1
|
Hosseinpour S, Razmara E, Heidari M, Rezaei Z, Ashrafi MR, Dehnavi AZ, Kameli R, Bereshneh AH, Vahidnezhad H, Azizimalamiri R, Zamani Z, Pak N, Rasulinezhad M, Mohammadi B, Ghabeli H, Ghafouri M, Mohammadi M, Zamani GR, Badv RS, Saket S, Rabbani B, Mahdieh N, Ahani A, Garshasbi M, Tavasoli AR. A comprehensive study of mutation and phenotypic heterogeneity of childhood mitochondrial leukodystrophies. Brain Dev 2024; 46:167-179. [PMID: 38129218 DOI: 10.1016/j.braindev.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatric Neurology, Vali-e-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Morteza Heidari
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Reyhaneh Kameli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hosseini Bereshneh
- Prenatal Diagnosis and Genetic Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Vahidnezhad
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Zamani
- MD, MPH, Community Medicine Specialist, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Department of Radiology, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinezhad
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohammadi
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Ghabeli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghafouri
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Saket
- Iranian Child Neurology Center of Excellence, Pediatric Neurology Research Center, Research Institute for Children Health, Mofid Children's and Shohada-e Tajrish Hospitals, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahani
- Mendel Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Jalal-Al Ahmad Hwy, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Division of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Neurology Division, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
| |
Collapse
|
2
|
Amdani S, Auerbach SR, Bansal N, Chen S, Conway J, Silva JPDA, Deshpande SR, Hoover J, Lin KY, Miyamoto SD, Puri K, Price J, Spinner J, White R, Rossano JW, Bearl DW, Cousino MK, Catlin P, Hidalgo NC, Godown J, Kantor P, Masarone D, Peng DM, Rea KE, Schumacher K, Shaddy R, Shea E, Tapia HV, Valikodath N, Zafar F, Hsu D. Research Gaps in Pediatric Heart Failure: Defining the Gaps and Then Closing Them Over the Next Decade. J Card Fail 2024; 30:64-77. [PMID: 38065308 DOI: 10.1016/j.cardfail.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 01/13/2024]
Abstract
Given the numerous opportunities and the wide knowledge gaps in pediatric heart failure, an international group of pediatric heart failure experts with diverse backgrounds were invited and tasked with identifying research gaps in each pediatric heart failure domain that scientists and funding agencies need to focus on over the next decade.
Collapse
Affiliation(s)
- Shahnawaz Amdani
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio.
| | - Scott R Auerbach
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neha Bansal
- Division of Pediatric Cardiology, Mount Sinai Kravis Children's Hospital, Icahn School of Medicine, New York, New York
| | - Sharon Chen
- Division of Pediatric Cardiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Palo Alto, California
| | - Jennifer Conway
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Julie Pires DA Silva
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Jessica Hoover
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, Ohio
| | - Kimberly Y Lin
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shelley D Miyamoto
- Division of Pediatric Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kriti Puri
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Jack Price
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Joseph Spinner
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Rachel White
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph W Rossano
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David W Bearl
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Melissa K Cousino
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Perry Catlin
- Department of Psychology, Marquette University, Milwaukee, Wisconsin
| | - Nicolas Corral Hidalgo
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Godown
- Department of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital, Nashville, Tennessee
| | - Paul Kantor
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - David M Peng
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kelly E Rea
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Kurt Schumacher
- Department of Pediatrics, University of Michigan, C. S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Robert Shaddy
- Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Erin Shea
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Henry Valora Tapia
- Division of Pediatric Cardiology, University of Utah. Salt Lake City, Utah
| | - Nishma Valikodath
- Department of Pediatrics, Section of Pediatric Cardiology, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Farhan Zafar
- The Heart Institute, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Daphne Hsu
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
3
|
Helman G, Orthmann-Murphy JL, Vanderver A. Approaches to diagnosis for individuals with a suspected inherited white matter disorder. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:21-35. [PMID: 39322380 DOI: 10.1016/b978-0-323-99209-1.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain. Achieving a diagnosis may be the single most important step in the clinical course of a leukodystrophy-affected individual, with important implications for care and quality of life. For certain disorders, prompt recognition can direct therapeutic intervention with significant implications and requires urgent recognition. In this review, we cover newborn screening efforts, standard-of-care testing methodologies, and next generation sequencing approaches that continue to change the landscape of leukodystrophy diagnosis. Early studies have shown that next generation sequencing approaches, particularly exome and now genome sequencing have proven to be powerful in helping resolve many cases that were refractory to a single gene or linkage analysis approach. In addition, other methods are required for cases that remain persistently unsolved after next generation sequencing methods have been used. In the past more than half of affected individuals never achieved an etiologic diagnosis, and when they did, the reported times to diagnosis were >5 years although molecular testing has allowed this to be reduced to closer to 16 months. For affected families, next generation sequencing technologies have finally provided a way to fill gaps in diagnosis.
