1
|
Di Matteo F, Mancuso F, Turcio R, Ciaglia T, Stagno C, Di Chio C, Campiglia P, Bertamino A, Giofrè SV, Ostacolo C, Iraci N. KCNT1 Channel Blockers: A Medicinal Chemistry Perspective. Molecules 2024; 29:2940. [PMID: 38931004 PMCID: PMC11206332 DOI: 10.3390/molecules29122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.
Collapse
Affiliation(s)
- Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Rita Turcio
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Iraci N, Carotenuto L, Ciaglia T, Belperio G, Di Matteo F, Mosca I, Carleo G, Giovanna Basilicata M, Ambrosino P, Turcio R, Puzo D, Pepe G, Gomez-Monterrey I, Soldovieri MV, Di Sarno V, Campiglia P, Miceli F, Bertamino A, Ostacolo C, Taglialatela M. In Silico Assisted Identification, Synthesis, and In Vitro Pharmacological Characterization of Potent and Selective Blockers of the Epilepsy-Associated KCNT1 Channel. J Med Chem 2024; 67:9124-9149. [PMID: 38782404 PMCID: PMC11181338 DOI: 10.1021/acs.jmedchem.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Lidia Carotenuto
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Tania Ciaglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giorgio Belperio
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Francesca Di Matteo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Ilaria Mosca
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giusy Carleo
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Manuela Giovanna Basilicata
- Department
of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, P.zza L. Miraglia 2, 80138 Naples, Italy
| | - Paolo Ambrosino
- Department
of Science and Technology, University of
Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| | - Rita Turcio
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Deborah Puzo
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Giacomo Pepe
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Isabel Gomez-Monterrey
- Department
of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Virginia Soldovieri
- Department
of Medicine and Health Science Vincenzo Tiberio, University of Molise, Via C. Gazzani, 86100 Campobasso, Italy
| | - Veronica Di Sarno
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesco Miceli
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Alessia Bertamino
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Carmine Ostacolo
- Department
of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Taglialatela
- Department
of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2024:10.1007/s12035-024-04220-6. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Chauhan D, Verhoeven PA, Kohli U, Udassi JP, Mascio CE. Life-threatening pulmonary haemorrhage treated with coil embolisation followed by lobectomy in a patient with KCNT1 mutation. Cardiol Young 2024; 34:701-703. [PMID: 38229505 DOI: 10.1017/s104795112300447x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
KCNT1 mutations are associated with childhood epilepsy, developmental delay, and vascular malformations. We report a child with a likely pathogenic KCNT1 mutation (c.1885A>C, p.Lys629Glu) with recurrent pulmonary haemorrhage due to aortopulmonary collaterals successfully managed with coil embolisation followed by right upper lobectomy.
Collapse
Affiliation(s)
- Dhaval Chauhan
- Division of Pediatric Cardiothoracic Surgery, Department of Cardiovascular and Thoracic Surgery, West Virginia University Medicine Children's Hospital, Morgantown, WV, USA
| | - Pieter Alexander Verhoeven
- Division of Pediatric Cardiology, Department of Pediatrics, West Virginia University Medicine Children's Hospital, Morgantown, WV, USA
| | - Utkarsh Kohli
- Division of Pediatric Cardiology, Department of Pediatrics, West Virginia University Medicine Children's Hospital, Morgantown, WV, USA
| | - Jai P Udassi
- Division of Pediatric Cardiology, Department of Pediatrics, West Virginia University Medicine Children's Hospital, Morgantown, WV, USA
| | - Christopher E Mascio
- Division of Pediatric Cardiothoracic Surgery, Department of Cardiovascular and Thoracic Surgery, West Virginia University Medicine Children's Hospital, Morgantown, WV, USA
| |
Collapse
|
5
|
Hussain R, Lim CX, Shaukat Z, Islam A, Caseley EA, Lippiat JD, Rychkov GY, Ricos MG, Dibbens LM. Drosophila expressing mutant human KCNT1 transgenes make an effective tool for targeted drug screening in a whole animal model of KCNT1-epilepsy. Sci Rep 2024; 14:3357. [PMID: 38336906 PMCID: PMC10858247 DOI: 10.1038/s41598-024-53588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.
Collapse
Affiliation(s)
- Rashid Hussain
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Chiao Xin Lim
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Anowarul Islam
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Grigori Y Rychkov
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5005, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
6
|
Buerki SE, Haas C, Neubauer J. Exome analysis focusing on epilepsy-related genes in children and adults with sudden unexplained death. Seizure 2023; 113:66-75. [PMID: 37995443 DOI: 10.1016/j.seizure.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE Genetic studies in sudden infant death syndrome (SIDS) and sudden unexplained death (SUD) cohorts have indicated that cardiovascular diseases might have contributed to sudden unexpected death in 20-35 % of autopsy-negative cases. Sudden unexpected death can also occur in people with epilepsy, termed as sudden unexpected death in epilepsy (SUDEP). The pathophysiological mechanisms of SUDEP are not well understood, but are likely multifactorial, including seizure-induced hypoventilation and arrhythmias as well as genetic risk factors. The sudden death of some of the SIDS/SUD victims might also be explained by genetic epilepsy, therefore this study aimed to expand the post-mortem genetic analysis of SIDS/SUD cases to epilepsy-related genes. METHODS Existing whole-exome sequencing data from our 155 SIDS and 45 SUD cases were analyzed, with a focus on 365 epilepsy-related genes. Nine of the SUD victims had a known medical history of epilepsy, seizures or other underlying neurological conditions and were therefore classified as SUDEP cases. RESULTS In our SIDS and SUD cohorts, we found epilepsy-related pathogenic/likely pathogenic variants in the genes OPA1, RAI1, SCN3A, SCN5A and TSC2. CONCLUSION Post-mortem analysis of epilepsy-related genes identified potentially disease-causing variants that might have contributed to the sudden death events in our SIDS/SUD cases. However, the interpretation of identified variants remains challenging and often changes over time as more data is gathered. Overall, this study contributes insight in potentially pathophysiological epilepsy-related mechanisms in SIDS, SUD and SUDEP victims and underlines the importance of sensible counselling on the risk and preventive measures in genetic epilepsy.
Collapse
Affiliation(s)
- Sarah E Buerki
- Department of Neuropediatrics, University Children's Hospital Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| | | |
Collapse
|
7
|
Borowicz-Reutt K, Czernia J, Krawczyk M. Genetic Background of Epilepsy and Antiepileptic Treatments. Int J Mol Sci 2023; 24:16280. [PMID: 38003469 PMCID: PMC10671416 DOI: 10.3390/ijms242216280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Advanced identification of the gene mutations causing epilepsy syndromes is expected to translate into faster diagnosis and more effective treatment of these conditions. Over the last 5 years, approximately 40 clinical trials on the treatment of genetic epilepsies have been conducted. As a result, some medications that are not regular antiseizure drugs (e.g., soticlestat, fenfluramine, or ganaxolone) have been introduced to the treatment of drug-resistant seizures in Dravet, Lennox-Gastaut, maternally inherited chromosome 15q11.2-q13.1 duplication (Dup 15q) syndromes, and protocadherin 19 (PCDH 19)-clusterig epilepsy. And although the effects of soticlestat, fenfluramine, and ganaxolone are described as promising, they do not significantly affect the course of the mentioned epilepsy syndromes. Importantly, each of these syndromes is related to mutations in several genes. On the other hand, several mutations can occur within one gene, and different gene variants may be manifested in different disease phenotypes. This complex pattern of inheritance contributes to rather poor genotype-phenotype correlations. Hence, the detection of a specific mutation is not synonymous with a precise diagnosis of a specific syndrome. Bearing in mind that seizures develop as a consequence of the predominance of excitatory over inhibitory processes, it seems reasonable that mutations in genes encoding sodium and potassium channels, as well as glutamatergic and gamma-aminobutyric (GABA) receptors, play a role in the pathogenesis of epilepsy. In some cases, different pathogenic variants of the same gene can result in opposite functional effects, determining the effectiveness of therapy with certain medications. For instance, seizures related to gain-of-function (GoF) mutations in genes encoding sodium channels can be successfully treated with sodium channel blockers. On the contrary, the same drugs may aggravate seizures related to loss-of-function (LoF) variants of the same genes. Hence, knowledge of gene mutation-treatment response relationships facilitates more favorable selection of drugs for anticonvulsant therapy.
