and single nucleotide polymorphisms (SNPs) and selected potentially critical gene targets for subsequent analysis. Based on the expression of these genes, we successfully subgrouped AML patients and found that the subgroups associated with TMB (C1 and C2) exhibited significant differences in survival. The differences in the tumor microenvironment and immune cells between C1 and C2 patients were investigated with the ESTIMATE and MCP-counter algorithms. A predictive model of TMB-related genes (TMBRGs) was constructed, and the validity of the model was demonstrated by categorizing patients into high-risk and low-risk groups. The differences in survival between the high-risk patients and high-TMB patients were further investigated, and potential vaccine targets were identified via immune cell-level analysis. The identification of immunity- and ferroptosis-associated signature genes is an independent predictor of survival in AML patients and provides new information on immunotherapy for AML.
Collapse
Affiliation(s)
- Chaojie Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P.R. China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, P.R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P.R. China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, P.R. China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P.R. China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, P.R. China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P.R. China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, P.R. China
| | - Mingyuan Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P.R. China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, P.R. China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P.R. China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing 100850, P.R. China
| |
Collapse
|
29
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
30
|
Lapuente-Santana Ó, Sturm G, Kant J, Ausserhofer M, Zackl C, Zopoglou M, McGranahan N, Rieder D, Trajanoski Z, da Cunha Carvalho de Miranda NF, Eduati F, Finotello F. Multimodal analysis unveils tumor microenvironment heterogeneity linked to immune activity and evasion. iScience 2024; 27:110529. [PMID: 39161957 PMCID: PMC11331718 DOI: 10.1016/j.isci.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
The cellular and molecular heterogeneity of tumors is a major obstacle to cancer immunotherapy. Here, we use a systems biology approach to derive a signature of the main sources of heterogeneity in the tumor microenvironment (TME) from lung cancer transcriptomics. We demonstrate that this signature, which we called iHet, is conserved in different cancers and associated with antitumor immunity. Through analysis of single-cell and spatial transcriptomics data, we trace back the cellular origin of the variability explaining the iHet signature. Finally, we demonstrate that iHet has predictive value for cancer immunotherapy, which can be further improved by disentangling three major determinants of anticancer immune responses: activity of immune cells, immune infiltration or exclusion, and cancer-cell foreignness. This work shows how transcriptomics data can be integrated to derive a holistic representation of the phenotypic heterogeneity of the TME and to predict its unfolding and fate during immunotherapy with immune checkpoint blockers.
Collapse
Affiliation(s)
- Óscar Lapuente-Santana
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Boehringer Ingelheim International Pharma GmbH & Co KG, 55216 Ingelheim am Rhein, Germany
| | - Joan Kant
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Markus Ausserhofer
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Constantin Zackl
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Zopoglou
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London WC1E 6DD, UK
| | - Dietmar Rieder
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Federica Eduati
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Loree JM, Titmuss E, Topham JT, Kennecke HF, Feilotter H, Virk S, Lee YS, Banks K, Quinn K, Karsan A, Renouf DJ, Jonker DJ, Tu D, O’Callaghan CJ, Chen EX. Plasma versus Tissue Tumor Mutational Burden as Biomarkers of Durvalumab plus Tremelimumab Response in Patients with Metastatic Colorectal Cancer in the CO.26 Trial. Clin Cancer Res 2024; 30:3189-3199. [PMID: 38727700 PMCID: PMC11292199 DOI: 10.1158/1078-0432.ccr-24-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2024] [Revised: 03/24/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE Tissue-derived tumor mutation burden (TMB) of ≥10 mutations/Mb is a histology-agnostic biomarker for the immune checkpoint inhibitor (ICI) pembrolizumab. However, the dataset in which this was validated lacked colorectal cancers (CRC), and there is limited evidence for immunotherapy benefits in CRC using this threshold. PATIENTS AND METHODS CO.26 was a randomized phase II study of 180 patients, comparing durvalumab and tremelimumab (D + T, n = 119 patients) versus best supportive care (BSC; n = 61 patients). ctDNA sequencing was available for 168 patients (n = 118 D + T; n = 50), of whom 165 had evaluable plasma TMB (pTMB). Tissue sequencing was available for 108 patients. Optimal thresholds for stratifying patients based on OS were determined using a minimal P value approach. This report includes the final OS analysis. RESULTS Tissue TMB ≥10 mutations/Mb was not predictive of benefit from D + T compared with BSC in microsatellite stable (MSS) metastatic CRC [HR, 0.71 (95% CI, 0.28-1.80); P = 0.47]. No tissue TMB threshold could identify a high TMB group that benefited from ICI. By contrast, plasma TMB (pTMB) ≥28 mutations/Mb was predictive of benefit from D + T [HR, 0.34 (95% CI, 0.13-0.85); P = 0.022], as was clonal pTMB ≥10.6 mutations/Mb [HR, 0.10 (95% CI, 0.014-0.79); P = 0.029] and subclonal pTMB ≥25.9/Mb [HR, 0.20 (95% CI, 0.061-0.69); P = 0.010]. Higher pTMB was associated with length of time on cytotoxic agents (P = 0.021) and prior anti-EGFR exposure (P = 2.44 × 10-06). CONCLUSIONS pTMB derived from either clonal or subclonal mutations may identify a group likely to benefit from immunotherapy, although validation is required. Tissue TMB provided no predictive utility for immunotherapy in this trial.
