1
|
Elurbide J, Colyn L, Latasa MU, Uriarte I, Mariani S, Lopez-Pascual A, Valbuena E, Castello-Uribe B, Arnes-Benito R, Adan-Villaescusa E, Martinez-Perez LA, Azkargorta M, Elortza F, Wu H, Krawczyk M, Schneider KM, Sangro B, Aldrighetti L, Ratti F, Casadei Gardini A, Marin JJG, Amat I, Urman JM, Arechederra M, Martinez-Chantar ML, Trautwein C, Huch M, Cubero FJ, Berasain C, G Fernandez-Barrena M, Avila MA. Identification of PRMT5 as a therapeutic target in cholangiocarcinoma. Gut 2024; 74:116-127. [PMID: 39266051 DOI: 10.1136/gutjnl-2024-332998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a very difficult-to-treat cancer. Chemotherapies are little effective and response to immune checkpoint inhibitors is limited. Therefore, new therapeutic strategies need to be identified. OBJECTIVE We characterised the enzyme protein arginine-methyltransferase 5 (PRMT5) as a novel therapeutic target in CCA. DESIGN We evaluated the expression of PRMT5, its functional partner MEP50 and methylthioadenosine phosphorylase (MTAP)-an enzyme that modulates the sensitivity of PRMT5 to pharmacological inhibitors-in human CCA tissues. PRMT5-targeting drugs, currently tested in clinical trials for other malignancies, were assessed in human CCA cell lines and organoids, as well as in two immunocompetent CCA mouse models. Transcriptomic, proteomic and functional analyses were performed to explore the underlying antitumoural mechanisms. RESULTS PRMT5 and MEP50 proteins were correlatively overexpressed in most CCA tissues. MTAP was absent in 25% of intrahepatic CCA. PRMT5-targeting drugs markedly inhibited CCA cell proliferation, synergising with cisplatin and gemcitabine and hindered the growth of cholangiocarcinoma organoids. PRMT5 inhibition blunted the expression of oncogenic genes involved in chromatin remodelling and DNA repair, consistently inducing the formation of RNA loops and promoting DNA damage. Treatment with PRMT5-targeting drugs significantly restrained the growth of experimental CCA without adverse effects and concomitantly induced the recruitment of CD4 and CD8 T cells to shrinking tumourous lesions. CONCLUSION PRMT5 and MEP50 are frequently upregulated in human CCA, and PRMT5-targeting drugs have significant antitumoural efficacy in clinically relevant CCA models. Our findings support the evaluation of PRMT5 inhibitors in clinical trials, including their combination with cytotoxic and immune therapies.
Collapse
Affiliation(s)
- Jasmin Elurbide
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Leticia Colyn
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - Maria U Latasa
- Hepatology and Gene Therapy, Cima. University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Stefano Mariani
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Oncology, University Hospital of Cagliari Department of Medicine, Cagliari, Italy
| | - Amaya Lopez-Pascual
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | | | | | - Robert Arnes-Benito
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Luz A Martinez-Perez
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Universidad de Guadalajara Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | - Mikel Azkargorta
- Proteomics Platform, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, CIC bioGUNE, Bizkaia, Spain
| | - Hanghang Wu
- Immunology, Ophthalmology and ENT, Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Medical University of Warsaw, Warszawa, Poland
| | - Kai Markus Schneider
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Bruno Sangro
- Liver Unit, Dept. of Internal Medicine, Clinica Universitaria de Navarra, Pamplona, Spain
| | | | - Francesca Ratti
- Hepatobiliary surgery division, San Raffaele Hospital, Milano, Italy
| | | | - Jose J G Marin
- CIBEREHD, Madrid, Spain
- HEVEFARM, Physiology and Pharmacology, IBSAL, CIBERehd, University of Salamanca, Salamanca, Spain
| | - Irene Amat
- Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jesus M Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | | | - Maria Luz Martinez-Chantar
- CIBEREHD, Madrid, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), CICbioGUNE, Derio, Spain
| | | | - Meritxell Huch
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Francisco Javier Cubero
- CIBEREHD, Madrid, Spain
- Immunology, Ophthalmology and ENT. Health Research Institute Gregorio Marañón (IiSGM), Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
2
|
