1
|
Cetiner M, Bergmann C, Bettendorf M, Faust J, Gäckler A, Gillissen B, Hansen M, Kerber M, Klaus G, König J, Kühlewein L, Oh J, Richter-Unruh A, von Schnurbein J, Wabitsch M, Weihrauch-Blüher S, Pape L. [Improved Care and Treatment Options for Patients with Hyperphagia-Associated Obesity in Bardet-Biedl Syndrome]. KLINISCHE PADIATRIE 2024; 236:269-279. [PMID: 38458231 PMCID: PMC11383622 DOI: 10.1055/a-2251-5382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive multisystem disease. The pathophysiological origin is a dysfunction of the primary cilium. Clinical symptoms are heterogeneous and variable: retinal dystrophy, obesity, polydactyly, kidney abnormalities, hypogenitalism and developmental delays are the most common features. By the approval of the melanocortin 4 receptor agonist setmelanotide, a drug therapy for BBS-associated hyperphagia and obesity can be offered for the first time. Hyperphagia and severe obesity represent a considerable burden and are associated with comorbidity and increased mortality risk. Due to the limited experience with setmelanotide in BBS, a viable comprehensive therapy concept is to be presented. Therapy decision and management should be conducted in expert centers. For best therapeutic effects with setmelanotide adequate information of the patient about the modalities of the therapy (daily subcutaneous injection) and possible adverse drug events are necessary. Furthermore, the involvement of psychologists, nutritionists and nursing services (support for the application) should be considered together with the patient. The assessment of therapy response should be carried out with suitable outcome measurements and centrally reported to an adequate register.
Collapse
Affiliation(s)
- Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Carsten Bergmann
- Human genetic diagnostics, Medical Genetics Mainz, Mainz, Germany
| | - Markus Bettendorf
- Pediatric Endocrinology and Diabetes, Heidelberg University Hospital Department of General Pediatrics Pediatric Neurology Metabolic Diseases Gastroenterology and Nephrology, Heidelberg, Germany
| | - Johanna Faust
- Psychiatry and psychotherapy, Max-Planck-Institute for Psychiatry, München, Germany
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, Essen, Germany
| | - Bernarda Gillissen
- Bardet Biedl syndrome Working Group, PRO RETINA Deutschland e V, Bonn, Germany
| | - Matthias Hansen
- KFH Kidney Center for Children and Adolescents, Clementine Children's Hospital - Dr Christ'sche Foundation, Frankfurt am Main, Germany
| | - Maximilian Kerber
- Bardet Biedl syndrome Working Group, PRO RETINA Deutschland e V, Bonn, Germany
| | - Günter Klaus
- KFH Kidney Center for Children and Adolescents, University Hospitals Giessen and Marburg Campus Giessen, Marburg, Germany
| | - Jens König
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Laura Kühlewein
- Department of Ophthalmology, University Hospital Tübingen Clinic of Ophthalmology, Tübingen, Germany
| | - Jun Oh
- Pediatric Nephrology, University Medical Center Hamburg-Eppendorf Department of Pediatrics, Hamburg, Germany
| | - Annette Richter-Unruh
- Department of Pediatric Endocrinology and Diabetology, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Julia von Schnurbein
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | | | - Lars Pape
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| |
Collapse
|
2
|
Khan S, Focșa IO, Budișteanu M, Stoica C, Nedelea F, Bohîlțea L, Caba L, Butnariu L, Pânzaru M, Rusu C, Jurcă C, Chirita-Emandi A, Bănescu C, Abbas W, Sadeghpour A, Baig SM, Bălgrădean M, Davis EE. Exome sequencing in a Romanian Bardet-Biedl syndrome cohort revealed an overabundance of causal BBS12 variants. Am J Med Genet A 2023; 191:2376-2391. [PMID: 37293956 PMCID: PMC10524726 DOI: 10.1002/ajmg.a.63322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.
Collapse
Affiliation(s)
- Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ina Ofelia Focșa
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Magdalena Budișteanu
- Psychiatry Research Laboratory, "Prof. Dr. Alexandru Obregia" Clinical Hospital of Psychiatry, Bucharest, Romania
- Medical Genetic Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristina Stoica
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics, Clinical Institute Fundeni, Bucharest, Romania
| | - Florina Nedelea
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Genetics Department, Clinical Hospital Filantropia, Bucharest, Romania
| | | | - Lavinia Caba
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Lăcrămioara Butnariu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Monica Pânzaru
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Cristina Rusu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Claudia Jurcă
- Department of Genetics, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Department of Pediatrics, "Dr. Gavril Curteanu" Municipal Clinical Hospital, Oradea, Romania
| | - Adela Chirita-Emandi
- Emergency Hospital for Children Louis Turcanu, Regional Center of Medical Genetics Timis, Timisoara, Romania
- Victor Babes University of Medicine and Pharmacy Timisoara, Department of Microscopic Morphology Genetics, Center for Genomic Medicine, Timisoara, Romania
| | - Claudia Bănescu
- "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Wasim Abbas
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Duke Precision Medicine Program, Department of Medicine, Division of General Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shahid Mahmood Baig
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi, Karachi, Pakistan
| | - Mihaela Bălgrădean
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children "Maria Skłodowska Curie", Bucharest, Romania
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Simičić Majce A, Tudor D, Simunovic M, Todorovic M, Parlov M, Lozic B, Saraga-Babić M, Saraga M, Arapović A. Bardet-Biedl syndrome caused by compound heterozygosity in BBS12 gene: a case report of one family with three affected members. Front Pediatr 2023; 11:1226595. [PMID: 37469681 PMCID: PMC10352915 DOI: 10.3389/fped.2023.1226595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Bardet-Biedl syndrome (BBS) is a rare genetic syndrome caused by a mutation in one of 26 different genes responsible for normal structure and/or function of primary cilia. The syndrome is characterized by multiorgan involvement with gradual onset of occurrence of clinical signs and symptoms resulting in great phenotypic variability and what is more important, often difficulties with establishing the timely diagnosis. Case report We report a case of a one family with three members with BBS caused by a very rare mutation, a compound heterozygosity in BB12 gene. Even though all three patients have the same type of mutation, they express a significant diversity in clinical expression as well as renal impairment. Conclusion This is a case report of a rare clinical syndrome caused by a very rare genetic mutation and it emphasizes the importance of genetic analysis in the timely diagnosis of oligosymptomatic patients with BBS, in order to possibly prevent long-term complications.