Collapse
Affiliation(s)
| | - Emma Titmuss
- BC Cancer, University of British Columbia, Vancouver, Canada.
| | - James T. Topham
- BC Cancer, University of British Columbia, Vancouver, Canada.
| | | | | | - Shakeel Virk
- Canadian Clinical Trials Group, Kingston, Canada.
| | | | | | | | - Aly Karsan
- BC Cancer, University of British Columbia, Vancouver, Canada.
| | | | | | - Dongsheng Tu
- Canadian Clinical Trials Group, Kingston, Canada.
| | | | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, Canada.
| |
Collapse
|
32
|
Furtado LV, Bifulco C, Dolderer D, Hsiao SJ, Kipp BR, Lindeman NI, Ritterhouse LL, Temple-Smolkin RL, Zehir A, Nowak JA. Recommendations for Tumor Mutational Burden Assay Validation and Reporting: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, and Society for Immunotherapy of Cancer. J Mol Diagn 2024; 26:653-668. [PMID: 38851389 DOI: 10.1016/j.jmoldx.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
Tumor mutational burden (TMB) has been recognized as a predictive biomarker for immunotherapy response in several tumor types. Several laboratories offer TMB testing, but there is significant variation in how TMB is calculated, reported, and interpreted among laboratories. TMB standardization efforts are underway, but no published guidance for TMB validation and reporting is currently available. Recognizing the current challenges of clinical TMB testing, the Association for Molecular Pathology convened a multidisciplinary collaborative working group with representation from the American Society of Clinical Oncology, the College of American Pathologists, and the Society for the Immunotherapy of Cancer to review the laboratory practices surrounding TMB and develop recommendations for the analytical validation and reporting of TMB testing based on survey data, literature review, and expert consensus. These recommendations encompass pre-analytical, analytical, and postanalytical factors of TMB analysis, and they emphasize the relevance of comprehensive methodological descriptions to allow comparability between assays.
Collapse
Affiliation(s)
- Larissa V Furtado
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Carlo Bifulco
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Providence Portland Medical Center, Portland, Oregon
| | - Daniel Dolderer
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Jupiter Medical Center, Jupiter, Florida
| | - Susan J Hsiao
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Benjamin R Kipp
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Neal I Lindeman
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Lauren L Ritterhouse
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Ahmet Zehir
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan A Nowak
- The Tumor Mutational Burden Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
33
|
Wu FT, Topham JT, O'Callaghan CJ, Feilotter H, Kennecke HF, Drusbosky L, Renouf DJ, Jonker DJ, Tu D, Chen EX, Loree JM. Kinetic Profiling of RAS Mutations With Circulating Tumor DNA in the Canadian Cancer Trials Group CO.26 Trial Suggests the Loss of RAS Mutations in Neo- RAS-Wildtype Metastatic Colorectal Cancer Is Transient. JCO Precis Oncol 2024; 8:e2400031. [PMID: 39178370 PMCID: PMC11371075 DOI: 10.1200/po.24.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
PURPOSE In metastatic colorectal cancer (mCRC), RAS mutations drive resistance to anti-epidermal growth factor receptor antibodies. It is unclear whether RAS mutations ever become clonally undetectable. METHODS CO.26 was a phase II clinical trial that assessed durvalumab + tremelimumab in heavily pretreated mCRC. RAS mutation status was tracked over time using circulating tumor DNA (ctDNA) sequencing at baseline, week 8, and on progression. RESULTS Among the 95 patients with KRAS/NRAS mutations in their archival tumor tissue, 6.3% (6/95) had undetectable RAS mutations in ctDNA collected at baseline or week 8 of the CO.26 study. Of these, 67% (4/6) of disappearances were transient, with the same mutation reappearing with progressive disease. In three cases, the simultaneous persistence of other preexisting CRC-associated truncal mutations could not be demonstrated, suggestive of low tumor shedding of ctDNA, leaving the incidence of true clonal reversion to RAS-wildtype (WT) possibly as low as 3.2% (3/95). Fewer patients in the neo-RAS-WT group (33%) had greater than four lesions at trial baseline compared with patients with persistent RAS mutations (75%), P = .046. The likelihood of synchronous metastases at cancer diagnosis (33% v 63%; P = .15) or liver metastases at trial baseline (50% v 68.5%; P = .17) was not significantly different between patients with disappearing versus persistent RAS mutations. Overall survival from stage IV diagnosis (hazard ratio, 0.77 [95% CI, 0.35 to 1.72]; P = .52) was not significantly different between those with disappearing versus persistent RAS mutations. The disappearance of RAS mutations was not associated with primary tumor sidedness (P = .41), archival BRAF/MEK/ERK-mutant status (P = .16/1.00/.09), nor baseline ctDNA HER2 amplifications (P = 1.00). CONCLUSION We identified a 3.2%-6.3% prevalence of the neo-RAS-WT phenomenon in the CO.26 trial. However, 67% of apparent cases were transient with subsequent re-emergence.
