1
|
Zhang S, Liu C, Wang Q, Zhou H, Wu H, Zhuang J, Cao Y, Shi H, Zhang J, Wang J. CRYAA and GJA8 promote visual development after whisker tactile deprivation. Heliyon 2023; 9:e13897. [PMID: 36915480 PMCID: PMC10006481 DOI: 10.1016/j.heliyon.2023.e13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Deprivation of one sense can be followed by enhanced development of other senses via cross-modal plasticity mechanisms. To study the effect of whisker tactile deprivation on vision during the early stages of development, we clipped the bilateral whiskers of young mice and found that their vision was impaired but later recovered to normal levels. Our results demonstrate that inhibition of the PI3K/AKT/ERK signaling pathway caused short-term visual impairment during early development, while high expression levels of Crystallin Alpha A (CRYAA) and Gap Junction Protein Alpha 8 (GJA8) in the retina led to the recovery of developmental visual acuity. Interestingly, analysis of single-cell sequencing results from human embryonic retinas at 9-19 gestational weeks (GW) revealed that CRYAA and GJA8 display stage-specific peak expression during human embryonic retinal development, suggesting potential functions in visual development. Our data show that high expression levels of CRYAA and GJA8 in the retina after whisker deprivation rescue impaired visual development, which may provide a foundation for further research on the mechanisms of cross-modal plasticity and in particular, offer new insights into the mechanisms underlying tactile-visual cross-modal development.
Collapse
Affiliation(s)
- Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Qian Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Hao Wu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Yiyang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Hongwei Shi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author.
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
- Corresponding author.
| |
Collapse
|
2
|
Peng Y, Zheng Y, Deng Z, Zhang S, Tan Y, Hu Z, Tao L, Luo Y. Case Report: A de novo Variant of CRYGC Gene Associated With Congenital Cataract and Microphthalmia. Front Genet 2022; 13:866246. [PMID: 35719371 PMCID: PMC9198712 DOI: 10.3389/fgene.2022.866246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Congenital cataract is one of the most common causes of blindness in children. A rapid and accurate genetic diagnosis benefit the patients in the pediatric department. The current study aims to identify the genetic defects in a congenital cataract patient without a family history. Case presentation: A congenital cataract patient with microphthalmia and nystagmus was recruited for this study. Trio-based whole-exome sequencing revealed a de novo variant (c.394delG, p.V132Sfs*15) in CRYGC gene. According to the American College of Medical Genetics and Genomics (ACMG) criteria, the variant could be annontated as pathogenic. Conclusion: Our findings provide new knowledge of the variant spectrum of CRYGC gene and are essential for understanding the heterogeneity of cataracts in the Chinese population.
Collapse
Affiliation(s)
- Yu Peng
- Department of Ophthalmology & Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Yu Zheng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Zifeng Deng
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Yilan Tan
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lijuan Tao
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| | - Yulin Luo
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
3
|
Shiels A, Hejtmancik JF. Inherited cataracts: Genetic mechanisms and pathways new and old. Exp Eye Res 2021; 209:108662. [PMID: 34126080 PMCID: PMC8595562 DOI: 10.1016/j.exer.2021.108662] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Cataract(s) is the clinical equivalent of lens opacity and is caused by light scattering either by high molecular weight protein aggregates in lens cells or disruption of the lens microarchitecture itself. Genetic mutations underlying inherited cataract can provide insight into the biological processes and pathways critical for lens homeostasis and transparency, classically including the lens crystallins, connexins, membrane proteins or components, and intermediate filament proteins. More recently, cataract genes have been expanded to include newly identified biological processes such as chaperone or protein degradation components, transcription or growth factors, channels active in the lens circulation, and collagen and extracellular matrix components. Cataracts can be classified by age, and in general congenital cataracts are caused by severe mutations resulting in major damage to lens proteins, while age related cataracts are associated with variants that merely destabilize proteins thereby increasing susceptibility to environmental insults over time. Thus there might be separate pathways to opacity for congenital and age-related cataracts whereby congenital cataracts induce the unfolded protein response (UPR) and apoptosis to destroy the lens microarchitecture, while in age related cataract high molecular weight (HMW) aggregates formed by denatured crystallins bound by α-crystallin result in light scattering without severe damage to the lens microarchitecture.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1860, USA.
| |
Collapse
|
4
|
Wang KJ, Liao XY, Lin K, Xi YB, Wang S, Wan XH, Yan YB. A novel F30S mutation in γS-crystallin causes autosomal dominant congenital nuclear cataract by increasing susceptibility to stresses. Int J Biol Macromol 2021; 172:475-482. [PMID: 33454329 DOI: 10.1016/j.ijbiomac.2021.01.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 01/14/2023]
Abstract
Despite of increasingly accumulated genetic variations of autosomal dominant congenital cataracts (ADCC), the causative genes of many ADCC patients remains unknown. In this research, we identified a novel F30S mutation in γS-crystallin from a three-generation Chinese family with ADCC. The patients possessing the F30S mutation exhibited nuclear cataract phenotype. The potential molecular mechanism underlying ADCC by the F30S mutation was investigated by comparing the structural features, stability and aggregatory potency of the mutated protein with the wild type protein. Spectroscopic experiments indicated that the F30S mutation did not affect γS-crystallin secondary structure compositions, but modified the microenvironments around aromatic side-chains. Thermal and chemical denaturation studies indicated that the mutation destabilized the protein and increased its aggregatory potency. The mutation altered the two-state unfolding of γS-crystallin to a three-state unfolding with the accumulation of an unfolding intermediate. The almost identical values in the changes of Gibbs free energies for transitions from the native state to intermediate and from the intermediate to unfolded state suggested that the mutation probably disrupted the cooperativity between the two domains during unfolding. Our results expand the genetic variation map of ADCC and provide novel insights into the molecular mechanism underlying ADCC caused by mutations in β/γ-crystallins.
Collapse
Affiliation(s)
- Kai-Jie Wang
- Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao-Yan Liao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kunxia Lin
- Ophthalmology Department, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yi-Bo Xi
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sha Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiu-Hua Wan
- Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
He Y, Kang J, Song J. ATP differentially antagonizes the crowding-induced destabilization of human γS-crystallin and its four cataract-causing mutants. Biochem Biophys Res Commun 2020; 533:913-918. [PMID: 33004175 DOI: 10.1016/j.bbrc.2020.09.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
αβγ-crystallins account for ∼90% of ocular proteins in lens with concentrations ≥400 mg/ml, which has to be soluble for the whole life-span and their aggregation results in cataract. So far, four cataract-causing mutants G18V, D26G, S39C and V42 M have been identified for human γS-crystallin. Mysteriously, lens maintains ATP concentrations of 3-7 mM despite being a metabolically-quiescent organ. Here by DSF and NMR, we characterized the binding of ATP to three cataract-causing mutants of human γS-crystallin as well as its effect on the solution conformations and thermal stability. The results together decode several novel findings: 1) ATP shows no detectable binding to WT and mutants, as well as no significant alternation of their conformations even at molar ratio of 1:200.2) Cataract-causing mutants show distinctive patterns of the crowding-induced destabilization. 3) ATP differentially antagonizes their crowding-induced destabilization. Our studies suggest that the crowding-induced destabilization of human γS-crystallin is also critically dependent of the hydration shell which could be differentially altered by four mutations. Most unexpectedly, ATP acts as an effective mediator for the protein hydration shell to antagonize the crowding-induced destabilization.
Collapse
Affiliation(s)
- Yuan He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
6
|
He Y, Kang J, Song J. Cataract-causing G18V eliminates the antagonization by ATP against the crowding-induced destabilization of human γS-crystallin. Biochem Biophys Res Commun 2020; 530:554-560. [PMID: 32753316 DOI: 10.1016/j.bbrc.2020.07.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023]
Abstract
In lens, ∼90% of ocular proteins are αβγ-crystallins with concentrations ≥400 mg/ml, which need to remain soluble for the whole life-span and their aggregation leads to cataract. The G18V mutation of human γS-crystallin causes hereditary childhood-onset cortical cataract. Mysteriously, despite being a metabolically-quiescent organ, lens maintains ATP concentrations of 3-7 mM. Very recently, we found that ATP has no significant binding to γS-crystallin as well as no alternation of its conformation. Nevertheless, ATP antagonizes the crowding-induced destabilization of γS-crystallin even at 1:1, most likely by interacting with the hydration shell. Here by DSF and NMR, we characterized the effect of ATP on binding, conformation, stability of G18V γS-crystallin and its interactions with α-crystallin. The results reveal: 1) G18V significantly accelerates the crowding-induced destabilization with Tm of 67 °C reduced to 50.5 °C at 1 mM. 2) Most unexpectedly, G18V almost completely eliminates the antagonizing effect of ATP against the crowding-induced destabilization. 3) ATP shows no significant effect on the interactions of α-crystallin with both WT and G18V γS-crystallin. Results together decode for the first time that G18V causes cataract not only by accelerating the crowding-induced destabilization, but also by eliminating the antagonizing effect of ATP against the crowding-induced destabilization.