Collapse
Affiliation(s)
- Ana Simičić Majce
- Paediatric Diseases Department, University Hospital of Split, Spinciceva 1, Split, Croatia
| | - Darija Tudor
- Paediatric Diseases Department, University Hospital of Split, Spinciceva 1, Split, Croatia
| | - Marko Simunovic
- Paediatric Diseases Department, University Hospital of Split, Spinciceva 1, Split, Croatia
- University of Split School of Medicine, Soltanska 2, Split, Croatia
| | - Marko Todorovic
- Paediatric Diseases Department, University Hospital of Split, Spinciceva 1, Split, Croatia
| | - Mladenka Parlov
- Physical Medicine and Rehabilitation with Rheumatology Division, University Hospital of Split, Spinciceva 1, Split, Croatia
| | - Bernarda Lozic
- Paediatric Diseases Department, University Hospital of Split, Spinciceva 1, Split, Croatia
- University of Split School of Medicine, Soltanska 2, Split, Croatia
| | | | - Marijan Saraga
- Paediatric Diseases Department, University Hospital of Split, Spinciceva 1, Split, Croatia
- University of Split School of Medicine, Soltanska 2, Split, Croatia
| | - Adela Arapović
- Paediatric Diseases Department, University Hospital of Split, Spinciceva 1, Split, Croatia
| |
Collapse
|
4
|
Melluso A, Secondulfo F, Capolongo G, Capasso G, Zacchia M. Bardet-Biedl Syndrome: Current Perspectives and Clinical Outlook. Ther Clin Risk Manag 2023; 19:115-132. [PMID: 36741589 PMCID: PMC9896974 DOI: 10.2147/tcrm.s338653] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The Bardet Biedl syndrome (BBS) is a rare inherited disorder considered a model of non-motile ciliopathy. It is in fact caused by mutations of genes encoding for proteins mainly localized to the base of the cilium. Clinical features of BBS patients are widely shared with patients suffering from other ciliopathies, especially autosomal recessive syndromic disorders; moreover, mutations in cilia-related genes can cause different clinical ciliopathy entities. Besides the best-known clinical features, as retinal degeneration, learning disabilities, polydactyly, obesity and renal defects, several additional clinical signs have been reported in BBS, expanding our understanding of the complexity of its clinical spectrum. The present review aims to describe the current knowledge of BBS i) pathophysiology, ii) clinical manifestations, highlighting both the most common and the less described features, iii) current and future perspective for treatment.
Collapse
Affiliation(s)
- Andrea Melluso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Floriana Secondulfo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Biogem Scarl, Ariano Irpino, AV, 83031, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Correspondence: Miriam Zacchia, Via Pansini 5, Naples, 80131, Italy, Tel +39 081 566 6650, Fax +39 081 566 6671, Email
| |
Collapse
|
5
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
Nasser F, Kohl S, Kurtenbach A, Kempf M, Biskup S, Zuleger T, Haack TB, Weisschuh N, Stingl K, Zrenner E. Ophthalmic and Genetic Features of Bardet Biedl Syndrome in a German Cohort. Genes (Basel) 2022; 13:genes13071218. [PMID: 35886001 PMCID: PMC9322102 DOI: 10.3390/genes13071218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize the ophthalmic and genetic features of Bardet Biedl (BBS) syndrome in a cohort of patients from a German specialized ophthalmic care center. Sixty-one patients, aged 5−56 years, underwent a detailed ophthalmic examination including visual acuity and color vision testing, electroretinography (ERG), visually evoked potential recording (VEP), fundus examination, and spectral domain optical coherence tomography (SD-OCT). Adaptive optics flood illumination ophthalmoscopy was performed in five patients. All patients had received diagnostic genetic testing and were selected upon the presence of apparent biallelic variants in known BBS-associated genes. All patients had retinal dystrophy with morphologic changes of the retina. Visual acuity decreased from ~0.2 (decimal) at age 5 to blindness 0 at 50 years. Visual field examination could be performed in only half of the patients and showed a concentric constriction with remaining islands of function in the periphery. ERG recordings were mostly extinguished whereas VEP recordings were reduced in about half of the patients. The cohort of patients showed 51 different likely biallelic mutations—of which 11 are novel—in 12 different BBS-associated genes. The most common associated genes were BBS10 (32.8%) and BBS1 (24.6%), and by far the most commonly observed variants were BBS10 c.271dup;p.C91Lfs*5 (21 alleles) and BBS1 c.1169T>G;p.M390R (18 alleles). The phenotype associated with the different BBS-associated genes and genotypes in our cohort is heterogeneous, with diverse features without genotype−phenotype correlation. The results confirm and expand our knowledge of this rare disease.
