1
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
3
|
He J, Wu J, Li Z, Zhao Z, Qiu L, Zhu X, Liu Z, Xia H, Hong P, Yang J, Ni L, Lu J. Immunotherapy Vaccines for Prostate Cancer Treatment. Cancer Med 2024; 13:e70294. [PMID: 39463159 PMCID: PMC11513549 DOI: 10.1002/cam4.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Therapeutic tumor vaccines have emerged as a compelling avenue for treating patients afflicted with advanced prostate cancer (PCa), particularly those experiencing biochemical relapse or ineligible for surgical intervention. This study serves to consolidate recent research findings on therapeutic vaccines targeting prostate tumors while delineating prevalent challenges within vaccine research and development. METHODS We searched electronic databases, including PubMed, Web of Science, Embase, and Scopus, up to August 31, 2024, using keywords such as 'vaccine', 'prostate cancer', 'immunotherapy', and others. We reviewed studies on various therapeutic vaccines, including dendritic cell-based, antigen, nucleic acid, and tumor cell vaccines. RESULTS Studies consistently showed that therapeutic vaccines, notably DC vaccines, had favorable safety profiles with few adverse effects. These vaccines, with varied antigenic formulations, demonstrated strong clinical outcomes, as indicated by metrics such as PSA response rates (9.5%-58%), extended PSA doubling times (52.9%-89.7%), overall survival durations (17.7-33.8 months), two-year mortality rates (0%-12.5%), biochemical relapse rates (42%-73%), and antigen-specific immune responses (33.3%-71.4% in responsive groups). CONCLUSION While clinical data for tumor vaccines have illuminated robust evidence of tumoricidal activity, the processes of their formulation and deployment are riddled with complexities. Combining vaccines with other therapies may enhance outcomes, and future research should focus on early interventions and deciphering the immune system's role in oncogenesis.
Collapse
Affiliation(s)
- Jide He
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jialong Wu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Ziang Li
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zhenkun Zhao
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Lei Qiu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Xuehua Zhu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zenan Liu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Haizhui Xia
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Peng Hong
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jianling Yang
- Institute of Medical Innovation and ResearchPeking University Third HospitalBeijingChina
| | - Ling Ni
- Institute for Immunology and School of MedicineTsinghua University, Medical Research BuildingBeijingChina
| | - Jian Lu
- Department of UrologyPeking University Third HospitalBeijingChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking University
| |
Collapse
|
4
|
Zvirble M, Survila Z, Bosas P, Dobrovolskiene N, Mlynska A, Zaleskis G, Jursenaite J, Characiejus D, Pasukoniene V. Prognostic significance of soluble PD-L1 in prostate cancer. Front Immunol 2024; 15:1401097. [PMID: 39055716 PMCID: PMC11269106 DOI: 10.3389/fimmu.2024.1401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose The aim of this study was to assess the role of sPD-L1 and sPD-1 as potential biomarkers in prostate cancer (PCa). The association of the values of these soluble proteins were correlated to the clinical data: stage of disease, Gleason score, biochemical recurrence etc. For a comprehensive study, the relationship between sPD-L1 and sPD-1 and circulating immune cells was further investigated. Methods A total of 88 patients with pT2 and pT3 PCa diagnosis and 41 heathy men were enrolled. Soluble sPD-L1 and sPD-1 levels were measured in plasma by ELISA method. Immunophenotyping was performed by flow cytometry analysis. Results Our study's findings demonstrate that PCa patients had higher levels of circulating sPD-L1 and sPD-1 comparing to healthy controls (p < 0.001). We found a statistically significant (p < 0.05) relationship between improved progression free survival and lower initial sPD-L1 values. Furthermore, patients with a lower sPD-1/sPD-L1 ratio were associated with a higher probability of disease progression (p < 0.05). Additionally, a significant (p < 0.05) association was discovered between higher Gleason scores and elevated preoperative sPD-L1 levels and between sPD-1 and advanced stage of disease (p < 0.05). A strong correlation (p < 0.05), between immunosuppressive CD4+CD25+FoxP3+ regulatory T cells and baseline sPD-L1 was observed in patients with unfavorable postoperative course of the disease, supporting the idea that these elements influence each other in cancer progression. In addition to the postoperative drop in circulating PD-L1, the inverse relationship (p < 0.05), between the percentage of M-MDSC and sPD-L1 in patients with BCR suggests that M-MDSC is not a source of sPD-L1 in PCa patients. Conclusion Our findings suggest the potential of sPD-L1 as a promising prognostic marker in prostate cancer.
