1
|
Vázquez-Domínguez I, Anido AA, Duijkers L, Hoppenbrouwers T, Hoogendoorn AM, Koster C, Collin RJ, Garanto A. Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina. Nucleic Acids Res 2024; 52:10447-10463. [PMID: 39119918 PMCID: PMC11417397 DOI: 10.1093/nar/gkae686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2'O-methyl-phosphorothioate (2-OMe/PS), 2'O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2'MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.
Collapse
Affiliation(s)
| | - Alejandro Allo Anido
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Tamara Hoppenbrouwers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Anita D M Hoogendoorn
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| | - Céline Koster
- Departments of Human Genetics and Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob W J Collin
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Basharat R, de Bruijn SE, Zahid M, Rodenburg K, Hitti-Malin RJ, Rodríguez-Hidalgo M, Boonen EGM, Jarral A, Mahmood A, Corominas J, Khalil S, Zai JA, Ali G, Ruiz-Ederra J, Gilissen C, Cremers FPM, Ansar M, Panneman DM, Roosing S. Next-generation sequencing to genetically diagnose a diverse range of inherited eye disorders in 15 consanguineous families from Pakistan. Exp Eye Res 2024; 244:109945. [PMID: 38815792 DOI: 10.1016/j.exer.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.
Collapse
Affiliation(s)
- Rabia Basharat
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Zahid
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Erica G M Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Afeefa Jarral
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, (AJK), Pakistan
| | - Arif Mahmood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sharqa Khalil
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawaid Ahmed Zai
- Department of Physiology and MLT, University of Sindh, Jamshoro, Pakistan
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Ansar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Brotherton C, Megaw R. Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes (Basel) 2024; 15:727. [PMID: 38927662 PMCID: PMC11202562 DOI: 10.3390/genes15060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour vision and reduced visual acuity. Currently, 37 genes are associated with varying forms of ICD; however, almost half of all patients receive no molecular diagnosis. This review will discuss the known ICD genes, their molecular function, and the diseases they cause, with a focus on the most common forms of ICDs, including achromatopsia, progressive cone dystrophies (CODs), and cone-rod dystrophies (CORDs). It will discuss the gene-specific therapies that have emerged in recent years in order to treat patients with some of the more common ICDs.
Collapse
Affiliation(s)
- Chloe Brotherton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU1, UK;
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Chalmers St., Edinburgh EH3 9HA, UK
| |
Collapse
|
4
|
Thuma TBT, Procopio RA, Jimenez HJ, Gunton KB, Pulido JS. Hypomorphic variants in inherited retinal and ocular diseases: A review of the literature with clinical cases. Surv Ophthalmol 2024; 69:337-348. [PMID: 38036193 DOI: 10.1016/j.survophthal.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hypomorphic variants decrease, but do not eliminate, gene function via a reduction in the amount of mRNA or protein product produced by a gene or by production of a gene product with reduced function. Many hypomorphic variants have been implicated in inherited retinal diseases (IRDs) and other genetic ocular conditions; however, there is heterogeneity in the use of the term "hypomorphic" in the scientific literature. We searched for all hypomorphic variants reported to cause IRDs and ocular disorders. We also discuss the presence of hypomorphic variants in the patient population of our ocular genetics department over the past decade. We propose that standardized criteria should be adopted for use of the term "hypomorphic" to describe gene variants to improve genetic counseling and patient care outcomes.
Collapse
Affiliation(s)
- Tobin B T Thuma
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | | | - Hiram J Jimenez
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA
| | - Kammi B Gunton
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | - Jose S Pulido
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Wang R, Helbig I, Edmondson AC, Lin L, Xing Y. Splicing defects in rare diseases: transcriptomics and machine learning strategies towards genetic diagnosis. Brief Bioinform 2023; 24:bbad284. [PMID: 37580177 PMCID: PMC10516351 DOI: 10.1093/bib/bbad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Genomic variants affecting pre-messenger RNA splicing and its regulation are known to underlie many rare genetic diseases. However, common workflows for genetic diagnosis and clinical variant interpretation frequently overlook splice-altering variants. To better serve patient populations and advance biomedical knowledge, it has become increasingly important to develop and refine approaches for detecting and interpreting pathogenic splicing variants. In this review, we will summarize a few recent developments and challenges in using RNA sequencing technologies for rare disease investigation. Moreover, we will discuss how recent computational splicing prediction tools have emerged as complementary approaches for revealing disease-causing variants underlying splicing defects. We speculate that continuous improvements to sequencing technologies and predictive modeling will not only expand our understanding of splicing regulation but also bring us closer to filling the diagnostic gap for rare disease patients.