Collapse
Affiliation(s)
- Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (J.C.); (M.K.)
| | | | | |
Collapse
|
8
|
Skrabak D, Bischof H, Pham T, Ruth P, Ehinger R, Matt L, Lukowski R. Slack K + channels limit kainic acid-induced seizure severity in mice by modulating neuronal excitability and firing. Commun Biol 2023; 6:1029. [PMID: 37821582 PMCID: PMC10567740 DOI: 10.1038/s42003-023-05387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.
Collapse
Affiliation(s)
- David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Thomas Pham
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
10
|
Zhang J, Liu S, Fan J, Yan R, Huang B, Zhou F, Yuan T, Gong J, Huang Z, Jiang D. Structural basis of human Slo2.2 channel gating and modulation. Cell Rep 2023; 42:112858. [PMID: 37494189 DOI: 10.1016/j.celrep.2023.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The sodium-activated Slo2.2 channel is abundantly expressed in the brain, playing a critical role in regulating neuronal excitability. The Na+-binding site and the underlying mechanisms of Na+-dependent activation remain unclear. Here, we present cryoelectron microscopy (cryo-EM) structures of human Slo2.2 in closed, open, and inhibitor-bound form at resolutions of 2.6-3.2 Å, revealing gating mechanisms of Slo2.2 regulation by cations and a potent inhibitor. The cytoplasmic gating ring domain of the closed Slo2.2 harbors multiple K+ and Zn2+ sites, which stabilize the channel in the closed conformation. The open Slo2.2 structure reveals at least two Na+-sensitive sites where Na+ binding induces expansion and rotation of the gating ring that opens the inner gate. Furthermore, a potent inhibitor wedges into a pocket formed by pore helix and S6 helix and blocks the pore. Together, our results provide a comprehensive structural framework for the investigation of Slo2.2 channel gating, Na+ sensation, and inhibition.
Collapse
Affiliation(s)
- Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Tian Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
12
|
James J, Govindaraj G, Gafoor VA, Kumar V, Smita B, Balaram N, Jose J. Epilepsy of infancy with migrating focal seizures due to a novel homozygous mutation in KCNT1 gene: A case report. Seizure 2023; 106:36-38. [PMID: 36746065 DOI: 10.1016/j.seizure.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Affiliation(s)
- Joe James
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Geeta Govindaraj
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - V Abdul Gafoor
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Vinod Kumar
- Department of Pediatrics, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - B Smita
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - Neetha Balaram
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India
| | - James Jose
- Department of Neurology, Government Medical College Kozhikode, Kozhikode, Kerala, India.
| |
Collapse
|
13
|
Operto FF, Pastorino GMG, Viggiano A, Dell’Isola GB, Dini G, Verrotti A, Coppola G. Epilepsy and Cognitive Impairment in Childhood and Adolescence: A Mini-Review. Curr Neuropharmacol 2023; 21:1646-1665. [PMID: 35794776 PMCID: PMC10514538 DOI: 10.2174/1570159x20666220706102708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Managing epilepsy in people with an intellectual disability remains a therapeutic challenge and must take into account additional issues such as diagnostic difficulties and frequent drug resistance. Advances in genomic technologies improved our understanding of epilepsy and raised the possibility to develop patients-tailored treatments acting on the key molecular mechanisms involved in the development of the disease. In addition to conventional antiseizure medications (ASMs), ketogenic diet, hormone therapy and epilepsy surgery play an important role, especially in cases of drugresistance. This review aims to provide a comprehensive overview of the mainfactors influencing cognition in children and adolescents with epilepsy and the main therapeutic options available for the epilepsies associated with intellectual disability.
Collapse
Affiliation(s)
- Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, SA, Italy
| | | | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129 Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129 Perugia, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
14
|
Burbano LE, Li M, Jancovski N, Jafar-Nejad P, Richards K, Sedo A, Soriano A, Rollo B, Jia L, Gazina EV, Piltz S, Adikusuma F, Thomas PQ, Kopsidas H, Rigo F, Reid CA, Maljevic S, Petrou S. Antisense oligonucleotide therapy for KCNT1 encephalopathy. JCI Insight 2022; 7:146090. [PMID: 36173683 PMCID: PMC9746904 DOI: 10.1172/jci.insight.146090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene-silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared with mice treated with a control ASO (nonhybridizing sequence). ASO administration at neonatal age was also well tolerated and effective in controlling seizures and extending the life span of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.
Collapse
Affiliation(s)
- Lisseth Estefania Burbano
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nikola Jancovski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Kay Richards
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Ben Rollo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena V. Gazina
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Fatwa Adikusuma
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Q. Thomas
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Helen Kopsidas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Christopher A. Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Rychkov GY, Shaukat Z, Lim CX, Hussain R, Roberts BJ, Bonardi CM, Rubboli G, Meaney BF, Whitney R, Møller RS, Ricos MG, Dibbens LM. Functional Effects of Epilepsy Associated KCNT1 Mutations Suggest Pathogenesis via Aberrant Inhibitory Neuronal Activity. Int J Mol Sci 2022; 23:ijms232315133. [PMID: 36499459 PMCID: PMC9740882 DOI: 10.3390/ijms232315133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
KCNT1 (K+ channel subfamily T member 1) is a sodium-activated potassium channel highly expressed in the nervous system which regulates neuronal excitability by contributing to the resting membrane potential and hyperpolarisation following a train of action potentials. Gain of function mutations in the KCNT1 gene are the cause of neurological disorders associated with different forms of epilepsy. To gain insights into the underlying pathobiology we investigated the functional effects of 9 recently published KCNT1 mutations, 4 previously studied KCNT1 mutations, and one previously unpublished KCNT1 variant of unknown significance. We analysed the properties of KCNT1 potassium currents and attempted to find a correlation between the changes in KCNT1 characteristics due to the mutations and severity of the neurological disorder they cause. KCNT1 mutations identified in patients with epilepsy were introduced into the full length human KCNT1 cDNA using quick-change site-directed mutagenesis protocol. Electrophysiological properties of different KCNT1 constructs were investigated using a heterologous expression system (HEK293T cells) and patch clamping. All mutations studied, except T314A, increased the amplitude of KCNT1 currents, and some mutations shifted the voltage dependence of KCNT1 open probability, increasing the proportion of channels open at the resting membrane potential. The T314A mutation did not affect KCNT1 current amplitude but abolished its voltage dependence. We observed a positive correlation between the severity of the neurological disorder and the KCNT1 channel open probability at resting membrane potential. This suggests that gain of function KCNT1 mutations cause epilepsy by increasing resting potassium conductance and suppressing the activity of inhibitory neurons. A reduction in action potential firing in inhibitory neurons due to excessively high resting potassium conductance leads to disinhibition of neural circuits, hyperexcitability and seizures.
Collapse
Affiliation(s)
- Grigori Y. Rychkov
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
- Correspondence:
| | - Zeeshan Shaukat
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Chiao Xin Lim
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Ben J. Roberts
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Claudia M. Bonardi
- Department of Woman’s and Child’s Health, Padua University Hospital, 35128 Padua, Italy
- The Danish Epilepsy Centre, 4293 Dianalund, Denmark
| | - Guido Rubboli
- Denmark Department of Clinical Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Brandon F. Meaney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON 8SL 4L8, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON 8SL 4L8, Canada
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Michael G. Ricos
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Leanne M. Dibbens
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
16
|
Wang M, Geng G, Meng Y, Zhang H, Gao Z, Shi J. Long-term follow-up of vagus nerve stimulation in drug-resistant KCNT1-related epilepsy: a case presentation. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background
The KCNT1 gene encodes a Na+-activated K+ channel. Gain-of-function mutations of KCNT1 lead to autosomal dominant sleep-related hypermotor epilepsy, early-onset epileptic encephalopathy, focal epilepsy and other epileptic encephalopathies. In this paper, we report a boy carrying a KCNT1 gene mutation, who presented with drug-resistant focal-onset seizures. He had decreased seizure frequency and improvement of background changes in electroencephalography (EEG) after vagus nerve stimulation (VNS).
Case presentation
The case was a nonverbal 9-year-old male who presented with drug-resistant focal-onset seizures since age 3 and had underwent VNS therapy for 2 years. He had hypermotor symptoms, automatism and bilateral asymmetric tonic seizures with cognitive decline and aphasis from age 3. The patient had a variety of seizure types that only occurred at night. The most common seizure type was automatisms, and ictal video EEG showed high-amplitude delta waves, followed by a fast rhythmic sharp activity in the mesial frontal and bitemporal regions. The patient was diagnosed with KCNT1-related epilepsy, epileptic encephalopathy and cognitive disorder. He was refractory to multiple anti-seizure medicines (ASM) and ketogenic diet. After VNS treatment at age 7, the frequency of seizures was reduced significantly and EEG was improved in background slowing.