Collapse
Affiliation(s)
- Florence T.H. Wu
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - James T. Topham
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Daniel J. Renouf
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Derek J. Jonker
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group, Kingston, ON, Canada
| | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Chang TG, Cao Y, Sfreddo HJ, Dhruba SR, Lee SH, Valero C, Yoo SK, Chowell D, Morris LGT, Ruppin E. LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features. NATURE CANCER 2024; 5:1158-1175. [PMID: 38831056 DOI: 10.1038/s43018-024-00772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Accepted: 04/24/2024] [Indexed: 06/05/2024]
Abstract
Despite the revolutionary impact of immune checkpoint blockade (ICB) in cancer treatment, accurately predicting patient responses remains challenging. Here, we analyzed a large dataset of 2,881 ICB-treated and 841 non-ICB-treated patients across 18 solid tumor types, encompassing a wide range of clinical, pathologic and genomic features. We developed a clinical score called LORIS (logistic regression-based immunotherapy-response score) using a six-feature logistic regression model. LORIS outperforms previous signatures in predicting ICB response and identifying responsive patients even with low tumor mutational burden or programmed cell death 1 ligand 1 expression. LORIS consistently predicts patient objective response and short-term and long-term survival across most cancer types. Moreover, LORIS showcases a near-monotonic relationship with ICB response probability and patient survival, enabling precise patient stratification. As an accurate, interpretable method using a few readily measurable features, LORIS may help improve clinical decision-making in precision medicine to maximize patient benefit. LORIS is available as an online tool at https://loris.ccr.cancer.gov/ .
Collapse
Affiliation(s)
- Tian-Gen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hannah J Sfreddo
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saugato Rahman Dhruba
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Cristina Valero
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seong-Keun Yoo
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diego Chowell
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luc G T Morris
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
35
|
Monette A, Warren S, Barrett JC, Garnett-Benson C, Schalper KA, Taube JM, Topp B, Snyder A. Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee. J Immunother Cancer 2024; 12:e009427. [PMID: 39032943 PMCID: PMC11261685 DOI: 10.1136/jitc-2024-009427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Therapies targeting the programmed cell death protein-1/programmed death-ligand 1 (PD-L1) (abbreviated as PD-(L)1) axis are a significant advancement in the treatment of many tumor types. However, many patients receiving these agents fail to respond or have an initial response followed by cancer progression. For these patients, while subsequent immunotherapies that either target a different axis of immune biology or non-immune combination therapies are reasonable treatment options, the lack of predictive biomarkers to follow-on agents is impeding progress in the field. This review summarizes the current knowledge of mechanisms driving resistance to PD-(L)1 therapies, the state of biomarker development along this axis, and inherent challenges in future biomarker development for these immunotherapies. Innovation in the development and application of novel biomarkers and patient selection strategies for PD-(L)1 agents is required to accelerate the delivery of effective treatments to the patients most likely to respond.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | | | | | | | | | - Janis M Taube
- The Mark Foundation Center for Advanced Genomics and Imaging at Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
36
|
Huang CY, Tan KT, Huang SF, Lu YJ, Wang YH, Chen SJ, Tse KP. Study of sex-biased differences in genomic profiles in East Asian hepatocellular carcinoma. Discov Oncol 2024; 15:276. [PMID: 38981878 PMCID: PMC11233483 DOI: 10.1007/s12672-024-01131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/29/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a notable sex disparity in incidence and tumor aggressiveness. Revealing differences in genetic landscapes between male and female HCCs may expand the understanding of sexual disparities mechanisms and assist the development of precision medicine. Although reports on the sex disparity of HCC are accumulated, studies focusing on sex-related biomarkers among Asian populations remain limited. Here, we conducted a comprehensive genomic profiling analysis to explore differences between male and female patients within a cohort of 195 Taiwanese HCC patients. We did not detect any sex-biased genomic alterations. However, when our investigation extended to the TCGA dataset, we found higher frequencies of gene copy gains in CCNE2 and mutations in CTNNB1 and TP53 among male patients. Besides, we further evaluated the associations between genomic alterations and patients' prognosis by sex. The results showed that female patients harboring tumors with STAT3 gain and alterations in the JAK-STAT pathway displayed a poor prognosis. These two factors remained independently associated with unfavorable prognosis even after adjusting for the patient's age and stage characteristics (Hazard ratio = 10.434, 95% CI 3.331-32.677, P < 0.001; Hazard ratio = 2.547, 95% CI 1.195-5.432, P = 0.016, respectively). In summary, this study provides valuable insights into understanding sex disparity in HCC in the East Asian population. Validation through larger cohorts and extensive sequencing efforts is warranted.
Collapse
Affiliation(s)
| | - Kien-Thiam Tan
- ACT Genomics Co., Ltd., Taipei, Taiwan
- Anbogen Therapeutics, Inc., Taipei, Taiwan
| | - Shiu-Feng Huang
- Core Pathology Lab, Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | - Yeh-Han Wang
- ACT Genomics Co., Ltd., Taipei, Taiwan
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Ka-Po Tse
- ACT Genomics Co., Ltd., Taipei, Taiwan.