Kong J, Dong Y, Li M, Fan J, Wang T. Protein arginine methyltransferase 5 confers the resistance of triple-negative breast cancer to nanoparticle albumin-bound paclitaxel by enhancing autophagy through the dimethylation of ULK1. Toxicol Appl Pharmacol 2024; 493:117145. [PMID: 39521146 DOI: 10.1016/j.taap.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Chemotherapy remains the major strategy for treating triple-negative breast cancer (TNBC); however, frequently acquired chemoresistance greatly limits the treatment outcomes. Protein arginine methyltransferase 5 (PRMT5), which modulates arginine methylation, is important in chemoresistance acquisition across various cancers. The function of PRMT5 in the development of chemoresistance in TNBC is still not well understood. This work focused on defining PRMT5's function in contributing to the chemoresistance in TNBC and demonstrating the possible mechanisms involved. Two TNBC cell lines resistant to nanoparticle albumin-bound paclitaxel (Nab-PTX), designated MDA-MB-231/R and MDA-MB-468/R, were developed. The expression of PRMT5 was markedly elevated in the cytoplasm of Nab-PTX-resistant cells accompanied with enhanced autophagy. The depletion of PRMT5 rendered these cells sensitive to Nab-PTX-evoked cytotoxicity. The autophagic flux was upregulated in Nab-PTX-resistant cells, which was markedly repressed by PRMT5 depletion. The dimethylation of ULK1 was markedly elevated in Nab-PTX-resistant cells, which was decreased by silencing PRMT5. Re-expression of PRMT5 in PRMT5-depleted cells restored the dimethylation and activation of ULK1 as well as the autophagic flux, while the catalytically-dead PRMT5 (R368A) mutant showed no significant effects. The depletion of PRMT5 rendered the subcutaneous tumors formed by Nab-PTX-resistant TNBC cells sensitive to Nab-PTX. The findings of this work illustrate that PRMT5 confers chemoresistance of TNBC by enhancing autophagy through dimethylation and the activation of ULK1, revealing a novel mechanism for understanding the acquisition of chemoresistance in TNBC. Targeting PRMT5 could be a viable approach for overcoming chemoresistance in the treatment of TNBC.
Collapse
Affiliation(s)
- Jing Kong
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yan Dong
- Department of Breast and Thyroid Surgery, Qinghai Provincial Peoples's Hospital, Xining 810000, China
| | - Mengxuan Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jing Fan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Ting Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
4
|
Guo Y, Li Y, Zhou Z, Hou L, Liu W, Ren W, Mi D, Sun J, Dai X, Wu Y, Cheng Z, Wu T, Luo Q, Tian C, Li F, Yu Z, Chen Y, Chen C. Targeting PRMT5 through PROTAC for the treatment of triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:314. [PMID: 39614393 DOI: 10.1186/s13046-024-03237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is currently the most aggressive subtype of breast cancer, characterized by high heterogeneity and strong invasiveness, and currently lacks effective therapies. PRMT5, a type II protein arginine methyltransferase, is upregulated in numerous cancers, including TNBC, and plays a critical role, marked it as an attractive therapeutic target. PROTAC (Proteolysis Targeting Chimeras) is an innovative drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins, which is characterized by higher activity, enhanced safety, lower resistance, and reduced toxicity, offering significant value for clinical translation. METHODS This study utilizes the PROTAC technology to develop potential degraders targeting PRMT5 in vitro and in vivo. RESULTS Through the design, synthesis and screening of a series of targeted compounds, we identified YZ-836P as an effective compound that exerted cytotoxic effects and reduced the protein levels of PRMT5 and its key downstream target protein KLF5 in TNBC after 48 h. Its efficacy was significantly superior to the PRMT5 PROTAC degraders that had been reported. YZ-836P induced G1 phase cell cycle arrest and significantly induced apoptosis in TNBC cells. Additionally, we demonstrated that YZ-836P promoted the ubiquitination and degradation of PRMT5 in a cereblon (CRBN)-dependent manner. Notably, YZ-836P exhibited pronounced efficacy in inhibiting the growth of TNBC patient-derived organoids and xenografts in nude mice. CONCLUSIONS These findings position YZ-836P as a promising candidate for advancing treatment modalities for TNBC. TRIAL REGISTRATION Ethics Committee of Yunnan Cancer Hospital, KYCS2023-078. Registered 7 June 2023.