Collapse
Affiliation(s)
- Margarita Zvirble
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Zilvinas Survila
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Paulius Bosas
- Department of Oncourology, National Cancer Institute, Vilnius, Lithuania
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Gintaras Zaleskis
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jurgita Jursenaite
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Dainius Characiejus
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vita Pasukoniene
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
5
|
Yuan DY, McKeague ML, Raghu VK, Schoen RE, Finn OJ, Benos PV. Cellular and transcriptional profiles of peripheral blood mononuclear cells pre-vaccination predict immune response to preventative MUC1 vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598031. [PMID: 38948837 PMCID: PMC11212910 DOI: 10.1101/2024.06.14.598031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A single arm trial (NCT007773097) and a double-blind, placebo controlled randomized trial ( NCT02134925 ) were conducted in individuals with a history of advanced colonic adenoma to test the safety and immunogenicity of the MUC1 tumor antigen vaccine and its potential to prevent new adenomas. These were the first two trials of a non-viral cancer vaccine administered in the absence of cancer. The vaccine was safe and strongly immunogenic in 43% (NCT007773097) and 25% ( NCT02134925 ) of participants. The lack of response in a significant number of participants suggested, for the first time, that even in a premalignant setting, the immune system may have already been exposed to some level of suppression previously reported only in cancer. Single-cell RNA-sequencing (scRNA-seq) on banked pre-vaccination peripheral blood mononuclear cells (PBMCs) from 16 immune responders and 16 non-responders identified specific cell types, genes, and pathways of a productive vaccine response. Responders had a significantly higher percentage of CD4+ naive T cells pre-vaccination, but a significantly lower percentage of CD8+ T effector memory (TEM) cells and CD16+ monocytes. Differential gene expression (DGE) and transcription factor inference analysis showed a higher level of expression of T cell activation genes, such as Fos and Jun, in CD4+ naive T cells, and pathway analysis showed enriched signaling activity in responders. Furthermore, Bayesian network analysis suggested that these genes were mechanistically connected to response. Our analyses identified several immune mechanisms and candidate biomarkers to be further validated as predictors of immune responses to a preventative cancer vaccine that could facilitate selection of individuals likely to benefit from a vaccine or be used to improve vaccine responses.
Collapse
|
6
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
7
|
Shebbo S, Binothman N, Darwaish M, Niaz HA, Abdulal RH, Borjac J, Hashem AM, Mahmoud AB. Redefining the battle against colorectal cancer: a comprehensive review of emerging immunotherapies and their clinical efficacy. Front Immunol 2024; 15:1350208. [PMID: 38533510 PMCID: PMC10963412 DOI: 10.3389/fimmu.2024.1350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Salima Shebbo
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Najat Binothman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manar Darwaish
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hanan A. Niaz
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- College of Applied Medical Sciences, Taibah University, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
8
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
9
|
Jin W, Zhang M, Dong C, Huang L, Luo Q. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 2023; 23:1441-1474. [PMID: 36564679 DOI: 10.1007/s10238-022-00978-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
10
|
Muthukutty P, Yoo SY. Oncolytic Virus Engineering and Utilizations: Cancer Immunotherapy Perspective. Viruses 2023; 15:1645. [PMID: 37631987 PMCID: PMC10459766 DOI: 10.3390/v15081645] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oncolytic viruses have positively impacted cancer immunotherapy over the past 20 years. Both natural and genetically modified viruses have shown promising results in treating various cancers. Various regulatory authorities worldwide have approved four commercial oncolytic viruses, and more are being developed to overcome this limitation and obtain better anti-tumor responses in clinical trials at various stages. Faster advancements in translating research into the commercialization of cancer immunotherapy and a comprehensive understanding of the modification strategies will widen the current knowledge of future technologies related to the development of oncolytic viruses. In this review, we discuss the strategies of virus engineering and the progress of clinical trials to achieve virotherapeutics.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Kähkönen TE, Halleen JM, MacRitchie G, Andersson RM, Bernoulli J. Insights into immuno-oncology drug development landscape with focus on bone metastasis. Front Immunol 2023; 14:1121878. [PMID: 37475868 PMCID: PMC10355372 DOI: 10.3389/fimmu.2023.1121878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Bone is among the main sites of metastasis in breast, prostate and other major cancers. Bone metastases remain incurable causing high mortality, severe skeletal-related effects and decreased quality of life. Despite the success of immunotherapies in oncology, no immunotherapies are approved for bone metastasis and no clear benefit has been observed with approved immunotherapies in treatment of bone metastatic disease. Therefore, it is crucial to consider unique features of tumor microenvironment in bone metastasis when developing novel therapies. The vicious cycle of bone metastasis, referring to crosstalk between tumor and bone cells that enables the tumor cells to grow in the bone microenvironment, is a well-established concept. Very recently, a novel osteoimmuno-oncology (OIO) concept was introduced to the scientific community. OIO emphasizes the significance of interactions between tumor, immune and bone cells in promoting tumor growth in bone metastasis, and it can be used to reveal the most promising targets for bone metastasis. In order to provide an insight into the current immuno-oncology drug development landscape, we used 1stOncology database, a cancer drug development resource to identify novel immunotherapies in preclinical or clinical development for breast and prostate cancer bone metastasis. Based on the database search, 24 immunotherapies were identified in preclinical or clinical development that included evaluation of effects on bone metastasis. This review provides an insight to novel immuno-oncology drug development in the context of bone metastasis. Bone metastases can be approached using different modalities, and tumor microenvironment in bone provides many potential targets for bone metastasis. Noting current increasing interest in the field of OIO, more therapeutic opportunities that primarily target bone metastasis are expected in the future.