Conclusions
Children with KCNT1-related epilepsy usually have early onset of disease, are nonverbal, and are refractory to ASM. This boy with drug-resistant KCNT1-related epilepsy showed significantly reduced seizure frequency after VNS. This report may provide reference for management of cases of KCNT1-related epilepsy.
Collapse
|
17
|
Incidence of Aicardi-Goutières syndrome and KCNT1-related epilepsy in Denmark. Mol Genet Metab Rep 2022; 33:100924. [PMID: 36262748 PMCID: PMC9574483 DOI: 10.1016/j.ymgmr.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To estimate the incidence of Aicardi-Goutières syndrome (AGS) and potassium sodium-activated channel subfamily T member 1 (KCNT1)-related epilepsy in Denmark and to characterize the patients diagnosed with AGS and KCNT1-related epilepsy. Background AGS and KCNT1-related epilepsy are 2 distinct rare genetic disorders. Due to the rarity of AGS and KCNT1-related epilepsy, the epidemiology remains unclear. The incidences for these diseases or the carriers with disease-related genetic variants remain unknown. Materials and methods This is a retrospective, non-interventional, population-based study using aggregate data from the Danish population register and hospital-based patient-level data in Denmark to identify persons with genetically confirmed AGS between January 2010 to December 2020 and KCNT1-related epilepsies between January 2012 to December 2020. Cases of these disorders were identified from in-hospital databases, and pathogenic variants were identified and confirmed by Sanger and/or whole exome (panel-based) sequencing. The incidence of AGS and KCNT1-related epilepsy were estimated in separate statistical analyses. Results A total of 7 AGS patients were identified. The mean age at AGS diagnosis was 19.4 months (median age 14 months). TREX1 (n < 5) and RNASEH2B (n ≥ 5) genes were reported with confirmed pathogenic variants. The birth incidence of AGS was <0.7600 per 100,000 live births. The average annual incidence rate was calculated as 0.0539 (95% CI: 0.0217–0.1111) per 100,000 persons per year in the total population < 18 years (n = 7); the average annual incidence rate was <0.7538 per 100,000 persons per year (n < 5) in the population < 12 months, and the average annual incidence rate in the population ≥ 12 months and < 18 years was <0.0406 per 100,000 persons per year (n < 5). A total of 14 KCNT1-related epilepsy cases were identified during the study period (n = 5 in 2016, remaining 9 cases in 2013 and 2015). The mean age at diagnosis was 20.6 years (median 19 years) for KCNT1 cases. A total of 8 cases (57.1%) were ≥ 18 years, and 6 (42.9%) were < 18 years at diagnosis. The phenotype autosomal dominant or sporadic sleep-related hypermotor epilepsy (ADSHE) (n = 10, 71.4%) was most reported; the remaining 4 cases had either epilepsy of infancy with migrating focal seizures (EIMFS) or an unclassifiable developmental and epileptic encephalopathy (DEE). The birth incidence of KCNT1-related epilepsy was ≤1.1205 per 100,000 live births. The average annual incidence rates per 100,000 persons per year during the study period were 0.0431 (95% confidence interval [CI]: 0.0236–0.0723; n = 14) in the overall population ≤ 50 years, 0.0568 (95% CI: 0.0209–0.1237; n = 6) in the population < 18 years, and 0.0365 (95% CI: 0.0157–0.0718; n = 8) in the population ≥ 18 and ≤ 50 years. There were 3 families with at least 2 cases diagnosed with KCNT1-related epilepsies (on average 3.3 cases per family), indicating 10 cases in total within the 3 families. All KCNT1 cases of ADSHE phenotype came from the 3 families. The higher incidence of older ages and ADSHE cases compared with previous KCNT1 studies is likely due to the capture of prevalent and familial previously undiagnosed cases. Excluding these family cases, the average annual incidence was 0.0123 (95% CI: 0.0034–0.0315, n = 4) per 100,000 persons per year in the population ≤ 50 years during 2012–2020. Conclusions AGS and KCNT1-related epilepsy are particularly rare diseases. The annual average incidence rate of AGS was 0.0539 per 100,000 persons per year in the population < 18 years and birth incidence was <0.7600 per 100,000 live births during 2010–2020. The average annual incidence rate of KCNT1-related epilepsy was 0.0431 per 100,000 persons per year in the population ≤ 50 years and the birth incidence was ≤1.1205 per 100,000 live births during 2012–2020. Given similar healthcare systems and genetic pools, these findings may provide insight on the incidence of these rare diseases in the Nordics.
Collapse
|
18
|
Xu D, Chen S, Yang J, Wang X, Fang Z, Li M. Precision therapy with quinidine of KCNT1-related epileptic disorders: a systematic review. Br J Clin Pharmacol 2022; 88:5096-5112. [PMID: 35940594 DOI: 10.1111/bcp.15479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS Despite numerous studies on quinidine therapies for epilepsies associated with KCNT1 gene mutations, there is no consensus on its clinical utility. Thus, we reviewed studies evaluating the efficacy and safety of quinidine in KCNT1-related epileptic disorders. METHODS Electronic databases were queried for in vivo and in vitro studies on quinidine therapy in KCNT1-related epilepsies published on or before May 1st, 2022. The evaluation of evidence was done as per the American Academy of Neurology's classification scheme. Identification of significant factors that possibly influenced therapeutic effects of quinidine were performed using χ2 tests. RESULTS Twenty-seven studies containing 82 patient records were reviewed. Records of eighty patients with 33 KCNT1 mutations were analyzed, of which 20 patients had gained ≥50% seizure reduction due to quinidine therapy. However, quinidine therapy often had different effects on patients with the same KCNT1 mutation. Age, genotypes of KCNT1 mutations, seizure types and brain MRI did not significantly influence the therapeutic effect of quinidine. Prolonged QTc was the most common among all adverse events with quinidine. Notably, results of in vitro quinidine tests did not correspond with in vivo tests. CONCLUSIONS Therapeutic effects of quinidine on KCNT1-related epilepsies remained indefinite as contradictory results were detected in similar patients. Age, seizure types, genotypes of KCNT1 mutations and brain MRI did not influence the therapeutic effects of quinidine. Insensitivity to quinidine by a certain Kcnt1 genotype in molecular tests predictive of its inefficacy in human populations of the respective mutation.
Collapse
Affiliation(s)
- Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiufeng Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Specchio N, Pietrafusa N, Perucca E, Cross JH. New paradigms for the treatment of pediatric monogenic epilepsies: Progressing toward precision medicine. Epilepsy Behav 2022; 131:107961. [PMID: 33867301 DOI: 10.1016/j.yebeh.2021.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022]
Abstract
Despite the availability of 28 antiseizure medications (ASMs), one-third of people with epilepsy fail to achieve sustained freedom from seizures. Clinical outcome is even poorer for children with developmental and epileptic encephalopathies (DEEs), many of which are due to single-gene mutations. Discovery of causative genes, however, has paved the way to understanding the molecular mechanism underlying these epilepsies, and to the rational application, or development, of precision treatments aimed at correcting the specific functional defects or their consequences. This article provides an overview of current progress toward precision medicine (PM) in the management of monogenic pediatric epilepsies, by focusing on four different scenarios, namely (a) rational selection of ASMs targeting specifically the underlying pathogenetic mechanisms; (b) development of targeted therapies based on novel molecules; (c) use of dietary treatments or food constituents aimed at correcting specific metabolic defects; and (d) repurposing of medications originally approved for other indications. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy.
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
20
|
Gertler TS, Cherian S, DeKeyser JM, Kearney JA, George AL. K Na1.1 gain-of-function preferentially dampens excitability of murine parvalbumin-positive interneurons. Neurobiol Dis 2022; 168:105713. [PMID: 35346832 PMCID: PMC9169414 DOI: 10.1016/j.nbd.2022.105713] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 10/25/2022] Open
Abstract
KCNT1 encodes the sodium-activated potassium channel KNa1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, yet how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the KNa1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that KNa1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.