Collapse
Affiliation(s)
- Guy Helman
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adeline Vanderver
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Baide-Mairena H, Marti-Sánchez L, Marcé-Grau A, Cazurro-Gutiérrez A, Sanchez-Montanez A, Delgado I, Moreno-Galdó A, Macaya-Ruiz A, García-Arumí E, Pérez-Dueñas B. Genetic diagnosis of basal ganglia disease in childhood. Dev Med Child Neurol 2022; 64:743-752. [PMID: 34988976 DOI: 10.1111/dmcn.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
AIM To correlate clinical, radiological, and biochemical features with genetic findings in children with bilateral basal ganglia lesions of unknown aetiology, and propose a diagnostic algorithm for early recognition. METHOD Children with basal ganglia disease were recruited in a 2-year prospective multicentre study for clinical, biomarker, and genetic studies. Radiological pattern recognition was examined by hierarchical clustering analysis. RESULTS We identified 22 genetic conditions in 30 out of 62 paediatric patients (37 males, 25 females; mean age at onset 2y, SD 3; range 0-10y; mean age at assessment 11y, range 1-25y) through gene panels (n=11), whole-exome sequencing (n=13), and mitochondrial DNA (mtDNA) sequencing (n=6). Genetic aetiologies included mitochondrial diseases (57%), Aicardi-Goutières syndrome (20%), and monogenic causes of dystonia and/or epilepsy (17%) mimicking Leigh syndrome. Radiological abnormalities included T2-hyperintense lesions (n=26) and lesions caused by calcium or manganese mineralization (n=9). Three clusters were identified: the pallidal, neostriatal, and striatal, plus the last including mtDNA defects in the oxidative phosphorylation system with prominent brain atrophy. Mitochondrial biomarkers showed poor sensitivity and specificity in children with mitochondrial disease, whereas interferon signature was observed in all patients with patients with Aicardi-Goutières syndrome. INTERPRETATION Combined whole-exome and mtDNA sequencing allowed the identification of several genetic conditions affecting basal ganglia metabolism. We propose a diagnostic algorithm which prioritizes early use of next-generation sequencing on the basis of three clusters of basal ganglia lesions.