Collapse
Affiliation(s)
| | | | | | | | - Jenni Bernoulli
- University of Turku, Institute of Biomedicine, Turku, Finland
| |
Collapse
|
12
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Zolaly MA, Mahallawi W, Khawaji ZY, Alahmadi MA. The Clinical Advances of Oncolytic Viruses in Cancer Immunotherapy. Cureus 2023; 15:e40742. [PMID: 37485097 PMCID: PMC10361339 DOI: 10.7759/cureus.40742] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
A promising future for oncology treatment has been brought about by the emergence of a novel approach utilizing oncolytic viruses in cancer immunotherapy. Oncolytic viruses are viruses that have been exploited genetically to assault malignant cells and activate a robust immune response. Several techniques have been developed to endow viruses with an oncolytic activity through genetic engineering. For instance, redirection capsid modification, stimulation of anti-neoplastic immune response, and genetically arming viruses with cytokines such as IL-12. Oncolytic viral clinical outcomes are sought after, particularly in more advanced cancers. The effectiveness and safety profile of the oncolytic virus in clinical studies with or without the combination of standard treatment (chemotherapy, radiotherapy, or primary excision) has been assessed using response evaluation criteria in solid tumors (RECIST). This review will comprehensively outline the most recent clinical applications and provide the results from various phases of clinical trials in a variety of cancers in the latest published literature.
Collapse
Affiliation(s)
- Mohammed A Zolaly
- Pediatric Hematology Oncology, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Waleed Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Zakaria Y Khawaji
- Medicine and Surgery, Taibah University, Al-Madinah al-Munawwarah, SAU
| | | |
Collapse
|
14
|
Escudero-Duch C, Muñoz-Moreno L, Martin-Saavedra F, Sanchez-Casanova S, Lerma-Juarez MA, Vilaboa N. Remote control of transgene expression using noninvasive near-infrared irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112697. [PMID: 36963296 DOI: 10.1016/j.jphotobiol.2023.112697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
This study investigated whether noninvasive near-infrared (NIR) energy could be transduced into heat in deep-seated organs in which adenovirus type-5 vectors tend to accumulate, thereby activating heat shock protein (HSP) promoter-mediated transgene expression, without local administration of photothermal agents. NIR irradiation of the subdiaphragmatic and left dorsocranial part of the abdominal cavity of adult immunocompetent C3H/HeNRj mice with an 808-nm laser effectively increased the temperature of the irradiated regions of the liver and spleen, respectively, resulting in the accumulation of the heat-inducible HSP70 protein. Spatial control of transgene expression was achieved in the NIR-irradiated regions of the mice administered an adenoviral vector carrying a firefly luciferase (fLuc) coding sequence controlled by a human HSP70B promoter, as assessed by bioluminescence and immunohistochemistry analyses. Levels of reporter gene expression were modulated by controlling NIR power density. Spatial control of transgene expression through NIR-focused activation of the HSP70B promoter, as well as temporal regulation by administering rapamycin was achieved in the spleens of mice inoculated with an adenoviral vector encoding a rapamycin-dependent transactivator driven by the HSP70B promoter and an adenoviral vector carrying a fLuc coding sequence controlled by the rapamycin-activated transactivator. Mice that were administered rapamycin and exposed to NIR light expressed fLuc activity in the splenic region, whereas no activity was detected in mice that were only administered rapamycin or vehicle or only NIR-irradiated. Thus, in the absence of any exogenously supplied photothermal material, remote control of heat-induced transgene expression can be achieved in the liver and spleen by means of noninvasive NIR irradiation.