Collapse
Affiliation(s)
- Fadi Nasser
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Department of Ophthalmology, University of Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Susanne Kohl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Anne Kurtenbach
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Melanie Kempf
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Nicole Weisschuh
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
7
|
Aleman TS, O'Neil EC, O'Connor K, Jiang YY, Aleman IA, Bennett J, Morgan JIW, Toussaint BW. Bardet-Biedl syndrome-7 ( BBS7) shows treatment potential and a cone-rod dystrophy phenotype that recapitulates the non-human primate model. Ophthalmic Genet 2021; 42:252-265. [PMID: 33729075 DOI: 10.1080/13816810.2021.1888132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To provide a detailed ophthalmic phenotype of two male patients with Bardet-Biedl Syndrome (BBS) due to mutations in the BBS7 geneMethods: Two brothers ages 26 (Patient 1, P1) and 23 (P2) underwent comprehensive ophthalmic evaluations over three years. Visual function was assessed with full-field electroretinograms (ffERGs), kinetic and chromatic perimetry, multimodal imaging with spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF) with short- (SW) and near-infrared (NIR) excitation lights and adaptive optics scanning light ophthalmoscopy (AOSLO).Results: Both siblings had a history of obesity and postaxial polydactyly; P2 had diagnoses of type 1 Diabetes Mellitus, Addison's disease, high-functioning autism-spectrum disorder and -12D myopia. Visual acuities were better than 20/30. Kinetic fields were moderately constricted. Cone-mediated ffERGs were undetectable, rod ERGs were ~80% of normal mean. Static perimetry showed severe central cone and rod dysfunction. Foveal to parafoveal hypoautofluorescence, most obvious on NIR-FAF, co-localized with outer segment shortening/loss and outer nuclear layer thinning by SD-OCT, and with reduced photoreceptors densities by AOSLO. A structural-functional dissociation was confirmed for cone- and rod-mediated parameters. Worsening of the above abnormalities was documented by SD-OCT and FAF in P2 at 3 years. Gene screening identified compound heterozygous mutations in BBS7 (p.Val266Glu: c.797 T > A of maternal origin; c.1781_1783delCAT, paternal) in both patients.Conclusions: BBS7-associated retinal degeneration may present as a progressive cone-rod dystrophy pattern, reminiscent of both the murine and non-human primate models of the disease. Predominantly central retinal abnormalities in both cone and rod photoreceptors showed a structural-functional dissociation, an ideal scenario for gene augmentation treatments.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin C O'Neil
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keli O'Connor
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu You Jiang
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabella A Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jean Bennett
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica I W Morgan
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian W Toussaint
- Christiana Care Health System, Wilmington, Delaware, USA.,Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Identification of a Novel Homozygous Missense (c.443A>T:p.N148I) Mutation in BBS2 in a Kashmiri Family with Bardet-Biedl Syndrome. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626015. [PMID: 33688495 PMCID: PMC7925018 DOI: 10.1155/2021/6626015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/31/2020] [Accepted: 01/31/2021] [Indexed: 11/17/2022]
Abstract
Background Bardet-Biedl syndrome (BBS) is a rare autosomal recessive inherited disorder with distinctive clinical feature such as obesity, degeneration of retina, polydactyly, and renal abnormalities. The study was aimed at finding out the disease-causing variant/s in patients exhibiting clinical features of BBS. Methods The identification of disease-causing variant was done by using whole exome sequencing on Illumina HiSeq 4000 platform involving the SeqCap EZ Exome v3 kit (Roche NimbleGen). The identified variant was further validated by Sanger sequencing. Results WES revealed a novel homozygous missense mutation (NM_031885: c.443A>T:p.N148I) in exon 3 of the BBS2 gene. Sanger sequencing confirmed this variant as homozygous in both affected subjects and heterozygous in obligate parents, demonstrating autosomal recessive inheritance pattern. To the best of our knowledge, this variant was not present in literature and all publically available databases. The candidate variant is predicted to be pathogenic by a set of in-silico softwares. Conclusion Clinical and genetic spectrum of BBS and BBS-like disorders is not completely defined in the Pakistani as well as in Kashmiri population. Therefore, more comprehensive genetic studies are required to gain insights into genotype-phenotype associations to facilitate carrier screening and genetic counseling of families with such disorders.
Collapse
|
9
|
Centrosome dysfunction in human diseases. Semin Cell Dev Biol 2021; 110:113-122. [DOI: 10.1016/j.semcdb.2020.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
10
|
Deletion in the Bardet-Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs. Genes (Basel) 2020; 11:genes11091090. [PMID: 32962042 PMCID: PMC7565673 DOI: 10.3390/genes11091090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
In golden retriever dogs, a 1 bp deletion in the canine TTC8 gene has been shown to cause progressive retinal atrophy (PRA), the canine equivalent of retinitis pigmentosa. In humans, TTC8 is also implicated in Bardet–Biedl syndrome (BBS). To investigate if the affected dogs only exhibit a non-syndromic PRA or develop a syndromic ciliopathy similar to human BBS, we recruited 10 affected dogs to the study. The progression of PRA for two of the dogs was followed for 2 years, and a rigorous clinical characterization allowed a careful comparison with primary and secondary characteristics of human BBS. In addition to PRA, the dogs showed a spectrum of clinical and morphological signs similar to primary and secondary characteristics of human BBS patients, such as obesity, renal anomalies, sperm defects, and anosmia. We used Oxford Nanopore long-read cDNA sequencing to characterize retinal full-length TTC8 transcripts in affected and non-affected dogs, the results of which suggest that three isoforms are transcribed in the retina, and the 1 bp deletion is a loss-of-function mutation, resulting in a canine form of Bardet–Biedl syndrome with heterogeneous clinical signs.
Collapse
|
11
|
Lei TY, Fu F, Li R, Yu QX, Du K, Zhang WW, Deng Q, Li LS, Wang D, Yang X, Zhen L, Li DZ, Liao C. Whole-exome sequencing in the evaluation of fetal congenital anomalies of the kidney and urinary tract detected by ultrasonography. Prenat Diagn 2020; 40:1290-1299. [PMID: 32436246 DOI: 10.1002/pd.5737] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We aimed to investigate the value of whole-exome sequencing (WES) in fetuses with congenital anomalies of the kidney and urinary tract (CAKUT) with or without other structural anomalies but with normal findings upon karyotyping and chromosome microarray analysis (CMA). METHODS Cases with CAKUT with or without other structural anomalies were screened for eligibility. Fetuses with abnormal karyotyping or CMA results were excluded. We performed WES on DNA samples from eligible fetus-parental trios and identified diagnostic genetic variants based on ultrasonographic features. RESULTS A total of 163 eligible fetus-parental trios were successfully analyzed by WES. We found 26 likely pathogenic or pathogenic variants in 18 genes from 20 fetuses, with a total proportion of diagnostic genetic variants of 12.3% (20/163). Genetic variants were significantly more frequently detected in fetuses with multisystem anomalies (27.0%, 10/37), enlarged kidney/echogenic kidney (20%, 4/20), and multicystic dysplastic kidney (11.1%, 4/36). Pregnancy outcome data showed that 88 (94.6%, 88/93) of the surviving cases with negative WES results had a good prognosis in early childhood. CONCLUSIONS Our study is the largest to use WES prenatally for CAKUT and shows that WES can be used diagnostically to define the molecular defects that underlie unexplained CAKUT.
Collapse
Affiliation(s)
- Ting-Ying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiu-Xia Yu
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Du
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Wen Zhang
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu-Shan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dan Wang
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
A novel missense variant in the BBS7 gene underlying Bardet-Biedl syndrome in a consanguineous Pakistani family. Clin Dysmorphol 2020; 29:17-23. [DOI: 10.1097/mcd.0000000000000294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ludlam WG, Aoba T, Cuéllar J, Bueno-Carrasco MT, Makaju A, Moody JD, Franklin S, Valpuesta JM, Willardson BM. Molecular architecture of the Bardet-Biedl syndrome protein 2-7-9 subcomplex. J Biol Chem 2019; 294:16385-16399. [PMID: 31530639 DOI: 10.1074/jbc.ra119.010150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Indexed: 02/04/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by malfunctions in primary cilia resulting from mutations that disrupt the function of the BBSome, an 8-subunit complex that plays an important role in protein transport in primary cilia. To better understand the molecular basis of BBS, here we used an integrative structural modeling approach consisting of EM and chemical cross-linking coupled with MS analyses, to analyze the structure of a BBSome 2-7-9 subcomplex consisting of three homologous BBS proteins, BBS2, BBS7, and BBS9. The resulting molecular model revealed an overall structure that resembles a flattened triangle. We found that within this structure, BBS2 and BBS7 form a tight dimer through a coiled-coil interaction and that BBS9 associates with the dimer via an interaction with the α-helical domain of BBS2. Interestingly, a BBS-associated mutation of BBS2 (R632P) is located in its α-helical domain at the interface between BBS2 and BBS9, and binding experiments indicated that this mutation disrupts the BBS2-BBS9 interaction. This finding suggests that BBSome assembly is disrupted by the R632P substitution, providing molecular insights that may explain the etiology of BBS in individuals harboring this mutation.