Collapse
Affiliation(s)
- Robert Wang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew C Edmondson
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lan Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Rodríguez-Hidalgo M, de Bruijn SE, Corradi Z, Rodenburg K, Lara-López A, Valverde-Megías A, Ávila-Fernández A, Fernandez-Caballero L, Del Pozo-Valero M, Corominas J, Gilissen C, Irigoyen C, Cremers FPM, Ayuso C, Ruiz-Ederra J, Roosing S. ABCA4 c.6480-35A>G, a novel branchpoint variant associated with Stargardt disease. Front Genet 2023; 14:1234032. [PMID: 37779911 PMCID: PMC10539688 DOI: 10.3389/fgene.2023.1234032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Inherited retinal dystrophies (IRDs) can be caused by variants in more than 280 genes. The ATP-binding cassette transporter type A4 (ABCA4) gene is one of these genes and has been linked to Stargardt disease type 1 (STGD1), fundus flavimaculatus, cone-rod dystrophy (CRD), and pan-retinal CRD. Approximately 25% of the reported ABCA4 variants affect RNA splicing. In most cases, it is necessary to perform a functional assay to determine the effect of these variants. Methods: Whole genome sequencing (WGS) was performed in one Spanish proband with Stargardt disease. The putative pathogenicity of c.6480-35A>G on splicing was investigated both in silico and in vitro. The in silico approach was based on the deep-learning tool SpliceAI. For the in vitro approach we used a midigene splice assay in HEK293T cells, based on a previously established wild-type midigene (BA29) containing ABCA4 exons 46 to 48. Results: Through the analysis of WGS data, we identified two candidate variants in ABCA4 in one proband: a previously described deletion, c.699_768+342del (p.(Gln234Phefs*5)), and a novel branchpoint variant, c.6480-35A>G. Segregation analysis confirmed that the variants were in trans. For the branchpoint variant, SpliceAI predicted an acceptor gain with a high score (0.47) at position c.6480-47. A midigene splice assay in HEK293T cells revealed the inclusion of the last 47 nucleotides of intron 47 creating a premature stop codon and allowed to categorize the variant as moderately severe. Subsequent analysis revealed the presence of this variant as a second allele besides c.1958G>A p.(Arg653His) in an additional Spanish proband in a large cohort of IRD cases. Conclusion: A splice-altering effect of the branchpoint variant, confirmed by the midigene splice assay, along with the identification of this variant in a second unrelated individual affected with STGD, provides sufficient evidence to classify the variant as likely pathogenic. In addition, this research highlights the importance of studying non-coding regions and performing functional assays to provide a conclusive molecular diagnosis.
Collapse
Affiliation(s)
- María Rodríguez-Hidalgo
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Genetic, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Almudena Ávila-Fernández
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Fernandez-Caballero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cristina Irigoyen
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Ophthalmology Service, Donostia Universy Hospital, Donostia-San Sebastián, Spain
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- Department of Ophthalmology, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Karam A, Delvallée C, Estrada-Cuzcano A, Geoffroy V, Lamouche JB, Leuvrey AS, Nourisson E, Tarabeux J, Stoetzel C, Scheidecker S, Porter LF, Génin E, Redon R, Sandron F, Boland A, Deleuze JF, Le May N, Dollfus H, Muller J. WGS Revealed Novel BBS5 Pathogenic Variants, Missed by WES, Causing Ciliary Structure and Function Defects. Int J Mol Sci 2023; 24:8729. [PMID: 37240074 PMCID: PMC10218572 DOI: 10.3390/ijms24108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy that affects multiple organs, leading to retinitis pigmentosa, polydactyly, obesity, renal anomalies, cognitive impairment, and hypogonadism. Until now, biallelic pathogenic variants have been identified in at least 24 genes delineating the genetic heterogeneity of BBS. Among those, BBS5 is a minor contributor to the mutation load and is one of the eight subunits forming the BBSome, a protein complex implied in protein trafficking within the cilia. This study reports on a European BBS5 patient with a severe BBS phenotype. Genetic analysis was performed using multiple next-generation sequencing (NGS) tests (targeted exome, TES and whole exome, WES), and biallelic pathogenic variants could only be identified using whole-genome sequencing (WGS), including a previously missed large deletion of the first exons. Despite the absence of family samples, the biallelic status of the variants was confirmed. The BBS5 protein's impact was confirmed on the patient's cells (presence/absence and size of the cilium) and ciliary function (Sonic Hedgehog pathway). This study highlights the importance of WGS and the challenge of reliable structural variant detection in patients' genetic explorations as well as functional tests to assess a variant's pathogenicity.