Collapse
Affiliation(s)
- Clara Escudero-Duch
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Laura Muñoz-Moreno
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Francisco Martin-Saavedra
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Silvia Sanchez-Casanova
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Miguel Angel Lerma-Juarez
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Nuria Vilaboa
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain.
| |
Collapse
|
15
|
Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z, Wang X. Nanomedicine for Combination Urologic Cancer Immunotherapy. Pharmaceutics 2023; 15:546. [PMID: 36839868 PMCID: PMC9960671 DOI: 10.3390/pharmaceutics15020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Urologic cancers, particularly kidney, bladder, and prostate cancer, have a growing incidence and account for about a million annual deaths worldwide. Treatments, including surgery, chemotherapy, radiotherapy, hormone therapy, and immunotherapy are the main therapeutic options in urologic cancers. Immunotherapy is now a clinical reality with marked success in solid tumors. Immunological checkpoint blockade, non-specific activation of the immune system, adoptive cell therapy, and tumor vaccine are the main modalities of immunotherapy. Immunotherapy has long been used to treat urologic cancers; however, dose-limiting toxicities and low response rates remain major challenges in the clinic. Herein, nanomaterial-based platforms are utilized as the "savior". The combination of nanotechnology with immunotherapy can achieve precision medicine, enhance efficacy, and reduce toxicities. In this review, we highlight the principles of cancer immunotherapy in urology. Meanwhile, we summarize the nano-immune technology and platforms currently used for urologic cancer treatment. The ultimate goal is to help in the rational design of strategies for nanomedicine-based immunotherapy in urologic cancer.
Collapse
Affiliation(s)
- Yun Tian
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhenzhu Liu
- Department of Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jianbo Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Linan Li
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuejian Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| |
Collapse
|
16
|
Jin T, Zhou C, Zhao L, Dong X, Zhou F. Advances in cancer vaccines for immunotherapy of prostate cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:148-156. [PMID: 36935188 PMCID: PMC10930556 DOI: 10.11817/j.issn.1672-7347.2023.220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 03/21/2023]
Abstract
Prostate cancer is currently one of the most common malignancies that endanger the lives and health of elderly men. In recent years, immunotherapy, which exploits the activation of anti-cancer host immune cells to accomplish tumor-killing effects, has emerged as a new study avenue in the treatment of prostate cancer. As an important component of immunotherapy, cancer vaccines have a unique position in the precision treatment of malignant tumors. Monocyte cell vaccines, dendritic cell vaccines, viral vaccines, peptide vaccines, and DNA/mRNA vaccines are the most often used prostate cancer vaccines. Among them, Sipuleucel-T, as a monocyte cell-based cancer vaccine, is the only FDA-approved therapeutic vaccine for prostate cancer, and has a unique position and role in advancing the development of immunotherapy for prostate cancer. However, due to its own limitations, Sipuleucel-T has not been widely adopted. Meanwhile, owing to the complexity of immunotherapy and the specificity of prostate cancer, the remaining prostate cancer vaccines have not shown good clinical benefit in large randomized phase II and phase III trials, and further in-depth studies are still needed.
Collapse
Affiliation(s)
- Tongtong Jin
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000.
| | - Chuan Zhou
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000
| | - Lei Zhao
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Xu Dong
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Fenghai Zhou
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000.
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou 730000, China.
| |
Collapse
|
17
|
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnology 2022; 20:484. [DOI: 10.1186/s12951-022-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractWith the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Collapse
|
18
|
Tang C, Li L, Mo T, Na J, Qian Z, Fan D, Sun X, Yao M, Pan L, Huang Y, Zhong L. Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical. Clin Transl Oncol 2022; 24:1682-1701. [PMID: 35612653 PMCID: PMC9131313 DOI: 10.1007/s12094-022-02830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
With the in-depth research and wide application of immunotherapy recently, new therapies based on oncolytic viruses are expected to create new prospects for cancer treatment via eliminating the suppression of the immune system by tumors. Currently, an increasing number of viruses are developed and engineered, and various virus vectors based on effectively stimulating human immune system to kill tumor cells have been approved for clinical treatment. Although the virus can retard the proliferation of tumor cells, the choice of oncolytic viruses in biological cancer therapy is equally critical given their therapeutic efficacy, safety and adverse effects. Moreover, previously known oncolytic viruses have not been systematically classified. Therefore, in this review, we summarized and distinguished the characteristics of several common types of oncolytic viruses: herpes simplex virus, adenovirus, measles virus, Newcastle disease virus, reovirus and respiratory syncytial virus. Subsequently, we outlined that these oncolytic viral vectors have been transformed from preclinical studies in combination with immunotherapy, radiotherapy, chemotherapy, and nanoparticles into clinical therapeutic strategies for various advanced solid malignancies or circulatory system cancers.