Collapse
Affiliation(s)
- W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Takuma Aoba
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jorge Cuéllar
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M Teresa Bueno-Carrasco
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aman Makaju
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112
| | - James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112
| | - José M Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
14
|
Niederlova V, Modrak M, Tsyklauri O, Huranova M, Stepanek O. Meta-analysis of genotype-phenotype associations in Bardet-Biedl syndrome uncovers differences among causative genes. Hum Mutat 2019; 40:2068-2087. [PMID: 31283077 DOI: 10.1002/humu.23862] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a recessive genetic disease causing multiple organ anomalies. Most patients carry mutations in genes encoding for the subunits of the BBSome, an octameric ciliary transport complex, or accessory proteins involved in the BBSome assembly or function. BBS proteins have been extensively studied using in vitro, cellular, and animal models. However, the molecular functions of particular BBS proteins and the etiology of the BBS symptoms are still largely elusive. In this study, we applied a meta-analysis approach to study the genotype-phenotype association in humans using our database of all reported BBS patients. The analysis revealed that the identity of the causative gene and the character of the mutation partially predict the clinical outcome of the disease. Besides their potential use for clinical prognosis, our analysis revealed functional differences of particular BBS genes in humans. Core BBSome subunits BBS2, BBS7, and BBS9 manifest as more critical for the function and development of kidneys than peripheral subunits BBS1, BBS4, and BBS8/TTC8, suggesting that incomplete BBSome retains residual function at least in the kidney.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Modrak
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Khan S, Lin S, Harlalka GV, Ullah A, Shah K, Khalid S, Mehmood S, Hassan MJ, Ahmad W, Self JE, Crosby AH, Baple EL, Gul A. BBS5 and INPP5E mutations associated with ciliopathy disorders in families from Pakistan. Ann Hum Genet 2019; 83:477-482. [PMID: 31173343 DOI: 10.1111/ahg.12336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 04/17/2019] [Accepted: 05/18/2019] [Indexed: 11/28/2022]
Abstract
Ciliopathies are a clinically and genetically heterogeneous group of disorders often exhibiting phenotypic overlap and caused by abnormalities in the structure or function of cellular cilia. As such, a precise molecular diagnosis is important for guiding clinical management and genetic counseling. In the present study, two Pakistani families comprising individuals with overlapping clinical features suggestive of a ciliopathy syndrome, including intellectual disability, obesity, congenital retinal dystrophy, and hypogonadism (in males), were investigated clinically and genetically. Whole-exome sequencing identified the likely causes of disease as a novel homozygous frameshift mutation (NM_152384.2: c.196delA; p.(Arg66Glufs*12); family 1) in BBS5, and a nonsense mutation (NM_019892.5:c.1879C>T; p.Gln627*; family 2) in INPP5E, previously reported in an extended Pakistani family with MORM syndrome. Our findings expand the molecular spectrum associated with BBS5 mutations in Pakistan and provide further supportive evidence that the INPP5E mutation is a common cause of ciliopathy in Northern Pakistan, likely representing a regional founder mutation. This study also highlights the value of genomic studies in Pakistan for families affected by rare heterogeneous developmental disorders and where clinical phenotyping may be limited by geographical and financial constraints. The identification of the spectrum and frequency of disease-causing variants within this setting enables the development of population-specific genetic testing strategies targeting variants common to the local population and improving health care outcomes.
Collapse
Affiliation(s)
- Shazia Khan
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan.,RILD Wellcome Wolfson Centre, Royal Devon and Exeter Hospital, Exeter, UK
| | - Siying Lin
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter Hospital, Exeter, UK
| | - Gaurav V Harlalka
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter Hospital, Exeter, UK
| | - Asmat Ullah
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Molecualr Biology, Shaheed Zulfiqar Ali Bhutto Medical University, PIMS, Islamabad, Pakistan
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbotabad Campus, Pakistan
| | - Sumbul Khalid
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Sarmad Mehmood
- Atta ur Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Muhammad Jawad Hassan
- Atta ur Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jay E Self
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter Hospital, Exeter, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon and Exeter Hospital, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital, Exeter, UK
| | - Asma Gul
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| |
Collapse
|
16
|
Singh M, Garrison JE, Wang K, Sheffield VC. Absence of BBSome function leads to astrocyte reactivity in the brain. Mol Brain 2019; 12:48. [PMID: 31072410 PMCID: PMC6509862 DOI: 10.1186/s13041-019-0466-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/23/2019] [Indexed: 01/01/2023] Open
Abstract
In humans, dysfunctional primary cilia result in Bardet-Biedl syndrome (BBS), which presents with clinical features including intellectual disabilities, obesity, and retinal degeneration, and, in mouse models, the added feature of hydrocephalus. We observed increased Glial Fibrillary Acidic Protein (GFAP) immunoreactivity in BBS mouse brains. Increased GFAP expression is a hallmark of astrocyte reactivity that is associated with microglia activation and neuro-inflammation. To gain a better understanding of reactive astrocytes observed in BBS mice, we used two mouse models of BBS8, a BBSome protein, to characterize the reactive astrocyte phenotype. The finding of reactive astrocytes in young BBS mouse brains led us to hypothesize that loss of BBSome function leads to reactive astrocytes prior to hydrocephalus and obesity. By using two mouse models of BBS8, a congenital BBS8 knockout with hydrocephalus, and a tamoxifen-inducible BBS8 knockout without hydrocephalus, we were able to molecularly phenotype the reactive astrocytes. Molecular phenotype of reactive astrocytes shows differential regulation of inducers of Pan, A1 neurotoxic, and A2 neuroprotective astrocytes that are significantly altered in brains of both congenital and induced knockouts of BBS8, but without microglia activation. We find evidence for neuroinflammation in the brains of congenital knockout mice, but not in induced knockout mice. Protein levels of GFAP, SERPINA3N and post-synaptic density 95 (PSD95) are significantly increased in congenital knockout mice, but remain unchanged in induced knockout mice. Thus, despite the reactive astrocyte phenotype being present in both models, the molecular signature of reactive astrocytes in BBS8 mice models are distinct. Together, these findings suggest that BBS8, and by extension the BBSome, plays a role in neuro-astrocyte functions independent of hydrocephalus, and its dysregulation is associated with astrocyte reactivity without microglia activation. (Total word count 278).