Collapse
Affiliation(s)
- Adella Karam
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Clarisse Delvallée
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Alejandro Estrada-Cuzcano
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Jean-Baptiste Lamouche
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Anne-Sophie Leuvrey
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Elsa Nourisson
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Julien Tarabeux
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Louise Frances Porter
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Emmanuelle Génin
- Inserm, Université de Brest, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Richard Redon
- CHU Nantes, CNRS, INSERM, L’institut du Thorax, Nantes Université, 44000 Nantes, France
| | - Florian Sandron
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Nicolas Le May
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
- Service de Génétique Médicale, Institut de Génétique Médicale d’Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
8
|
Viering DH, Hureaux M, Neveling K, Latta F, Kwint M, Blanchard A, Konrad M, Bindels RJ, Schlingmann KP, Vargas-Poussou R, de Baaij JH. Long-Read Sequencing Identifies Novel Pathogenic Intronic Variants in Gitelman Syndrome. J Am Soc Nephrol 2023; 34:333-345. [PMID: 36302598 PMCID: PMC10103101 DOI: 10.1681/asn.2022050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gitelman syndrome is a salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. It is caused by homozygous recessive or compound heterozygous pathogenic variants in SLC12A3 , which encodes the Na + -Cl - cotransporter (NCC). In up to 10% of patients with Gitelman syndrome, current genetic techniques detect only one specific pathogenic variant. This study aimed to identify a second pathogenic variant in introns, splice sites, or promoters to increase the diagnostic yield. METHODS Long-read sequencing of SLC12A3 was performed in 67 DNA samples from individuals with suspected Gitelman syndrome in whom a single likely pathogenic or pathogenic variant was previously detected. In addition, we sequenced DNA samples from 28 individuals with one variant of uncertain significance or no candidate variant. Midigene splice assays assessed the pathogenicity of novel intronic variants. RESULTS A second likely pathogenic/pathogenic variant was identified in 45 (67%) patients. Those with two likely pathogenic/pathogenic variants had a more severe electrolyte phenotype than other patients. Of the 45 patients, 16 had intronic variants outside of canonic splice sites (nine variants, mostly deep intronic, six novel), whereas 29 patients had an exonic variant or canonic splice site variant. Midigene splice assays of the previously known c.1670-191C>T variant and intronic candidate variants demonstrated aberrant splicing patterns. CONCLUSION Intronic pathogenic variants explain an important part of the missing heritability in Gitelman syndrome. Long-read sequencing should be considered in diagnostic workflows for Gitelman syndrome.