Collapse
Affiliation(s)
- Heidy Baide-Mairena
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Pediatrics, Granollers General Hospital, Granollers, Spain
| | - Laura Marti-Sánchez
- Department of Biochemistry, Sant Joan de Déu Research Institut, Universitat de Barcelona, Barcelona, Spain
| | - Anna Marcé-Grau
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Cazurro-Gutiérrez
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ignacio Delgado
- Department of Neuroradiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Antonio Moreno-Galdó
- Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Pediatrics, Vall d'Hebron Barcelona Hospital Campus Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Alfons Macaya-Ruiz
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Paediatric Neurology, Vall d`Hebron University Hospital, Barcelona, Spain
| | - Elena García-Arumí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Research Institut (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Belén Pérez-Dueñas
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Paediatric Neurology, Vall d`Hebron University Hospital, Barcelona, Spain
| | | |
Collapse
|
5
|
The Diagnostic Approach to Mitochondrial Disorders in Children in the Era of Next-Generation Sequencing: A 4-Year Cohort Study. J Clin Med 2021; 10:jcm10153222. [PMID: 34362006 PMCID: PMC8348083 DOI: 10.3390/jcm10153222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial diseases (MDs) are a large group of genetically determined multisystem disorders, characterized by extreme phenotypic heterogeneity, attributable in part to the dual genomic control (nuclear and mitochondrial DNA) of the mitochondrial proteome. Advances in next-generation sequencing technologies over the past two decades have presented clinicians with a challenge: to select the candidate disease-causing variants among the huge number of data provided. Unfortunately, the clinical tools available to support genetic interpretations still lack specificity and sensitivity. For this reason, the diagnosis of MDs continues to be difficult, with the new “genotype first” approach still failing to diagnose a large group of patients. With the aim of investigating possible relationships between clinical and/or biochemical phenotypes and definitive molecular diagnoses, we performed a retrospective multicenter study of 111 pediatric patients with clinical suspicion of MD. In this cohort, the strongest predictor of a molecular (in particular an mtDNA-related) diagnosis of MD was neuroimaging evidence of basal ganglia (BG) involvement. Regression analysis confirmed that normal BG imaging predicted negative genetic studies for MD. Psychomotor regression was confirmed as an independent predictor of a definitive diagnosis of MD. The findings of this study corroborate previous data supporting a role for neuroimaging in the diagnostic approach to MDs and reinforce the idea that mtDNA sequencing should be considered for first-line testing, at least in specific groups of children.
Collapse
|
6
|
Zarate YA, Vernon HJ, Bosanko KA, Ramani PK, Gokden M, Writzl K, Meznaric M, Vipotnik Vesnaver T, Ramakrishnaiah R, Osredkar D. Case Report: SATB2-Associated Syndrome Overlapping With Clinical Mitochondrial Disease Presentation: Report of Two Cases. Front Genet 2021; 12:692087. [PMID: 34234817 PMCID: PMC8257052 DOI: 10.3389/fgene.2021.692087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
SATB2-associated syndrome (SAS) is an autosomal dominant neurogenetic multisystemic disorder. We describe two individuals with global developmental delay and hypotonia who underwent an extensive evaluation to rule out an underlying mitochondrial disorder before their eventual diagnosis of SAS. Although the strict application of the clinical mitochondrial disease score only led to the designation of "possible" mitochondrial disorder for these two individuals, other documented abnormalities included nonspecific neuroimaging findings on magnetic resonance imaging and magnetic resonance spectroscopy, decreased complex I activity on muscle biopsy for patient 2, and variation in the size and relative proportion of types of muscle fibers in the muscle biopsies that were aligned with mitochondrial diseases. SAS should be in the differential diagnoses of mitochondrial disorders, and broad-spectrum diagnostic tests such as exome sequencing need to be considered early in the evaluation process of undiagnosed neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hilary J Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine A Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Praveen K Ramani
- Department of Pediatric Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marija Meznaric
- Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Raghu Ramakrishnaiah
- Division of Neuroradiology and Pediatric Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Senthilvelan S, Sekar SS, Kesavadas C, Thomas B. Neuromitochondrial Disorders : Genomic Basis and an Algorithmic Approach to Imaging Diagnostics. Clin Neuroradiol 2021; 31:559-574. [PMID: 34106285 DOI: 10.1007/s00062-021-01030-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Mitochondrial disorders have been an enigma for a long time due to the varied clinical presentations. Although a genetic confirmation will be mandatory most of the time, half the number of Leigh syndrome would be negative for genetic mutations. There are a growing number of mutations in clinical practice, which escape detection on routine clinical exome sequencing. Imaging would render help in pointing towards a mitochondrial disorder. There are a few case reports which brief about specific mitochondrial mutations and their specific imaging appearance. This article tries to provide a comprehensive review on the imaging-genomic correlation of mitochondrial disorders with an objective of performing a specific genetic testing to arrive at an accurate diagnosis.