Collapse
Affiliation(s)
- Minati Singh
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Janelle E Garrison
- Departments of Pediatrics and Ophthalmology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA
| | - Val C Sheffield
- Departments of Pediatrics and Ophthalmology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
17
|
Sato S, Morimoto T, Hotta K, Fujikado T, Nishida K. A novel compound heterozygous mutation in TTC8 identified in a Japanese patient. Hum Genome Var 2019; 6:14. [PMID: 30886724 PMCID: PMC6418288 DOI: 10.1038/s41439-019-0045-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/23/2022] Open
Abstract
Bardet-Biedl syndrome (BBS), characterized by rod-cone dystrophy, postaxial polydactyly, central obesity, hypogonadism, renal abnormalities, and mental retardation, is a rare autosomal recessive disorder. To date, 21 causative genes have been reported. Here we describe a Japanese BBS patient with a novel compound heterozygous mutation in TTC8. To the best of our knowledge, this is the first description of a BBS patient with a mutation in the TTC8 gene in Japan.
Collapse
Affiliation(s)
- Shigeru Sato
- 1Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Morimoto
- 1Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.,2Department of Applied Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kikuko Hotta
- 3Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Takashi Fujikado
- 1Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.,2Department of Applied Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- 1Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Nikkhah E, Safaralizadeh R, Mohammadiasl J, Tahmasebi Birgani M, Hosseinpour Feizi MA, Golchin N. Identification of A Novel Compound Heterozygous Mutation in BBS12 in An Iranian Family with Bardet-Biedl Syndrome Using Targeted Next Generation Sequencing. CELL JOURNAL 2018; 20:284-289. [PMID: 29633607 PMCID: PMC5893301 DOI: 10.22074/cellj.2018.5012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/21/2017] [Indexed: 01/27/2023]
Abstract
Bardet-Biedl syndrome (BBS) is a pleiotropic and multisystemic disorder characterized by rod-cone dystrophy, polydactyly,
learning difficulties, renal abnormalities, obesity and hypogonadism. This disorder is genetically heterogeneous. Until
now, a total of nineteen genes have been identified for BBS whose mutations explain more than 80% of diagnosed
cases. Recently, the development of next generation sequencing (NGS) technology has accelerated mutation screening
of target genes, resulting in lower cost and less time consumption. Here, we screened the most common BBS genes
(BBS1-BBS13) using NGS in an Iranian family of a proposita displaying symptoms of BBS. Among the 18 mutations
identified in the proposita, one (BBS12 c.56T>G and BBS12 c.1156C>T) was novel. This compound heterozygosity
was confirmed by Sanger sequencing in the proposita and her parents. Although our data were presented as a case
report, however, we suggest a new probable genetic mechanism other than the conventional autosomal recessive
inheritance of BBS. Additionally, given that in some Iranian provinces, like Khuzestan, consanguineous marriages
are common, designing mutational panels for genetic diseases is strongly recommended, especially for those with an
autosomal recessive inheritance pattern.
Collapse
Affiliation(s)
- Emad Nikkhah
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Javad Mohammadiasl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | | |
Collapse
|
19
|
|
20
|
Priya S, Nampoothiri S, Sen P, Sripriya S. Bardet-Biedl syndrome: Genetics, molecular pathophysiology, and disease management. Indian J Ophthalmol 2017; 64:620-627. [PMID: 27853007 PMCID: PMC5151149 DOI: 10.4103/0301-4738.194328] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Primary cilia play a key role in sensory perception and various signaling pathways. Any defect in them leads to group of disorders called ciliopathies, and Bardet–Biedl syndrome (BBS, OMIM 209900) is one among them. The disorder is clinically and genetically heterogeneous, with various primary and secondary clinical manifestations, and shows autosomal recessive inheritance and highly prevalent in inbred/consanguineous populations. The disease mapped to at least twenty different genes (BBS1-BBS20), follow oligogenic inheritance pattern. BBS proteins localizes to the centerosome and regulates the biogenesis and functions of the cilia. In BBS, the functioning of various systemic organs (with ciliated cells) gets deranged and results in systemic manifestations. Certain components of the disease (such as obesity, diabetes, and renal problems) when noticed earlier offer a disease management benefit to the patients. However, the awareness of the disease is comparatively low and most often noticed only after severe vision loss in patients, which is usually in the first decade of the patient's age. In the current review, we have provided the recent updates retrieved from various types of scientific literature through journals, on the genetics, its molecular relevance, and the clinical outcome in BBS. The review in nutshell would provide the basic awareness of the disease that will have an impact in disease management and counseling benefits to the patients and their families.
Collapse
Affiliation(s)
- Sathya Priya
- SNONGC Department of Genetics and Molecular Biology, Kamal Nayan Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu; School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Cochin, Kerala, India
| | - Parveen Sen
- Department of Vitreoretina Clinic, Medical Research Foundation, Chennai, Tamil Nadu, India
| | - S Sripriya
- SNONGC Department of Genetics and Molecular Biology, Kamal Nayan Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
London AS, Herd P, Miech RA, Wilmoth JM. The Influence of Men's Military Service on Smoking Across the Life Course. JOURNAL OF DRUG ISSUES 2016; 47:562-586. [PMID: 31467452 DOI: 10.1177/0022042616678617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The military is described as a social context that contributes to the (re-)initiation or intensification of cigarette smoking. We draw on data from the 1985-2014 National Survey of Drug Use and Health (NSDUH) and the Wisconsin Longitudinal Study (WLS) to conduct complementary sub-studies of the influence of military service on men's smoking outcomes across the life course. Descriptive findings from an age-period-cohort analysis of NSDUH data document higher probabilities of current smoking and heavy smoking among veteran men across a broad range of cohorts and at all observed ages. Findings from sibling fixed-effects Poisson models estimated on the WLS data document longer durations of smoking among men who served in the military and no evidence that selection explains the observed relationship. Together, these results provide novel and potentially generalizable evidence that participation in the military in early adulthood exerts a causal influence on smoking across the life course.