Collapse
Affiliation(s)
- Daan H.H.M. Viering
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marguerite Hureaux
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA), Paris, France
- Department of Genetics, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
- Paris CardioVascular Research Center, Institut National de la Santé et de Recherche Médicale (INSERM) U970, Paris City University, Paris, France
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Femke Latta
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne Blanchard
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA), Paris, France
- Clinical Investigations Center, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, University of Paris, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - René J.M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Rosa Vargas-Poussou
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA), Paris, France
- Department of Genetics, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
- Clinical Investigations Center, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Delvallée C, Dollfus H. Retinal Degeneration Animal Models in Bardet-Biedl Syndrome and Related Ciliopathies. Cold Spring Harb Perspect Med 2023; 13:13/1/a041303. [PMID: 36596648 PMCID: PMC9808547 DOI: 10.1101/cshperspect.a041303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinal degeneration due to photoreceptor ciliary-related proteins dysfunction accounts for more than 25% of all inherited retinal dystrophies. The cilium, being an evolutionarily conserved and ubiquitous organelle implied in many cellular functions, can be investigated by way of many models from invertebrate models to nonhuman primates, all these models have massively contributed to the pathogenesis understanding of human ciliopathies. Taking the Bardet-Biedl syndrome (BBS) as an emblematic example as well as other related syndromic ciliopathies, the contribution of a wide range of models has enabled to characterize the role of the BBS proteins in the archetypical cilium but also at the level of the connecting cilium of the photoreceptors. There are more than 24 BBS genes encoding for proteins that form different complexes such as the BBSome and the chaperone proteins complex. But how they lead to retinal degeneration remains a matter of debate with the possible accumulation of proteins in the inner segment and/or accumulation of unwanted proteins in the outer segment that cannot return in the inner segment machinery. Many BBS proteins (but not the chaperonins for instance) can be modeled in primitive organisms such as Paramecium, Chlamydomonas reinardtii, Trypanosoma brucei, and Caenorhabditis elegans These models have enabled clarifying the role of a subset of BBS proteins in the primary cilium as well as their relations with other modules such as the intraflagellar transport (IFT) module, the nephronophthisis (NPHP) module, or the Meckel-Gruber syndrome (MKS)/Joubert syndrome (JBTS) module mostly involved with the transition zone of the primary cilia. Assessing the role of the primary cilia structure of the connecting cilium of the photoreceptor cells has been very much studied by way of zebrafish modeling (Danio rerio) as well as by a plethora of mouse models. More recently, large animal models have been described for three BBS genes and one nonhuman primate model in rhesus macaque for BBS7 In completion to animal models, human cell models can now be used notably thanks to gene editing and the use of induced pluripotent stem cells (iPSCs). All these models are not only important for pathogenesis understanding but also very useful for studying therapeutic avenues, their pros and cons, especially for gene replacement therapy as well as pharmacological triggers.
Collapse
Affiliation(s)
- Clarisse Delvallée
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| |
Collapse
|
10
|
Jurkute N, Cancellieri F, Pohl L, Li CHZ, Heaton RA, Reurink J, Bellingham J, Quinodoz M, Yioti G, Stefaniotou M, Weener M, Zuleger T, Haack TB, Stingl K, Hoyng CB, Mahroo OA, Hargreaves I, Raymond FL, Michaelides M, Rivolta C, Kohl S, Roosing S, Webster AR, Arno G. Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype. NPJ Genom Med 2022; 7:60. [PMID: 36266294 PMCID: PMC9581764 DOI: 10.1038/s41525-022-00330-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate coenzyme Q10 (CoQ10) biosynthesis pathway defects in inherited retinal dystrophy. Individuals affected by inherited retinal dystrophy (IRD) underwent exome or genome sequencing for molecular diagnosis of their condition. Following negative IRD gene panel analysis, patients carrying biallelic variants in CoQ10 biosynthesis pathway genes were identified. Clinical data were collected from the medical records. Haplotypes harbouring the same missense variant were characterised from family genome sequencing (GS) data and direct Sanger sequencing. Candidate splice variants were characterised using Oxford Nanopore Technologies single molecule sequencing. The CoQ10 status of the human plasma was determined in some of the study patients. 13 individuals from 12 unrelated families harboured candidate pathogenic genotypes in the genes: PDSS1, COQ2, COQ4 and COQ5. The PDSS1 variant c.589 A > G was identified in three affected individuals from three unrelated families on a possible ancestral haplotype. Three variants (PDSS1 c.468-25 A > G, PDSS1 c.722-2 A > G, COQ5 c.682-7 T > G) were shown to lead to cryptic splicing. 6 affected individuals were diagnosed with non-syndromic retinitis pigmentosa and 7 had additional clinical findings. This study provides evidence of CoQ10 biosynthesis pathway gene defects leading to non-syndromic retinitis pigmentosa in some cases. Intronic variants outside of the canonical splice-sites represent an important cause of disease. RT-PCR nanopore sequencing is effective in characterising these splice defects.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,Institute of Ophthalmology, University College London, London, UK.