| |
Collapse
|
37
|
Muquith M, Espinoza M, Elliott A, Xiu J, Seeber A, El-Deiry W, Antonarakis ES, Graff SL, Hall MJ, Borghaei H, Hoon DSB, Liu SV, Ma PC, McKay RR, Wise-Draper T, Marshall J, Sledge GW, Spetzler D, Zhu H, Hsiehchen D. Tissue-specific thresholds of mutation burden associated with anti-PD-1/L1 therapy benefit and prognosis in microsatellite-stable cancers. NATURE CANCER 2024; 5:1121-1129. [PMID: 38528112 DOI: 10.1038/s43018-024-00752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 or its ligand (PD-1/L1) have expanded the treatment landscape against cancers but are effective in only a subset of patients. Tumor mutation burden (TMB) is postulated to be a generic determinant of ICI-dependent tumor rejection. Here we describe the association between TMB and survival outcomes among microsatellite-stable cancers in a real-world clinicogenomic cohort consisting of 70,698 patients distributed across 27 histologies. TMB was associated with survival benefit or detriment depending on tissue and treatment context, with eight cancer types demonstrating a specific association between TMB and improved outcomes upon treatment with anti-PD-1/L1 therapies. Survival benefits were noted over a broad range of TMB cutoffs across cancer types, and a dose-dependent relationship between TMB and outcomes was observed in a subset of cancers. These results have implications for the use of cancer-agnostic and universal TMB cutoffs to guide the use of anti-PD-1/L1 therapies, and they underline the importance of tissue context in the development of ICI biomarkers.
Collapse
Affiliation(s)
- Maishara Muquith
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Magdalena Espinoza
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Wafik El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Emmanuel S Antonarakis
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephanie L Graff
- Lifespan Cancer Institute, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Hossein Borghaei
- Department of Hematology-Oncology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Stephen V Liu
- Division of Hematology and Oncology, Georgetown University, Washington, DC, USA
| | | | - Rana R McKay
- Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Trisha Wise-Draper
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - John Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | - Hao Zhu
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Hsiehchen
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Kwon S, Kim JW, Kim ES, Paik JH, Chung JH, Cho SW, Won TB, Rhee CS, Wee JH, Kim H. Assessment of TP53 and CDKN2A status as predictive markers of malignant transformation of sinonasal inverted papilloma. Sci Rep 2024; 14:14286. [PMID: 38902320 PMCID: PMC11190283 DOI: 10.1038/s41598-024-64901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
The mechanism and predictive biomarkers of sinonasal inverted papilloma (IP) transformation into squamous cell carcinoma (SCC) are still unclear. We investigated the genetic mutations involved and the predictive biomarkers. Fourteen patients with SCC arising from IP and six patients with IPs without malignant transformation (sIP) were included. DNA was extracted separately from areas of normal tissue, IP, dysplasia, and SCC. Whole exome sequencing and immunohistochemistry was performed. Major oncogenic mutations were observed in the progression from IP to SCC. The most frequently mutated genes were TP53 (39%) and CDKN2A (27%). Mutations in TP53 and/or CDKN2A were observed in three of six IPs with malignant transformation (cIP); none were observed in sIPs. Tumor mutational burden (TMB) increased from IP to SCC (0.64/Mb, 1.11/Mb, and 1.25 for IP, dysplasia, and SCC, respectively). TMB was higher in the cIPs than in the sIPs (0.64/Mb vs 0.3/Mb). Three cIPs showed a diffuse strong or null pattern in p53, and one showed a total loss of p16, a distinct pattern from sIPs. Our result suggests that TP53 and CDKN2A status can be predictive markers of malignant transformation of IP. Furthermore, immunohistochemistry of p53 and p16 expression can be surrogate markers for TP53 and CDKN2A status.
Collapse
MESH Headings
- Humans
- Papilloma, Inverted/genetics
- Papilloma, Inverted/pathology
- Papilloma, Inverted/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Male
- Female
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Aged
- Paranasal Sinus Neoplasms/genetics
- Paranasal Sinus Neoplasms/pathology
- Paranasal Sinus Neoplasms/metabolism
- Mutation
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Adult
- Aged, 80 and over
- Exome Sequencing
- Immunohistochemistry
Collapse
Affiliation(s)
- Soohyeon Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jeong-Whun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eun Sun Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Sung-Woo Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Tae-Bin Won
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jee Hye Wee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
39
|
Li Q, Chu Y, Yao Y, Song Q. FAT4 Mutation is Related to Tumor Mutation Burden and Favorable Prognosis in Gastric Cancer. Curr Genomics 2024; 25:380-389. [PMID: 39323626 PMCID: PMC11420567 DOI: 10.2174/0113892029300694240612081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Objective This study aimed to investigate the frequently mutated genes in Gastric Cancer (GC), assess their association with Tumor Mutation Burden (TMB) and the patients' survival, and identify the potential biomarkers for tailored therapy. Methods Simple somatic mutation data of GC were collected from the TCGA and ICGC databases. The high-frequency mutated genes were identified from both datasets. The samples were initially dichotomized into wild-type and mutation groups based on the status of overlapping genes. TMB difference between the two groups was evaluated by the Mann-Whitney U-test. Survival difference between the two groups was compared by the Kaplan-Meier method with a log-rank test. The prognostic value of the target gene was assessed by the Cox proportional hazards model. The signaling pathways involved in FAT4 mutation were identified by Gene Set Enrichment Analysis (GSEA). The fractions of different tumor-infiltrating immune cells were calculated by the CIBERSORT algorithm. Results 21 overlapping genes with frequent mutation were identified in both datasets. Mutation of these genes was significantly associated with higher TMB (P<0.05) in GC. The survival of the FAT4 mutation group was superior to the wild-type group. FAT4 mutation was also identified as an independent favorable prognostic factor for the GC patients. GSEA indicated that FAT4 mutation activated the signaling pathways involved in energy metabolism. Finally, CD4 memory-activated T cells, follicular helper T cells, and gamma delta T cells were significantly more enriched, while naïve B cells and regulatory T cells (Tregs) were significantly less enriched in the FAT4 mutation group (P<0.05). Conclusion FAT4 mutation is relevant to TMB and favorable prognosis in GC, which may become a useful biomarker for immunotherapy of GC patients.