Collapse
Affiliation(s)
- Chao Tang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lan Li
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tong Mo
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhangbo Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dianfa Fan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinjun Sun
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Yao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lina Pan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
19
|
Qing L, Li Q, Dong Z. MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer 2022; 109:1202-1216. [DOI: 10.1016/j.bulcan.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
20
|
Ji Q, Wu Y, Albers A, Fang M, Qian X. Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics 2022; 14:1811. [PMID: 36145559 PMCID: PMC9504140 DOI: 10.3390/pharmaceutics14091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is a type of nanomedicine with a dual antitumor mechanism. Viruses are engineered to selectively infect and lyse cancer cells directly, leading to the release of soluble antigens which induce systemic antitumor immunity. Representative drug Talimogene laherparepvec has showed promising therapeutic effects in advanced melanoma, especially when combined with immune checkpoint inhibitors with moderate adverse effects. Diverse viruses like herpes simplex virus, adenovirus, vaccina virus, and so on could be engineered as vectors to express different transgenic payloads, vastly expanding the therapeutic potential of oncolytic virotherapy. A number of related clinical trials are under way which are mainly focusing on solid tumors. Studies about further optimizing the genome of oncolytic viruses or improving the delivering system are in the hotspot, indicating the future development of oncolytic virotherapy in the clinic. This review introduces the latest progress in clinical trials and pre-clinical studies as well as technology innovations directed at oncolytic viruses. The challenges and perspectives of oncolytic virotherapy towards clinical application are also discussed.
Collapse
Affiliation(s)
- Qing Ji
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Andreas Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Meiyu Fang
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
21
|
Liang J, Chen Z, Huang Y, Bi G, Bian Y, Jin X, Zhang H, Sui Q, Zhan C, Wang Q. Signatures of malignant cells and novel therapeutic targets revealed by single-cell sequencing in lung adenocarcinoma. Cancer Med 2022; 11:2244-2258. [PMID: 35102706 PMCID: PMC9160812 DOI: 10.1002/cam4.4547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Single‐cell transcriptomics has been used to investigate various tumors to elucidate the molecular distinction of all cell type compositions of a complex mix. Aims This study aimed to investigate malignant‐cell‐specific genes to explore diagnostic and therapeutic biomarkers using single‐cell transcriptomic data of lung adenocarcinoma. Materials & Methods 10X single‐cell RNA‐seq data of fourteen patients with lung adenocarcinoma were analyzed. Genes that expressed differentially and those with higher confidence to distinguish tumor cells from normal cells were picked out using the ROC curves. The LASSO regression method was used to select most markedly correlated genes to predict the malignancy of every single cell within a model. We also conducted further experiments to determine their roles in lung cancer in vitro. Results Twenty two thousand four hundred and ninety one tumor and 181 666 normal single cells were analyzed where 369 genes were found to be specifically expressed in single malignant cells. Seventy of them, encoding secreted or membrane‐bound proteins, showed involvement in cell‐to‐cell communications in tumor biology. KRT18 and the other six genes were identified as predictors to distinguish single malignant cells and were integrated to construct an accurate (96.1%) predicting model. Notably, IRX2, SPINK13, and CAPN8 outperformed the other four genes. Further experiments confirmed the upregulation of them in lung adenocarcinoma at both tissue and cell levels. Proliferative capacities of lung adenocarcinoma cells were attenuated by knocking‐down of either of them. However, targeting CAPN8, IRX2, or SPINK13 hardly exerted a cytotoxic effect on these cells. Discussion Apart from the current model, similar tools were still warranted using single‐cell RNA‐seq data of more types of tumors. The three genes identified as potential therapeutic targets in the present study still need to be validated in more in lung cancer. Conclusion Our model can aid the analyses of single‐cell sequencing data. CAPN8, IRX2, and SPINK13 may serve as novel targets of targeted and immune‐based therapies in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Ding J, Jiang N, Zheng Y, Wang J, Fang L, Li H, Yang J, Hu A, Xiao P, Zhang Q, Chai D, Zheng J, Wang G. Adenovirus vaccine therapy with CD137L promotes CD8 + DCs-mediated multifunctional CD8 + T cell immunity and elicits potent anti-tumor activity. Pharmacol Res 2022; 175:106034. [PMID: 34915126 DOI: 10.1016/j.phrs.2021.106034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
Renal carcinoma progresses aggressively in patients with metastatic disease while curative strategies are limited. Here, we constructed a recombinant non-replicating adenovirus (Ad) vaccine encoding an immune activator, CD137L, and a tumor antigen, CAIX, for treating renal carcinoma. In a subcutaneous tumor model, tumor growth was significantly suppressed in the Ad-CD137L/CAIX vaccine group compared with the single vaccine group. The induction and maturity of CD11C+ and CD8+CD11C+ dendritic cell (DC) subsets were promoted in Ad-CD137L/CAIX co-immunized mice. Furthermore, the Ad-CD137L/CAIX vaccine elicited stronger tumor-specific multifunctional CD8+ T cell immune responses as demonstrated by increased proliferation and cytolytic function of CD8+ T cells. Notably, depletion of CD8+ T cells greatly compromised the effective protection provided by Ad-CD137L/CAIX vaccine, suggesting an irreplaceable role of CD8+ T cells for the immunopotency of the vaccine. In both lung metastatic and orthotopic models, Ad-CD137L/CAIX vaccine treatment significantly decreased tumor metastasis and progression and increased the induction of tumor-specific multifunctional CD8+ T cells, in contrast to treatment with the Ad-CAIX vaccine alone. The Ad-CD137L/CAIX vaccine also augmented the tumor-specific multifunctional CD8+ T cell immune response in both orthotopic and metastatic models. These results indicated that Ad-CD137L/CAIX vaccine elicited a potent anti-tumor activity by inducing CD8+DC-mediated multifunctional CD8+ T cell immune responses. The potential strategy of CD137L-based vaccine might be served as a novel treatment for renal carcinoma or other malignant tumors.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Nan Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ankang Hu