Collapse
Affiliation(s)
- Tracy S Gertler
- Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
| | - Suraj Cherian
- Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
21
|
Lin Z, Sang T, Yang Y, Wu Y, Dong Y, Ji T, Zhang Y, Wu Y, Gao K, Jiang Y. Efficacy of Anti-seizure Medications, Quinidine, and Ketogenic Diet Therapy for KCNT1-Related Epilepsy and Genotype-Efficacy Correlation Analysis. Front Neurol 2022; 12:834971. [PMID: 35116000 PMCID: PMC8804090 DOI: 10.3389/fneur.2021.834971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
AimTo evaluate the efficacy of anti-seizure medications (ASMs), quinidine, and ketogenic diet therapy (KDT) for KCNT1-related epilepsy and to explore genotype-efficacy correlations.MethodsWe collected the data for KCNT1-related epilepsy cases from our hospital's medical records and the literature. In total, 50 patients received quinidine, 23 received classical KDT, and 15 received ASMs; all ASM data were from our hospital owing to the lack of detailed ASM data in the literature. The efficacy rates (ERs) of the treatments were compared; an ER that reduced the number of seizures by ≥50% was considered positive. Efficacy according to genotype was also assessed.ResultsThe ERs for the 30 patients at our hospital were 40, 26.7, 30, and 44.4% for all treatments, ASMs, quinidine, and KDT, respectively. For all patients (ours and those in previous reports), the overall ERs for quinidine and KDT were 26.0 and 43.5%, respectively (P = 0.135). The ERs for quinidine and KDT in functional domain variant-related epilepsy differed significantly (20.6 vs. 53.8%; P = 0.037).InterpretationKDT may be better at treating KCNT1-related epilepsy than quinidine; ASMs were the least effective. KDT is a viable treatment option for functional domain variant-related epilepsy.
Collapse
Affiliation(s)
- Zehong Lin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Tian Sang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuan Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Kai Gao
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Yuwu Jiang
| |
Collapse
|
22
|
Khamdiyeva O, Tileules Z, Baratzhanova G, Perfilyeva A, Djansugurova L. The study of sodium and potassium channel gene single-nucleotide variation significance in non-mechanical forms of epilepsy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-020-00123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epilepsy is one of the most common and heterogeneous neurological diseases. The main clinical signs of the disease are repeated symptomatic or idiopathic epileptic seizures of both convulsive and non-convulsive nature that develop against a background of lost or preserved consciousness. The genetic component plays a large role in the etiology of idiopathic forms of epilepsy. The study of the molecular genetic basis of neurological disorders has led to a rapidly growing number of gene mutations known to be involved in hereditary ion channel dysfunction. The aim of this research was to evaluate the involvement of single-nucleotide variants that modify the function of genes (SCN1A, KCNT1, KCNTС1, and KCNQ2) encoding sodium and potassium ion channel polypeptides in the development of epilepsy.
Results
De novo mutations in the sodium channel gene SCN1A c.5347G>A (p. Ala1783Thr) were detected in two patients with Dravet syndrome, with a deletion in exon 26 found in one. Three de novo mutations in the potassium channel gene KCNT1 c.2800G>A (p. Ala934Thr), were observed in two patients with temporal lobe epilepsy (TLE) and one patient with residual encephalopathy. Moreover, a control cohort matched to the case cohort did not reveal any SNVs among conditionally healthy individuals, supporting the pathogenic significance of the studied SNVs.
Conclusion
Our results are supported by literature data showing that the sodium ion channel gene SCN1A c.5347G>A mutation may be involved in the pathogenesis of Dravet syndrome. We also note that the c.2800G>A mutation in the potassium channel gene KCNT1 can cause not only autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) but also other forms of epilepsy. To treat pathogenetic mutations that accelerate the function of sodium and potassium ion channels, we recommend ion channel blockade drug therapy.
Collapse
|
23
|
Spoto G, Saia MC, Amore G, Gitto E, Loddo G, Mainieri G, Nicotera AG, Di Rosa G. Neonatal Seizures: An Overview of Genetic Causes and Treatment Options. Brain Sci 2021; 11:brainsci11101295. [PMID: 34679360 PMCID: PMC8534058 DOI: 10.3390/brainsci11101295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023] Open
Abstract
Seizures are the most frequent neurological clinical symptoms of the central nervous system (CNS) during the neonatal period. Neonatal seizures may be ascribed to an acute event or symptomatic conditions determined by genetic, metabolic or structural causes, outlining the so-called 'Neonatal Epilepsies'. To date, three main groups of neonatal epilepsies are recognised during the neonatal period: benign familial neonatal epilepsy (BFNE), early myoclonic encephalopathy (EME) and 'Ohtahara syndrome' (OS). Recent advances showed the role of several genes in the pathogenesis of these conditions, such as KCNQ2, KCNQ3, ARX, STXBP1, SLC25A22, CDKL5, KCNT1, SCN2A and SCN8A. Herein, we reviewed the current knowledge regarding the pathogenic variants most frequently associated with neonatal seizures, which should be considered when approaching newborns affected by these disorders. In addition, we considered the new possible therapeutic strategies reported in these conditions.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Eloisa Gitto
- Unit of Neonatal Intensive Care, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | | | - Greta Mainieri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
- Correspondence: ; Tel.: +39-090-221-2911
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| |
Collapse
|
24
|
Myers KA, Scheffer IE. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu Rev Pharmacol Toxicol 2021; 62:641-662. [PMID: 34579535 DOI: 10.1146/annurev-pharmtox-052120-084449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Division of Child Neurology, Department of Pediatrics, and Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec H4A 3J1, Canada;
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; .,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia.,The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
25
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
26
|
de la Jara J, Vásquez-Hernández C, Ramírez-Rojo E, Moya-Vilches J. Uncommon epileptic syndromes in children: a review. Seizure 2021; 90:17-27. [DOI: 10.1016/j.seizure.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
|
27
|
Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021; 254:367-380. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India.
| | - Punita Agarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| |
Collapse
|
28
|
Bonardi CM, Heyne HO, Fiannacca M, Fitzgerald MP, Gardella E, Gunning B, Olofsson K, Lesca G, Verbeek N, Stamberger H, Striano P, Zara F, Mancardi MM, Nava C, Syrbe S, Buono S, Baulac S, Coppola A, Weckhuysen S, Schoonjans AS, Ceulemans B, Sarret C, Baumgartner T, Muhle H, des Portes V, Toulouse J, Nougues MC, Rossi M, Demarquay G, Ville D, Hirsch E, Maurey H, Willems M, de Bellescize J, Altuzarra CD, Villeneuve N, Bartolomei F, Picard F, Hornemann F, Koolen DA, Kroes HY, Reale C, Fenger CD, Tan WH, Dibbens L, Bearden DR, Møller RS, Rubboli G. KCNT1-related epilepsies and epileptic encephalopathies: phenotypic and mutational spectrum. Brain 2021; 144:3635-3650. [PMID: 34114611 DOI: 10.1093/brain/awab219] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy ((AD)SHE) to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies (DEE). This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 unpreviously published and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: i) EIMFS (152 individuals, 33 previously unpublished); ii) DEE other than EIMFS (non-EIMFS DEE) (37 individuals, 17 unpublished); iii) (AD)SHE (53 patients, 14 unpublished); iv) other phenotypes (6 individuals, 2 unpublished). In our cohort of 66 new cases, the most common phenotypic features were: a) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; b) in non-EIMFS DEE, possible onset with West syndrome, occurrence of atypical absences, possible evolution to DEE with SHE features; one case of sudden unexplained death in epilepsy (SUDEP); c) in (AD)SHE, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in about 50% of the patients, SUDEP in one individual; d) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the (AD)SHE-associated mutations to be clustered around the RCK2 domain in the C-terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS DEE did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset DEEs as well as in focal epilepsies, namely (AD)SHE.