Collapse
Affiliation(s)
- Qingqing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuxin Chu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
40
|
Zhang XB, Fan YB, Jing R, Getu MA, Chen WY, Zhang W, Dong HX, Dakal TC, Hayat A, Cai HJ, Ashrafizadeh M, Abd El-Aty AM, Hacimuftuoglu A, Liu P, Li TF, Sethi G, Ahn KS, Ertas YN, Chen MJ, Ji JS, Ma L, Gong P. Gastroenteropancreatic neuroendocrine neoplasms: current development, challenges, and clinical perspectives. Mil Med Res 2024; 11:35. [PMID: 38835066 DOI: 10.1186/s40779-024-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/11/2023] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secretory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are the most common subtype of NENs. Historically, GEP-NENs have been regarded as infrequent and slow-growing malignancies; however, recent data have demonstrated that the worldwide prevalence and incidence of GEP-NENs have increased exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP-NENs result in a limited life expectancy. These findings suggested that the natural biology of GEP-NENs is more aggressive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis and management of patients with GEP-NENs. In this review, we have summarized the limitations and recent advancements in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, and treatment of GEP-NETs to identify factors contributing to delays in diagnosis and timely treatment of these patients.
Collapse
Affiliation(s)
- Xian-Bin Zhang
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yi-Bao Fan
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Rui Jing
- Department of Radiology, Second Hospital of Shandong University, Jinan, Shandong, 250000, China
| | - Mikiyas Amare Getu
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Wan-Ying Chen
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wei Zhang
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Hong-Xia Dong
- Department of Gastroenterology, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Hua-Jun Cai
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Milad Ashrafizadeh
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Peng Liu
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Tian-Feng Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, 518055, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38280, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Peng Gong
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
41
|
Enfield KS, Colliver E, Lee C, Magness A, Moore DA, Sivakumar M, Grigoriadis K, Pich O, Karasaki T, Hobson PS, Levi D, Veeriah S, Puttick C, Nye EL, Green M, Dijkstra KK, Shimato M, Akarca AU, Marafioti T, Salgado R, Hackshaw A, Jamal-Hanjani M, van Maldegem F, McGranahan N, Glass B, Pulaski H, Walk E, Reading JL, Quezada SA, Hiley CT, Downward J, Sahai E, Swanton C, Angelova M. Spatial Architecture of Myeloid and T Cells Orchestrates Immune Evasion and Clinical Outcome in Lung Cancer. Cancer Discov 2024; 14:1018-1047. [PMID: 38581685 PMCID: PMC11145179 DOI: 10.1158/2159-8290.cd-23-1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis. SIGNIFICANCE This study provides novel insights into the spatial organization of the lung cancer TME in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor progression and metastasis with implications for patient outcome and treatment. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Katey S.S. Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Kristiana Grigoriadis
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Philip S. Hobson
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Dina Levi
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Emma L. Nye
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Krijn K. Dijkstra
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Masako Shimato
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ayse U. Akarca
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, London, United Kingdom
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Febe van Maldegem
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | | | | | | | - James L. Reading
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Pre-cancer Immunology Laboratory, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Sergio A. Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Crispin T. Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
42
|
Chen S, Tse K, Lu Y, Chen S, Tian Y, Tan KT, Li C. Comprehensive genomic profiling and therapeutic implications for Taiwanese patients with treatment-naïve breast cancer. Cancer Med 2024; 13:e7384. [PMID: 38895905 PMCID: PMC11187859 DOI: 10.1002/cam4.7384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Revised: 03/29/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous disease categorized based on molecular characteristics, including hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) expression levels. The emergence of profiling technology has revealed multiple driver genomic alterations within each breast cancer subtype, serving as biomarkers to predict treatment outcomes. This study aimed to explore the genomic landscape of breast cancer in the Taiwanese population through comprehensive genomic profiling (CGP) and identify diagnostic and predictive biomarkers. METHODS Targeted next-generation sequencing-based CGP was performed on 116 archived Taiwanese breast cancer specimens, assessing genomic alterations (GAs), including single nucleotide variants, copy number variants, fusion genes, tumor mutation burden (TMB), and microsatellite instability (MSI) status. Predictive variants for FDA-approved therapies were evaluated within each subtype. RESULTS In the cohort, frequent mutations included PIK3CA (39.7%), TP53 (36.2%), KMT2C (9.5%), GATA3 (8.6%), and SF3B1 (6.9%). All subtypes had low TMB, with no MSI-H tumors. Among HR + HER2- patients, 42% (27/65) harbored activating PIK3CA mutations, implying potential sensitivity to PI3K inhibitors and resistance to endocrine therapies. HR + HER2- patients exhibited intrinsic hormonal resistance via FGFR1 gene gain/amplification (15%), exclusive of PI3K/AKT pathway alterations. Aberrations in the PI3K/AKT/mTOR and FGFR pathways were implicated in chemoresistance, with a 52.9% involvement in triple-negative breast cancer. In HER2+ tumors, 50% harbored GAs potentially conferring resistance to anti-HER2 therapies, including PIK3CA mutations (32%), MAP3K1 (2.9%), NF1 (2.9%), and copy number gain/amplification of FGFR1 (18%), FGFR3 (2.9%), EGFR (2.9%), and AKT2 (2.9%). CONCLUSION This study presents CGP findings for treatment-naïve Taiwanese breast cancer, emphasizing its value in routine breast cancer management, disease classification, and treatment selection.