- Center of Animal laboratory, Xuzhou Medical University, Xuzhou, Jiangsu 221002 PR China
| | - Pengli Xiao
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
23
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
24
|
Antonarelli G, Corti C, Tarantino P, Ascione L, Cortes J, Romero P, Mittendorf EA, Disis ML, Curigliano G. Therapeutic cancer vaccines revamping: technology advancements and pitfalls. Ann Oncol 2021; 32:1537-1551. [PMID: 34500046 PMCID: PMC8420263 DOI: 10.1016/j.annonc.2021.08.2153] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer vaccines (CVs) represent a long-sought therapeutic and prophylactic immunotherapy strategy to obtain antigen (Ag)-specific T-cell responses and potentially achieve long-term clinical benefit. However, historically, most CV clinical trials have resulted in disappointing outcomes, despite promising signs of immunogenicity across most formulations. In the past decade, technological advances regarding vaccine delivery platforms, tools for immunogenomic profiling, and Ag/epitope selection have occurred. Consequently, the ability of CVs to induce tumor-specific and, in some cases, remarkable clinical responses have been observed in early-phase clinical trials. It is notable that the record-breaking speed of vaccine development in response to the coronavirus disease-2019 pandemic mainly relied on manufacturing infrastructures and technological platforms already developed for CVs. In turn, research, clinical data, and infrastructures put in place for the severe acute respiratory syndrome coronavirus 2 pandemic can further speed CV development processes. This review outlines the main technological advancements as well as major issues to tackle in the development of CVs. Possible applications for unmet clinical needs will be described, putting into perspective the future of cancer vaccinology.
Collapse
Affiliation(s)
- G Antonarelli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - C Corti
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - P Tarantino
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - L Ascione
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - J Cortes
- International Breast Cancer Center (IBCC), Quironsalud Group, Barcelona, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P Romero
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - E A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, USA; Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, USA
| | - M L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, USA
| | - G Curigliano
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Movassaghi M, Chung R, Anderson CB, Stein M, Saenger Y, Faiena I. Overcoming Immune Resistance in Prostate Cancer: Challenges and Advances. Cancers (Basel) 2021; 13:cancers13194757. [PMID: 34638243 PMCID: PMC8507531 DOI: 10.3390/cancers13194757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Immunotherapy has changed the landscape of treatment modalities available for many different types of malignancies. However, the factors that influence the success of immunotherapeutics have not been as clearly seen in advanced prostate cancer, likely due to immunosuppressive factors that exist within the prostate cancer tumor microenvironment. While there have been many immunotherapeutics used for prostate cancer, the majority have targeted a single immunosuppressive mechanism resulting in limited clinical efficacy. More recent research centered on elucidating the key mechanisms of immune resistance in the prostate tumor microenvironment has led to the discovery of a range of new treatment targets. With that in mind, many clinical trials have now set out to evaluate combination immunotherapeutic strategies in patients with advanced prostate cancer, in the hopes of circumventing the immunosuppressive mechanisms. Abstract The use of immunotherapy has become a critical treatment modality in many advanced cancers. However, immunotherapy in prostate cancer has not been met with similar success. Multiple interrelated mechanisms, such as low tumor mutational burden, immunosuppressive cells, and impaired cellular immunity, appear to subvert the immune system, creating an immunosuppressive tumor microenvironment and leading to lower treatment efficacy in advanced prostate cancer. The lethality of metastatic castrate-resistant prostate cancer is driven by the lack of therapeutic regimens capable of generating durable responses. Multiple strategies are currently being tested to overcome immune resistance including combining various classes of treatment modalities. Several completed and ongoing trials have shown that combining vaccines or checkpoint inhibitors with hormonal therapy, radiotherapy, antibody–drug conjugates, chimeric antigen receptor T cell therapy, or chemotherapy may enhance immune responses and induce long-lasting clinical responses without significant toxicity. Here, we review the current state of immunotherapy for prostate cancer, as well as tumor-specific mechanisms underlying therapeutic resistance, with a comprehensive look at the current preclinical and clinical immunotherapeutic strategies aimed at overcoming the immunosuppressive tumor microenvironment and impaired cellular immunity that have largely limited the utility of immunotherapy in advanced prostate cancer.