Collapse
Affiliation(s)
- Claudia M Bonardi
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Department of Woman's and Child's Health, University Hospital of Padua, 35100 Padua, Italy
| | - Henrike O Heyne
- Finnish Institute for Molecular Medicine: FIMM, University of Helsinki, 00290 Helsinki, Finland.,Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA
| | | | - Mark P Fitzgerald
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Elena Gardella
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Boudewijn Gunning
- Stichting Epilepsie Instellingen Nederland, Zwolle, 8025 BV, The Netherlands
| | - Kern Olofsson
- Department of Pediatric Neurology, Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Gaétan Lesca
- Department of Genetics, Hospices Civils de Lyon, 69002 Bron, France.,Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Nienke Verbeek
- Department of Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Hannah Stamberger
- Neurogenetics Group, VIB-Center for Molecular Neurology, B-2610 Antwerp, Belgium.,Department of Neurology, University Hospital, 2650 Antwerp, Belgium
| | - Pasquale Striano
- IRCCS "G. Gaslini" Institute, University of Genoa, 16147 Genoa, Italy
| | - Federico Zara
- IRCCS "G. Gaslini" Institute, University of Genoa, 16147 Genoa, Italy
| | - Maria M Mancardi
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Caroline Nava
- Département de Génétique, APHP, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Salvatore Buono
- Neurology Division, Hospital of National Relevance (AORN), Santobono Pausilipon, 80122 Naples, Italy
| | - Stephanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, F-75013, Paris, France
| | - Antonietta Coppola
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, 80138 Naples, Italy
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB-Center for Molecular Neurology, B-2610 Antwerp, Belgium.,Department of Neurology, University Hospital, 2650 Antwerp, Belgium
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Catherine Sarret
- Service de Neuropédiatrie, CHU de Clermont-Ferrand, 6310 Clermont-Ferrand, France
| | | | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105 Kiel, Germany
| | - Vincent des Portes
- Neuropaediatrics Department, Femme Mère Enfant Hospital, 69500 Lyon, France
| | - Joseph Toulouse
- Epileptology, Sleep Disorders and Functional Pediatric Neurology CHU Lyon, 69500 Bron, France
| | | | - Massimiliano Rossi
- Department of Genetics, Hospices Civils de Lyon, 69002 Bron, France.,Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, GENDEV Team, Claude Bernard Lyon 1 University, 69675 Bron, France
| | - Geneviève Demarquay
- Service de neurologie fonctionnelle et épileptologie, Neurological Hospital, 69677 Bron, France.,Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, NeuroPain, 69677 Bron, France
| | - Dorothée Ville
- Pediatric Neurology Department, Lyon University Hospital, 69500 Bron, France
| | - Edouard Hirsch
- Epilepsy Unit, Hautepierre Hospital, University of Strasbourg, 67100 Strasbourg, France
| | - Hélène Maurey
- Department of Pediatric Neurology, Hopital Bicêtre, Le Kremlin-Bicêtre, 94270 Paris, France
| | - Marjolaine Willems
- Department of Clinical Genetics, Arnaud de Villeneuve Hospital, 34090 Montpellier, France
| | - Julitta de Bellescize
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hospices Civils de Lyon, 69677 Bron, Lyon, France
| | | | - Nathalie Villeneuve
- Pediatric Neurology Department, Timone Children Hospital, 13005 Marseille, France
| | - Fabrice Bartolomei
- Epileptology Department, Timone Hospital, Public Assistance Hospitals of Marseille, Aix-Marseille University, 13005 Marseille, France
| | - Fabienne Picard
- Department of Clinical Neurosciences, University Hospitals and Faculty of Medicine, CH-1211 Geneva, Switzerland
| | - Frauke Hornemann
- Centre of Pediatric Research, Hospital for Children and Adolescents, 04103 Leipzig, Germany
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center (Radboudumc), 6525 GA Nijmegen, The Netherlands
| | - Hester Y Kroes
- Department of Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Chiara Reale
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Christina D Fenger
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leanne Dibbens
- Epilepsy Research Group, UniSA Clinical and Health Sciences, University of South Australia, and Australian Centre for Precision Health, SA 5001 Adelaide, Australia
| | - David R Bearden
- Division of Child Neurology, Department of Neurology, University of Rochester School of Medicine, Rochester, NY14642, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Centre, member of the ERN EpiCARE, 4293 Dianalund, Denmark.,Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
29
|
Kravetz MC, Viola MS, Prenz J, Curi M, Bramuglia GF, Tenembaum S. Case Report of Novel Genetic Variant in KCNT1 Channel and Pharmacological Treatment With Quinidine. Precision Medicine in Refractory Epilepsy. Front Pharmacol 2021; 12:648519. [PMID: 34122071 PMCID: PMC8194824 DOI: 10.3389/fphar.2021.648519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Case introduction: In this work we present a female infant patient with epilepsy of infancy with migrating focal seizures (EIMFS). Although many pharmacological schemes were attempted, she developed an encephalopathy with poor response to antiepileptic drugs and progressive cerebral dysfunction. Aim: To present the pharmacological response and therapeutic drug monitoring of a paediatric patient with a severe encephalopathy carrying a genetic variant in KCNT1 gene, whose identification led to include quinidine (QND) in the treatment regimen as an antiepileptic drug. Case report: Patient showed slow rhythmic activity (theta range) over left occipital areas with temporal propagation and oculo-clonic focal seizures and without tonic spasms three months after birth. At the age of 18 months showed severe impairments of motor and intellectual function with poor eye contact. When the patient was 4 years old, a genetic variant in the exon 24 of the KCNT1 gene was found. This led to the diagnosis of EIMFS. Due to antiepileptic treatment failed to control seizures, QND a KCNT1 blocker, was introduced as a therapeutic alternative besides topiramate (200 mg/day) and nitrazepam (2 mg/day). Therapeutic drug monitoring (TDM) of QND plasma levels needed to be implemented to establish individual therapeutic range and avoid toxicity. TDM for dose adjustment was performed to establish the individual therapeutic range of the patient. Seizures were under control with QND levels above 1.5 mcg/ml (65–70 mg/kg q. i.d). In addition, QND levels higher than 4.0 mcg/ml, were related to higher risk of suffering arrhythmia due to prolongation of QT segment. Despite initial intention to withdrawal topiramate completely, QND was no longer effective by itself and failed to maintain seizures control. Due to this necessary interaction between quinidine and topiramate, topiramate was stablished in a maintenance dose of 40 mg/day. Conclusion: The implementation of Precision Medicine by using tools such as Next Generation Sequencing and TDM led to diagnose and select a targeted therapy for the treatment of a KCNT1-related epilepsy in a patient presented with EIMFS in early infancy and poor response to antiepileptic drugs. QND an old antiarrhythmic drug, due to its activity as KCNT1 channel blocker, associated to topiramate resulted in seizures control. Due to high variability observed in QND levels, TDM and pharmacokinetic characterization allowed to optimize drug regimen to maintain QND concentration between the individual therapeutic range and diminish toxicity.
Collapse
Affiliation(s)
- M C Kravetz
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina
| | - M S Viola
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina
| | - J Prenz
- Department of Cardiology, Garrahan Hospital, Buenos Aires City, Argentina
| | - M Curi
- Department of Cardiology, Garrahan Hospital, Buenos Aires City, Argentina
| | - G F Bramuglia
- Department of Pharmacology, Faculty of Farmacy and Biochemistry, University of Buenos Aires, Buenos Aires City, Argentina.,Fundacion Investigar, Buenos Aires City, Argentina
| | - S Tenembaum
- Department of Neurology, Garrahan Hospital, Buenos Aires City, Argentina
| |
Collapse
|
30
|
Venti V, Ciccia L, Scalia B, Sciuto L, Cimino C, Marino S, Praticò AD, Falsaperla R. KCNT1-Related Epilepsy: A Review. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
KCNT1 gene encodes the sodium-dependent potassium channel reported as a causal factor for several different epileptic disorders. The gene has been also linked with cardiac disorders and in a family to sudden unexpected death in epilepsy. KCNT1 mutations, in most cases, result in a gain of function causing a neuronal hyperpolarization with loss of inhibition. Many early-onset epileptic encephalopathies related to gain of function of KCNT1 gene have been described, most often associated with two phenotypes: malignant migrating focal seizures of infancy and familial autosomal-dominant nocturnal frontal lobe epilepsy; however, there is no clear phenotype–genotype correlation, in fact same mutations have been represented in patients with West syndrome, Ohtahara syndrome, and early myoclonic encephalopathy. Additional neurologic features include intellectual disability, psychiatric disorders, hypotonia, microcephaly, strabismus, and movement disorders. Conventional anticonvulsant, vagal stimulation, and ketogenic diet have been used in the absence of clinical benefit in individuals with KCNT1-related epilepsy; in some patients, quinidine therapy off-label has been practiced successfully. This review aims to describe the characteristics of the gene, the phenotypes related to genetic mutations with the possible genotype–phenotype correlations and the treatments proposed to date, discussing the comorbidities reported in the literature.