Collapse
Affiliation(s)
| | - Pamela Herd
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
22
|
Maria M, Lamers IJC, Schmidts M, Ajmal M, Jaffar S, Ullah E, Mustafa B, Ahmad S, Nazmutdinova K, Hoskins B, van Wijk E, Koster-Kamphuis L, Khan MI, Beales PL, Cremers FPM, Roepman R, Azam M, Arts HH, Qamar R. Genetic and clinical characterization of Pakistani families with Bardet-Biedl syndrome extends the genetic and phenotypic spectrum. Sci Rep 2016; 6:34764. [PMID: 27708425 PMCID: PMC5052523 DOI: 10.1038/srep34764] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder that is both genetically and clinically heterogeneous. To date 19 genes have been associated with BBS, which encode proteins active at the primary cilium, an antenna-like organelle that acts as the cell’s signaling hub. In the current study, a combination of mutation screening, targeted sequencing of ciliopathy genes associated with BBS, and whole-exome sequencing was used for the genetic characterization of five families including four with classic BBS symptoms and one BBS-like syndrome. This resulted in the identification of novel mutations in BBS genes ARL6 and BBS5, and recurrent mutations in BBS9 and CEP164. In the case of CEP164, this is the first report of two siblings with a BBS-like syndrome with mutations in this gene. Mutations in this gene were previously associated with nephronophthisis 15, thus the current results expand the CEP164-associated phenotypic spectrum. The clinical and genetic spectrum of BBS and BBS-like phenotypes is not fully defined in Pakistan. Therefore, genetic studies are needed to gain insights into genotype-phenotype correlations, which will in turn improve the clinician’s ability to make an early and accurate diagnosis, and facilitate genetic counseling, leading to directly benefiting families with affected individuals.
Collapse
Affiliation(s)
- Maleeha Maria
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Miriam Schmidts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.,Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, UK.,Center for Pediatrics and Adolescent Medicine, Pediatric Genetics Division, University Hospital Freiburg, Germany
| | - Muhammad Ajmal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | | | - Ehsan Ullah
- School of Applied Sciences, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.,Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Bilal Mustafa
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Shakeel Ahmad
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Katia Nazmutdinova
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, UK
| | - Bethan Hoskins
- North East Thames Regional Genetics Service, Hospital for Children, London, UK
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands.,Donders Center for Neurosciences, Radboud University Nijmegen, the Netherlands
| | - Linda Koster-Kamphuis
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Phil L Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, UK.,Centre for Translational Omics-GOSgene, Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Center for Neurosciences, Radboud University Nijmegen, the Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maleeha Azam
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Heleen H Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.,Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Department of Biochemistry, Al-Nafees Medical College &Hospital, Isra University, Islamabad, Pakistan.,Pakistan Academy of Sciences, Constitution Avenue, Islamabad, Pakistan
| |
Collapse
|
23
|
Srilekha S, Rao B, Rao DM, Sudha D, Chandrasekar SP, Pandian AJ, Soumittra N, Sripriya S. Strategies for Gene Mapping in Inherited Ophthalmic Diseases. Asia Pac J Ophthalmol (Phila) 2016; 5:282-92. [PMID: 27488070 DOI: 10.1097/apo.0000000000000228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Gene mapping of inherited ophthalmic diseases such as congenital cataracts, retinal degeneration, glaucoma, age-related macular degeneration, myopia, optic atrophy, and eye malformations has shed more light on the disease pathology, identified targets for research on therapeutics, earlier detection, and treatment options for disease management and patient care. This article details the different approaches to gene identification for both Mendelian and complex eye disorders.
Collapse
Affiliation(s)
- Sundar Srilekha
- From the SNONGC Department of Genetics and Molecular Biology, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology (KNBIRVO), Chennai, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.
Collapse
|
25
|
Khan S, Muhammad N, Khan M, Kamal A, Rehman Z, Khan S. Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet 2016; 90:3-15. [DOI: 10.1111/cge.12737] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/21/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022]
Affiliation(s)
- S.A. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - N. Muhammad
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - M.A. Khan
- Gomal Centre of Biochemistry and Biotechnology; Gomal University; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| | - A. Kamal
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - Z.U. Rehman
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - S. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| |
Collapse
|
26
|
Knopp C, Rudnik-Schöneborn S, Eggermann T, Bergmann C, Begemann M, Schoner K, Zerres K, Ortiz Brüchle N. Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing. Mol Cell Probes 2015; 29:299-307. [DOI: 10.1016/j.mcp.2015.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 01/23/2023]
|
27
|
[Algorithm for the molecular analysis of Bardet-Biedl syndrome in Spain]. Med Clin (Barc) 2015; 145:147-52. [PMID: 25087209 DOI: 10.1016/j.medcli.2014.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Bardet-Biedl syndrome (BBS) is a multisystemic genetic disorder, which is not widespread among the Caucasian population, characterized by a highly variable phenotype and great genetic heterogeneity. BBS belongs to a group of diseases called ciliopathies, caused by defects in the structure and/or function of cilia. Due to the diagnostic complexity of the syndrome, the objective of this study was to analyse our whole group of patients in order to create an algorithm to facilitate the routine molecular diagnosis of BBS. We also calculated several epidemiological parameters in our cohort. PATIENTS AND METHOD We analysed 116 BBS patients belonging to 89 families from the whole Spanish geography. All probands fulfilled diagnosis criteria established for BBS. For this, we used: genotyping microarray, direct sequencing and homozygosis mapping (in consanguineous families). RESULTS By means of the different approaches, it was possible to diagnose 47% of families (21% by genotyping microarray, 18% by direct sequencing of predominant BBS genes, and 8% by homozygosis mapping). With regard to epidemiological data, a prevalence value of 1:407,000 was obtained for BBS in Spain, and a sex ratio of 1.4:1 (men:women). CONCLUSIONS The proposed algorithm, based on the analysis of predominant BBS genes combined with homozygosis mapping, allowed us to confirm the molecular diagnosis in a significant percentage of families with clinically suspected BBS. This diagnostic algorithm will be useful for the improvement of the efficiency of molecular analysis in BBS.