Collapse
Affiliation(s)
- Miyad Movassaghi
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| | - Rainjade Chung
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Christopher B. Anderson
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
| | - Mark Stein
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Yvonne Saenger
- Department of Medicine, Division of Medical Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (Y.S.)
| | - Izak Faiena
- Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; (R.C.); (C.B.A.)
- Correspondence: (M.M.); (I.F.)
| |
Collapse
|
26
|
Gabitzsch E, Safrit JT, Verma M, Rice A, Sieling P, Zakin L, Shin A, Morimoto B, Adisetiyo H, Wong R, Bezawada A, Dinkins K, Balint J, Peykov V, Garban H, Liu P, Bacon A, Bone P, Drew J, Sanford DC, Spilman P, Sender L, Rabizadeh S, Niazi K, Soon-Shiong P. Dual-Antigen COVID-19 Vaccine Subcutaneous Prime Delivery With Oral Boosts Protects NHP Against SARS-CoV-2 Challenge. Front Immunol 2021; 12:729837. [PMID: 34603305 PMCID: PMC8481919 DOI: 10.3389/fimmu.2021.729837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
We have developed a dual-antigen COVID-19 vaccine incorporating genes for a modified SARS-CoV-2 spike protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to increase the potential for MHC class II responses. The vaccine antigens are delivered by a human adenovirus serotype 5 platform, hAd5 [E1-, E2b-, E3-], previously demonstrated to be effective in the presence of Ad immunity. Vaccination of rhesus macaques with the hAd5 S-Fusion + N-ETSD vaccine by subcutaneous prime injection followed by two oral boosts elicited neutralizing anti-S IgG and T helper cell 1-biased T-cell responses to both S and N that protected the upper and lower respiratory tracts from high titer (1 x 106 TCID50) SARS-CoV-2 challenge. Notably, viral replication was inhibited within 24 hours of challenge in both lung and nasal passages, becoming undetectable within 7 days post-challenge.
Collapse
Affiliation(s)
| | | | - Mohit Verma
- ImmunityBio, Inc., Culver City, CA, United States
| | - Adrian Rice
- ImmunityBio, Inc., Culver City, CA, United States
| | | | - Lise Zakin
- ImmunityBio, Inc., Culver City, CA, United States
| | - Annie Shin
- ImmunityBio, Inc., Culver City, CA, United States
| | | | | | - Raymond Wong
- ImmunityBio, Inc., Culver City, CA, United States
| | | | - Kyle Dinkins
- ImmunityBio, Inc., Culver City, CA, United States
| | | | | | | | - Philip Liu
- ImmunityBio, Inc., Culver City, CA, United States
| | | | - Pete Bone
- IosBio, Burgess Hill, United Kingdom
| | - Jeff Drew
- IosBio, Burgess Hill, United Kingdom
| | | | | | | | | | - Kayvan Niazi
- ImmunityBio, Inc., Culver City, CA, United States
| | | |
Collapse
|
27
|
Zhao Y, Liu Z, Li L, Wu J, Zhang H, Zhang H, Lei T, Xu B. Oncolytic Adenovirus: Prospects for Cancer Immunotherapy. Front Microbiol 2021; 12:707290. [PMID: 34367111 PMCID: PMC8334181 DOI: 10.3389/fmicb.2021.707290] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy has moved to the forefront of modern oncologic treatment in the past few decades. Various forms of immunotherapy currently are emerging, including oncolytic viruses. In this therapy, viruses are engineered to selectively propagate in tumor cells and reduce toxicity for non-neoplastic tissues. Adenovirus is one of the most frequently employed oncolytic viruses because of its capacity in tumor cell lysis and immune response stimulation. Upregulation of immunostimulatory signals induced by oncolytic adenoviruses (OAds) might significantly remove local immune suppression and amplify antitumor immune responses. Existing genetic engineering technology allows us to design OAds with increasingly better tumor tropism, selectivity, and antitumor efficacy. Several promising strategies to modify the genome of OAds have been applied: capsid modifications, small deletions in the pivotal viral genes, insertion of tumor-specific promoters, and addition of immunostimulatory transgenes. OAds armed with tumor-associated antigen (TAA) transgenes as cancer vaccines provide additional therapeutic strategies to trigger tumor-specific immunity. Furthermore, the combination of OAds and immune checkpoint inhibitors (ICIs) increases clinical benefit as evidence shown in completed and ongoing clinical trials, especially in the combination of OAds with antiprogrammed death 1/programed death ligand 1 (PD-1/PD-L1) therapy. Despite remarkable antitumor potency, oncolytic adenovirus immunotherapy is confronted with tough challenges such as antiviral immune response and obstruction of tumor microenvironment (TME). In this review, we focus on genomic modification strategies of oncolytic adenoviruses and applications of OAds in cancer immunotherapy.
