1
|
Li Z, Ji W, Hu Q, Zhu P, Jin Y, Duan G. Current status of Merkel cell carcinoma: Epidemiology, pathogenesis and prognostic factors. Virology 2024; 599:110186. [PMID: 39098121 DOI: 10.1016/j.virol.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Merkel cell carcinoma (MCC) is an extremely rare cutaneous neuroendocrine cancer, with an incidence approximately 40 times lower than that of malignant melanoma; however, its significantly inferior survival rate compared to melanoma establishes MCC as the most lethal form of skin cancer. In recent years, a substantial body of literature has demonstrated a gradual increase in the incidence of MCC. Although the two factors that contribute to MCC, ultraviolet radiation and Merkel cell polyomavirus infection, have been well established, the specific pathogenesis of this disease remains unclear. Additionally, considering the high lethality and recurrence rates of MCC, as well as the absence of specific antitumor drugs, it is crucial to elucidate the factors that can accurately predict patients' outcomes. In this review, we summarized the significant advancements in the epidemiological characteristics, pathogenesis, and the factors that influence patient prognosis of MCC to enhance clinical practices and public health efforts.
Collapse
Affiliation(s)
- Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanman Hu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Nakamura M, Magara T, Yoshimitsu M, Kano S, Kato H, Yokota K, Okuda K, Morita A. Blockade of glucose-6-phosphate dehydrogenase induces immunogenic cell death and accelerates immunotherapy. J Immunother Cancer 2024; 12:e008441. [PMID: 39089738 PMCID: PMC11293396 DOI: 10.1136/jitc-2023-008441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Enhanced glucose metabolism has been reported in many cancers. Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme involved in the pentose phosphate pathway, which maintains NADPH levels and protects cells from oxidative damage. We recently found that low G6PD expression correlates with active tumor immunity. However, the mechanism involving G6PD and tumor immunity remained unclear. METHODS We conducted in vitro studies using G6PD-knocked down malignant melanoma cells, pathway analysis using the GEO dataset, in vivo studies in combination with immune checkpoint inhibitors (ICIs) using a mouse melanoma model, and prognostic analysis in 42 melanoma patients and 30 lung cancer patients who were treated with ICIs. RESULTS Inhibition of G6PD, both chemically and genetically, has been shown to decrease the production of NADPH and reduce their oxidative stress tolerance. This leads to cell death, which is accompanied by the release of high mobility group box 1 and the translocation of calreticulin to the plasma membrane. These findings suggested that inhibiting G6PD can induce immunogenic cell death. In experiments with C57BL/6 mice transplanted with G6PD-knockdown B16 melanoma cells and treated with anti-PD-L1 antibody, a significant reduction in tumor size was observed. Interestingly, inhibiting G6PD in only a part of the lesions increased the sensitivity of other lesions to ICI. Additionally, out of 42 melanoma patients and 30 lung cancer patients treated with ICIs, those with low G6PD expression had a better prognosis than those with high G6PD expression (p=0.0473; melanoma, p=0.0287; lung cancer). CONCLUSION G6PD inhibition is a potent therapeutic strategy that triggers immunogenic cell death in tumors, significantly augmenting the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Keisuke Yokota
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
3
|
Simon‐Molas H, Del Prete R, Kabanova A. Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Mol Oncol 2024; 18:1777-1794. [PMID: 38115544 PMCID: PMC11223612 DOI: 10.1002/1878-0261.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Glucose catabolism, one of the essential pathways sustaining cellular bioenergetics, has been widely studied in the context of tumors. Nevertheless, the function of various branches of glucose metabolism that stem from 'classical' glycolysis have only been partially explored. This review focuses on discussing general mechanisms and pathological implications of glycolysis and its branching pathways in the biology of B cell malignancies. We summarize here what is known regarding pentose phosphate, hexosamine, serine biosynthesis, and glycogen synthesis pathways in this group of tumors. Despite most findings have been based on malignant B cells themselves, we also discuss the role of glucose metabolism in the tumor microenvironment, with a focus on T cells. Understanding the contribution of glycolysis branching pathways and how they are hijacked in B cell malignancies will help to dissect the role they have in sustaining the dissemination and proliferation of tumor B cells and regulating immune responses within these tumors. Ultimately, this should lead to deciphering associated vulnerabilities and improve current therapeutic schedules.