Collapse
Affiliation(s)
- Yuan He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
7
|
Abstract
In vivo, small heat-shock proteins (sHsps) are key players in maintaining a healthy proteome. αB-crystallin (αB-c) or HspB5 is one of the most widespread and populous of the ten human sHsps. Intracellularly, αB-c acts via its molecular chaperone action as the first line of defence in preventing target protein unfolding and aggregation under conditions of cellular stress. In this review, we explore how the structure of αB-c confers its function and interactions within its oligomeric self, with other sHsps, and with aggregation-prone target proteins. Firstly, the interaction between the two highly conserved regions of αB-c, the central α-crystallin domain and the C-terminal IXI motif and how this regulates αB-c chaperone activity are explored. Secondly, subunit exchange is rationalised as an integral structural and functional feature of αB-c. Thirdly, it is argued that monomeric αB-c may be its most chaperone-species active, but at the cost of increased hydrophobicity and instability. Fourthly, the reasons why hetero-oligomerisation of αB-c with other sHsps is important in regulating cellular proteostasis are examined. Finally, the interaction of αB-c with aggregation-prone, partially folded target proteins is discussed. Overall, this paper highlights the remarkably diverse capabilities of αB-c as a caretaker of the cell.
Collapse
Affiliation(s)
- Junna Hayashi
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
8
|
Roskamp KW, Paulson CN, Brubaker WD, Martin RW. Function and Aggregation in Structural Eye Lens Crystallins. Acc Chem Res 2020; 53:863-874. [PMID: 32271004 DOI: 10.1021/acs.accounts.0c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.
Collapse
Affiliation(s)
- Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Carolyn N. Paulson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - William D. Brubaker
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
9
|
Aryal S, Anand D, Hernandez FG, Weatherbee BAT, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. MS/MS in silico subtraction-based proteomic profiling as an approach to facilitate disease gene discovery: application to lens development and cataract. Hum Genet 2019; 139:151-184. [PMID: 31797049 DOI: 10.1007/s00439-019-02095-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
While the bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery) effectively identifies human cataract-associated genes, it is currently based on just transcriptome data, and thus, it is necessary to include protein-level information to gain greater confidence in gene prioritization. Here, we expand iSyTE through development of a novel proteome-based resource on the lens and demonstrate its utility in cataract gene discovery. We applied high-throughput tandem mass spectrometry (MS/MS) to generate a global protein expression profile of mouse lens at embryonic day (E)14.5, which identified 2371 lens-expressed proteins. A major challenge of high-throughput expression profiling is identification of high-priority candidates among the thousands of expressed proteins. To address this problem, we generated new MS/MS proteome data on mouse whole embryonic body (WB). WB proteome was then used as a reference dataset for performing "in silico WB-subtraction" comparative analysis with the lens proteome, which effectively identified 422 proteins with lens-enriched expression at ≥ 2.5 average spectral counts, ≥ 2.0 fold enrichment (FDR < 0.01) cut-off. These top 20% candidates represent a rich pool of high-priority proteins in the lens including known human cataract-linked genes and many new potential regulators of lens development and homeostasis. This rich information is made publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), which enables user-friendly visualization of promising candidates, thus making iSyTE a comprehensive tool for cataract gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Francisco G Hernandez
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Bailey A T Weatherbee
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Roskamp KW, Kozlyuk N, Sengupta S, Bierma JC, Martin RW. Divalent Cations and the Divergence of βγ-Crystallin Function. Biochemistry 2019; 58:4505-4518. [PMID: 31647219 DOI: 10.1021/acs.biochem.9b00507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The βγ-crystallin superfamily contains both β- and γ-crystallins of the vertebrate eye lens and the microbial calcium-binding proteins, all of which are characterized by a common double-Greek key domain structure. The vertebrate βγ-crystallins are long-lived structural proteins that refract light onto the retina. In contrast, the microbial βγ-crystallins bind calcium ions. The βγ-crystallin from the tunicate Ciona intestinalis (Ci-βγ) provides a potential link between these two functions. It binds calcium with high affinity and is found in a light-sensitive sensory organ that is highly enriched in metal ions. Thus, Ci-βγ is valuable for investigating the evolution of the βγ-crystallin fold away from calcium binding and toward stability in the apo form as part of the vertebrate lens. Here, we investigate the effect of Ca2+ and other divalent cations on the stability and aggregation propensity of Ci-βγ and human γS-crystallin (HγS). Beyond Ca2+, Ci-βγ is capable of coordinating Mg2+, Sr2+, Co2+, Mn2+, Ni2+, and Zn2+, although only Sr2+ is bound with comparable affinity to its preferred metal ion. The extent to which the tested divalent cations stabilize Ci-βγ structure correlates strongly with ionic radius. In contrast, none of the tested divalent cations improved the stability of HγS, and some of them induced aggregation. Zn2+, Ni2+, and Co2+ induce aggregation by interacting with cysteine residues, whereas Cu2+-mediated aggregation proceeds via a different binding site.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Natalia Kozlyuk
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Suvrajit Sengupta
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Jan C Bierma
- Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3900 , United States
| | - Rachel W Martin
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States.,Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3900 , United States
| |
Collapse
|
11
|
Abstract
Cataract, the clinical correlate of opacity or light scattering in the eye lens, is usually caused by the presence of high-molecular-weight (HMW) protein aggregates or disruption of the lens microarchitecture. In general, genes involved in inherited cataracts reflect important processes and pathways in the lens including lens crystallins, connexins, growth factors, membrane proteins, intermediate filament proteins, and chaperones. Usually, mutations causing severe damage to proteins cause congenital cataracts, while milder variants increasing susceptibility to environmental insults are associated with age-related cataracts. These may have different pathogenic mechanisms: Congenital cataracts induce the unfolded protein response and apoptosis. By contrast, denatured crystallins in age-related cataracts are bound by α-crystallin and form light-scattering HMW aggregates. New therapeutic approaches to age-related cataracts use chemical chaperones to solubilize HMW aggregates, while attempts are being made to regenerate lenses using endogenous stem cells to treat congenital cataracts.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1860, USA;
| |
Collapse
|
12
|
Weatherbee BAT, Barton JR, Siddam AD, Anand D, Lachke SA. Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Exp Eye Res 2019; 188:107787. [PMID: 31479653 DOI: 10.1016/j.exer.2019.107787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Cataract-associated gene discovery in human and animal models have informed on key aspects of human lens development, homeostasis and pathology. Additionally, in vitro models such as the culture of permanent human lens epithelium-derived cell lines (LECs) have also been utilized to understand the molecular biology of lens cells. However, these resources remain uncharacterized, specifically regarding their global gene expression and suitability to model lens cell biology. Therefore, we sought to molecularly characterize gene expression in the human LEC, SRA01/04, which is commonly used in lens studies. We first performed short tandem repeat (STR) analysis and validated SRA01/04 LEC for its human origin, as recommended by the eye research community. Next, we used Illumina HumanHT-12 v3.0 Expression BeadChip arrays to gain insights into the global gene expression profile of SRA01/04. Comparative analysis of SRA01/04 microarray data was performed using other resources such as the lens expression database iSyTE (integrated Systems Tool for Eye gene discovery), the cataract gene database Cat-Map and the published lens literature. This analysis showed that SRA01/04 significantly expresses >40% of the top iSyTE lens-enriched genes (313 out of 749) across different developmental stages. Further, SRA01/04 also significantly expresses ~53% (168 out of 318) of cataract-associated genes in Cat-Map. We also performed comparative gene expression analysis between SRA01/04 cells and the previously validated mouse LEC 21EM15. To gain insight into whether SRA01/04 reflects epithelial or fiber cell characteristics, we compared its gene expression profile to previously reported differentially expressed genes in isolated mouse lens epithelial and fiber cells. This analysis suggests that SRA01/04 has reduced expression of several fiber cell-enriched genes. In agreement with these findings, cell culture analysis demonstrates that SRA01/04 has reduced potential to initiate spontaneous lentoid body formation compared to 21EM15 cells. Next, to independently validate SRA01/04 microarray gene expression, we subjected several candidate genes to RT-PCR and RT-qPCR assays. This analysis demonstrates that SRA01/04 supports expression of many key genes associated with lens development and cataract, including CRYAB, CRYBB2, CRYGS, DKK3, EPHA2, ETV5, GJA1, HSPB1, INPPL1, ITGB1, PAX6, PVRL3, SFRP1, SPARC, TDRD7, and VIM, among others, and therefore can be relevant for understanding the mechanistic basis of these factors. At the same time, SRA01/04 cells do not exhibit robust expression of several genes known to be important to lens biology and cataract such as ALDH1A1, COL4A6, CP, CRYBA4, FOXE3, HMX1, HSF4, MAF, MEIS1, PITX3, PRX, SIX3, and TRPM3, among many others. Therefore, the present study offers a rich transcript-level resource for case-by-case evaluation of the potential advantages and limitations of SRA01/04 cells prior to their use in downstream investigations. In sum, these data show that the human LEC, SRA01/04, exhibits lens epithelial cell-like character reflected in the expression of several lens-enriched and cataract-associated genes, and therefore can be considered as a useful in vitro resource when combined with in vivo studies to gain insight into specific aspects of human lens epithelial cells.