Collapse
Affiliation(s)
- Yaqi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Rice A, Verma M, Shin A, Zakin L, Sieling P, Tanaka S, Balint J, Dinkins K, Adisetiyo H, Morimoto B, Higashide W, Anders Olson C, Mody S, Spilman P, Gabitzsch E, Safrit JT, Rabizadeh S, Niazi K, Soon-Shiong P. Intranasal plus subcutaneous prime vaccination with a dual antigen COVID-19 vaccine elicits T-cell and antibody responses in mice. Sci Rep 2021; 11:14917. [PMID: 34290317 PMCID: PMC8295250 DOI: 10.1038/s41598-021-94364-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
We have developed a COVID-19 vaccine, hAd5 S-Fusion + N-ETSD, that expresses SARS-CoV-2 spike (S) and nucleocapsid (N) proteins with modifications to increase immune responses delivered using a human adenovirus serotype 5 (hAd5) platform. Here, we demonstrate subcutaneous (SC) prime and SC boost vaccination of CD-1 mice with this dual-antigen vaccine elicits T-helper cell 1 (Th1) biased T-cell and humoral responses to both S and N that are greater than those seen with hAd5 S wild type delivering only unmodified S. We then compared SC to intranasal (IN) prime vaccination with SC or IN boosts and show that an IN prime with an IN boost is as effective at generating Th1 biased humoral responses as the other combinations tested, but an SC prime with an IN or SC boost elicits greater T cell responses. Finally, we used a combined SC plus IN (SC + IN) prime with or without a boost and found the SC + IN prime alone to be as effective in generating humoral and T-cell responses as the SC + IN prime with a boost. The finding that SC + IN prime-only delivery has the potential to provide broad immunity-including mucosal immunity-against SARS-CoV-2 supports further testing of this vaccine and delivery approach in animal models of viral challenge.
Collapse
Affiliation(s)
- Adrian Rice
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Mohit Verma
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Annie Shin
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Lise Zakin
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Peter Sieling
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Shiho Tanaka
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Joseph Balint
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Kyle Dinkins
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Helty Adisetiyo
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Brett Morimoto
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Wendy Higashide
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - C Anders Olson
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Shivani Mody
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Patricia Spilman
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | | | - Jeffrey T Safrit
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | | | - Kayvan Niazi
- ImmunityBio, Inc., 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | | |
Collapse
|
29
|
Maiorano BA, Schinzari G, Ciardiello D, Rodriquenz MG, Cisternino A, Tortora G, Maiello E. Cancer Vaccines for Genitourinary Tumors: Recent Progresses and Future Possibilities. Vaccines (Basel) 2021; 9:623. [PMID: 34207536 PMCID: PMC8228524 DOI: 10.3390/vaccines9060623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In the last years, many new treatment options have widened the therapeutic scenario of genitourinary malignancies. Immunotherapy has shown efficacy, especially in the urothelial and renal cell carcinomas, with no particular relevance in prostate cancer. However, despite the use of immune checkpoint inhibitors, there is still high morbidity and mortality among these neoplasms. Cancer vaccines represent another way to activate the immune system. We sought to summarize the most recent advances in vaccine therapy for genitourinary malignancies with this review. METHODS We searched PubMed, Embase and Cochrane Database for clinical trials conducted in the last ten years, focusing on cancer vaccines in the prostate, urothelial and renal cancer. RESULTS Various therapeutic vaccines, including DNA-based, RNA-based, peptide-based, dendritic cells, viral vectors and modified tumor cells, have been demonstrated to induce specific immune responses in a variable percentage of patients. However, these responses rarely corresponded to significant survival improvements. CONCLUSIONS Further preclinical and clinical studies will improve the knowledge about cancer vaccines in genitourinary malignancies to optimize dosage, select targets with a driver role for tumor development and growth, and finally overcome resistance mechanisms. Combination strategies represent possibly more effective and long-lasting treatments.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
| | - Giovanni Schinzari
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Maria Grazia Rodriquenz
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| | - Antonio Cisternino
- Urology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy;
| | - Giampaolo Tortora
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (G.S.); (G.T.)
- Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 73013 San Giovanni Rotondo, Italy; (D.C.); (M.G.R.); (E.M.)
| |
Collapse
|
30
|
Cancer vaccinations: a personalized approach. Biotechniques 2021; 70:303-305. [PMID: 34098738 DOI: 10.2144/btn-2021-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We take a look at how advancements in mRNA technology, immunotherapy and stem cell technology have enabled the development of cancer vaccinations.
Collapse
|