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lisa Pohl
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Catherina H Z Li
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores, Liverpool, UK
| | - Janine Reurink
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Bellingham
- Institute of Ophthalmology, University College London, London, UK
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Georgia Yioti
- University of Ioannina Medical School, Ioannina, Greece
| | | | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | | | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores, Liverpool, UK
| | - F Lucy Raymond
- NIHR BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne Roosing
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,Institute of Ophthalmology, University College London, London, UK. .,North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
11
|
Blakes AJM, Wai HA, Davies I, Moledina HE, Ruiz A, Thomas T, Bunyan D, Thomas NS, Burren CP, Greenhalgh L, Lees M, Pichini A, Smithson SF, Taylor Tavares AL, O'Donovan P, Douglas AGL, Whiffin N, Baralle D, Lord J. A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project. Genome Med 2022; 14:79. [PMID: 35883178 PMCID: PMC9327385 DOI: 10.1186/s13073-022-01087-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data. METHODS Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify constrained functional variant classes near exon-intron junctions and at putative splicing branchpoints. To identify new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals with de novo single-nucleotide variants near exon-intron boundaries and at putative splicing branchpoints in known disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new molecular diagnoses through clinical variant interpretation and functional RNA studies. RESULTS We show that near-splice positions and splicing branchpoints are highly constrained by purifying selection and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequencing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four in whom RNA studies were performed. CONCLUSIONS Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals with unsolved rare diseases.
Collapse
Affiliation(s)
- Alexander J M Blakes
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Htoo A Wai
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Ian Davies
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hassan E Moledina
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - April Ruiz
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Tessy Thomas
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - David Bunyan
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - N Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christine P Burren
- Department of Paediatric Endocrinology and Diabetes, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Lynn Greenhalgh
- Liverpool Centre for Genomic Medicine, Crown Street, Liverpool, UK
| | - Melissa Lees
- North East Thames Regional Genomics Service, Great Ormond Street Hospital, London, UK
| | - Amanda Pichini
- Department of Clinical Genetics, University Hospitals Bristol and Weston Foundation Trust, Bristol, UK
- Genomics England, Dawson Hall, Charterhouse Square, London, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, University Hospitals Bristol and Weston Foundation Trust, Bristol, UK
| | - Ana Lisa Taylor Tavares
- Genomics England, Dawson Hall, Charterhouse Square, London, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Peter O'Donovan
- Genomics England, Dawson Hall, Charterhouse Square, London, UK
| | - Andrew G L Douglas
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nicola Whiffin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Diana Baralle
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Jenny Lord
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK.
| |
Collapse
|
12
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
13
|
Scrutinizing pathogenicity of the USH2A c.2276 G > T; p.(Cys759Phe) variant. NPJ Genom Med 2022; 7:37. [PMID: 35672333 PMCID: PMC9174243 DOI: 10.1038/s41525-022-00306-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The USH2A variant c.2276 G > T (p.(Cys759Phe)) has been described by many authors as a frequent cause of autosomal recessive retinitis pigmentosa (arRP). However, this is in contrast with the description of two asymptomatic individuals homozygous for this variant. We therefore assessed pathogenicity of the USH2A c.2276 G > T variant using extensive genetic and functional analyses. Whole genome sequencing and optical genome mapping were performed for three arRP cases homozygous for USH2A c.2276 G > T to exclude alternative genetic causes. A minigene splice assay was designed to investigate the effect of c.2276 G > T on pre-mRNA splicing, in presence or absence of the nearby c.2256 T > C variant. Moreover, an ush2ap.(Cys771Phe) zebrafish knock-in model mimicking human p.(Cys759Phe) was generated and characterized using functional and immunohistochemical analyses. Besides the homozygous c.2276 G > T USH2A variant, no alternative genetic causes were identified. Evaluation of the ush2ap.(Cys771Phe) zebrafish model revealed strongly reduced levels of usherin expression at the photoreceptor periciliary membrane, increased levels of rhodopsin localization in the photoreceptor cell body and decreased electroretinogram (ERG) b-wave amplitudes compared to wildtype controls. In conclusion, we confirmed pathogenicity of USH2A c.2276 G > T (p.(Cys759Phe)). Consequently, cases homozygous for c.2276 G > T can now receive a definite genetic diagnosis and can be considered eligible for receiving future QR-421a-mediated exon 13 skipping therapy.