Collapse
Affiliation(s)
- Santhakumar Senthilvelan
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India
| | - Sabarish S Sekar
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India
| | - Bejoy Thomas
- Department of IS&IR, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, Trivandrum, India.
| |
Collapse
|
8
|
Loiselet K, Ruzzenente B, Roux CJ, Barcia G, Pennisi A, Desguerre I, Rötig A, Munnich A, Boddaert N. Cerebral blood flow and acute episodes of Leigh syndrome in neurometabolic disorders. Dev Med Child Neurol 2021; 63:705-711. [PMID: 33511646 DOI: 10.1111/dmcn.14814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
AIM To investigate cerebral blood flow (CBF) in acute episodes of Leigh syndrome compared with basal state in patients carrying pathogenic mitochondrial disease gene variants responsible for neurometabolic disorders. METHOD Arterial spin labelling (ASL) magnetic resonance imaging (MRI) sequences were used to measure CBF in 27 patients with mitochondrial respiratory chain enzyme deficiencies, ascribed to pathogenic variants of reported disease genes who were undergoing either urgent neuroimaging for acute episodes of Leigh syndrome (Group I: 15 MRI, seven females, eight males; mean age 7y; range 7mo-14y) or routine brain MRI (Group II: 15 MRI, eight females, seven males; mean age 5y 2mo; range 2mo-12y). RESULTS Patients displayed markedly increased CBF in the striatum (2.8-fold greater, p<0.001 [1.05-2.53]) during acute episodes of Leigh syndrome compared to basal conditions. Detection of elevated CBF preceded identification of structural MRI lesions in four out of 15 cases. INTERPRETATION Our results suggest that increased CBF is an overt hallmark of Leigh syndrome episodes and ASL MRI sequences should facilitate early diagnosis of acute episodes of Leigh syndrome, especially during the first attack in young children, when structural MRI is insufficiently informative.
Collapse
Affiliation(s)
- Klervie Loiselet
- Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, Paris, France
| | - Benedetta Ruzzenente
- Department of Genetics, Hôpital Necker-Enfants Malades, Paris, France.,AP-HP, IMAGINE Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Charles-Joris Roux
- Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, Paris, France
| | - Giulia Barcia
- Department of Genetics, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Isabelle Desguerre
- Department of Neurology and Metabolism, Hôpital Necker-Enfants Malades, Paris, France
| | - Agnès Rötig
- AP-HP, IMAGINE Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Arnold Munnich
- Department of Genetics, Hôpital Necker-Enfants Malades, Paris, France.,AP-HP, IMAGINE Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, Paris, France.,AP-HP, IMAGINE Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | | |
Collapse
|
9
|
Goldstein A, Rahman S. Seeking impact: Global perspectives on outcome measure selection for translational and clinical research for primary mitochondrial disorders. J Inherit Metab Dis 2021; 44:343-357. [PMID: 33016339 DOI: 10.1002/jimd.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
Primary mitochondrial disorders (PMDs) are challenging due to overall poor outcomes, no proven treatments, and a history of failed clinical trials, leading to a critical need to design future trials that can prove efficacy of an intervention. Selection of outcome measures for PMDs is complicated by extreme clinical, biochemical and genetic heterogeneity; PMDs are effectively a collection of nearly 400 individually ultrarare diseases. In clinical trials, outcome measures aim to evaluate, and ideally quantitate, the efficacy of an intervention in ameliorating clinical phenotype(s). The heterogeneity and multisystemic nature of PMDs makes it unlikely that a universal outcome measure will be applicable to all PMDs. Instead, a composite score of the individual's most worrisome symptoms may be a preferable endpoint. A further challenge arises from the tension between finding outcomes suitable for use in clinical trials (able to produce a measurable change in a relatively short period of time, namely the duration of a clinical trial) vs measures that are clinically meaningful to individual patients. A number of clinical rating scales and proposed biomarkers have emerged to capture the features of PMDs for natural history and interventional trials. Here we review our collective experiences with clinical rating scales, patient-reported outcome measures, and physiological, imaging, biochemical and muscle phenotypes as outcome measures in paediatric and adult PMDs in natural history studies and recent clinical trials. There is a pressing need to agree on a set of validated, robust, clinically meaningful outcome measures internationally, to facilitate the multicentre international clinical trials needed for optimal evaluation of novel therapies for these ultrarare diseases.