Collapse
Affiliation(s)
- Yaxun Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhongmei Zhou
- The School of Continuing Education, Kunming Medical University, Kunming, 650500, China
| | - Lei Hou
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wenjing Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China
| | - Wenlong Ren
- School of Life Science, University of Science & Technology of China, Hefei, 230027, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China
| | - Xueqin Dai
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhuo Cheng
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tingyue Wu
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qianmei Luo
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cong Tian
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fubing Li
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China.
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China.
- Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, 250033, China.
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
- Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
5
|
Zhang B, Li L, Wang N, Zhu Z, Wang M, Tan WP, Liu J, Zhou S. A new pathway for ferroptosis regulation: The PRMTs. Int J Biol Macromol 2024; 285:138143. [PMID: 39622375 DOI: 10.1016/j.ijbiomac.2024.138143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Protein arginine methyltransferases (PRMTs) play an essential role in the regulation of ferroptosis, a form of programmed cell death characterized by abnormal iron ion metabolism, lipid peroxidation, and DNA damage. Through methylation, PRMTs modify specific proteins, thereby altering their activity, localizations, or interactions with other molecules to control the ferroptosis process. This study was conducted to provide a comprehensive overview of the relationship between PRMTs and ferroptosis, with a focus on the mechanisms by which PRMTs regulate ferroptosis and their effect on this cell death pathway. Currently, only a few studies have been conducted on the regulation of ferroptosis by PRMTs. However, this review provides insights into the effects of PRMTs on ferroptosis regulators, suggesting that the regulation of ferroptosis by PRMTs holds potential as a new therapeutic target for related diseases.
Collapse
Affiliation(s)
- Bei Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Luyao Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Nan Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Zixuan Zhu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Mingyang Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Wu Peng Tan
- Department of Gynaecology, Maternal and Child Health Hospital of Hengyang, Hengyang 421001, China
| | - Jianfeng Liu
- Department of Pediatrics, The Second Affiliated Hospital of South China University, Hengyang 421001, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China.
| |
Collapse
|
6
|
Cui K, Wang K, Huang Z. Ferroptosis and the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:315. [PMID: 39614322 PMCID: PMC11607824 DOI: 10.1186/s13046-024-03235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by its non-apoptotic, iron-dependent and oxidative nature. Since its discovery in 2012, extensive research has demonstrated its pivotal roles in tumorigenesis, metastasis and cancer therapy. The tumor microenvironment (TME) is a complex ecosystem comprising cancer cells, non-cancer cells, extracellular matrix, metabolites and cytokines. Recent studies have underscored a new paradigm in which non-cancer cells in the TME, such as immune and stromal cells, also play significant roles in regulating tumor progression and therapeutic resistance typically through complicated crosstalk with cancer cells. Notably, this crosstalk in the TME were partially mediated through ferrotopsis-related mechanisms. This review provides a comprehensive and systematic summary of the current findings concerning the roles of ferroptosis in the TME and how ferroptosis-mediated TME reprogramming impacts cancer therapeutic resistance and progression. Additionally, this review outlines various ferroptosis-related therapeutic strategies aimed at targeting the TME.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China
| | - Kang Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
7
|
Zhou Q, Dian Y, He Y, Yao L, Su H, Meng Y, Sun Y, Li D, Xiong Y, Zeng F, Liang X, Liu H, Chen X, Deng G. Propafenone facilitates mitochondrial-associated ferroptosis and synergizes with immunotherapy in melanoma. J Immunother Cancer 2024; 12:e009805. [PMID: 39581704 PMCID: PMC11590812 DOI: 10.1136/jitc-2024-009805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Despite the successful application of immunotherapy, both innate and acquired resistance are typical in melanoma. Ferroptosis induction appears to be a potential strategy to enhance the effectiveness of immunotherapy. However, the relationship between the status of ferroptosis and the effectiveness of immunotherapy, as well as viable strategies to augment ferroptosis, remains unclear. METHODS A screening of 200 cardiovascular drugs obtained from the Food and Drug Administration-approved drug library was conducted to identify the potential ferroptosis sensitizer. In vitro and in vivo experiments explored the effects of propafenone on ferroptosis in melanoma. Animal models and transcriptomic analyses evaluated the therapeutic effects and survival benefits of propafenone