Collapse
Affiliation(s)
| | - Joshua R Barton
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
13
|
Zhang Y, Wang Z, Zhao G, Liu JX. Silver nanoparticles affect lens rather than retina development in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:279-288. [PMID: 30056342 DOI: 10.1016/j.ecoenv.2018.07.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNPs) have been reported to inhibit specification and differentiation of erythroid cells, chromatophores, and myofibrils during zebrafish embryogenesis. However, the knowledge of biological effects of AgNPs on eye development, especially on lens development is scarce. In this study, embryos were exposed to or injected with 0.4 mg/L AgNPs, and the results indicate that no obvious morphological changes in eye formation were observed in the stressed embryos compared to the controls. However, clefts and vacuoles were observed in lens of embryos from AgNPs stressed group. Additionally, the down-regulated expressions of different lens crystallin isoform genes and the normal expression of retinal genes were observed in AgNPs stressed embryos, suggesting AgNPs might inhibit the development of lens rather than the development of retina in zebrafish embryos. Moreover, no obvious cell apoptosis was observed, but normal nuclear DNA and RNA export was observed in lens cells. Together, the data in this study reveal that AgNPs damage the development of lens rather than retina resulting in eye abnormalities via some unknown mechanisms rather than via triggering cells apoptosis or blocking nuclear DNA or RNA export.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - ZiYang Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, Hunan, China.
| |
Collapse
|
14
|
Reis LM, Semina EV. Genetic landscape of isolated pediatric cataracts: extreme heterogeneity and variable inheritance patterns within genes. Hum Genet 2018; 138:847-863. [PMID: 30187164 DOI: 10.1007/s00439-018-1932-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Pediatric cataract represents an important cause of pediatric visual impairment. While both genetic and environmental causes for pediatric cataract are known, a large proportion remains idiopathic. The purpose of this review is to discuss genes involved in isolated pediatric cataract, with a focus on variable inheritance patterns within genes. Mutations in over 52 genes are known to cause isolated pediatric cataract, with a major contribution from genes encoding for crystallins, transcription factors, membrane proteins, and cytoskeletal proteins. Interestingly, both dominant and recessive inheritance patterns have been reported for mutations in 13 different cataract genes. For some genes, dominant and recessive alleles represent distinct types of mutations, but for many, especially missense variants, there are no clear patterns to distinguish between dominant and recessive alleles. Further research into the functional effects of these mutations, as well as additional data on the frequency of the identified variants, is needed to clarify variant pathogenicity. Exome sequencing continues to be successful in identifying novel genes associated with congenital cataract but is hindered by the extreme genetic heterogeneity of this condition. The large number of idiopathic cases suggests that more genes and potentially novel mechanisms of gene disruption remain to be identified.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
15
|
Zhang T, Yan L, Leng Y, Chen C, Ma L, Wang Q, Zhang J, Cao L. A novel missense mutation of CRYGS underlies congenital cataract in a Chinese family. Gene 2018; 675:9-14. [PMID: 29964096 DOI: 10.1016/j.gene.2018.06.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022]
Abstract
Congenital cataract is a clinically and genetically heterogeneous disease. In this study, we examined a five-generation Chinese family with autosomal dominant nuclear congenital cataracts by whole exome sequencing. A novel heterozygous missense mutation c.199T>A, p.(Tyr67Asn) in CRYGS was identified in this family. The p.(Tyr67Asn) substitution was predicted to decrease the local hydrophobicity and affect the three-dimensional structure of γS-crystallin, and resulted in a portion of mutant protein translocation from the cytoplasm to cell membrane. Our observations expand the mutation spectrum of CRYGS and provide further evidence for the genetic basis and molecular mechanism of congenital cataract.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research Liaoning Province, Eye Hospital of China Medical University, Shenyang, China
| | - Lulu Yan
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yunji Leng
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Liwei Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research Liaoning Province, Eye Hospital of China Medical University, Shenyang, China
| | - Qian Wang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research Liaoning Province, Eye Hospital of China Medical University, Shenyang, China
| | - Lihua Cao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Bari KJ, Sharma S, Chary KVR. Sequence specific 1H, 13C and 15N resonance assignments of a cataract-related variant G57W of human γS-crystallin. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:51-55. [PMID: 28936763 DOI: 10.1007/s12104-017-9779-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
γS-crystallin is a major structural component of the human eye lens, which maintains its stability over the lifetime of an organism with negligible turnover. The G57W mutant of human γS-crystallin (abbreviated hereafter as γS-G57W) is associated with dominant congenital cataracts. In order to provide a structural basis for the ability of γS-G57W causing cataract, we have cloned, overexpressed, isolated and purified the protein. The 2D [15N-1H]-HSQC spectrum recorded with uniformly 13C/15N-labelled γS-G57W was highly dispersed indicating the protein to adopt an ordered conformation. In this paper, we report almost complete sequence-specific 1H, 13C and 15N resonance assignments of γS-G57W using a suite of heteronuclear 3D NMR experiments.
Collapse
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500075, India
| | - Shrikant Sharma
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500075, India
| | - Kandala V R Chary
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500075, India.
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
| |
Collapse
|
17
|
Gharahkhani P, Burdon KP, Cooke Bailey JN, Hewitt AW, Law MH, Pasquale LR, Kang JH, Haines JL, Souzeau E, Zhou T, Siggs OM, Landers J, Awadalla M, Sharma S, Mills RA, Ridge B, Lynn D, Casson R, Graham SL, Goldberg I, White A, Healey PR, Grigg J, Lawlor M, Mitchell P, Ruddle J, Coote M, Walland M, Best S, Vincent A, Gale J, RadfordSmith G, Whiteman DC, Montgomery GW, Martin NG, Mackey DA, Wiggs JL, MacGregor S, Craig JE. Analysis combining correlated glaucoma traits identifies five new risk loci for open-angle glaucoma. Sci Rep 2018; 8:3124. [PMID: 29449654 PMCID: PMC5814451 DOI: 10.1038/s41598-018-20435-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Open-angle glaucoma (OAG) is a major cause of blindness worldwide. To identify new risk loci for OAG, we performed a genome-wide association study in 3,071 OAG cases and 6,750 unscreened controls, and meta-analysed the results with GWAS data for intraocular pressure (IOP) and optic disc parameters (the overall meta-analysis sample size varying between 32,000 to 48,000 participants), which are glaucoma-related traits. We identified and independently validated four novel genome-wide significant associations within or near MYOF and CYP26A1, LINC02052 and CRYGS, LMX1B, and LMO7 using single variant tests, one additional locus (C9) using gene-based tests, and two genetic pathways - "response to fluid shear stress" and "abnormal retina morphology" - in pathway-based tests. Interestingly, some of the new risk loci contribute to risk of other genetically-correlated eye diseases including myopia and age-related macular degeneration. To our knowledge, this study is the first integrative study to combine genetic data from OAG and its correlated traits to identify new risk variants and genetic pathways, highlighting the future potential of combining genetic data from genetically-correlated eye traits for the purpose of gene discovery and mapping.
Collapse
Affiliation(s)
- Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Jessica N Cooke Bailey
- Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Matthew H Law
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louis R Pasquale
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan L Haines
- Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - John Landers
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Mona Awadalla
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Bronwyn Ridge
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - David Lynn
- South Australian Health & Medical Research Institute, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Stuart L Graham
- Ophthalmology and Vision Science, Macquarie University, Sydney, New South Wales, Australia
| | - Ivan Goldberg
- Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Andrew White
- Department of Ophthalmology, University of Sydney, Sydney, Australia
- Centre for Vision Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Paul R Healey
- Department of Ophthalmology, University of Sydney, Sydney, Australia
- Centre for Vision Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - John Grigg
- Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Mitchell Lawlor
- Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Paul Mitchell
- Centre for Vision Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Jonathan Ruddle
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Michael Coote
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Mark Walland
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Stephen Best
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Andrea Vincent
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Jesse Gale
- Department of Ophthalmology, University of Otago, Dunedin, Otago, New Zealand
| | - Graham RadfordSmith
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Herston Campus, Brisbane, QLD, Australia
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David A Mackey
- University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
18
|
Juvenile-Onset Diabetes and Congenital Cataract: "Double-Gene" Mutations Mimicking a Syndromic Diabetes Presentation. Genes (Basel) 2017; 8:genes8110309. [PMID: 29112131 PMCID: PMC5704222 DOI: 10.3390/genes8110309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
Monogenic forms of diabetes may account for 1–5% of all cases of diabetes, and may occur in the context of syndromic presentations. We investigated the case of a girl affected by insulin-dependent diabetes, diagnosed at 6 years old, associated with congenital cataract. Her consanguineous parents and her four other siblings did not have diabetes or cataract, suggesting a recessive syndrome. Using whole exome sequencing of the affected proband, we identified a heterozygous p.R825Q ABCC8 mutation, located at the exact same amino-acid position as the p.R825W recurring diabetes mutation, hence likely responsible for the diabetes condition, and a homozygous p.G71S mutation in CRYBB1, a gene known to be responsible for congenital cataract. Both mutations were predicted to be damaging and were absent or extremely rare in public databases. Unexpectedly, we found that the mother was also homozygous for the CRYBB1 mutation, and both the mother and one unaffected sibling were heterozygous for the ABCC8 mutation, suggesting incomplete penetrance of both mutations. Incomplete penetrance of ABCC8 mutations is well documented, but this is the first report of an incomplete penetrance of a CRYBB1 mutation, manifesting between susceptible subjects (unaffected mother vs. affected child) and to some extent within the patient herself, who had distinct cataract severities in both eyes. Our finding illustrates the importance of family studies to unmask the role of confounding factors such as double-gene mutations and incomplete penetrance that may mimic monogenic syndromes including in the case of strongly evocative family structure with consanguinity.