Collapse
Affiliation(s)
- Amy Goldstein
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shamima Rahman
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
10
|
Marti-Sanchez L, Baide-Mairena H, Marcé-Grau A, Pons R, Skouma A, López-Laso E, Sigatullina M, Rizzo C, Semeraro M, Martinelli D, Carrozzo R, Dionisi-Vici C, González-Gutiérrez-Solana L, Correa-Vela M, Ortigoza-Escobar JD, Sánchez-Montañez Á, Vazquez É, Delgado I, Aguilera-Albesa S, Yoldi ME, Ribes A, Tort F, Pollini L, Galosi S, Leuzzi V, Tolve M, Pérez-Gay L, Aldamiz-Echevarría L, Del Toro M, Arranz A, Roelens F, Urreizti R, Artuch R, Macaya A, Pérez-Dueñas B. Delineating the neurological phenotype in children with defects in the ECHS1 or HIBCH gene. J Inherit Metab Dis 2021; 44:401-414. [PMID: 32677093 DOI: 10.1002/jimd.12288] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022]
Abstract
The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.
Collapse
Affiliation(s)
- Laura Marti-Sanchez
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Heidy Baide-Mairena
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Paediatrics, Hospital General de Granollers, Granollers, Spain
| | - Anna Marcé-Grau
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Roser Pons
- Department of Paediatric Neurology, Hospital Agia Sofia, Athens, Greece
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Eduardo López-Laso
- Unit of Paediatric Neurology, Department of Pediatrics, University Hospital Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBERER-ISCIII, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
| | - Maria Sigatullina
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Cristiano Rizzo
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Michela Semeraro
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rosalba Carrozzo
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Luis González-Gutiérrez-Solana
- CIBERER-ISCIII, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
- Department of Pediatric Neurology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Marta Correa-Vela
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ángel Sánchez-Montañez
- Department of Neuroradiology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain
| | - Élida Vazquez
- Department of Neuroradiology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain
| | - Ignacio Delgado
- Department of Neuroradiology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Unit of Paediatric Neurology, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain
| | - María Eugenia Yoldi
- Unit of Paediatric Neurology, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain
| | - Antonia Ribes
- CIBERER-ISCIII, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Frederic Tort
- CIBERER-ISCIII, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Luca Pollini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Serena Galosi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Manuela Tolve
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Laura Pérez-Gay
- Unit of Paediatric Neurology, Hospital Universitario Lucus Augusti, Lugo, Spain
| | | | - Mireia Del Toro
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Antonio Arranz
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Roser Urreizti
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBERER-ISCIII, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
| | - Rafael Artuch
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBERER-ISCIII, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERER-ISCIII, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
| | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebrón, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Neuroimaging of Basal Ganglia in Neurometabolic Diseases in Children. Brain Sci 2020; 10:brainsci10110849. [PMID: 33198265 PMCID: PMC7697699 DOI: 10.3390/brainsci10110849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Diseases primarily affecting the basal ganglia in children result in characteristic disturbances of movement and muscle tone. Both experimental and clinical evidence indicates that the basal ganglia also play a role in higher mental states. The basal ganglia can be affected by neurometabolic, degenerative diseases or other conditions from which they must be differentiated. Neuroradiological findings in basal ganglia diseases are also known. However, they may be similar in different diseases. Their assessment in children may require repeated MRI examinations depending on the stage of brain development (mainly the level of myelination). A large spectrum of pathological changes in the basal ganglia in many diseases is caused by their vulnerability to metabolic abnormalities and chemical or ischemic trauma. The diagnosis is usually established by correlation of clinical and radiological findings. Neuroimaging of basal ganglia in neurometabolic diseases is helpful in early diagnosis and monitoring of changes for optimal therapy. This review focuses on neuroimaging of basal ganglia and its role in the differential diagnosis of inborn errors of metabolism.