Collapse
|
28
|
Makrythanasis P, Nelis M, Santoni FA, Guipponi M, Vannier A, Béna F, Gimelli S, Stathaki E, Temtamy S, Mégarbané A, Masri A, Aglan MS, Zaki MS, Bottani A, Fokstuen S, Gwanmesia L, Aliferis K, Bustamante Eduardo M, Stamoulis G, Psoni S, Kitsiou-Tzeli S, Fryssira H, Kanavakis E, Al-Allawi N, Sefiani A, Al Hait S, Elalaoui SC, Jalkh N, Al-Gazali L, Al-Jasmi F, Bouhamed HC, Abdalla E, Cooper DN, Hamamy H, Antonarakis SE. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum Mutat 2014; 35:1203-10. [PMID: 25044680 DOI: 10.1002/humu.22617] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/30/2014] [Indexed: 01/19/2023]
Abstract
Rare, atypical, and undiagnosed autosomal-recessive disorders frequently occur in the offspring of consanguineous couples. Current routine diagnostic genetic tests fail to establish a diagnosis in many cases. We employed exome sequencing to identify the underlying molecular defects in patients with unresolved but putatively autosomal-recessive disorders in consanguineous families and postulated that the pathogenic variants would reside within homozygous regions. Fifty consanguineous families participated in the study, with a wide spectrum of clinical phenotypes suggestive of autosomal-recessive inheritance, but with no definitive molecular diagnosis. DNA samples from the patient(s), unaffected sibling(s), and the parents were genotyped with a 720K SNP array. Exome sequencing and array CGH (comparative genomic hybridization) were then performed on one affected individual per family. High-confidence pathogenic variants were found in homozygosity in known disease-causing genes in 18 families (36%) (one by array CGH and 17 by exome sequencing), accounting for the clinical phenotype in whole or in part. In the remainder of the families, no causative variant in a known pathogenic gene was identified. Our study shows that exome sequencing, in addition to being a powerful diagnostic tool, promises to rapidly expand our knowledge of rare genetic Mendelian disorders and can be used to establish more detailed causative links between mutant genotypes and clinical phenotypes.
Collapse
Affiliation(s)
- Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoon SC, Lee HJ, Ko JM, Kang HG, Cheong HI, Yu HG, Kim JH. Two siblings with Bardet-Biedl syndrome caused by mutations in BBS10 : the first case identified in Korea. ACTA ACUST UNITED AC 2014. [DOI: 10.5734/jgm.2014.11.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sung Chul Yoon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Jin Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
| | - Hyeong Gon Yu
- Department of Opthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyung Kim
- Department of Opthalmology, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
30
|
Khan MI, Azam M, Ajmal M, Collin RWJ, den Hollander AI, Cremers FPM, Qamar R. The molecular basis of retinal dystrophies in pakistan. Genes (Basel) 2014; 5:176-95. [PMID: 24705292 PMCID: PMC3978518 DOI: 10.3390/genes5010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 12/23/2022] Open
Abstract
The customary consanguineous nuptials in Pakistan underlie the frequent occurrence of autosomal recessive inherited disorders, including retinal dystrophy (RD). In many studies, homozygosity mapping has been shown to be successful in mapping susceptibility loci for autosomal recessive inherited disease. RDs are the most frequent cause of inherited blindness worldwide. To date there is no comprehensive genetic overview of different RDs in Pakistan. In this review, genetic data of syndromic and non-syndromic RD families from Pakistan has been collected. Out of the 132 genes known to be involved in non-syndromic RD, 35 different genes have been reported to be mutated in families of Pakistani origin. In the Pakistani RD families 90% of the mutations causing non-syndromic RD and all mutations causing syndromic forms of the disease have not been reported in other populations. Based on the current inventory of all Pakistani RD-associated gene defects, a cost-efficient allele-specific analysis of 11 RD-associated variants is proposed, which may capture up to 35% of the genetic causes of retinal dystrophy in Pakistan.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Maleeha Azam
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.
| | - Frans P M Cremers
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| | - Raheel Qamar
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan.
| |
Collapse
|
31
|
Al-Hamed MH, van Lennep C, Hynes AM, Chrystal P, Eley L, Al-Fadhly F, El Sayed R, Simms RJ, Meyer B, Sayer JA. Functional modelling of a novel mutation in BBS5. Cilia 2014; 3:3. [PMID: 24559376 PMCID: PMC3931281 DOI: 10.1186/2046-2530-3-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
Background Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism. Results We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body. Conclusions We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - John A Sayer
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK.
| |
Collapse
|
32
|
Bocquet B, Marzouka NAD, Hebrard M, Manes G, Sénéchal A, Meunier I, Hamel CP. Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations. Mol Vis 2013; 19:2487-500. [PMID: 24339724 PMCID: PMC3857159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/06/2013] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Autosomal recessive retinitis pigmentosa (arRP) is a genetically heterogeneous disease resulting in progressive loss of photoreceptors that leads to blindness. To date, 36 genes are known to cause arRP, rendering the molecular diagnosis a challenge. The aim of this study was to use homozygosity mapping to identify the causative mutation in a series of inbred families with arRP. METHODS arRP patients underwent standard ophthalmic examination, Goldman perimetry, fundus examination, retinal OCT, autofluorescence measurement, and full-field electroretinogram. Fifteen consanguineous families with arRP excluded for USH2A and EYS were genotyped on 250 K SNP arrays. Homozygous regions were listed, and known genes within these regions were PCR sequenced. Familial segregation and mutation analyzes were performed. RESULTS We found ten mutations, seven of which were novel mutations in eight known genes, including RP1, IMPG2, NR2E3, PDE6A, PDE6B, RLBP1, CNGB1, and C2ORF71, in ten out of 15 families. The patients carrying RP1, C2ORF71, and IMPG2 mutations presented with severe RP, while those with PDE6A, PDE6B, and CNGB1 mutations were less severely affected. The five families without mutations in known genes could be a source of identification of novel genes. CONCLUSIONS Homozygosity mapping combined with systematic screening of known genes results in a positive molecular diagnosis in 66.7% of families.