combined with immune checkpoint blockades (ICBs). The relationship between propafenone targets and the efficacy of ICBs was validated using the Xiangya melanoma data set and publicly available clinical data sets. RESULTS Through large-scale drug screening of cardiovascular drugs, we identified propafenone, an anti-arrhythmia medication, as capable of synergizing with ferroptosis inducers in melanoma. Furthermore, we observed that propafenone, in combination with glutathione peroxidase 4 inhibitor RSL3, collaboratively induces mitochondrial-associated ferroptosis. Mechanistically, propafenone transcriptionally upregulates mitochondrial heme oxygenase 1 through the activation of the Jun N-terminal kinase (JNK)/JUN signaling pathway under RSL3 treatment, leading to overloaded ferrous iron and reactive oxygen species within the mitochondria. In xenograft models, the combination of propafenone and ferroptosis induction led to nearly complete tumor regression and prolonged survival. Consistently, propafenone enhances immunotherapy-induced tumorous ferroptosis and antitumor immunity in tumor-bearing mice. Significantly, patients exhibiting high levels of ferroptosis/JUN/HMOX1 exhibited improved efficacy of immunotherapy and prolonged progression-free survival. CONCLUSIONS Taken together, our findings suggest that propafenone holds promise as a candidate drug for enhancing the efficacy of immunotherapy and other ferroptosis-targeted therapies in the treatment of melanoma.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yixiao Xiong
- Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaowei Liang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Yuan Z, Wang X, Qin B, Hu R, Miao R, Zhou Y, Wang L, Liu T. Targeting NQO1 induces ferroptosis and triggers anti-tumor immunity in immunotherapy-resistant KEAP1-deficient cancers. Drug Resist Updat 2024; 77:101160. [PMID: 39490240 DOI: 10.1016/j.drup.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, yet the efficacy of immunotherapeutic approaches remains limited. Resistance to ferroptosis is one of the reasons for the poor therapeutic outcomes in tumors with Kelch-like ECH-associated protein 1 (KEAP1) mutations. However, the specific mechanisms by which KEAP1-mutant tumors resist immunotherapy are not fully understood. In this study, we showed that the loss of function in KEAP1 results in resistance to ferroptosis. We identified NAD(P)H Quinone Dehydrogenase 1 (NQO1) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and revealed that inducing NQO1-mediated ferroptosis in KEAP1-deficient tumors triggers an antitumor immune cascade. Additionally, it was found that NQO1 protein levels could serve as a candidate biomarker for predicting sensitivity to immunotherapy in clinical tumor patients. We validated these findings in several preclinical tumor models. Overall, KEAP1 mutations define a unique disease phenotype, and targeting its key downstream molecule NQO1 offers new hope for patients with resistance to immunotherapy.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Boyu Qin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rulong Hu
- Department of Otolaryngology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Yang Zhou
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Wang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tong Liu
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
9
|
Mao Z, Hu Y, Zhao Y, Zhang X, Guo L, Wang X, Zhang J, Miao M. The Mutual Regulatory Role of Ferroptosis and Immunotherapy in Anti-tumor Therapy. Apoptosis 2024; 29:1291-1308. [PMID: 38853203 PMCID: PMC11416416 DOI: 10.1007/s10495-024-01988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis is a form of cell death that is triggered by the presence of ferrous ions and is characterized by lipid peroxidation induced by these ions. The mechanism exhibits distinct morphological characteristics compared to apoptosis, autophagy, and necrosis. A notable aspect of ferroptosis is its ability to inhibit uncontrolled tumor replication and immortalization, especially in malignant, drug-resistant, and metastatic tumors. Additionally, immunotherapy, a novel therapeutic approach for tumors, has been found to have a reciprocal regulatory relationship with ferroptosis in the context of anti-tumor therapy. A comprehensive analysis of ferroptosis and immunotherapy in tumor therapy is presented in this paper, highlighting the potential for mutual adjuvant effects. Specifically, we discuss the mechanisms underlying ferroptosis and immunotherapy, emphasizing their ability to improve the tumor immune microenvironment and enhance immunotherapeutic effects. Furthermore, we investigate how immunotherapeutic factors may increase the sensitivity of tumor cells to ferroptosis. We aim to provide a prospective view of the promising value of combined ferroptosis and immunotherapy in anticancer therapy by elucidating the mutual regulatory network between each.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Yilong Hu
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Yinan Zhao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Xiaolei Zhang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Lin Guo
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Xiaoran Wang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Jinying Zhang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Mingsan Miao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China.