Collapse
|
12
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
13
|
Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, Alston CL, Oláhová M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis 2020; 43:36-50. [PMID: 31021000 PMCID: PMC7041634 DOI: 10.1002/jimd.12104] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial disease is hugely diverse with respect to associated clinical presentations and underlying genetic causes, with pathogenic variants in over 300 disease genes currently described. Approximately half of these have been discovered in the last decade due to the increasingly widespread application of next generation sequencing technologies, in particular unbiased, whole exome-and latterly, whole genome sequencing. These technologies allow more genetic data to be collected from patients with mitochondrial disorders, continually improving the diagnostic success rate in a clinical setting. Despite these significant advances, some patients still remain without a definitive genetic diagnosis. Large datasets containing many variants of unknown significance have become a major challenge with next generation sequencing strategies and these require significant functional validation to confirm pathogenicity. This interface between diagnostics and research is critical in continuing to expand the list of known pathogenic variants and concomitantly enhance our knowledge of mitochondrial biology. The increasing use of whole exome sequencing, whole genome sequencing and other "omics" techniques such as transcriptomics and proteomics will generate even more data and allow further interrogation and validation of genetic causes, including those outside of coding regions. This will improve diagnostic yields still further and emphasizes the integral role that functional assessment of variant causality plays in this process-the overarching focus of this review.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Jack J. Collier
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Ruth I. C. Glasgow
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Fiona M. Robertson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
14
|
Barcia G, Rio M, Assouline Z, Zangarelli C, Gueguen N, Dumas VD, Marcorelles P, Schiff M, Slama A, Barth M, Hully M, de Lonlay P, Munnich A, Desguerre I, Bonnefont JP, Steffann J, Procaccio V, Boddaert N, Rötig A, Metodiev MD, Ruzzenente B. Clinical, neuroimaging and biochemical findings in patients and patient fibroblasts expressing ten novel GFM1 mutations. Hum Mutat 2019; 41:397-402. [PMID: 31680380 DOI: 10.1002/humu.23937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Pathogenic GFM1 variants have been linked to neurological phenotypes with or without liver involvement, but only a few cases have been reported in the literature. Here, we report clinical, biochemical, and neuroimaging findings from nine unrelated children carrying GFM1 variants, 10 of which were not previously reported. All patients presented with neurological involvement-mainly axial hypotonia and dystonia during the neonatal period-with five diagnosed with West syndrome; two children had liver involvement with cytolysis episodes or hepatic failure. While two patients died in infancy, six exhibited a stable clinical course. Brain magnetic resonance imaging showed the involvement of basal ganglia, brainstem, and periventricular white matter. Mutant EFG1 and OXPHOS proteins were decreased in patient's fibroblasts consistent with impaired mitochondrial translation. Thus, we expand the genetic spectrum of GFM1-linked disease and provide detailed clinical profiles of the patients that will improve the diagnostic success for other patients carrying GFM1 mutations.