Collapse
|
19
|
Roskamp KW, Montelongo DM, Anorma CD, Bandak DN, Chua JA, Malecha KT, Martin RW. Multiple Aggregation Pathways in Human γS-Crystallin and Its Aggregation-Prone G18V Variant. Invest Ophthalmol Vis Sci 2017; 58:2397-2405. [PMID: 28444328 PMCID: PMC5407245 DOI: 10.1167/iovs.16-20621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Cataract results from the formation of light-scattering precipitates due to point mutations or accumulated damage in the structural crystallins of the eye lens. Although excised cataracts are predominantly amorphous, in vitro studies show that crystallins are capable of adopting a variety of morphologies depending on the preparation method. Here we characterize thermal, pH-dependent, and UV-irradiated aggregates from wild-type human γS-crystallin (γS-WT) and its aggregation-prone variant, γS-G18V. Methods Aggregates of γS-WT and γS-G18V were prepared under acidic, neutral, and basic pH conditions and held at 25°C or 37°C for 48 hours. UV-induced aggregates were produced by irradiation with a 355-nm laser. Aggregation and fibril formation were monitored via turbidity and thioflavin T (ThT) assays. Aggregates were characterized using intrinsic aromatic fluorescence, powder x-ray diffraction, and mass spectrometry. Results γS-crystallin aggregates displayed different characteristics depending on the preparation method. γS-G18V produced a larger amount of detectable aggregates than did γS-WT and at less-extreme conditions. Aggregates formed under basic and acidic conditions yielded elevated ThT fluorescence; however, aggregates formed at low pH did not produce strongly turbid solutions. UV-induced aggregates produced highly turbid solutions but displayed only moderate ThT fluorescence. X-ray diffraction confirms amyloid character in low-pH samples and UV-irradiated samples, although the relative amounts vary. Conclusions γS-G18V demonstrates increased aggregation propensity compared to γS-WT when treated with heat, acid, or UV light. The resulting aggregates differ in their ThT fluorescence and turbidity, suggesting that at least two different aggregation pathways are accessible to both proteins under the conditions tested.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - David M Montelongo
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Chelsea D Anorma
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Diana N Bandak
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States
| | - Janine A Chua
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Kurtis T Malecha
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, California, United States 2Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
20
|
Targeted Exome Sequencing of Congenital Cataracts Related Genes: Broadening the Mutation Spectrum and Genotype-Phenotype Correlations in 27 Chinese Han Families. Sci Rep 2017; 7:1219. [PMID: 28450710 PMCID: PMC5430819 DOI: 10.1038/s41598-017-01182-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 02/02/2023] Open
Abstract
Congenital cataract is the most frequent inherited ocular disorder and the most leading cause of lifelong visual loss. The screening of pathogenic mutations can be very challenging in some cases, for congenital cataracts are clinically and genetically heterogeneous diseases. The aim of this study is to investigate the mutation spectrum and frequency of 54 cartaract-associated genes in 27 Chinese families with congenital cataracts. Variants in 54 cataract-associated genes were screened by targeted next-generation sequencing (NGS) and then validated by Sanger sequencing. We identified pathogenic variants in 62.96% (17/27) of families, and over 52.94% (9/17) of these variants were novel. Among them, three are splicing site mutations, four are nonsense mutations, seven are missense mutations, two are frame shift mutations and one is intronic mutation. This included identification of: complex ocular phenotypes due to two novel PAX6 mutations; progressive cortical cataract and lamellar cataract with lens subluxation due to two novel CRYGS mutations. Mutations were also found in rarely reported genes including CRYBA4, CRYBA2, BFSP1, VIM, HSF4, and EZR. Our study expands the mutation spectrum and frequency of genes responsible for congenital cataracts. Targeted next-generation sequencing in inherited congenital cataract patients provided significant diagnostic information.
Collapse
|
21
|
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res 2017; 156:95-102. [PMID: 27334249 PMCID: PMC5538314 DOI: 10.1016/j.exer.2016.06.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 01/06/2023]
Abstract
The crystalline lens plays an important role in the refractive vision of vertebrates by facilitating variable fine focusing of light onto the retina. Loss of lens transparency, or cataract, is a frequently acquired cause of visual impairment in adults and may also present during childhood. Genetic studies have identified mutations in over 30 causative genes for congenital or other early-onset forms of cataract as well as several gene variants associated with age-related cataract. However, the pathogenic mechanisms resulting from genetic determinants of cataract are only just beginning to be understood. Here, we briefly summarize current concepts pointing to differences in the molecular mechanisms underlying congenital and age-related forms of cataract.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1860, USA.
| |
Collapse
|
22
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|
23
|
Yang Q, Lu H, Song X, Li S, Wei W. iTRAQ-Based Proteomics Investigation of Aqueous Humor from Patients with Coats' Disease. PLoS One 2016; 11:e0158611. [PMID: 27416065 PMCID: PMC4944970 DOI: 10.1371/journal.pone.0158611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Coats' disease is an uncommon form of retinal telangiectasis, and the identification of novel proteins that contribute to the development of Coats' disease is useful for improving treatment efficacy. Proteomic techniques have been used to study many eye diseases; however, few studies have used proteomics to study the development of Coats' disease. Methods Isobaric tagging for relative and absolute protein quantification (iTRAQ) was employed to screen differentially expressed proteins (DEPs) in the aqueous humor (AH) between stage 3A patients (n = 8), stage 3B patients (n = 14), stage 4 patients (n = 2) and control patients (n = 20). Differentially co-expressed proteins (DCPs) were present in all three stages of Coats' disease and were considered disease-specific proteins. These proteins were further analyzed using Gene Ontology (GO) functional annotations. Results A total of 819 proteins were identified in the AH, 222 of which were significantly differentially expressed (fold change > 2 and P < 0.05) in the samples from at least one stage of Coats' disease. Of the DEPs, 46 were found among all three stages of Coats' disease and the controls; therefore, they were considered Coats' disease-specific proteins (DCPs). A GO classification analysis indicated that the DCPs were closely related to structural molecule activity, cell adhesion molecule binding and receptor binding. Western blotting confirmed the expression levels of haptoglobin and apolipoprotein C-I were significantly up-regulated in Coats’ disease. Conclusions The 46 Coats' disease-specific proteins may provide additional insights into the mechanism of Coats' disease and represent potential biomarkers for identifying individuals with Coats' disease.
Collapse
Affiliation(s)
- Qiong Yang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Hai Lu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Xudong Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Songfeng Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
- * E-mail:
| |
Collapse
|
24
|
Scholl ZN, Li Q, Yang W, Marszalek PE. Single-molecule Force Spectroscopy Reveals the Calcium Dependence of the Alternative Conformations in the Native State of a βγ-Crystallin Protein. J Biol Chem 2016; 291:18263-75. [PMID: 27378818 DOI: 10.1074/jbc.m116.729525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Although multidomain proteins predominate the proteome of all organisms and are expected to display complex folding behaviors and significantly greater structural dynamics as compared with single-domain proteins, their conformational heterogeneity and its impact on their interaction with ligands are poorly understood due to a lack of experimental techniques. The multidomain calcium-binding βγ-crystallin proteins are particularly important because their deterioration and misfolding/aggregation are associated with melanoma tumors and cataracts. Here we investigate the mechanical stability and conformational dynamics of a model calcium-binding βγ-crystallin protein, Protein S, and elaborate on its interactions with calcium. We ask whether domain interactions and calcium binding affect Protein S folding and potential structural heterogeneity. Our results from single-molecule force spectroscopy show that the N-terminal (but not the C-terminal) domain is in equilibrium with an alternative conformation in the absence of Ca(2+), which is mechanically stable in contrast to other proteins that were observed to sample a molten globule under similar conditions. Mutagenesis experiments and computer simulations reveal that the alternative conformation of the N-terminal domain is caused by structural instability produced by the high charge density of a calcium binding site. We find that this alternative conformation in the N-terminal domain is diminished in the presence of calcium and can also be partially eliminated with a hitherto unrecognized compensatory mechanism that uses the interaction of the C-terminal domain to neutralize the electronegative site. We find that up to 1% of all identified multidomain calcium-binding proteins contain a similarly highly charged site and therefore may exploit a similar compensatory mechanism to prevent structural instability in the absence of ligand.