Collapse
Affiliation(s)
- Helga Simon‐Molas
- Departments of Experimental Immunology and HematologyAmsterdam UMC location University of AmsterdamThe Netherlands
- Cancer ImmunologyCancer Center AmsterdamThe Netherlands
| | | | - Anna Kabanova
- Fondazione Toscana Life Sciences FoundationSienaItaly
| |
Collapse
|
4
|
Nakamura M, Yoshimitsu M, Magara T, Kano S, Kato H, Morita A. Analyses of tertiary lymphoid structures observed in cases of Merkel cell carcinoma showing spontaneous regression. Exp Dermatol 2024; 33:e15062. [PMID: 38532566 DOI: 10.1111/exd.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Merkel cell carcinoma (MCC) is a high-grade skin cancer, but spontaneous regression is observed at a markedly higher frequency than in other carcinomas. Although spontaneous regression is a phenomenon that greatly impacts treatment planning, we still cannot predict it. We previously reported on the prognostic impact of the presence or absence of tertiary lymphoid structures (TLS) and of Merkel cell polyomavirus (MCPyV) infection. To learn more about the spontaneous regression of MCC, detailed analyses were performed focusing on spontaneous regression cases. We collected 71 Japanese patients with MCC including 6 cases of spontaneous regression. Samples were analysed by immunostaining, spatial single-cell analysis using PhenoCycler, and RNA sequencing using the next-generation sequencer (NGS). All 6 cases of spontaneous regression were positive for MCPyV. TLS was positive in all 5 cases analysed. Spatial single-cell analyses revealed that PD-L1-positive tumour cells were in close proximity to CD20-positive B cell and CD3-, 4-positive T cells. Gene set enrichment analysis between MCPyV-positive and TLS-positive samples and other samples showed significantly high enrichment of "B-cell-mediated immunity" gene sets in the MCPyV-positive and TLS-positive groups. In conclusion, TLS may play an important role in the spontaneous regression of MCC.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Magara T, Nakamura M, Nojiri Y, Yoshimitsu M, Kano S, Kato H, Morita A. Tumor immune microenvironment of cutaneous angiosarcoma with cancer testis antigens and the formation of tertiary lymphoid structures. Front Oncol 2023; 13:1106434. [PMID: 37081973 PMCID: PMC10112511 DOI: 10.3389/fonc.2023.1106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Cutaneous angiosarcoma (CAS) is a highly malignant tumor with few effective treatments. Although the indication for immune checkpoint inhibitors such as anti-PD-1 antibodies is expected to expand, there are many unknowns regarding the tumor immune microenvironment in CAS, which is generally considered an immunologically “cold” tumor. Our previous study demonstrated that tertiary lymphoid structures (TLSs) were associated with a favorable prognosis in CAS. However, we still don’t know what the difference is between cases of TLS-rich and TLS-poor. Furthermore, the number of TLSs can vary significantly between lesions in the same case, for example, between primary and recurrence. To analyze the changes in the tumor immune microenvironment in CAS in more detail, we performed comprehensive RNA sequencing using a Next-generation sequencer (NGS). Sixty-two samples from 31 cases of CAS treated at Nagoya City University were collected. NGS and gene set enrichment analysis (GSEA) were performed on 15 samples among them. Immunohistochemistry and prognostic analysis by Kaplan-Meier method were performed on all 62 samples. NGS results showed that NY-ESO-1 (CTAG1B) was significantly upregulated in the TLS-positive cases. Immune checkpoint molecules including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were upregulated in TLS-negative or TLS-low cases and seemed to associate with the suppression of TLS formation. In a comparison of primary and recurrent lesions, other cancer-testis antigens (CTAs) including XAGE-1B were significantly upregulated in recurrent lesions. The number of infiltrating CD8-positive cells and TLSs showed no significant trend between primary and recurrent lesions. However, the PD-L1 expression of tumor cells was significantly lower in recurrent than in primary lesions. Chemokines correlated with NY-ESO-1 expression were CCL21 and CXCL8, and only CCL21 correlated with the number of TLS. There was no chemokine associated with XAGE-1. NY-ESO-1 and XAGE-1 are detectable by immunohistochemistry. Although each cannot be a prognostic marker by itself, they can be a helpful marker in combination with the number of TLSs. CTAs play an essential role in forming the tumor immune microenvironment in CAS. These findings are evidence that CAS is an immunologically “hot” tumor and provides us with potential therapeutic targets and encourages the expansion of immunotherapy indications.