Collapse
|
14
|
Corradi Z, Salameh M, Khan M, Héon E, Mishra K, Hitti-Malin RJ, AlSwaiti Y, Aslanian A, Banin E, Brooks BP, Zein WM, Hufnagel RB, Roosing S, Dhaenens C, Sharon D, Cremers FPM, AlTalbishi A. ABCA4 c.859-25A>G, a Frequent Palestinian Founder Mutation Affecting the Intron 7 Branchpoint, Is Associated With Early-Onset Stargardt Disease. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 35475888 PMCID: PMC9055564 DOI: 10.1167/iovs.63.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/02/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The effect of noncoding variants is often unknown in the absence of functional assays. Here, we characterized an ABCA4 intron 7 variant, c.859-25A>G, identified in Palestinian probands with Stargardt disease (STGD) or cone-rod dystrophy (CRD). We investigated the effect of this variant on the ABCA4 mRNA and retinal phenotype, and its prevalence in Palestine. Methods The ABCA4 gene was sequenced completely or partially in 1998 cases with STGD or CRD. The effect of c.859-25A>G on splicing was investigated in silico using SpliceAI and in vitro using splice assays. Homozygosity mapping was performed for 16 affected individuals homozygous for c.859-25A>G. The clinical phenotype was assessed using functional and structural analyses including visual acuity, full-field electroretinography, and multimodal imaging. Results The smMIPs-based ABCA4 sequencing revealed c.859-25A>G in 10 Palestinian probands from Hebron and Jerusalem. SpliceAI predicted a significant effect of this putative branchpoint-inactivating variant on the nearby intron 7 splice acceptor site. Splice assays revealed exon 8 skipping and two partial inclusions of intron 7, each having a deleterious effect. Additional genotyping revealed another 46 affected homozygous or compound heterozygous individuals carrying variant c.859-25A>G. Homozygotes shared a genomic segment of 59.6 to 87.9 kb and showed severe retinal defects on ophthalmoscopic evaluation. Conclusions The ABCA4 variant c.859-25A>G disrupts a predicted branchpoint, resulting in protein truncation because of different splice defects, and is associated with early-onset STGD1 when present in homozygosity. This variant was found in 25/525 Palestinian inherited retinal dystrophy probands, representing one of the most frequent inherited retinal disease-causing variants in West-Bank Palestine.
Collapse
Affiliation(s)
- Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manar Salameh
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Palestine
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ketan Mishra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yahya AlSwaiti
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Palestine
| | - Alice Aslanian
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Palestine
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian P. Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institutes, National Institutes of Health, Bethesda, Maryland, United States
| | - Wadih M. Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institutes, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institutes, National Institutes of Health, Bethesda, Maryland, United States
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire‐Marie Dhaenens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alaa AlTalbishi
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Palestine
| |
Collapse
|
15
|
Velde HM, Reurink J, Held S, Li CHZ, Yzer S, Oostrik J, Weeda J, Haer-Wigman L, Yntema HG, Roosing S, Pauleikhoff L, Lange C, Whelan L, Dockery A, Zhu J, Keegan DJ, Farrar GJ, Kremer H, Lanting CP, Damme M, Pennings RJE. Usher syndrome type IV: clinically and molecularly confirmed by novel ARSG variants. Hum Genet 2022; 141:1723-1738. [PMID: 35226187 PMCID: PMC9556359 DOI: 10.1007/s00439-022-02441-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
AbstractUsher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.
Collapse
Affiliation(s)
- Hedwig M. Velde
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Janine Reurink
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Sebastian Held
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Catherina H. Z. Li
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Suzanne Yzer
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Oostrik
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Jack Weeda
- Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Helger G. Yntema
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Susanne Roosing
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Laurenz Pauleikhoff
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Whelan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Adrian Dockery
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - David J. Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - G. Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Cornelis P. Lanting
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Markus Damme
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Ronald J. E. Pennings
- Hearing and Genes, Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|