Collapse
Affiliation(s)
- Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carla Cimino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Simona Marino
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
31
|
Griffin AM, Kahlig KM, Hatch RJ, Hughes ZA, Chapman ML, Antonio B, Marron BE, Wittmann M, Martinez-Botella G. Discovery of the First Orally Available, Selective K Na1.1 Inhibitor: In Vitro and In Vivo Activity of an Oxadiazole Series. ACS Med Chem Lett 2021; 12:593-602. [PMID: 33859800 PMCID: PMC8040054 DOI: 10.1021/acsmedchemlett.0c00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gene KCNT1 encodes the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2). Variants in the KCNT1 gene induce a gain-of-function (GoF) phenotype in ionic currents and cause a spectrum of intractable neurological disorders in infants and children, including epilepsy of infancy with migrating focal seizures (EIMFS) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Effective treatment options for KCNT1-related disease are absent, and novel therapies are urgently required. We describe the development of a novel class of oxadiazole KNa1.1 inhibitors, leading to the discovery of compound 31 that reduced seizures and interictal spikes in a mouse model of KCNT1 GoF.
Collapse
Affiliation(s)
- Andrew M Griffin
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Kristopher M Kahlig
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Robert John Hatch
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Zoë A Hughes
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | | | | - Brian E Marron
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Marion Wittmann
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
32
|
Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021; 25:223-235. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION K+ channels are of great interest to epilepsy research as mutations in their genes are found in humans with inherited epilepsy. At the level of cellular physiology, K+ channels control neuronal intrinsic excitability and are the main contributors to membrane repolarization of active neurons. Recently, a genetically modified voltage-dependent K+ channel has been patented as a remedy for epileptic seizures. AREAS COVERED We review the role of potassium channels in excitability, clinical and experimental evidence for the association of potassium channelopathies with epilepsy, the targeting of K+ channels by drugs, and perspectives of gene therapy in epilepsy with the expression of extra K+ channels in the brain. EXPERT OPINION Control over K+ conductance is of great potential benefit for the treatment of epilepsy. Nowadays, gene therapy affecting K+ channels is one of the most promising approaches to treat pharmacoresistant focal epilepsy.
Collapse
Affiliation(s)
- E S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Wan H, Wang X, Chen Y, Jiang B, Chen Y, Hu W, Zhang K, Shao X. Sleep-Related Hypermotor Epilepsy: Etiology, Electro-Clinical Features, and Therapeutic Strategies. Nat Sci Sleep 2021; 13:2065-2084. [PMID: 34803415 PMCID: PMC8598206 DOI: 10.2147/nss.s330986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of clinical syndromes with heterogeneous etiologies. SHE is difficult to diagnose and treat in the early stages due to its diverse clinical manifestations and difficulties in differentiating from non-epileptic events, which seriously affect patients' quality of life and social behavior. The overall prognosis for SHE is unsatisfactory, but different etiologies affect patients' prognoses. Surgical treatment is an effective method for carefully selected patients with refractory SHE; nevertheless, preoperative assessment remains challenging because of the low sensitivity of noninvasive scalp electroencephalogram and imaging to detect abnormalities. However, through a careful analysis of semiology, the clinician can deduce the potential epileptogenic zone. This paper summarizes the research status of the background, etiology, electro-clinical features, diagnostic criteria, prognosis, and treatment of SHE to provide a more in-depth understanding of its pathophysiological mechanism, improve the accuracy in the diagnosis of this group of syndromes, and further explore more targeted therapy plans.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China.,Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xing Wang
- Department of Neurology, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing, People's Republic of China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| | - Bin Jiang
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| |
Collapse
|
34
|
The Na +-activated K + channel Slack contributes to synaptic development and plasticity. Cell Mol Life Sci 2021; 78:7569-7587. [PMID: 34664085 PMCID: PMC8629810 DOI: 10.1007/s00018-021-03953-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Human mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with epilepsy and intellectual disability. Accordingly, Slack knockout mice (Slack-/-) exhibit cognitive flexibility deficits in distinct behavioral tasks. So far, however, the underlying causes as well as the role of Slack in hippocampus-dependent memory functions remain enigmatic. We now report that infant (P6-P14) Slack-/- lack both hippocampal LTD and LTP, likely due to impaired NMDA receptor (NMDAR) signaling. Postsynaptic GluN2B levels are reduced in infant Slack-/-, evidenced by lower amplitudes of NMDAR-meditated excitatory postsynaptic potentials. Low GluN2B affected NMDAR-mediated Ca2+-influx, rendering cultured hippocampal Slack-/-neurons highly insensitive to the GluN2B-specific inhibitor Ro 25-6981. Furthermore, dephosphorylation of the AMPA receptor (AMPAR) subunit GluA1 at S845, which is involved in AMPAR endocytosis during homeostatic and neuromodulator-regulated plasticity, is reduced after chemical LTD (cLTD) in infant Slack-/-. We additionally detect a lack of mGluR-induced LTD in infant Slack-/-, possibly caused by upregulation of the recycling endosome-associated small GTPase Rab4 which might accelerate AMPAR recycling from early endosomes. Interestingly, LTP and mGluR LTD, but not LTD and S845 dephosphorylation after cLTD are restored in adult Slack-/-. This together with normalized expression levels of GluN2B and Rab4 hints to developmental "restoration" of LTP expression despite Slack ablation, whereas in infant and adult brain, NMDAR-dependent LTD induction depends on this channel. Based on the present findings, NMDAR and vesicular transport might represent novel targets for the therapy of intellectual disability associated with Slack mutations. Consequently, careful modulation of hippocampal Slack activity should also improve learning abilities.
Collapse
|
35
|
Abstract
We report a 10-month-old girl with KCNT1 (c1420C > T; p. Arg474Cys, R474C) mutation-associated epileptic encephalopathy, systemic-to-pulmonary artery "collateralopathy", and intermittent QTc prolongation. Spontaneous regression of systemic-to-pulmonary artery collateral-mediated left heart dilation was noted in this patient, a finding which was ominous as it heralded the onset of severe pulmonary hypertension. The structural and electrical phenotypic features of KCNT1 mutation-associated heart disease, including the novel findings noted in our patient, are discussed in detail.
Collapse
|
36
|
Spitznagel BD, Mishra NM, Qunies AM, Prael FJ, Du Y, Kozek KA, Lazarenko RM, Denton JS, Emmitte KA, Weaver CD. VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons. ACS Chem Neurosci 2020; 11:3658-3671. [PMID: 33143429 DOI: 10.1021/acschemneuro.0c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a high-throughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M. Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
37
|
Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat Rev Neurol 2020; 16:674-688. [PMID: 33077944 DOI: 10.1038/s41582-020-0409-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Over the last decade, advances in genetics, neuroimaging and EEG have enabled the aetiology of epilepsy to be identified earlier in the disease course than ever before. At the same time, progress in the study of experimental models of epilepsy has provided a better understanding of the mechanisms underlying the condition and has enabled the identification of therapies that target specific aetiologies. We are now witnessing the impact of these advances in our daily clinical practice. Thus, now is the time for a paradigm shift in epilepsy treatment from a reactive attitude, treating patients after the onset of epilepsy and the initiation of seizures, to a proactive attitude that is more broadly integrated into a 'P4 medicine' approach. This P4 approach, which is personalized, predictive, preventive and participatory, puts patients at the centre of their own care and, ultimately, aims to prevent the onset of epilepsy. This aim will be achieved by adapting epilepsy treatments not only to a given syndrome but also to a given patient and moving from the usual anti-seizure treatments to personalized treatments designed to target specific aetiologies. In this Review, we present the current state of this ongoing revolution, emphasizing the impact on clinical practice.
Collapse
|
38
|
Cole BA, Johnson RM, Dejakaisaya H, Pilati N, Fishwick CWG, Muench SP, Lippiat JD. Structure-Based Identification and Characterization of Inhibitors of the Epilepsy-Associated K Na1.1 (KCNT1) Potassium Channel. iScience 2020; 23:101100. [PMID: 32408169 PMCID: PMC7225746 DOI: 10.1016/j.isci.2020.101100] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-resistant epileptic encephalopathies of infancy have been associated with KCNT1 gain-of-function mutations, which increase the activity of KNa1.1 sodium-activated potassium channels. Pharmacological inhibition of hyperactive KNa1.1 channels by quinidine has been proposed as a stratified treatment, but mostly this has not been successful, being linked to the low potency and lack of specificity of the drug. Here we describe the use of a previously determined cryo-electron microscopy-derived KNa1.1 structure and mutational analysis to identify how quinidine binds to the channel pore and, using computational methods, screened for compounds predicated to bind to this site. We describe six compounds that inhibited KNa1.1 channels with low- and sub-micromolar potencies, likely also through binding in the intracellular pore vestibule. In hERG inhibition and cytotoxicity assays, two compounds were ineffective. These may provide starting points for the development of new pharmacophores and could become tool compounds to study this channel further.