Collapse
Affiliation(s)
- Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuka Nojiri
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
6
|
Wang G, Xiao R, Zhao S, Sun L, Guo J, Li W, Zhang Y, Bian X, Qiu W, Wang S. Cuproptosis regulator-mediated patterns associated with immune infiltration features and construction of cuproptosis-related signatures to guide immunotherapy. Front Immunol 2022; 13:945516. [PMID: 36248857 PMCID: PMC9559227 DOI: 10.3389/fimmu.2022.945516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Liver hepatocellular carcinoma (HCC) is a prevalent cancer that lacks a sufficiently efficient approach to guide immunotherapy. Additionally, cuproptosis is a recently identified regulated cell death program that is triggered by copper ionophores. However, its possible significance in tumor immune cell infiltration is still unclear. Methods Cuproptosis subtypes in HCC were identified using unsupervised consensus cluster analysis based on 10 cuproptosis regulators expressions, and a cuproptosis-related risk signature was generated using univariate and LASSO Cox regression and validated using the ICGC data. Moreover, the relationship between signature and tumor immune microenvironment (TME) was studied through tumor immunotherapy responsiveness, immune cell infiltration, and tumor stem cell analysis. Finally, clinical specimens were analyzed using immunohistochemistry to verify the expression of the three genes in the signature. Results Two subtypes of cuproptosis regulation were observed in HCC, with different immune cell infiltration features. Genes expressed differentially between the two cuproptosis clusters in the TCGA were determined and used to construct a risk signature that was validated using the ICGC cohort. Greater immune and stromal cell infiltration were observed in the high-risk group and were associated with unfavorable prognosis. Elevated risk scores were linked with higher RNA stemness scores (RNAss) and tumor mutational burden (TMB), together with a greater likelihood of benefitting from immunotherapy. Conclusion It was found that cuproptosis regulatory patterns may play important roles in the heterogeneity of immune cell infiltration. The risk signature associated with cuproptosis can assess each patient's risk score, leading to more individualized and effective immunotherapy.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruoxi Xiao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Libin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoqian Bian
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Wensheng Qiu, ; Shasha Wang,
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Wensheng Qiu, ; Shasha Wang,
| |
Collapse
|
7
|
Liu S, Zhang Y, Qiu L, Zhang S, Meng Y, Huang C, Chen Z, Zhang B, Han J. Uncovering N4-Acetylcytidine-Related mRNA Modification Pattern and Landscape of Stemness and Immunity in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:861000. [PMID: 35493106 PMCID: PMC9046676 DOI: 10.3389/fcell.2022.861000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
N4-acetylcytidine (ac4C) is an ancient and conserved RNA modification. Previously, ac4C mRNA modification has been reported promoting proliferation and metastasis of tumor cells. However, it remains unclear whether and how ac4C-related mRNA modification patterns influencing the prognosis of hepatocellular carcinoma (HCC) patients. Hereby, we constructed an ac4Cscore model and classified patients into two groups and investigated the potential intrinsic and extrinsic characteristics of tumor. The ac4Cscore model, including COL15A1, G6PD and TP53I3, represented ac4C-related mRNA modification patterns in HCC. According to ac4Cscore, patients were stratified to high and low groups with distinct prognosis. Patients subject to high group was related to advanced tumor stage, higher TP53 mutation rate, higher tumor stemness, more activated pathways in DNA-repair system, lower stromal score, higher immune score and higher infiltrating of T cells regulatory. While patients attributed to low group were correlated with abundance of T cells CD4 memory, less aggressive immune subtype and durable therapy benefit. We also found ac4Cscore as a novel marker to predict patients’ prognosis with anti-PD1 immunotherapy and/or mTOR inhibitor treatment. Our study for the first time showed the association between ac4C-related mRNA modification patterns and tumor intrinsic and extrinsic characteristics, thus influencing the prognosis of patients.
Collapse
Affiliation(s)
- Sicheng Liu
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yaguang Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Qiu
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Su Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Canhua Huang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhixin Chen
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastrointestinal Surgery, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastrointestinal Surgery, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Junhong Han,
| |
Collapse
|
8
|
Lu C, Yang D, Klement JD, Colson YL, Oberlies NH, Pearce CJ, Colby AH, Grinstaff MW, Liu Z, Shi H, Ding HF, Liu K. H3K9me3 represses G6PD expression to suppress the pentose phosphate pathway and ROS production to promote human mesothelioma growth. Oncogene 2022; 41:2651-2662. [PMID: 35351997 PMCID: PMC9058223 DOI: 10.1038/s41388-022-02283-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
The role of glucose-6-phosphate dehydrogenase (G6PD) in human cancer is incompletely understood. In a metabolite screening, we observed that inhibition of H3K9 methylation suppressed aerobic glycolysis and enhances the PPP in human mesothelioma cells. Genome-wide screening identified G6PD as an H3K9me3 target gene whose expression is correlated with increased tumor cell apoptosis. Inhibition of aerobic glycolysis enzyme LDHA and G6PD had no significant effects on tumor cell survival. Ablation of G6PD had no significant effect on human mesothelioma and colon carcinoma xenograft growth in athymic mice. However, activation of G6PD with the G6PD-selective activator AG1 induced tumor cell death. AG1 increased tumor cell ROS production and the resultant extrinsic and intrinsic death pathways, mitochondrial processes, and unfolded protein response in tumor cells. Consistent with increased tumor cell death in vitro, AG1 suppressed human mesothelioma xenograft growth in a dose-dependent manner in vivo. Furthermore, AG1 treatment significantly increased tumor-bearing mouse survival in an intra-peritoneum xenograft athymic mouse model. Therefore, in human mesothelioma and colon carcinoma, G6PD is not essential for tumor growth. G6PD acts as a metabolic checkpoint to control metabolic flux towards the PPP to promote tumor cell apoptosis, and its expression is repressed by its promotor H3K9me3 deposition.