| |
Collapse
|
10
|
Chen S, Hou J, Jaffery R, Guerrero A, Fu R, Shi L, Zheng N, Bohat R, Egan NA, Yu C, Sharif S, Lu Y, He W, Wang S, Gjuka D, Stone EM, Shah PA, Rodon Ahnert J, Chen T, Liu X, Bedford MT, Xu H, Peng W. MTA-cooperative PRMT5 inhibitors enhance T cell-mediated antitumor activity in MTAP-loss tumors. J Immunother Cancer 2024; 12:e009600. [PMID: 39313308 PMCID: PMC11418539 DOI: 10.1136/jitc-2024-009600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Hyperactivated protein arginine methyltransferases (PRMTs) are implicated in human cancers. Inhibiting tumor intrinsic PRMT5 was reported to potentiate antitumor immune responses, highlighting the possibility of combining PRMT5 inhibitors (PRMT5i) with cancer immunotherapy. However, global suppression of PRMT5 activity impairs the effector functions of immune cells. Here, we sought to identify strategies to specifically inhibit PRMT5 activity in tumor tissues and develop effective PRMT5i-based immuno-oncology (IO) combinations for cancer treatment, particularly for methylthioadenosine phosphorylase (MTAP)-loss cancer. METHODS Isogeneic tumor lines with and without MTAP loss were generated by CRISPR/Cas9 knockout. The effects of two PRMT5 inhibitors (GSK3326595 and MRTX1719) were evaluated in these isogenic tumor lines and T cells in vitro and in vivo. Transcriptomic and proteomic changes in tumors and T cells were characterized in response to PRMT5i treatment. Furthermore, the efficacy of MRTX1719 in combination with immune checkpoint blockade was assessed in two syngeneic murine models with MTAP-loss tumor. RESULTS GSK3326595 significantly suppresses PRMT5 activity in tumors and T cells regardless of the MTAP status. However, MRTX1719, a methylthioadenosine-cooperative PRMT5 inhibitor, exhibits tumor-specific PRMT5 inhibition in MTAP-loss tumors with limited immunosuppressive effects. Mechanistically, transcriptomic and proteomic profiling analysis reveals that MRTX1719 successfully reduces the activation of the PI3K pathway, a well-documented immune-resistant pathway. It highlights the potential of MRTX1719 to overcome immune resistance in MTAP-loss tumors. In addition, MRTX1719 sensitizes MTAP-loss tumor cells to the killing of tumor-reactive T cells. Combining MRTX1719 and anti-PD-1 leads to superior antitumor activity in mice bearing MTAP-loss tumors. CONCLUSION Collectively, our results provide a strong rationale and mechanistic insights for the clinical development of MRTX1719-based IO combinations in MTAP-loss tumors.