Collapse
Affiliation(s)
| | - Qing Li
- the Department of Mechanical Engineering and Materials Science, and
| | - Weitao Yang
- the Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
25
|
Chen JH, Huang C, Zhang B, Yin S, Liang J, Xu C, Huang Y, Cen LP, Ng TK, Zheng C, Zhang S, Chen H, Pang CP, Zhang M. Mutations of RagA GTPase in mTORC1 Pathway Are Associated with Autosomal Dominant Cataracts. PLoS Genet 2016; 12:e1006090. [PMID: 27294265 PMCID: PMC4905677 DOI: 10.1371/journal.pgen.1006090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Cataracts are a significant public health problem with no proven methods for prevention. Discovery of novel disease mechanisms to delineate new therapeutic targets is of importance in cataract prevention and therapy. Herein, we report that mutations in the RagA GTPase (RRAGA), a key regulator of the mechanistic rapamycin complex 1 (mTORC1), are associated with autosomal dominant cataracts. We performed whole exome sequencing in a family with autosomal dominant juvenile-onset cataracts, and identified a novel p.Leu60Arg mutation in RRAGA that co-segregated with the disease, after filtering against the dbSNP database, and at least 123,000 control chromosomes from public and in-house exome databases. In a follow-up direct screening of RRAGA in another 22 families and 142 unrelated patients with congenital or juvenile-onset cataracts, RRAGA was found to be mutated in two unrelated patients (p.Leu60Arg and c.-16G>A respectively). Functional studies in human lens epithelial cells revealed that the RRAGA mutations exerted deleterious effects on mTORC1 signaling, including increased relocation of RRAGA to the lysosomes, up-regulated mTORC1 phosphorylation, down-regulated autophagy, altered cell growth or compromised promoter activity. These data indicate that the RRAGA mutations, associated with autosomal dominant cataracts, play a role in the disease by acting through disruption of mTORC1 signaling. A group of guanine nucleotide-binding molecules called Rag GTPases are known to play a crucial role in regulation of mTORC1 signaling cascade. In the current study, whole exome sequencing has led to the identification of the RagA GTPase (RRAGA) gene for cataracts and we proceeded to study properties of the RRAGA protein. We captured and sequenced the whole exome for four affected patients from a family with autosomal dominant juvenile-onset posterior cataracts, and found a novel rare mutation in RagA GTPase (RRAGA). To validate this finding, we then sequenced more families and patients, and observed RRAGA mutations in unrelated patients with related phenotypes, suggesting that RRAGA could be mutated in congenital and juvenile-onset cataracts. We further demonstrated supporting evidence that in human lens epithelial cells the RRAGA mutations exerted deleterious effects on relocation of RRAGA to the lysosomes, mTORC1 phosphorylation, autophagy and cell growth. This study gives important new insight into the roles of RRAGA and mTROC1 signaling in the etiology of cataracts.
Collapse
Affiliation(s)
- Jian-Huan Chen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Chukai Huang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Bining Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Shengjie Yin
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Jiajian Liang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ciyan Xu
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Tsz-Kin Ng
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Ce Zheng
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Shaobin Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Chi-Pui Pang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (CPP); (MZ)
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- * E-mail: (CPP); (MZ)
| |
Collapse
|
26
|
Huang KY, Kingsley CN, Sheil R, Cheng CY, Bierma JC, Roskamp KW, Khago D, Martin RW, Han S. Stability of Protein-Specific Hydration Shell on Crowding. J Am Chem Soc 2016; 138:5392-402. [PMID: 27052457 PMCID: PMC7849722 DOI: 10.1021/jacs.6b01989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that the effect of protein crowding is critically dependent on the stability of the protein's hydration shell, which can dramatically vary between different proteins. In the human eye lens, γS-crystallin (γS-WT) forms a densely packed transparent hydrogel with a high refractive index, making it an ideal system for studying the effects of protein crowding. A single point mutation generates the cataract-related variant γS-G18V, dramatically altering the optical properties of the eye lens. This system offers an opportunity to explore fundamental questions regarding the effect of protein crowding, using γS-WT and γS-G18V: (i) how do the diffusion dynamics of hydration water change as a function of protein crowding?; and (ii) upon hydrogel formation of γS-WT, has a dynamic transition occurred generating a single population of hydration water, or do populations of bulk and hydration water coexist? Using localized spin probes, we separately probe the local translational diffusivity of both surface hydration and interstitial water of γS-WT and γS-G18V in solution. Surprisingly, we find that under the influence of hydrogel formation at highly crowded γS-WT concentrations up to 500 mg/mL, the protein hydration shell remains remarkably dynamic, slowing by less than a factor of 2, if at all, compared to that in dilute protein solutions of ∼5 mg/mL. Upon self-crowding, the population of this robust surface hydration water increases, while a significant bulk-like water population coexists even at ∼500 mg/mL protein concentrations. In contrast, surface water of γS-G18V irreversibly dehydrates with moderate concentration increases or subtle alterations to the solution conditions, demonstrating that the effect of protein crowding is highly dependent on the stability of the protein-specific hydration shell. The core function of γS-crystallin in the eye lens may be precisely its capacity to preserve a robust hydration shell, whose stability is abolished by a single G18V mutation.
Collapse
Affiliation(s)
- Kuo-Ying Huang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | | | - Ryan Sheil
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Chi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Jan C. Bierma
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Domarin Khago
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|
27
|
|
28
|
Truscott RJW, Friedrich MG. The etiology of human age-related cataract. Proteins don't last forever. Biochim Biophys Acta Gen Subj 2015; 1860:192-8. [PMID: 26318017 DOI: 10.1016/j.bbagen.2015.08.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND It is probable that the great majority of human cataract results from the spontaneous decomposition of long-lived macromolecules in the human lens. Breakdown/reaction of long-lived proteins is of primary importance and recent proteomic analysis has enabled the identification of the particular crystallins, and their exact sites of amino acid modification. SCOPE OF REVIEW Analysis of proteins from cataractous lenses revealed that there are sites on some structural proteins that show a consistently greater degree of deterioration than age-matched normal lenses. MAJOR CONCLUSIONS The most abundant posttranslational modification of aged lens proteins is racemization. Deamidation, truncation and crosslinking, each arising from the spontaneous breakdown of susceptible amino acids within proteins, are also present. Fundamental to an understanding of nuclear cataract etiology, it is proposed that once a certain degree of modification at key sites occurs, that protein-protein interactions are disrupted and lens opacification ensues. GENERAL SIGNIFICANCE Since long-lived proteins are now recognized to be present in many other sites of the body, such as the brain, the information gleaned from detailed analyses of degraded proteins from aged lenses will apply more widely to other age-related human diseases. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
29
|
Vendra VPR, Khan I, Chandani S, Muniyandi A, Balasubramanian D. Gamma crystallins of the human eye lens. Biochim Biophys Acta Gen Subj 2015; 1860:333-43. [PMID: 26116913 DOI: 10.1016/j.bbagen.2015.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/08/2015] [Accepted: 06/19/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Protein crystallins co me in three types (α, β and γ) and are found predominantly in the eye, and particularly in the lens, where they are packed into a compact, plastic, elastic, and transparent globule of proper refractive power range that aids in focusing incoming light on to the retina. Of these, the γ-crystallins are found largely in the nuclear region of the lens at very high concentrations (>400 mg/ml). The connection between their structure and inter-molecular interactions and lens transparency is an issue of particular interest. SCOPE OF REVIEW We review the origin and phylogeny of the gamma crystallins, their special structure involving the use of Greek key supersecondary structural motif, and how they aid in offering the appropriate refractive index gradient, intermolecular short range attractive interactions (aiding in packing them into a transparent ball), the role that several of the constituent amino acid residues play in this process, the thermodynamic and kinetic stability and how even single point mutations can upset this delicate balance and lead to intermolecular aggregation, forming light-scattering particles which compromise transparency. We cite several examples of this, and illustrate this by cloning, expressing, isolating and comparing the properties of the mutant protein S39C of human γS-crystallin (associated with congenital cataract-microcornea), with those of the wild type molecule. In addition, we note that human γ-crystallins are also present in other parts of the eye (e.g., retina), where their functions are yet to be understood. MAJOR CONCLUSIONS There are several 'crucial' residues in and around the Greek key motifs which are essential to maintain the compact architecture of the crystallin molecules. We find that a mutation that replaces even one of these residues can lead to reduction in solubility, formation of light-scattering particles and loss of transparency in the molecular assembly. GENERAL SIGNIFICANCE Such a molecular understanding of the process helps us construct the continuum of genotype-molecular structural phenotype-clinical (pathological) phenotype. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Venkata Pulla Rao Vendra
- Ophthalmic Molecular Genetics Section, National Eye Institute, Building 5635FL, Room 1S24, 5625 Fishers Lane, Rockville, MD 20852, United States.
| | - Ismail Khan
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad 500034 Telangana, India.
| | - Sushil Chandani
- Plot 32, LIC Colony, W Marredpally, Secunderabad 500026, Telangana, India.
| | - Anbukkarasi Muniyandi
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| | - Dorairajan Balasubramanian
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad 500034 Telangana, India.
| |
Collapse
|
30
|
SIPA1L3 identified by linkage analysis and whole-exome sequencing as a novel gene for autosomal recessive congenital cataract. Eur J Hum Genet 2015; 23:1627-33. [PMID: 25804400 DOI: 10.1038/ejhg.2015.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
Congenital cataract (CC) is one of the most important causes for blindness or visual impairment in infancy. A substantial proportion of isolated CCs has monogenic causes. The disease is genetically heterogeneous, and all Mendelian modes of inheritance have been reported. We mapped a locus for isolated CC on 19p13.1-q13.2 in a distantly consanguineous German family with two sisters affected by dense white cataracts. Whole-exome sequencing identified a homozygous nonsense variant c.4489C>T (p.(R1497*)) in SIPA1L3 (signal-induced proliferation-associated 1 like 3) in both affected children. SIPA1L3 encodes a GTPase-activating protein (GAP), which interacts with small GTPases of the Rap family via its Rap-GAP-domain. The suggested role of Rap GTPases in cell growth, differentiation and organization of the cytoskeleton in the human lens, and lens-enriched expression of the murine ortholog gene Sipa1l3 in embryonic mice indicates that this gene is crucial for early lens development. Our results provide evidence that sequence variants in human SIPA1L3 cause autosomal recessive isolated CC and give new insight into the molecular pathogenesis underlying human cataracts.