Collapse
Affiliation(s)
- Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | | | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhuoqi Liu
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
9
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|
10
|
Nakamura M, Magara T, Kano S, Matsubara A, Kato H, Morita A. Tertiary Lymphoid Structures and Chemokine Landscape in Virus-Positive and Virus-Negative Merkel Cell Carcinoma. Front Oncol 2022; 12:811586. [PMID: 35223493 PMCID: PMC8867579 DOI: 10.3389/fonc.2022.811586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 12/05/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) are used as biomarkers in many cancers for predicting the prognosis and assessing the response to immunotherapy. In Merkel cell carcinoma (MCC), TLSs have only been examined in MCPyV-positive cases. Here, we examined the prognostic value of the presence or absence of TLSs in 61 patients with MCC, including MCPyV-positive and MCPyV-negative cases. TLS-positive samples had a significantly better prognosis than TLS-negative samples. MCPyV-positive samples had a good prognosis with or without TLSs, and MCPyV-negative/TLS-positive samples had a similarly good prognosis as MCPyV-positive samples. Only MCPyV-negative/TLS-negative samples had a significantly poor prognosis. All cases with spontaneous regression were MCPyV-positive/TLS-positive. We also performed a comprehensive analysis of the chemokines associated with TLS formation using next-generation sequencing (NGS). The RNA sequencing results revealed 5 chemokine genes, CCL5, CCR2, CCR7, CXCL9, and CXCL13, with significantly high expression in TLS-positive samples compared with TLS-negative samples in both MCPyV-positive and MCPyV-negative samples. Only 2 chemokine genes, CXCL10 and CX3CR1, had significantly different expression levels in the presence or absence of MCPyV infection in TLS-negative samples. Patients with high CXCL13 or CCL5 expression have a significantly better prognosis than those with low expression. In conclusion, the presence of TLSs can be a potential prognostic marker even in cohorts that include MCPyV-negative cases. Chemokine profiles may help us understand the tumor microenvironment in patients with MCPyV-positive or MCPyV-negative MCC and may be a useful prognostic marker in their own right.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiro Matsubara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
11
|
Lu C, Yang D, Klement JD, Colson YL, Oberlies NH, Pearce CJ, Colby AH, Grinstaff MW, Ding HF, Shi H, Liu K. G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. J Immunother Cancer 2022; 10:jitc-2021-003543. [PMID: 35017152 PMCID: PMC8753452 DOI: 10.1136/jitc-2021-003543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background Granzyme B is a key effector of cytotoxic T lymphocytes (CTLs), and its expression level positively correlates with the response of patients with mesothelioma to immune checkpoint inhibitor immunotherapy. Whether metabolic pathways regulate Gzmb expression in CTLs is incompletely understood. Methods A tumor-specific CTL and tumor coculture model and a tumor-bearing mouse model were used to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in CTL function and tumor immune evasion. A link between granzyme B expression and patient survival was analyzed in human patients with epithelioid mesothelioma. Results Mesothelioma cells alone are sufficient to activate tumor-specific CTLs and to enhance aerobic glycolysis to induce a PD-1hi Gzmblo CTL phenotype. However, inhibition of lactate dehydrogenase A, the key enzyme of the aerobic glycolysis pathway, has no significant effect on tumor-induced CTL activation. Tumor cells induce H3K9me3 deposition at the promoter of G6pd, the gene that encodes the rate-limiting enzyme G6PD in the pentose phosphate pathway, to downregulate G6pd expression in tumor-specific CTLs. G6PD activation increases acetyl-coenzyme A (CoA) production to increase H3K9ac deposition at the Gzmb promoter and to increase Gzmb expression in tumor-specific CTLs converting them from a Gzmblo to a Gzmbhi phenotype, thus increasing CTL tumor lytic activity. Activation of G6PD increases Gzmb+ tumor-specific CTLs and suppresses tumor growth in tumor-bearing mice. Consistent with these findings, GZMB expression level was found to correlate with increased survival in patients with epithelioid mesothelioma. Conclusion G6PD is a metabolic checkpoint in tumor-activated CTLs. The H3K9me3/G6PD/acetyl-CoA/H3K9ac/Gzmb pathway is particularly important in CTL activation and immune evasion in epithelioid mesothelioma.