Collapse
Affiliation(s)
- Si Chen
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jiakai Hou
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Roshni Jaffery
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Ashley Guerrero
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Rongjie Fu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leilei Shi
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningbo Zheng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Ritu Bohat
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Nicholas A Egan
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chengtai Yu
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sana Sharif
- Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Yue Lu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei He
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuyue Wang
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donjeta Gjuka
- Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Everett M Stone
- Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Pooja Anil Shah
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jordi Rodon Ahnert
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Taiping Chen
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinli Liu
- Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Mark T Bedford
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Han Xu
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Weiyi Peng
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Shi Y, Wu Z, Liu S, Zuo D, Niu Y, Qiu Y, Qiao L, He W, Qiu J, Yuan Y, Wang G, Li B. Targeting PRMT3 impairs methylation and oligomerization of HSP60 to boost anti-tumor immunity by activating cGAS/STING signaling. Nat Commun 2024; 15:7930. [PMID: 39256398 PMCID: PMC11387718 DOI: 10.1038/s41467-024-52170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising therapeutic option for hepatocellular carcinoma (HCC), but resistance to ICB occurs and patient responses vary. Here, we uncover protein arginine methyltransferase 3 (PRMT3) as a driver for immunotherapy resistance in HCC. We show that PRMT3 expression is induced by ICB-activated T cells via an interferon-gamma (IFNγ)-STAT1 signaling pathway, and higher PRMT3 expression levels correlate with reduced numbers of tumor-infiltrating CD8+ T cells and poorer response to ICB. Genetic depletion or pharmacological inhibition of PRMT3 elicits an influx of T cells into tumors and reduces tumor size in HCC mouse models. Mechanistically, PRMT3 methylates HSP60 at R446 to induce HSP60 oligomerization and maintain mitochondrial homeostasis. Targeting PRMT3-dependent HSP60 methylation disrupts mitochondrial integrity and increases mitochondrial DNA (mtDNA) leakage, which results in cGAS/STING-mediated anti-tumor immunity. Lastly, blocking PRMT3 functions synergize with PD-1 blockade in HCC mouse models. Our study thus identifies PRMT3 as a potential biomarker and therapeutic target to overcome immunotherapy resistance in HCC.
Collapse
Affiliation(s)
- Yunxing Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuxiong Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liang Qiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
12
|
Martinez S, Sentis S, Poulard C, Trédan O, Le Romancer M. Role of PRMT1 and PRMT5 in Breast Cancer. Int J Mol Sci 2024; 25:8854. [PMID: 39201539 PMCID: PMC11354362 DOI: 10.3390/ijms25168854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
Collapse
Affiliation(s)
- Sébastien Martinez
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Stéphanie Sentis
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Olivier Trédan
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Oncology Department, Centre Leon Bérard, F-69008 Lyon, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, F-69000 Lyon, France
| |
Collapse
|
13
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang D, Han L, Zhong Y, Meng L. Ferroptotic therapy in cancer: benefits, side effects, and risks. Mol Cancer 2024; 23:89. [PMID: 38702722 PMCID: PMC11067110 DOI: 10.1186/s12943-024-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.
Collapse
Affiliation(s)
- Jiandong Diao
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuanyuan Jia
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Enyong Dai
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Leng Han
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yingjie Zhong
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Lingjun Meng
- 2nd Inpatient Area of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
14
|
Li H, Dou Y, Yang H, Xing H, Zhu C, Wang T, Xuan Z, Yang M. Ce6-modified Fe ions-doped carbon dots as multifunctional nanoplatform for ferroptosis and photodynamic synergistic therapy of melanoma. J Nanobiotechnology 2024; 22:100. [PMID: 38462597 PMCID: PMC10924998 DOI: 10.1186/s12951-024-02346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite the higher sensitivity of melanoma towards ferroptosis and photodynamic therapy (PDT), the lack of efficient ferroptosis inducers and the poor solubility of photosensitizers restrict their synergistic strategies. With unique advantages, carbon dots (CDs) are expected to serve as innovative building blocks for combination therapy of cancers. RESULTS Herein, an ferroptosis/PDT integrated nanoplatform for melanoma therapy is constructed based on chlorin e6-modified Fe ions-doped carbon dots (Fe-CDs@Ce6). As a novel type of iron-carbon hybrid nanoparticles, the as-prepared Fe-CDs can selectively activate ferroptosis, prevent angiogenesis and inhibit the migration of mouse skin melanoma cells (B16), but have no toxicity to normal cells. The nano-conjugated structures facilitate not only the aqueous dispersibility of Ce6, but also the self-accumulation ability of Fe-CDs@Ce6 within melanoma area without requiring extra targets. Moreover, the therapeutic effects of Fe-CDs@Ce6 are synergistically enhanced due to the increased GSH depletion by PDT and the elevated singlet oxygen (1O2) production efficiency by Fe-CDs. When combined with laser irradiation, the tumor growth can be significantly suppressed by Fe-CDs@Ce6 through cyclic administration. The T2-weighted magnetic resonance imaging (MRI) capability of Fe-CDs@Ce6 also reveals their potentials for cancer diagnosis and navigation therapy. CONCLUSIONS Our findings indicate the multifunctionality of Fe-CDs@Ce6 in effectively combining ferroptosis/PDT therapy, tumor targeting and MRI imaging, which enables Fe-CDs@Ce6 to become promising biocompatible nanoplatform for the treatment of melanoma.