Collapse
|
31
|
Terrell AM, Anand D, Smith SF, Dang CA, Waters SM, Pathania M, Beebe DC, Lachke SA. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes. Exp Eye Res 2014; 131:42-55. [PMID: 25530357 DOI: 10.1016/j.exer.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 01/10/2023]
Abstract
The discovery of cytosolic RNA granule (RG) component proteins associated with human cataract has initiated investigations on post-transcriptional mechanisms of gene expression control in the lens. Application of established mouse lens epithelial cell lines (LECs) can provide rapid insights on RG function in lens cells, especially because mouse mutants in several RG components are not available. However, although these LECs represent potential reagents for such analyses, they are uncharacterized for lens gene expression or RG formation. Therefore, a detailed molecular and cellular characterization of three permanent mouse LECs 17EM15, 21EM15 and αTN4 is performed in this study. Comparative analysis between microarray gene expression datasets on LEC 21EM15 and iSyTE lens tissue demonstrates that 30% of top 200 iSyTE identified lens-enriched genes are expressed in these cells. Majority of these candidates are independently validated to either have lens expression, function or linkage to cataract. Moreover, analysis of microarray data with genes described in Cat-Map, an online database of cataract associated genes and loci, demonstrates that 131 genes linked to cataract loci are expressed in 21EM15 cells. Furthermore, gene expression in LECs is compared to isolated lens epithelium or fiber cells by qRT-PCR and by comparative analyses with publically available epithelium or fiber-specific microarray and RNA-seq (sequencing) datasets. Expression of select candidate genes was validated by regular and real-time quantitative RT-PCR. Expression of lens epithelium-enriched genes Foxe3, Pax6, Anxa4 and Mcm4 is up-regulated in LEC lines, compared to isolated lens fiber cells. Moreover, similar to isolated lens epithelium, all three LECs exhibit down-regulation of fiber cell-expressed genes Crybb1, Mip and Prox1 when compared to fiber cells. These data indicate that the LEC lines exhibit greater similarity to lens epithelium than to fiber cells. Compared to non-lens cell line NIH3T3, LECs exhibit significantly enriched expression of transcription factors with important function in the lens, namely Pax6, Foxe3 and Prox1. In addition to these genes, all three LECs also express key lens- and cataract-associated genes, namely Dkk3, Epha2, Hsf4, Jag1, Mab21l1, Meis1, Pknox1, Pou2f1, Sfrp1, Sparc, Tdrd7 and Trpm3. Additionally, 21EM15 microarrays indicate expression of Chmp4b, Cryab and Tcfap2a among others important genes. Immunostaining with makers for Processing bodies (P-bodies) and Stress granules (SGs) demonstrates that these classes of RGs are robustly expressed in all three LECs. Moreover, under conditions of stress, 17EM15 and αTN4 exhibit significantly higher numbers of P-bodies and SGs compared to NIH3T3 cells. In sum, these data indicate that mouse LECs 21EM15, 17EM15 and αTN4 express key lens or cataract genes, are similar to lens epithelium than fiber cells, and exhibit high levels of P-bodies and SGs, indicating their suitability for investigating gene expression control and RG function in lens-derived cells.
Collapse
Affiliation(s)
- Anne M Terrell
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Sylvie F Smith
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Christine A Dang
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Stephanie M Waters
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Mallika Pathania
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
32
|
A novel MIP gene mutation analysis in a Chinese family affected with congenital progressive punctate cataract. PLoS One 2014; 9:e102733. [PMID: 25033405 PMCID: PMC4102541 DOI: 10.1371/journal.pone.0102733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/23/2014] [Indexed: 02/01/2023] Open
Abstract
Congenital cataracts are one of the leading causes of visual impairment and blindness in children, and genetic factors play an important role in their development. This study aimed to identify the genetic defects associated with autosomal dominant congenital progressive punctate cataracts in a Chinese family and to explore the potential pathogenesis. Detailed family history and clinical data were recorded, and all the family members’ blood samples were collected for DNA extraction. Linkage analysis was performed by microsatellite markers that are associated with punctate cataracts, and logarithm (base 10) of odds (LOD) scores were calculated using the LINKAGE program. Positive two-point LOD scores were obtained at markers D12S1622 (Zmax = 2.71 at θ = 0.0), D12S1724 (Zmax = 2.71 at θ = 0.0), and D12S90 (Zmax = 2.71 at θ = 0.0), which flank the major intrinsic protein of lens fiber (MIP) gene on chromosomal region 12q13. Direct sequencing of the encoding region of the MIP gene revealed a novel mutation (G>D) in exon 4 at nucleotide 644, which caused a substitution of glycine to aspartic acid at codon 215 (p.G215D) for the MIP protein. The mutation cosegregated with all patients with congenital progressive punctate cataracts, but it was absent in the healthy members. Bioinformatics analysis predicted that the mutation affects the function of the MIP protein. The wild type (WT) and G215D mutant of MIP were transfected with green fluorescent protein (GFP) into Hela cells separately, and it was found that the G215D mutant was aberrantly located in the cytoplasm instead of in the plasma membrane. In summary, our study presented genetic and functional evidence linking the new MIP mutation of G215D to autosomal dominant congenital cataracts, which adds to the list of MIP mutations linked to congenital progressive punctate cataracts.
Collapse
|
33
|
Hu Y, Gao L, Feng Y, Yang T, Huang S, Shao Z, Yuan H. Identification of a novel mutation of the gene for gap junction protein α3 (GJA3) in a Chinese family with congenital cataract. Mol Biol Rep 2014; 41:4753-8. [PMID: 24728566 DOI: 10.1007/s11033-014-3346-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/24/2014] [Indexed: 11/28/2022]
Abstract
Cataract, defined as any opacity of the crystallin lens, can be divided into early onset (congenital or infantile) and age-related. It is the leading cause of visual disability in children, and mutations in many genes have currently been linked with this disorder. In the present study, we identified a genetic defect in a Chinese family with congenital cataract. Genomic DNA was extracted from the venous blood of the family and 100 normal controls. To screen for the disease-causing mutation, we sequenced eight candidate genes, and to predict the functional consequences of the mutation, a structural model of the protein was developed using the Protein Data Bank and PyMOL 1.1r1. We found a novel variant (c.163 A > G transition) in the gene for gap junction protein α3, or the connexin46 gene. This mutation resulted in the substitution of a highly conserved asparagine at codon 55 by aspartic acid (p.N55D). There were no nucleotide polymorphisms in the other candidate genes sequenced.
Collapse
Affiliation(s)
- Ying Hu
- Department of Ophthalmology, the 2nd Affiliated Hospital of Harbin Medical University, 246 XuefuRoad, Harbin, 150086, Heilongjiang, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Slingsby C, Wistow GJ. Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:52-67. [PMID: 24582830 PMCID: PMC4104235 DOI: 10.1016/j.pbiomolbio.2014.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/18/2014] [Indexed: 12/25/2022]
Abstract
The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging.