Collapse
Affiliation(s)
- Giulia Barcia
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Marlène Rio
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Zahra Assouline
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Coralie Zangarelli
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Naig Gueguen
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Valerie D Dumas
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | | | - Manuel Schiff
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Reference Center for Inherited Metabolic Diseases, Robert Debré Hospital, Paris, France
| | - Abdelhamid Slama
- Biochemistry laboratory, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Magalie Barth
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Marie Hully
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Pascale de Lonlay
- Reference Center for Inherited Metabolic Diseases, Necker Enfants Malades Hospital, Imagine Institute, Paris Descartes University, INEM-1151, G2M, MetabERN, Paris, France
| | - Arnold Munnich
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Isabelle Desguerre
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Jean-Paul Bonnefont
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Julie Steffann
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Department of Genetics, Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Vincent Procaccio
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, INSERM UMR 1163, INSERM U1000, Necker Enfants Malades Hospital, Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Agnès Rötig
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Metodi D Metodiev
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Benedetta Ruzzenente
- Laboratory for Genetics of Mitochondrial Disorders, INSERM U1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
15
|
Baide-Mairena H, Gaudó P, Marti-Sánchez L, Emperador S, Sánchez-Montanez A, Alonso-Luengo O, Correa M, Grau AM, Ortigoza-Escobar JD, Artuch R, Vázquez E, Del Toro M, Garrido-Pérez N, Ruiz-Pesini E, Montoya J, Bayona-Bafaluy MP, Pérez-Dueñas B. Mutations in the mitochondrial complex I assembly factor NDUFAF6 cause isolated bilateral striatal necrosis and progressive dystonia in childhood. Mol Genet Metab 2019; 126:250-258. [PMID: 30642748 DOI: 10.1016/j.ymgme.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 01/30/2023]
Abstract
AIM To perform a deep phenotype characterisation in a pedigree of 3 siblings with Leigh syndrome and compound heterozygous NDUFAF6 mutations. METHOD A multi-gene panel of childhood-onset basal ganglia neurodegeneration inherited conditions was analysed followed by functional studies in fibroblasts. RESULTS Three siblings developed gait dystonia in infancy followed by rapid progression to generalised dystonia and psychomotor regression. Brain magnetic resonance showed symmetric and bilateral cytotoxic lesions in the putamen and proliferation of the lenticular-striate arteries, latter spreading to the caudate and progressing to cavitation and volume loss. We identified a frameshift novel change (c.554_558delTTCTT; p.Tyr187AsnfsTer65) and a pathogenic missense change (c.371T>C; p.Ile124Thr) in the NDUFAF6 gene, which segregated with an autosomal recessive inheritance within the family. Patient mutations were associated with the absence of the NDUFAF6 protein and reduced activity and assembly of mature complex I in fibroblasts. By functional complementation assay, the mutant phenotype was rescued by the canonical version of the NDUFAF6. A literature review of 14 NDUFAF6 patients showed a consistent phenotype of an early childhood insidious onset neurological regression with prominent dystonia associated with basal ganglia degeneration and long survival. INTERPRETATION NDUFAF6-related Leigh syndrome is a relevant cause of childhood onset dystonia and isolated bilateral striatal necrosis. By genetic complementation, we could demonstrate the pathogenicity of novel genetic variants in NDUFAF6.
Collapse
Affiliation(s)
- Heidy Baide-Mairena
- Department of Child Neurology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain; Faculty of Medicine, Universitat Autónoma de Barcelona, Unitat Docent Vall d'Hebrón, Spain
| | - Paula Gaudó
- Departament of Biochemistry, Molecular and Cellular Biology, Zaragoza University-Sanitary Research Institute of Aragon (IIS-Aragón), Zaragoza, Spain
| | - Laura Marti-Sánchez
- Clinical Biochemistry Institut de Recerca - Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Sonia Emperador
- Departament of Biochemistry, Molecular and Cellular Biology, Zaragoza University-Sanitary Research Institute of Aragon (IIS-Aragón), Zaragoza, Spain; CIBERER, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
| | | | - Olga Alonso-Luengo
- Department of Pediatrics, University Hospital Virgen del Rocío, Sevilla, Spain
| | - Marta Correa
- Department of Child Neurology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain
| | - Anna Marcè Grau
- Department of Child Neurology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain
| | | | - Rafael Artuch
- Clinical Biochemistry Institut de Recerca - Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Elida Vázquez
- Neuroradiology Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain
| | - Mireia Del Toro
- Department of Child Neurology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain
| | - Nuria Garrido-Pérez
- Departament of Biochemistry, Molecular and Cellular Biology, Zaragoza University-Sanitary Research Institute of Aragon (IIS-Aragón), Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departament of Biochemistry, Molecular and Cellular Biology, Zaragoza University-Sanitary Research Institute of Aragon (IIS-Aragón), Zaragoza, Spain
| | - Julio Montoya
- Departament of Biochemistry, Molecular and Cellular Biology, Zaragoza University-Sanitary Research Institute of Aragon (IIS-Aragón), Zaragoza, Spain; CIBERER, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
| | - María Pilar Bayona-Bafaluy
- Departament of Biochemistry, Molecular and Cellular Biology, Zaragoza University-Sanitary Research Institute of Aragon (IIS-Aragón), Zaragoza, Spain; CIBERER, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain
| | - Belén Pérez-Dueñas
- Department of Child Neurology, Hospital Vall d'Hebron - Institut de Recerca (VHIR), Barcelona, Spain; CIBERER, Centro de Investigaciones Biomédicas en Red de Enfermedades Raras, Madrid, Spain; Faculty of Medicine, Universitat Autónoma de Barcelona, Unitat Docent Vall d'Hebrón, Spain.