Collapse
Affiliation(s)
- Shang‐Hung Chen
- National Institute of Cancer Research, National Health Research InstitutesTainanTaiwan
- Department of OncologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | | | | | | | - Yu‐Feng Tian
- Division of Colorectal Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Health and NutritionChia‐Nan University of Pharmacy and ScienceTainanTaiwan
| | - Kien Thiam Tan
- ACT Genomics, Co. Ltd.TaipeiTaiwan
- Anbogen Therapeutics, Inc.TaipeiTaiwan
| | - Chien‐Feng Li
- National Institute of Cancer Research, National Health Research InstitutesTainanTaiwan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
- Institute of Precision MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of Clinical Pathology and Laboratory MedicineChi Mei Medical CenterTainanTaiwan
- Trans‐omic Laboratory for Precision MedicineChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
43
|
Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24:399-416. [PMID: 38057451 PMCID: PMC11460566 DOI: 10.1038/s41577-023-00973-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of California San Francisco, Microbiology and Immunology, San Francisco, CA, USA.
| | | |
Collapse
|
44
|
Liu Q, Zhang X, Song Y, Si J, Li Z, Dong Q. Construction and analysis of a reliable five-gene prognostic signature for colon adenocarcinoma associated with the wild-type allelic state of the COL6A6 gene. Transl Cancer Res 2024; 13:2475-2496. [PMID: 38881933 PMCID: PMC11170513 DOI: 10.21037/tcr-23-463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2023] [Accepted: 11/29/2023] [Indexed: 06/18/2024]
Abstract
Background Tumors emerge by acquiring a number of mutations over time. The first mutation provides a selective growth advantage compared to adjacent epithelial cells, allowing the cell to create a clone that can outgrow the cells that surround it. Subsequent mutations determine the risk of the tumor progressing to metastatic cancer. Some secondary mutations may inhibit the aggressiveness of the tumor while still increasing the survival of the clone. Meaningful mutations in genes may provide a strong molecular foundation for developing novel therapeutic strategies for cancer. Methods The somatic mutation and prognosis in colon adenocarcinoma (COAD) were analyzed. The copy number variation (CNV) and differentially expressed genes (DEGs) between the collagen type VI alpha 6 chain (COL6A6) mutation (COL6A6-MUT) and the COL6A6 wild-type (COL6A6-WT) subgroups were evaluated. The independent prognostic signatures based on COL6A6-allelic state were determined to construct a Cox model. The biological characteristics and the immune microenvironment between the two risk groups were compared. Results COL6A6 was found to be highly mutated in COAD at a frequency of 9%. Patients with COL6A6-MUT had a good overall survival (OS) compared to those with COL6A6-WT, who had a different CNV pattern. Significant differences in gene expression were established for 593 genes between the COL6A6-MUT and COL6A6-WT samples. Among them, MUC16, ASNSP1, PRR18, PEG10, and RPL26P8 were determined to be independent prognostic factors. The internally validated prognostic risk model, constructed using these five genes, demonstrated its value by revealing a significant difference in patient prognosis between the high-risk and low-risk groups. Specifically, patients in the high-risk group exhibited a considerably worse prognosis than did those in the low-risk group. The high-risk group had a significantly higher proportion of patients over 60 years of age and patients in stage III. Moreover, the tumor immune dysfunction and exclusion (TIDE) score and the expression of human leukocyte antigen (HLA) family genes were all higher in the high-risk group than that in the low-risk group. Conclusions The allelic state of COL6A6 and the five associated DEGs were identified as novel biomarkers for the diagnosis and prognosis of COAD and may be therapeutic targets in COAD.
Collapse
Affiliation(s)
- Qun Liu
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Xiaohua Zhang
- Gastroenterology Center, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yan Song
- Outpatient Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Junli Si
- Second Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Zhaoshui Li
- Qingdao University, Qingdao Medical College, Qingdao, China
| | - Quanjiang Dong
- Central Laboratories, Department of Gastroenterology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| |
Collapse
|
45
|
Leung JH, Leung HWC, Wang SY, Yip Fion HT, Chan ALF. Comparison of target agent treatment strategies for platinum-resistant recurrent ovarian cancer: A Bayesian network meta-analysis. Medicine (Baltimore) 2024; 103:e38183. [PMID: 38788019 PMCID: PMC11124750 DOI: 10.1097/md.0000000000038183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/18/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND We aimed to compare 7 newer immunotherapies and targeted therapies for platinum-resistant relapsed ovarian cancer. METHODS We conducted a comprehensive search of PubMed, EMBASE, and Cochrane Library electronic databases for phase III trials involving platinum-resistant recurrent ovarian cancer (PRrOC) patients treated with immunotherapy or targeted therapy in combination with chemotherapy. The quality of the included trials was assessed using the GRADE method. The primary outcome of comparison was progression-free survival, and secondary outcomes included overall survival and safety. RESULTS This analysis included 7 randomized phase III controlled trials, encompassing 2485 PRrOC patients. Combining bevacizumab plus chemotherapy and lurbinectedin demonstrated statistically significant differences in progression-free survival compared to all other regimens of interest. However, no statistically significant differences were observed in the overall survival. Nivolumab and mirvetuximab exhibited fewer serious adverse events than the other regimens of interest. CONCLUSIONS Our findings indicate that bevacizumab combined with chemotherapy and lurbinectedin monotherapy has significant efficacy in patients with PRrOC. For patients with PRrOC who have exhausted treatment options, nivolumab and mirvetuximab may be considered as alternatives because of their better safety profiles.