Collapse
Affiliation(s)
- Christine Slingsby
- Department of Biological Sciences, Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| | - Graeme J Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, Bg 6, Rm 106, National Institutes of Health, Bethesda, MD 20892-0608, USA
| |
Collapse
|
35
|
Truscott RJW, Friedrich MG. Old proteins and the Achilles heel of mass spectrometry. The role of proteomics in the etiology of human cataract. Proteomics Clin Appl 2014; 8:195-203. [PMID: 24458544 DOI: 10.1002/prca.201300044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Proteomics may have enabled the root cause of a major human-blinding condition, age-related cataract, to be established. Cataract appears to result from the spontaneous decomposition of long-lived macromolecules in the human lens, and recent proteomic analysis has enabled both the particular crystallins, and the specific sites of amino acid modification within each polypeptide, to be identified. Analysis of proteins from cataract lenses has demonstrated that there are key sites on some structural proteins that show a consistently greater degree of deterioration than age-matched normal lenses. Proteomic analysis, using MS, revealed that the most abundant posttranslational modification of aged lens proteins is racemization. This is somewhat ironic, since structural isomers can be viewed as the "Achilles heel" of MS and there are typically few, if any, differences in the MS/MS spectra of tryptic peptides containing one d-amino acid. It is proposed that once a certain level of spontaneous PTM at key sites occurs, that protein-protein interactions are disrupted, and binding of complexes to cell membranes takes place that impairs cell-to-cell communication. These findings may apply more widely to age-related human diseases, in particular where the deterioration of long-lived proteins is a crucial component in the etiology.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | |
Collapse
|
36
|
Wang H, Zhang T, Wu D, Zhang J. A novel beaded filament structural protein 1 (BFSP1) gene mutation associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis 2013; 19:2590-5. [PMID: 24379646 PMCID: PMC3874047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/23/2013] [Indexed: 12/03/2022] Open
Abstract
PURPOSE To identify the disease-causing mutation in a five-generation Chinese family affected with bilateral congenital nuclear cataract. METHODS Linkage analysis was performed for the known candidate genes and whole-exome sequencing was used in two affected family members to screen for potential genetic mutations; Sanger sequencing was used to verify the mutations throughout family. RESULTS A novel beaded filament structural protein 1 (BFSP1) gene missense mutation was identified. Direct sequencing revealed a heterozygous G>A transversion at c.1042 of the coding sequence in exon 7 of BFSP1 (c.1042G>A) in all affected members, which resulted in the substitution of a wild-type aspartate to an asparagine (D348N). This mutation was neither seen in unaffected family members nor in 200 unrelated people as controls. CONCLUSIONS A novel mutation (c.1042G>A) at exon 7 of BFSP1, which creates a substitution of an aspartate to an asparagine (p.D348N) was identified to be associated with autosomal dominant congenital cataract in a Chinese family. This is the first report of autosomal dominant congenital cataract being associated with a mutation in BFSP1, highlighting the important role of BFSP1 for physiological lens function and optical properties.
Collapse
|
37
|
Yang Z, Li Q, Zhu S, Ma X. A G57W Mutation ofCRYGSAssociated with Autosomal Dominant Pulverulent Cataracts in a Chinese Family. Ophthalmic Genet 2013; 36:281-3. [DOI: 10.3109/13816810.2013.865761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Bharat SV, Shekhtman A, Pande J. The cataract-associated V41M mutant of human γS-crystallin shows specific structural changes that directly enhance local surface hydrophobicity. Biochem Biophys Res Commun 2013; 443:110-4. [PMID: 24287181 DOI: 10.1016/j.bbrc.2013.11.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022]
Abstract
The major crystallins expressed in the human lens are γS-, γC- and γD-crystallins. Several mutations in γS-crystallin are associated with hereditary cataracts, one of which involves the substitution of a highly conserved Valine at position 41 to Methionine. According to a recent report, the mutant protein, V41M, shows lower stability and increased surface hydrophobicity compared to the wild-type, and a propensity for self-aggregation. Here we address the structural differences between the two proteins, with residue-level specificity using NMR spectroscopy. Based on the structural model of the mutant protein, our results clearly show that the mutation creates a major local perturbation almost at the junction of the first and second "Greek-key" motifs in the N-terminal domain. A larger section of the second motif (residues 44-86) appears to be mainly affected. Based on the sizeable chemical shift of the imino proton of the indole side-chain of Trp46 in V41M, we suggest that the sulphur atom of Met41 is involved in an S-π interaction with Trp46. This interaction would bring the last β-strand of the first "Greek-key" motif closer to the first β-strand of the second motif. This appears to lead to a domino effect, towards both the N- and C-terminal ends, even as it decays off substantially beyond the domain interface. During this process discreet hydrophobic surface patches are created, as revealed by ANS-binding. Such changes would not affect the secondary structure or cause a major change in the tertiary structure, but can lead to self-aggregation or aberrant binding interactions of the mutant protein in vivo, and lead to lens opacity or cataract.
Collapse
Affiliation(s)
- Somireddy Venkata Bharat
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Jayanti Pande
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, United States.
| |
Collapse
|
39
|
Kingsley CN, Brubaker WD, Markovic S, Diehl A, Brindley AJ, Oschkinat H, Martin RW. Preferential and specific binding of human αB-crystallin to a cataract-related variant of γS-crystallin. Structure 2013; 21:2221-7. [PMID: 24183572 DOI: 10.1016/j.str.2013.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022]
Abstract
Transparency in the eye lens is maintained via specific, functional interactions among the structural βγ- and chaperone α-crystallins. Here, we report the structure and α-crystallin binding interface of the G18V variant of human γS-crystallin (γS-G18V), which is linked to hereditary childhood-onset cortical cataract. Comparison of the solution nuclear magnetic resonance structures of wild-type and G18V γS-crystallin, both presented here, reveal that the increased aggregation propensity of γS-G18V results from neither global misfolding nor the solvent exposure of a hydrophobic residue but instead involves backbone rearrangement within the N-terminal domain. αB-crystallin binds more strongly to the variant, via a well-defined interaction surface observed via chemical shift differences. In the context of the αB-crystallin structure and the finding that it forms heterogeneous multimers, our structural studies suggest a potential mechanism for cataract formation via the depletion of the finite αB-crystallin population of the lens.
Collapse
Affiliation(s)
- Carolyn N Kingsley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Thevenon J, Callier P, Poquet H, Bache I, Menten B, Malan V, Cavaliere ML, Girod JP, Thauvin-Robinet C, El Chehadeh S, Pinoit JM, Huet F, Verges B, Petit JM, Mosca-Boidron AL, Marle N, Mugneret F, Masurel-Paulet A, Novelli A, Tümer Z, Loeys B, Lyonnet S, Faivre L. 3q27.3 microdeletional syndrome: a recognisable clinical entity associating dysmorphic features, marfanoid habitus, intellectual disability and psychosis with mood disorder. J Med Genet 2013; 51:21-7. [DOI: 10.1136/jmedgenet-2013-101939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Park JE, Son AI, Zhou R. Roles of EphA2 in Development and Disease. Genes (Basel) 2013; 4:334-57. [PMID: 24705208 PMCID: PMC3924825 DOI: 10.3390/genes4030334] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023] Open
Abstract
The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Alexander I Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Karri S, Kasetti RB, Vendra VPR, Chandani S, Balasubramanian D. Structural analysis of the mutant protein D26G of human γS-crystallin, associated with Coppock cataract. Mol Vis 2013; 19:1231-7. [PMID: 23761725 PMCID: PMC3675056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To analyze the protein structural features responsible for the aggregation properties of the mutant protein D26G human γS-crystallin (HGSC) associated with congenital Coppock-type cataract. METHODS cDNAs of wild-type (WT) and D26G mutant HGSC were cloned and expressed in BL21 (DE3) pLysS cells and the proteins isolated and purified. Their secondary and tertiary structural features, aggregation tendencies, and structural stabilities were compared using spectroscopic (circular dichroism, intrinsic and extrinsic fluorescence), molecular modeling, and dynamics methods. RESULTS No difference was observed between the conformational (secondary and tertiary structural) features and aggregation properties between the WT and D26G proteins. The mutant, however, was structurally less stable; it denatured at a slightly lower concentration of the added chemical denaturant (at 2.05 M guanidinium chloride, cf. 2.20 M for the WT) and at a slightly lower temperature (at 70.8 °C, cf. 72.0 °C for the WT). The mutant also self-aggregated more readily (it turned turbid upon standing; at 65 °C, it started precipitating beyond 200 s, while the WT did not, even after 900 s). Molecular modeling showed that the Asp26-Arg84 contact (and the related Arg84-Asn54 interaction) was disturbed in the mutant, making the latter less compact around the mutation site. CONCLUSIONS The cataract-associated mutant D26G of HGSC is remarkably close to the WT molecule in structural features, with only a microenvironmental change in the packing around the mutation site. This alteration appears sufficient to promote self-aggregation, resulting in peripheral cataract.
Collapse
Affiliation(s)
- Srinivasu Karri
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad, India
| | - Ramesh Babu Kasetti
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad, India
| | - Venkata Pulla Rao Vendra
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Dorairajan Balasubramanian
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L. V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
43
|
Vendra VPR, Chandani S, Balasubramanian D. The mutation V42M distorts the compact packing of the human gamma-S-crystallin molecule, resulting in congenital cataract. PLoS One 2012; 7:e51401. [PMID: 23284690 PMCID: PMC3528740 DOI: 10.1371/journal.pone.0051401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background Human γS-crystallin is an important component of the human eye lens nucleus and cortex. The mutation V42M in the molecule causes severe congenital cataract in children. We compare the structure of the mutant protein with that of the wild type in order to understand how structural changes in the mutant relate to the mechanism of opacification. Methods Both proteins were made using conventional cloning and expression procedures. Secondary and tertiary structural features of the proteins were analyzed using spectral methods. Structural stabilities of the proteins were analyzed using chemical and thermal denaturation methods. Self-aggregation was monitored using extrinsic spectral probes. Molecular modeling was used to compare the structural features of the two proteins. Results While the wild type and mutant have the same secondary structure, molecular modeling and fluorescence analysis suggest the mutant to have a more open tertiary structure, with a larger hydrophobic surface. Experiments using extrinsic probes reveal that the mutant readily self-aggregates, with the suggestion that the aggregates might be similar to amyloidogenic fibrils. Chemical denaturation indicates that while the wild type exhibits the classic two-state transition, V42M goes through an intermediate state, and has a distinctly lower stability than the wild type. The temperature of thermal unfolding of the mutant is also distinctly lower. Further, the mutant readily precipitates and scatters light more easily than the wild type. Conclusion The replacement of valine in position 42 by the longer and bulkier methionine in human γS-crystallin perturbs the compact β-sheet core packing topology in the N-terminal domain of the molecule, exposes nonpolar residues thereby increasing the surface hydrophobicity and weakens the stability of the protein, thus promoting self-aggregation leading to light scattering particles. This set of changes in the properties of the mutant offers a molecular insight into the mechanism of opacification.