| |
Collapse
|
16
|
Theunissen TEJ, Nguyen M, Kamps R, Hendrickx AT, Sallevelt SCEH, Gottschalk RWH, Calis CM, Stassen APM, de Koning B, Mulder-Den Hartog ENM, Schoonderwoerd K, Fuchs SA, Hilhorst-Hofstee Y, de Visser M, Vanoevelen J, Szklarczyk R, Gerards M, de Coo IFM, Hellebrekers DMEI, Smeets HJM. Whole Exome Sequencing Is the Preferred Strategy to Identify the Genetic Defect in Patients With a Probable or Possible Mitochondrial Cause. Front Genet 2018; 9:400. [PMID: 30369941 PMCID: PMC6194163 DOI: 10.3389/fgene.2018.00400] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS deficiencies, are caused by pathogenic variants in mitochondrial genes. However, pathogenic variants in some of these genes can lead to clinical manifestations which overlap with other neuromuscular diseases, which can be caused by pathogenic variants in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial function. We have performed a two-step next-generation sequencing approach in a cohort of 117 patients, mostly children, in whom a mitochondrial disease-cause could likely or possibly explain the phenotype. A total of 86 patients had a mitochondrial disorder, according to established clinical and biochemical criteria. The other 31 patients had neuromuscular symptoms, where in a minority a mitochondrial genetic cause is present, but a non-mitochondrial genetic cause is more likely. All patients were screened for pathogenic variants in the mtDNA and, if excluded, analyzed by whole exome sequencing (WES). Variants were filtered for being pathogenic and compatible with an autosomal or X-linked recessive mode of inheritance in families with multiple affected siblings and/or consanguineous parents. Non-consanguineous families with a single patient were additionally screened for autosomal and X-linked dominant mutations in a predefined gene-set. We identified causative pathogenic variants in the mtDNA in 20% of the patient-cohort, and in nuclear genes in 49%, implying an overall yield of 68%. We identified pathogenic variants in mitochondrial and non-mitochondrial genes in both groups with, obviously, a higher number of mitochondrial genes affected in mitochondrial disease patients. Furthermore, we show that 31% of the disease-causing genes in the mitochondrial patient group were not included in the MitoCarta database, and therefore would have been missed with MitoCarta based gene-panels. We conclude that WES is preferable to panel-based approaches for both groups of patients, as the mitochondrial gene-list is not complete and mitochondrial symptoms can be secondary. Also, clinically and genetically heterogeneous disorders would require sequential use of multiple different gene panels. We conclude that WES is a comprehensive and unbiased approach to establish a genetic diagnosis in these patients, able to resolve multi-genic disease-causes.
Collapse
Affiliation(s)
- Tom E J Theunissen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Minh Nguyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Rick Kamps
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Alexandra T Hendrickx
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Suzanne C E H Sallevelt
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ralph W H Gottschalk
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Chantal M Calis
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bart de Koning
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Sabine A Fuchs
- Department of Metabolic Disorders, University Medical Centre Utrecht, Utrecht, Netherlands
| | | | - Marianne de Visser
- Department of Neurology, Academic Medical Centre Amsterdam, Amsterdam, Netherlands
| | - Jo Vanoevelen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Radek Szklarczyk
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mike Gerards
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Maastricht Center for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Debby M E I Hellebrekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|