Collapse
Affiliation(s)
- Haiqiu Li
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Yichen Dou
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Hang Yang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Hanlin Xing
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Cheng Zhu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China
| | - Tao Wang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China.
| | - Zhaopeng Xuan
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China.
| | - Mingxi Yang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, 130031, People's Republic of China.
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
15
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
16
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
17
|
Song Y, Qu Y, Mao C, Zhang R, Jiang D, Sun X. Post-translational modifications of Keap1: the state of the art. Front Cell Dev Biol 2024; 11:1332049. [PMID: 38259518 PMCID: PMC10801156 DOI: 10.3389/fcell.2023.1332049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway plays a crucial role in cellular defense against oxidative stress-induced damage. Its activation entails the expression and transcriptional regulation of several proteins involved in detoxification and antioxidation processes within the organism. Keap1, serving as a pivotal transcriptional regulator within this pathway, exerts control over the activity of Nrf2. Various post-translational modifications (PTMs) of Keap1, such as alkylation, glycosylation, glutathiylation, S-sulfhydration, and other modifications, impact the binding affinity between Keap1 and Nrf2. Consequently, this leads to the accumulation of Nrf2 and its translocation to the nucleus, and subsequent activation of downstream antioxidant genes. Given the association between the Keap1-Nrf2 signaling pathway and various diseases such as cancer, neurodegenerative disorders, and diabetes, comprehending the post-translational modification of Keap1 not only deepens our understanding of Nrf2 signaling regulation but also contributes to the identification of novel drug targets and biomarkers. Consequently, this knowledge holds immense importance in the prevention and treatment of diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Bo Y, Mu L, Yang Z, Li W, Jin M. Research progress on ferroptosis in gliomas (Review). Oncol Lett 2024; 27:36. [PMID: 38108075 PMCID: PMC10722542 DOI: 10.3892/ol.2023.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Glioma is the most prevalent type of brain tumor characterized by a poor 5-year survival rate and a high mortality rate. Malignant gliomas are commonly treated by surgery, chemotherapy and radiotherapy. However, due to toxicity and resistance to chemoradiotherapy, these treatments can be ineffective. Anxiety and depression are highly prevalent in patients with glioma, adversely affecting disease prognosis and posing societal concerns. Ferroptosis is a type of non-apoptotic, iron-dependent cell death characterized by the accumulation of lethal reactive oxygen species produced by iron metabolism, and it serves a key role in numerous diseases. Regulation of iron phagocytosis may serve as a therapeutic strategy for the development of novel glioma treatments. The present review discusses the mechanisms underlying the occurrence and regulation of ferroptosis, its role in the genesis and evolution of gliomas, and its association with glioma-related anxiety and depression. By exploring potential targets for glioma treatment, the present review provides a theoretical basis for the development of novel therapeutic strategies against glioma.
Collapse
Affiliation(s)
- Yujie Bo
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhao Yang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenhao Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
19
|
Wang Y, Sun Y, Wang F, Wang H, Hu J. Ferroptosis induction via targeting metabolic alterations in triple-negative breast cancer. Biomed Pharmacother 2023; 169:115866. [PMID: 37951026 DOI: 10.1016/j.biopha.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive form of breast cancer, presents severe threats to women's health. Therefore, it is critical to find novel treatment approaches. Ferroptosis, a newly identified form of programmed cell death, is marked by the buildup of lipid reactive oxygen species (ROS) and high iron concentrations. According to previous studies, ferroptosis sensitivity can be controlled by a number of metabolic events in cells, such as amino acid metabolism, iron metabolism, and lipid metabolism. Given that TNBC tumors are rich in iron and lipids, inducing ferroptosis in these tumors is a potential approach for TNBC treatment. Notably, the metabolic adaptability of cancer cells allows them to coordinate an attack on one or more metabolic pathways to initiate ferroptosis, offering a novel perspective to improve the high drug resistance and clinical therapy of TNBC. However, a clear picture of ferroptosis in TNBC still needs to be completely revealed. In this review, we provide an overview of recent advancements regarding the connection between ferroptosis and amino acid, iron, and lipid metabolism in TNBC. We also discuss the probable significance of ferroptosis as an innovative target for chemotherapy, radiotherapy, immunotherapy, nanotherapy and natural product therapy in TNBC, highlighting its therapeutic potential and application prospects.