Collapse
Affiliation(s)
- Bethan A Cole
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rachel M Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hattapark Dejakaisaya
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nadia Pilati
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Corso Stati Uniti, 4f, 35127 Padova, Italy
| | - Colin W G Fishwick
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
39
|
Niu LG, Liu P, Wang ZW, Chen B. Slo2 potassium channel function depends on RNA editing-regulated expression of a SCYL1 protein. eLife 2020; 9:53986. [PMID: 32314960 PMCID: PMC7195191 DOI: 10.7554/elife.53986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3’-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.
Collapse
Affiliation(s)
- Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
40
|
Helbig I, Ellis CA. Personalized medicine in genetic epilepsies - possibilities, challenges, and new frontiers. Neuropharmacology 2020; 172:107970. [PMID: 32413583 DOI: 10.1016/j.neuropharm.2020.107970] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Identifying the optimal treatment based on specific characteristics of each patient is the main promise of precision medicine. In the field of epilepsy, the identification of more than 100 causative genes provides the enticing possibility of treatments targeted to specific disease etiologies. These conditions include classical examples, such as the use of vitamin B6 in antiquitin deficiency or the ketogenic diet in GLUT1 deficiency, where the disease mechanism can be directly addressed by the selection of a specific therapeutic compound. For epilepsies caused by channelopathies there have been advances in understanding how the selection of existing medications can be targeted to the functional consequences of genetic alterations. We discuss the examples of the use of sodium channel blockers such as phenytoin and oxcarbazepine in the sodium channelopathies, quinidine in KCNT1-related epilepsies, and strategies in GRIN-related epilepsies as examples of epilepsy precision medicine. Assessing the clinical response to targeted treatments of these conditions has been complicated by genetic and phenotypic heterogeneity, as well as by various neurological and non-neurological comorbidities. Moving forward, the development of standardized outcome measures will be critical to successful precision medicine trials in complex and heterogeneous disorders like the epilepsies. Finally, we address new frontiers in epilepsy precision medicine, including the need to match the growing volume of genetic data with high-throughput functional assays to assess the functional consequences of genetic variants and the ability to extract clinical data at large scale from electronic medical records and apply quantitative methods based on standardized phenotyping language.
Collapse
Affiliation(s)
- Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Ali SR, Malone TJ, Zhang Y, Prechova M, Kaczmarek LK. Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). FASEB J 2020; 34:1591-1601. [PMID: 31914597 PMCID: PMC6956700 DOI: 10.1096/fj.201902366r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
The Slack (KCNT1) gene encodes sodium-activated potassium channels that are abundantly expressed in the central nervous system. Human mutations alter the function of Slack channels, resulting in epilepsy and intellectual disability. Most of the disease-causing mutations are located in the extended cytoplasmic C-terminus of Slack channels and result in increased Slack current. Previous experiments have shown that the C-terminus of Slack channels binds a number of cytoplasmic signaling proteins. One of these is Phactr1, an actin-binding protein that recruits protein phosphatase 1 (PP1) to certain phosphoprotein substrates. Using co-immunoprecipitation, we found that Phactr1 is required to link the channels to actin. Using patch clamp recordings, we found that co-expression of Phactr1 with wild-type Slack channels reduces the current amplitude but has no effect on Slack channels in which a conserved PKC phosphorylation site (S407) that regulates the current amplitude has been mutated. Furthermore, a Phactr1 mutant that disrupts the binding of PP1 but not that of actin fails to alter Slack currents. Our data suggest that Phactr1 regulates the Slack by linking PP1 to the channel. Targeting Slack-Phactr1 interactions may therefore be helpful in developing the novel therapies for brain disorders associated with the malfunction of Slack channels.
Collapse
Affiliation(s)
- Syed Rydwan Ali
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Magdalena Prechova
- Signalling and Transcription Group, The Francis Crick Institute, London, UK
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, CZ
| | - Leonard Konrad Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci 2019; 41:749-761. [PMID: 31838630 DOI: 10.1007/s10072-019-04190-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Genetic brain channelopathies result from inherited or de novo mutations of genes encoding ion channel subunits within the central nervous system. Most neurological channelopathies arise in childhood with paroxysmal or episodic symptoms, likely because of a transient impairment of homeostatic mechanisms regulating membrane excitability, and the prototypical expression of this impairment is epilepsy. Migraine, episodic ataxia and alternating hemiplegia can also occur, as well as chronic phenotypes, such as spinocerebellar ataxias, intellectual disability and autism spectrum disorder. Voltage-gated and ligand-gated channels may be involved. In most cases, a single gene may be associated with a phenotypical spectrum that shows variable expressivity. Different clinical features may arise at different ages and the adult phenotype may be remarkably modified from the syndrome onset in childhood or adolescence. Recognizing the prominent phenotypical traits of brain channelopathies is essential to perform appropriate diagnostic investigations and to provide the better care not only in the paediatric setting but also for adult patients and their caregivers. Herein, we provide an overview of genetic brain channelopathies associated with epilepsy, highlight the different molecular mechanisms and describe the different clinical characteristics which may prompt the clinician to suspect specific syndromes and to possibly establish tailored treatments.
Collapse
Affiliation(s)
- Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy.
| | - Roberto Campostrini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Lorenzo Kiferle
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Silvia Pradella
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Eleonora Rosati
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Pasquale Palumbo
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| |
Collapse
|
43
|
Abstract
The new concept of developmental and epileptic encephalopathy is based on the understanding that many genetic epilepsies are associated with developmental impairment as a direct consequence of the genetic mutation, in addition to the effect of the frequent epileptic activity on brain development. As an example, in infants with KCNQ2 or STXBP1 encephalopathy, seizures may be controlled early after onset or cease spontaneously after a few years, but the developmental consequences tend to remain profound. The term "developmental and epileptic encephalopathy" expresses the concept that the genetic defect may be responsible for both the epilepsy and adverse development which is crucial to understanding the disease process for both families and clinicians. The increased use of EEG monitoring, neuroimaging, and metabolic and genetic testing in the Neonatal Intensive Care Unit has greatly improved our understanding of neonatal-onset epilepsies as seen with the syndromes Ohtahara and Early Myoclonic Encephalopathy outlined in the 1970s into distinct etiology-specific electroclinical phenotypes.
Collapse
Affiliation(s)
- Charbel El Kosseifi
- Catholic University of Louvain, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | | | - Maria Roberta Cilio
- Division of Pediatric Neurology, Saint-Luc University Hospital, and Institute of Experimental and Clinical Research (IREC), University of Louvain, Brussels, Belgium.
| |
Collapse
|
44
|
Licchetta L, Pippucci T, Baldassari S, Minardi R, Provini F, Mostacci B, Plazzi G, Tinuper P, Bisulli F. Sleep-related hypermotor epilepsy (SHE): Contribution of known genes in 103 patients. Seizure 2019; 74:60-64. [PMID: 31835056 DOI: 10.1016/j.seizure.2019.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Genetics of Sleep-related Hypermotor Epilepsy (SHE) includes mutations in several genes that cumulatively account for 30 % of families. This approximate estimate comes from different case-series, each focused on the screening of a single gene. We systematically investigated a large cohort of SHE patients to estimate the frequency of pathogenic variants in the main genes thus far implicated in this epilepsy syndrome. METHODS We selected familial and isolated cases diagnosed with clinical/confirmed SHE who underwent genetic analysis by comparable next generation sequencing (NGS) techniques (WES/ multigene epilepsy panel). The identified heterozygous variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS We included 103 SHE patients (M/F:61/42) who underwent NGS. Sixteen (15.5 %) were familial cases, 16.5 % had focal cortical dysplasia (FCD). We identified three pathogenic variants in CHRNA4 (2.9 %, CI: 0.6-8.3 %), two of whom novel; one pathogenic variant in KCNT1 (1 %, CI: 0.02-5.29 %); four loss-of-function variants in DEPDC5 (3.9 %, CI: 1.1-9.7 %), one of whom never reported; finally, one missense change in NPRL2 (1 %, CI: 0.02-5.29 %), already reported as pathogenic. Three out of the four patients with DEPDC5 variants had FCD. CONCLUSIONS The overall frequency of pathogenic variants in our SHE cohort was 8.7 %, 19 % and 7 % considering familial and sporadic cases, respectively. Pathogenic variants in the GATOR1-complex genes account for 5 % of the cases. DEPDC5 shows the highest variants frequency, especially in patients with genetic-structural etiology. From a practical perspective, analysis of this gene is recommended even in isolated cases, because of possible implications for patient management.