Collapse
Affiliation(s)
- John Hang Leung
- Department of Obstetrics and Gynecology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Henry W. C. Leung
- Department of Radiation Oncology, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Shyh-Yau Wang
- Department of Radiation, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hei-Tung Yip Fion
- Department Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Agnes L. F. Chan
- Department of Pharmacy, An-Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
46
|
Sun Y, Zhao X, Fan X, Wang M, Li C, Liu Y, Wu P, Yan Q, Sun L. Assessing the impact of sequencing platforms and analytical pipelines on whole-exome sequencing. Front Genet 2024; 15:1334075. [PMID: 38818042 PMCID: PMC11137314 DOI: 10.3389/fgene.2024.1334075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Yanping Sun
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Xiaochao Zhao
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Xue Fan
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Wang
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Chaoyang Li
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Yongfeng Liu
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Ping Wu
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Qin Yan
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Lei Sun
- GeneMind Biosciences Company Limited, Shenzhen, China
| |
Collapse
|
47
|
Dawood S, Natarajan V, Danchaivijitr P. Comprehensive molecular profiling identifies actionable biomarkers for patients from Thailand and the United Arab Emirates with advanced malignancies. Front Oncol 2024; 14:1374087. [PMID: 38800398 PMCID: PMC11116666 DOI: 10.3389/fonc.2024.1374087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Background Comprehensive molecular profiling of tissue samples that can help guide therapy management is not widely available across the globe. Methods Comprehensive molecular profiling through Caris Molecular Intelligence involves the analysis of DNA through next-generation sequencing, chromogenic or fluorescent in situ hybridization, pyrosequencing, and copy number alterations; RNA through whole-transcriptome sequencing and multiplex PCR of RNA; and protein through immunohistochemistry. Results Here we describe the experience of molecular profiling of tumor tissue samples from patients diagnosed with advanced solid tumors and treated in two countries, the United Arab Emirates and Thailand. Tumor cancer cases submitted to Caris Life Sciences (Phoenix, Arizona, USA) for molecular profiling from the UAE and Thailand were retrospectively analyzed (data accessed between 2019 and 2020) for their molecular alterations and clinical biomarkers, without regard to ethnicity. A total of 451 samples from 35 distinct types of advanced cancers were examined for mutations, amplifications, overexpression, exon copy number alterations, microsatellite instability, deficient mismatch repair, tumor mutational burden, and fusions. Interrogating each step of the biological pathway, from DNA to RNA to distinct protein, identified an alteration with an associated therapy for 75% of these tumor samples. The most common alterations identified included elevated PDL-1 that can be targeted with an immune checkpoint inhibitors and amplification of HER2 for which a variety of anti HER2 therapies are available. Conclusion Comprehensive molecular profiling in patients with advanced malignancies can help optimize therapeutic management allowing for improved prognostic outcome.
Collapse
Affiliation(s)
- Shaheenah Dawood
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Oncology Department, Mediclinic City Hospital, Dubai, United Arab Emirates
| | | | - Pongwut Danchaivijitr
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
Khushman MM, Toboni MD, Xiu J, Manne U, Farrell A, Lou E, Shields AF, Philip PA, Salem ME, Abraham J, Spetzler D, Marshall J, Jayachandran P, Hall MJ, Lenz HJ, Sahin IH, Seeber A, Powell MA. Differential Responses to Immune Checkpoint Inhibitors are Governed by Diverse Mismatch Repair Gene Alterations. Clin Cancer Res 2024; 30:1906-1915. [PMID: 38350001 DOI: 10.1158/1078-0432.ccr-23-3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE The response to immune checkpoint inhibitors (ICI) in deficient mismatch repair (dMMR) colorectal cancer and endometrial cancer is variable. Here, we explored the differential response to ICIs according to different mismatch repair alterations. EXPERIMENTAL DESIGN Colorectal cancer (N = 13,701) and endometrial cancer (N = 3,315) specimens were tested at Caris Life Sciences. Median overall survival (mOS) was estimated using Kaplan-Meier. The prediction of high-, intermediate-, and low-affinity epitopes by tumor mutation burden (TMB) values was conducted using R-squared (R2). RESULTS Compared with mutL (MLH1 and PMS2) co-loss, the mOS was longer in mutS (MSH2 and MSH6) co-loss in all colorectal cancer (54.6 vs. 36 months; P = 0.0.025) and endometrial cancer (81.5 vs. 48.2 months; P < 0.001) patients. In ICI-treated patients, the mOS was longer in mutS co-loss in colorectal cancer [not reached (NR) vs. 36 months; P = 0.011). In endometrial cancer, the mOS was NR vs. 42.2 months; P = 0.711]. The neoantigen load (NAL) in mutS co-loss compared with mutL co-loss was higher in colorectal cancer (high-affinity epitopes: 25.5 vs. 19; q = 0.017, intermediate: 39 vs. 32; q = 0.004, low: 87.5 vs. 73; q < 0.001) and endometrial cancer (high-affinity epitopes: 15 vs. 11; q = 0.002, intermediate: 27.5 vs. 19; q < 0.001, low: 59 vs. 41; q < 0.001), respectively. R2 ranged from 0.25 in mutS co-loss colorectal cancer to 0.95 in mutL co-loss endometrial cancer. CONCLUSIONS Patients with mutS co-loss experienced longer mOS in colorectal cancer and endometrial cancer and better response to ICIs in colorectal cancer. Among all explored biomarkers, NAL was higher in mutS co-loss and may be a potential driving factor for the observed better outcomes. TMB did not reliably predict NAL.