Collapse
Affiliation(s)
- Yaru Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Sun
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Feiran Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hongyi Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jing Hu
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
20
|
Wang Y, Wang C, Guan X, Ma Y, Zhang S, Li F, Yin Y, Sun Z, Chen X, Yin H. PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303812. [PMID: 37973560 PMCID: PMC10754120 DOI: 10.1002/advs.202303812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Protein arginine methyltransferase (PRMT) plays essential roles in tumor initiation and progression, but its underlying mechanisms in the treatment sensitivity of endometrial cancer (EC) remain unclear and warrant further investigation. Here, a comprehensive analysis of the Cancer Genome Atlas database and Clinical Proteomic Tumor Analysis Consortium database identifies that PRMT3 plays an important role in EC. Specifically, further experiments show that PRMT3 inhibition enhances the susceptibility of EC cells to ferroptosis. Mechanistically, PRMT3 interacts with Methyltransferase 14 (METTL14) and is involved in its arginine methylation. In addition, PRMT3 inhibition-mediated METTL14 overexpression promotes methylation modification via an m6 A-YTHDF2-dependent mechanism, reducing Glutathione peroxidase 4 (GPX4) mRNA stability, increasing lipid peroxidation levels, and accelerating ferroptosis. Notably, combined PRMT3 blockade and anti-PD-1 therapy display more potent antitumor effects by accelerating ferroptosis in cell-derived xenograft models. The specific PRMT3 inhibitor SGC707 exerts the same immunotherapeutic sensitizing effect in a patient-derived xenograft model. Notably, blocking PRMT3 improves tumor suppression in response to cisplatin and radiation therapy. Altogether, this work demonstrates that PRMT3 depletion is a promising target for EC.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Can Wang
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Xue Guan
- Animal Laboratory CenterThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000China
| | - Ying Ma
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Shijie Zhang
- Department of Radiation OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Fei Li
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Yue Yin
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Zhenxing Sun
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Xiuwei Chen
- Department of Gynecologic OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
| | - Hang Yin
- Department of Radiation OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang150000China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and TherapyHarbin Medical UniversityHarbinHeilongjiang150000China
- Department of Health Technology and InformaticsHong Kong Polytechnic UniversityHung HomKowloonHong Kong27665111China
| |
Collapse
|
21
|
Li J, He D, Li S, Xiao J, Zhu Z. Ferroptosis: the emerging player in remodeling triple-negative breast cancer. Front Immunol 2023; 14:1284057. [PMID: 37928550 PMCID: PMC10623117 DOI: 10.3389/fimmu.2023.1284057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast tumor type that is highly malignant, invasive, and highly recurrent. Ferroptosis is a unique mode of programmed cell death (PCD) at the morphological, physiological, and molecular levels, mainly characterized by cell death induced by iron-dependent accumulation of lipid peroxides, which plays a substantial role in a variety of diseases, including tumors and inflammatory diseases. TNBC cells have been reported to display a peculiar equilibrium metabolic profile of iron and glutathione, which may increase the sensitivity of TNBC to ferroptosis. TNBC possesses a higher sensitivity to ferroptosis than other breast cancer types. Ferroptosis also occurred between immune cells and tumor cells, suggesting that regulating ferroptosis may remodel TNBC by modulating the immune response. Many ferroptosis-related genes or molecules have characteristic expression patterns and are expected to be diagnostic targets for TNBC. Besides, therapeutic strategies based on ferroptosis, including the isolation and extraction of natural drugs and the use of ferroptosis inducers, are urgent for TNBC personalized treatment. Thus, this review will explore the contribution of ferroptosis in TNBC progression, diagnosis, and treatment, to provide novel perspectives and therapeutic strategies for TNBC management.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Xiao
- Department of Breast Surgery, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|