Collapse
Affiliation(s)
- Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, China .,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark W Grinstaff
- Ionic Pharmaceuticals, Brookline, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA .,Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
12
|
Nakamura M, Morita A. Immune activity in Merkel cell carcinoma. J Dermatol 2021; 49:68-74. [PMID: 34766373 PMCID: PMC9299685 DOI: 10.1111/1346-8138.16232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Merkel cell carcinoma (MCC) is widely known as a highly malignant skin cancer. The pathogenesis of MCC, however, remains mysterious due to the extremely small number of cases and its prevalence in the elderly. Despite its high‐grade malignancy, spontaneous regression occurs with some frequency. The immune activity of the tumor underlies this peculiar behavior. In recent years, immune checkpoint blockade therapies, including the anti‐programmed death ligand 1 antibody, have provided successful results. These therapies, however, are ineffective in approximately half the patients with advanced MCC and few treatments are available for those patients. In this review, we summarize the increasing body of evidence relating to the immune activity of MCC and immunological biomarkers. The interesting and sometimes peculiar behavior of MCC, such as their spontaneous regression, is largely due to their high immunosensitivity. Understanding the tumor immunokinetics of MCC should provide critical insight for understanding cancer immunotherapy. Here, we introduce a new classification for MCC according to its immune activity. Combined application of programmed death ligand 1 (a prognostic factor and predictor of the efficacy of immune checkpoint inhibitors in various cancers) with glucose‐6‐phosphate dehydrogenase (a new promising biomarker for MCC) may enable classification of MCC based on its immune status. Whether the new classification can be used to predict the efficacy of immune checkpoint blockade therapies remains to be evaluated in future studies, but the classification may facilitate future treatment selection.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
13
|
T-Cell Responses in Merkel Cell Carcinoma: Implications for Improved Immune Checkpoint Blockade and Other Therapeutic Options. Int J Mol Sci 2021; 22:ijms22168679. [PMID: 34445385 PMCID: PMC8395396 DOI: 10.3390/ijms22168679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.
Collapse
|
14
|
Iglesias P, Sánchez JC, Díez JJ. Isolated ACTH deficiency induced by cancer immunotherapy: a systematic review. Pituitary 2021; 24:630-643. [PMID: 33761049 DOI: 10.1007/s11102-021-01141-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
Immunotherapy with immune checkpoint inhibitor (ICI) monoclonal antibodies has shown to be an effective therapeutic alternative in several malignant tumors. However, adverse effects related to an activation of the immune system may accompany ICI therapy. Among the immune-related adverse events (irAEs) are autoimmune endocrine adverse effects, such as thyroiditis, and hypophysitis. Secondary adrenal insufficiency due to isolated ACTH deficiency (IAD) has also been recently reported to be associated with ICI antibodies. We carried out a systematic review of IAD cases induced by cancer immunotherapy published to date using PubMed's database. We selected 35 articles that reported 60 cancer patients diagnosed with IAD induced by ICI therapy. The prevalence was higher in men (ratio 1.6/1). Mean age at diagnosis was 63.2 ± 11.6 (range,30-87). Melanoma was the tumor most commonly reported (35%) followed by lung (28.3%) and kidney cancer (18.3%). The ICI monoclonal antibody most frequently associated was nivolumab in monotherapy (60%), followed by pembrolizumab (18.3%). Median (IQR) time to develop IAD after starting ICI therapy was 6 (4-8) months. The main symptoms at IAD diagnosis were fatigue (82.8%) and anorexia (67.2%). Hyponatremia (68%) and eosinophilia (31.8%) were the laboratory abnormalities most frequently associated with IAD. Pituitary magnetic resonance imaging (MRI) was normal in most patients (93%). Thyroiditis was the most prevalent (35%) endocrine irAE associated with IAD. In conclusion, ICI-induced IAD is a rare and potentially life-threatening condition that must be taken into account whenever treatment with immunotherapy in cancer patients is started due to their potential serious prognostic implications.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Calle Manuel de Falla 1, 28222, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), Madrid, Spain.
| | - Juan Cristóbal Sánchez
- Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), Madrid, Spain
| | - Juan José Díez
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Calle Manuel de Falla 1, 28222, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|