Collapse
Affiliation(s)
- Venkata Pulla Rao Vendra
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, India
| | | | | |
Collapse
|
44
|
Abstract
Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins) and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.
Collapse
Affiliation(s)
- Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0608, USA.
| |
Collapse
|
45
|
Clark AR, Lubsen NH, Slingsby C. sHSP in the eye lens: Crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol 2012; 44:1687-97. [DOI: 10.1016/j.biocel.2012.02.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/23/2012] [Indexed: 01/25/2023]
|
46
|
Moody IS, Verde SC, Overstreet CM, Edward Robinson W, Weiss GA. In vitro evolution of an HIV integrase binding protein from a library of C-terminal domain γS-crystallin variants. Bioorg Med Chem Lett 2012; 22:5584-9. [PMID: 22858140 DOI: 10.1016/j.bmcl.2012.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
A protein without natural binding functions was engineered to bind HIV-1 integrase. Phage display selections applied a library of variants based on the C-terminal domain of the eye lens protein human γS-crystallin. Multiple loop regions were altered to encode libraries with ≈3.6 × 10(11) different variants. A crystallin variant, termed integrase binding protein-10 (IBP-10), inhibits integrase catalysis with nanomolar K(i) values. IBP-10 interacts with the integrase C-terminal domain and inhibits integrase substrate affinity. This allosteric mechanism allows IBP-10 to inhibit drug-resistant integrase variants. The results demonstrate the applicability of the crystallin scaffold for the discovery of binding partners and enzyme inhibitors.
Collapse
Affiliation(s)
- Issa S Moody
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697-3900, USA
| | | | | | | | | |
Collapse
|
47
|
Fan J, Dong L, Mishra S, Chen Y, FitzGerald P, Wistow G. A role for γS-crystallin in the organization of actin and fiber cell maturation in the mouse lens. FEBS J 2012; 279:2892-904. [PMID: 22715935 PMCID: PMC3429115 DOI: 10.1111/j.1742-4658.2012.08669.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
γS-crystallin (γS) is a highly conserved component of the eye lens. To gain insights into the functional role(s) of this protein, the mouse gene (Crygs) was deleted. Although mutations in γS can cause severe cataracts, loss of function of γS in knockout (KO) mice produced no obvious lens opacity, but was associated with focusing defects. Electron microscopy showed no major differences in lens cell organization, suggesting that the optical defects are primarily cytoplasmic in origin. KO lenses were also grossly normal by light microscopy but showed evidence of incomplete clearance of cellular organelles in maturing fiber cells. Phalloidin labeling showed an unusual distribution of F-actin in a band of mature fiber cells in KO lenses, suggesting a defect in the organization or processing of the actin cytoskeleton. Indeed, in wild-type lenses, γS and F-actin colocalize along the fiber cell plasma membrane. Relative levels of F-actin and G-actin in wild-type and KO lenses were estimated from fluorescent staining profiles and from isolation of actin fractions from whole lenses. Both methods showed a two-fold reduction in the F-actin/G-actin ratio in KO lenses, whereas no difference in tubulin organization was detected. In vitro experiments showed that recombinant mouse γS can directly stabilize F-actin. This suggests that γS may have a functional role related to actin, perhaps in 'shepherding' filaments to maintain the optical properties of the lens cytoplasm and normal fiber cell maturation.
Collapse
Affiliation(s)
- Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0608, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hooi MYS, Raftery MJ, Truscott RJW. Racemization of two proteins over our lifespan: deamidation of asparagine 76 in γS crystallin is greater in cataract than in normal lenses across the age range. Invest Ophthalmol Vis Sci 2012; 53:3554-61. [PMID: 22531704 DOI: 10.1167/iovs.11-9085] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Long-lived proteins are widespread in man, yet little is known about the processes that affect their function over time, or their role in age-related diseases. METHODS Racemization of two proteins from normal and cataract human lenses were compared with age using tryptic digestion and LC/mass spectrometry. Asp 151 in αA crystallin and Asn 76 in γS crystallin were studied. RESULTS Age-dependent profiles for the two proteins from normal lenses were different. In neither protein did the modifications increase linearly with age. For αA crystallin, racemization occurred most rapidly during the first 15 years of life, with approximately half of L-Asp 151 converted to D-isoAsp, L-isoAsp, and D-Asp in a ratio of 3:1:0.5. Values then changed little. By contrast, racemization of Asn 76 in γS crystallin was slow until age 15, with isoAsp accounting for only 5%. Values remained relatively constant until age 40 when a linear increase (1%/year) took place. When cataract lenses were compared with age-matched normal lenses, there were marked differences in the time courses of the two crystallins. For αA crystallin, there was no significant difference in Asp 151 racemization between cataract and normal lenses. By contrast, in γS crystallin the degree of conversion of Asn 76 to isoAsp in cataract lenses was approximately double that of normals at every age. CONCLUSIONS Modification of Asn and Asp over time may contribute to denaturation of proteins in the human lens. An accelerated rate of deamidation/racemization at selected sites in proteins, such as γS crystallin, may contribute to cataract formation.
Collapse
Affiliation(s)
- Michelle Yu Sung Hooi
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
49
|
Hooi MYS, Raftery MJ, Truscott RJW. Age-dependent deamidation of glutamine residues in human γS crystallin: deamidation and unstructured regions. Protein Sci 2012; 21:1074-9. [PMID: 22593035 DOI: 10.1002/pro.2095] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022]
Abstract
Human aging is associated with the deterioration of long-lived proteins. Gradual cumulative modifications to the life-long proteins of the lens may ultimately be responsible for the pronounced alterations to the optical and physical properties that characterize lenses from older people. γS crystallin, a major human lens protein, is known to undergo several age-dependent changes. Using proteomic techniques, a site of deamidation involving glutamine 92 has been characterized and its time course established. The proportion of deamidation increased from birth to teen-age years and then plateaud. Deamidation at this site increased again in the eighth decade of life. There was no significant difference in the extent of deamidation between cataract and age-matched normal lenses. Gln92 is located in the linker region between the two domains, and the introduction of a negative charge at this site may alter the interaction between the two regions of the protein. Gln170, which is located in another unstructured part of γS crystallin, showed a similar deamidation profile to that of Gln92. As the other Gln residues in β-sheet regions of γS crystallin appear to remain as amides, modification of Gln92 and Gln170 thus conforms to a pattern whereby deamidation is localized to the unstructured regions of long-lived proteins.
Collapse
Affiliation(s)
- Michelle Yu Sung Hooi
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, Sydney, New South Wales 2000, Australia
| | | | | |
Collapse
|
50
|
Park JE, Son AI, Hua R, Wang L, Zhang X, Zhou R. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One 2012; 7:e36564. [PMID: 22570727 PMCID: PMC3343017 DOI: 10.1371/journal.pone.0036564] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/03/2012] [Indexed: 12/21/2022] Open
Abstract
The cellular and molecular mechanisms underlying the pathogenesis of cataracts leading to visual impairment remain poorly understood. In recent studies, several mutations in the cytoplasmic sterile-α-motif (SAM) domain of human EPHA2 on chromosome 1p36 have been associated with hereditary cataracts in several families. Here, we have investigated how these SAM domain mutations affect EPHA2 activity. We showed that the SAM domain mutations dramatically destabilized the EPHA2 protein in a proteasome-dependent pathway, as evidenced by the increase of EPHA2 receptor levels in the presence of the proteasome inhibitor MG132. In addition, the expression of wild-type EPHA2 promoted the migration of the mouse lens epithelial αTN4-1 cells in the absence of ligand stimulation, whereas the mutants exhibited significantly reduced activity. In contrast, stimulation of EPHA2 with its ligand ephrin-A5 eradicates the enhancement of cell migration accompanied by Akt activation. Taken together, our studies suggest that the SAM domain of the EPHA2 protein plays critical roles in enhancing the stability of EPHA2 by modulating the proteasome-dependent process. Furthermore, activation of Akt switches EPHA2 from promoting to inhibiting cell migration upon ephrin-A5 binding. Our results provide the first report of multiple EPHA2 cataract mutations contributing to the destabilization of the receptor and causing the loss of cell migration activity.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Alexander I. Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Rui Hua
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lianqing Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|