Collapse
Affiliation(s)
- Moh'd M Khushman
- Washington University in St. Louis/Siteman Cancer Center, St. Louis, Missouri
| | - Michael D Toboni
- The University of Alabama at Birmingham/O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| | | | - Upender Manne
- The University of Alabama at Birmingham/O'Neal Comprehensive Cancer Center, Birmingham, Alabama
| | | | - Emil Lou
- University of Minnesota/Masonic Cancer Center, Minneapolis, Minnesota
| | - Anthony F Shields
- Wayne State University/Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Philip A Philip
- Wayne State University/Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | | | | | | | - John Marshall
- Georgetown University/Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Priya Jayachandran
- University of South California/Norris Comprehensive Cancer Center, Los Angeles, California
| | | | - Heinz-Josef Lenz
- University of South California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Ibrahim Halil Sahin
- University of Pittsburgh Medical Center/Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andreas Seeber
- Medical University of Innsbruck, Comprehensive Cancer Center Innsbruck, Innsbruck, Austria
| | - Mathew A Powell
- Washington University in St. Louis/Siteman Cancer Center, St. Louis, Missouri
| |
Collapse
|
49
|
Choi J, Park KH, Kim YH, Sa JK, Sung HJ, Chen YW, Chen Z, Li C, Wen W, Zhang Q, Shu XO, Zheng W, Kim JS, Guo X. Large-Scale Cancer Genomic Analysis Reveals Significant Disparities between Microsatellite Instability and Tumor Mutational Burden. Cancer Epidemiol Biomarkers Prev 2024; 33:712-720. [PMID: 38393316 DOI: 10.1158/1055-9965.epi-23-1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Microsatellite instability (MSI) and tumor mutational burden (TMB) are predictive biomarkers for pan-cancer immunotherapy. The interrelationship between MSI-high (MSI-H) and TMB-high (TMB-H) in human cancers and their predictive value for immunotherapy in lung cancer remain unclear. METHODS We analyzed somatic mutation data from the Genomics Evidence Neoplasia Information Exchange (n = 46,320) to determine the relationship between MSI-H and TMB-H in human cancers using adjusted multivariate regression models. Patient survival was examined using the Cox proportional hazards model. The association between MSI and genetic mutations was assessed. RESULTS Patients (31-89%) with MSI-H had TMB-low phenotypes across 22 cancer types. Colorectal and stomach cancers showed the strongest association between TMB and MSI. TMB-H patients with lung cancer who received immunotherapy exhibited significantly higher overall survival [HR, 0.61; 95% confidence interval (CI), 0.44-0.86] and progression-free survival (HR, 0.65; 95% CI, 0.47-0.91) compared to the TMB-low group; no significant benefit was observed in the MSI-H group. Patients with TMB and MSI phenotypes showed further improvement in overall survival and PFS. We identified several mutated genes associated with MSI-H phenotypes, including known mismatch repair genes and novel mutated genes, such as ARID1A and ARID1B. CONCLUSIONS Our results demonstrate that TMB-H and/or a combination of MSI-H can serve as biomarkers for immunotherapies in lung cancer. IMPACT These findings suggest that distinct or combined biomarkers should be considered for immunotherapy in human cancers because notable discrepancies exist between MSI-H and TMB-H across different cancer types.
Collapse
Affiliation(s)
- Jungyoon Choi
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Kyong Hwa Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yeul Hong Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jason K Sa
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hwa Jung Sung
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Yu-Wei Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chao Li
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Qingrun Zhang
- Department of Mathematics and Statistics, Alberta Children's Hospital Research Institute, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jung Sun Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
50
|
Marques A, Cavaco P, Torre C, Sepodes B, Rocha J. Tumor mutational burden in colorectal cancer: Implications for treatment. Crit Rev Oncol Hematol 2024; 197:104342. [PMID: 38614266 DOI: 10.1016/j.critrevonc.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Although immune checkpoint inhibitors have revolutionized the treatment of several advanced solid cancers, in colorectal cancer, the transformative benefit of these innovative medicines is currently limited to those with deficient mismatch repair or high microsatellite instability. Tumor mutational burden (TMB) has emerged as a potential predictor of immunotherapy benefit, but the lack of standardization in its assessment and reporting has hindered the introduction of this biomarker in routine clinical practice. Here, we compiled 45 colorectal cancer studies utilizing numerical thresholds for high-TMB. In this group of studies, TMB cut-offs ranged from 6.88 to 41 mut/Mb and were most often set at 10, 17, or 20 mut/Mb. Additionally, we observed divergent TMB definitions and inconsistent disclosure of specific methodological details, which collectively emphasize the substantial lack of harmonization within the field. Ongoing efforts to harmonize TMB assessment will be critical to validate TMB as a predictive marker of immunotherapy response.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Patrícia Cavaco
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal; Pharmacy Department, Centro Hospitalar de Lisboa Ocidental, Lisboa 1449-005, Portugal
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| |
Collapse
|