Collapse
Affiliation(s)
- Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Sara Baldassari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
45
|
Alsaleem M, Carrion V, Weinstock A, Chandrasekharan P. Infantile refractory seizures due to de novo KCNT 1 mutation. BMJ Case Rep 2019; 12:12/10/e231178. [PMID: 31653631 DOI: 10.1136/bcr-2019-231178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We describe a term female infant who presented with multiple seizures early in infancy. The clinical and electrical seizures were refractory to traditional antiepileptic medications. After extensive workup, seizure panel testing revealed KCNT1 gene mutation, which is associated with nocturnal frontal lobe epilepsy and epilepsy of infancy with migrating focal seizures. The infant's condition improved with the combination of traditional as well non-traditional antiepileptic therapy.
Collapse
Affiliation(s)
- Mahdi Alsaleem
- Pediatrics, Children's Mercy Hospital, University of Kansas, Wichita, Kansas, USA
| | - Vivien Carrion
- Pediatrics, University at Buffalo - The State University of New York, Buffalo, New York, USA
| | - Arie Weinstock
- Neurology, University at Buffalo - The State University of New York, Buffalo, New York, USA
| | - Praveen Chandrasekharan
- Pediatrics, University at Buffalo - The State University of New York, Buffalo, New York, USA
| |
Collapse
|
46
|
Datta AN, Michoulas A, Guella I, Demos M. Two Patients With KCNT1-Related Epilepsy Responding to Phenobarbital and Potassium Bromide. J Child Neurol 2019; 34:728-734. [PMID: 31208268 DOI: 10.1177/0883073819854853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
KCNT1 encodes a sodium-activated potassium channel highly expressed in the brain, regulating hyperpolarization following repetitive firing. Mutations in KCNT1 were originally implicated in autosomal-dominant nocturnal frontal lobe epilepsy and epilepsy of infancy with migrating focal seizures. It is now known that there is variability in phenotypic expression and incomplete penetrance. We describe 2 patients with KCNT1-related epilepsy, one with epilepsy of infancy with migrating focal seizures and one with multifocal epilepsy. As most patients with KCNT1 variants have treatment-resistant epilepsy, drugs that specifically target the KCNT1 channel have been of great interest. Quinidine, a broad-spectrum potassium channel blocker, has shown promise; however, clinical trial results have been variable. Our patient with epilepsy of infancy with migrating focal seizures did not respond to a trial of quinidine at 6 weeks of age-one of the earliest reported quinidine trials in the literature for KCNT1-related epilepsy. This indicates that timing of treatment and response may not be related. Both patients responded to high-dose phenobarbital. The patient with epilepsy of infancy with migrating focal seizures also had a significant reduction in seizures with potassium bromide (KBr). Our data suggest that alternative therapies to quinidine should be considered as a therapeutic option for patients with KCNT1-related epilepsy. Although improved seizure control led to parent-reported improvements in neurodevelopment, it is unknown if phenobarbital and KBr impact the overall developmental trajectory of patients with KCNT1-related epilepsy. Further multicenter longitudinal studies are required.
Collapse
Affiliation(s)
- Anita N Datta
- 1 Division of Pediatric Neurology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aspasia Michoulas
- 1 Division of Pediatric Neurology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ilaria Guella
- 2 Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia, Canada
| | -
- 3 University of British Columbia, Vancouver, British Columbia, Canada.,EPGEN Study investigators include Shelin Adam, Cyrus Boelman, Corneliu Bolbocean, Sarah E. Buerki, Tara Candido, Patrice Eydoux, Daniel M. Evans, William Gibson, Gabriella Horvath, Linda Huh, Tanya N. Nelson, Graham Sinclair, Tamsin Tarling, Eric B. Toyota, Katelin N. Townsend, Margot I. Van Allen, Clara van Karnebeek, and Suzanne Vercauteren
| | - Michelle Demos
- 1 Division of Pediatric Neurology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Kuchenbuch M, Barcia G, Chemaly N, Carme E, Roubertie A, Gibaud M, Van Bogaert P, de Saint Martin A, Hirsch E, Dubois F, Sarret C, Nguyen The Tich S, Laroche C, des Portes V, Billette de Villemeur T, Barthez MA, Auvin S, Bahi-Buisson N, Desguerre I, Kaminska A, Benquet P, Nabbout R. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain 2019; 142:2996-3008. [DOI: 10.1093/brain/awz240] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/14/2022] Open
Abstract
Data on KCNT1 epilepsy of infancy with migrating focal seizures are heterogeneous and incomplete. Kuchenbuch et al. refine the syndrome phenotype, showing a three-step temporal sequence, poor prognosis with acquired microcephaly, high prevalence of extra-neurological manifestations and early mortality, particularly due to SUDEP. Refining the electro-clinical spectrum should facilitate early diagnosis.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Giulia Barcia
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
- Department of Genetics, Necker Enfants Malades Hospital, Imagine Institute, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Emilie Carme
- Department of Pediatric Neurology, University of Montpellier, France
| | - Agathe Roubertie
- Department of Pediatric Neurology, University of Montpellier, France
| | - Marc Gibaud
- Department of Pediatric Neurology, Angers University Hospital, France
| | | | | | - Edouard Hirsch
- Department of Pediatric Neurology, Strasbourg University Hospital, France
| | - Fanny Dubois
- Department of Pediatric Neurology, CHU Grenoble Alpes, F-38000 Grenoble, France
| | | | | | - Cecile Laroche
- Department of Pediatric Neurology, Limoges University Hospital, France
| | - Vincent des Portes
- Department of Pediatric Neurology, CNRS UMR 5304, F- 69675 Bron, France
- Lyon-1 University, F-69008 Lyon, France
| | | | | | - Stéphane Auvin
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Nadia Bahi-Buisson
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Isabelle Desguerre
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Anna Kaminska
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
| | - Pascal Benquet
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| |
Collapse
|
48
|
Gertler TS, Thompson CH, Vanoye CG, Millichap JJ, George AL. Functional consequences of a KCNT1 variant associated with status dystonicus and early-onset infantile encephalopathy. Ann Clin Transl Neurol 2019; 6:1606-1615. [PMID: 31560846 PMCID: PMC6764634 DOI: 10.1002/acn3.50847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Objective We identified a novel de novo KCNT1 variant in a patient with early‐infantile epileptic encephalopathy (EIEE) and status dystonicus, a life‐threatening movement disorder. We determined the functional consequences of this variant on the encoded KNa1.1 channel to investigate the molecular mechanisms responsible for this disorder. Methods A retrospective case review of the proband is presented. We performed manual and automated electrophysiologic analyses of the KCNT1‐L437F variant expressed heterologously in Chinese hamster ovary (CHO) cells in the presence of channel activators/blockers. Results The KCNT1‐L437F variant, identified in a patient with refractory EIEE and status dystonicus, confers a gain‐of‐function channel phenotype characterized by instantaneous, voltage‐dependent activation. Channel openers do not further increase L437F channel function, suggesting maximal activation, whereas channel blockers similarly block wild‐type and variant channels. We further demonstrated that KCNT1 current can be measured on a high‐throughput automated electrophysiology platform with potential value for future screening of novel and repurposed pharmacotherapies. Interpretation A novel pathogenic variant in KCNT1 associated with early‐onset, medication‐refractory epilepsy and dystonia causes gain‐of‐function with rapid activation kinetics. Our findings extend the genotype–phenotype relationships of KCNT1 variants to include severe dystonia.
Collapse
Affiliation(s)
- Tracy S Gertler
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John J Millichap
- Division of Neurology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
49
|
Perucca P, Perucca E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res 2019; 152:18-30. [DOI: 10.1016/j.eplepsyres.2019.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023]
|
50
|
Ko A, Kang HC. Frequently Identified Genetic Developmental and Epileptic Encephalopathy: A Review Focusing on Precision Medicine. ANNALS OF CHILD NEUROLOGY 2019. [DOI: 10.26815/acn.2019.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|