Collapse
Affiliation(s)
- Béatrice Bocquet
- INSERM U. 1051, Institute for Neurosciences of Montpellier, Montpellier, France,Université Montpellier 1, Montpellier, France,Université Montpellier 2, Montpellier, France
| | - Nour al Dain Marzouka
- INSERM U. 1051, Institute for Neurosciences of Montpellier, Montpellier, France,Université Montpellier 1, Montpellier, France,Université Montpellier 2, Montpellier, France
| | - Maxime Hebrard
- INSERM U. 1051, Institute for Neurosciences of Montpellier, Montpellier, France,Université Montpellier 1, Montpellier, France,Université Montpellier 2, Montpellier, France
| | - Gaël Manes
- INSERM U. 1051, Institute for Neurosciences of Montpellier, Montpellier, France,Université Montpellier 1, Montpellier, France,Université Montpellier 2, Montpellier, France
| | - Audrey Sénéchal
- INSERM U. 1051, Institute for Neurosciences of Montpellier, Montpellier, France,Université Montpellier 1, Montpellier, France,Université Montpellier 2, Montpellier, France
| | - Isabelle Meunier
- INSERM U. 1051, Institute for Neurosciences of Montpellier, Montpellier, France,Université Montpellier 1, Montpellier, France,Université Montpellier 2, Montpellier, France,Genetics of Sensory Diseases, CHRU, Montpellier, France
| | - Christian P. Hamel
- INSERM U. 1051, Institute for Neurosciences of Montpellier, Montpellier, France,Université Montpellier 1, Montpellier, France,Université Montpellier 2, Montpellier, France,Genetics of Sensory Diseases, CHRU, Montpellier, France
| |
Collapse
|
33
|
Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int 2013; 85:880-7. [PMID: 24257694 PMCID: PMC3972265 DOI: 10.1038/ki.2013.450] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023]
Abstract
Rare single-gene disorders cause chronic disease. However, half of the
6,000 recessive single gene causes of disease are still unknown. Because
recessive disease genes can illuminate, at least in part, disease
pathomechanism, their identification offers direct opportunities for improved
clinical management and potentially treatment. Rare diseases comprise the
majority of chronic kidney disease (CKD) in children but are notoriously
difficult to diagnose. Whole exome resequencing facilitates identification of
recessive disease genes. However, its utility is impeded by the large number of
genetic variants detected. We here overcome this limitation by combining
homozygosity mapping with whole exome resequencing in 10 sib pairs with a
nephronophthisis-related ciliopathy, which represents the most frequent genetic
cause of CKD in the first three decades of life. In 7 of 10 sib-ships with a
histologic or ultrasonographic diagnosis of nephronophthisis-related ciliopathy
we detect the causative gene. In six sib-ships we identify mutations of known
nephronophthisis-related ciliopathy genes, while in two additional sib-ships we
found mutations in the known CKD-causing genes SLC4A1 and
AGXT as phenocopies of nephronophthisis-related ciliopathy.
Thus whole exome resequencing establishes an efficient, non-invasive approach
towards early detection and causation-based diagnosis of rare kidney diseases.
This approach can be extended to other rare recessive disorders, thereby
providing accurate diagnosis and facilitating the study of disease
mechanisms.
Collapse
|
34
|
Lee KT, Chung WH, Lee SY, Choi JW, Kim J, Lim D, Lee S, Jang GW, Kim B, Choy YH, Liao X, Stothard P, Moore SS, Lee SH, Ahn S, Kim N, Kim TH. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics 2013; 14:519. [PMID: 23899338 PMCID: PMC3750754 DOI: 10.1186/1471-2164-14-519] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 06/18/2013] [Indexed: 12/29/2022] Open
Abstract
Background Hanwoo (Korean cattle), which originated from natural crossbreeding between taurine and zebu cattle, migrated to the Korean peninsula through North China. Hanwoo were raised as draft animals until the 1970s without the introduction of foreign germplasm. Since 1979, Hanwoo has been bred as beef cattle. Genetic variation was analyzed by whole-genome deep resequencing of a Hanwoo bull. The Hanwoo genome was compared to that of two other breeds, Black Angus and Holstein, and genes within regions of homozygosity were investigated to elucidate the genetic and genomic characteristics of Hanwoo. Results The Hanwoo bull genome was sequenced to 45.6-fold coverage using the ABI SOLiD system. In total, 4.7 million single-nucleotide polymorphisms and 0.4 million small indels were identified by comparison with the Btau4.0 reference assembly. Of the total number of SNPs and indels, 58% and 87%, respectively, were novel. The overall genotype concordance between the SNPs and BovineSNP50 BeadChip data was 96.4%. Of 1.6 million genetic differences in Hanwoo, approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Among 1,045 genes containing reliable specific NS/SS/Is in Hanwoo, 109 genes contained more than one novel damaging NS/SS/I. Of the genes containing NS/SS/Is, 610 genes were assigned as trait-associated genes. Moreover, 16, 78, and 51 regions of homozygosity (ROHs) were detected in Hanwoo, Black Angus, and Holstein, respectively. ‘Regulation of actin filament length’ was revealed as a significant gene ontology term and 25 trait-associated genes for meat quality and disease resistance were found in 753 genes that resided in the ROHs of Hanwoo. In Hanwoo, 43 genes were located in common ROHs between whole-genome resequencing and SNP chips in BTA2, 10, and 13 coincided with quantitative trait loci for meat fat traits. In addition, the common ROHs in BTA2 and 16 were in agreement between Hanwoo and Black Angus. Conclusions We identified 4.7 million SNPs and 0.4 million small indels by whole-genome resequencing of a Hanwoo bull. Approximately 25,000 non-synonymous SNPs, splice-site variants, and coding indels (NS/SS/Is) were detected in 8,360 genes. Additionally, we found 25 trait-associated genes for meat quality and disease resistance among 753 genes that resided in the ROHs of Hanwoo. These findings will provide useful genomic information for identifying genes or casual mutations associated with economically important traits in cattle.
Collapse
Affiliation(s)
- Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hernandez-Hernandez V, Pravincumar P, Diaz-Font A, May-Simera H, Jenkins D, Knight M, Beales PL. Bardet-Biedl syndrome proteins control the cilia length through regulation of actin polymerization. Hum Mol Genet 2013; 22:3858-68. [PMID: 23716571 PMCID: PMC3766180 DOI: 10.1093/hmg/ddt241] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primary cilia are cellular appendages important for signal transduction and sensing the environment. Bardet–Biedl syndrome proteins form a complex that is important for several cytoskeleton-related processes such as ciliogenesis, cell migration and division. However, the mechanisms by which BBS proteins may regulate the cytoskeleton remain unclear. We discovered that Bbs4- and Bbs6-deficient renal medullary cells display a characteristic behaviour comprising poor migration, adhesion and division with an inability to form lamellipodial and filopodial extensions. Moreover, fewer mutant cells were ciliated [48% ± 6 for wild-type (WT) cells versus 23% ± 7 for Bbs4 null cells; P < 0.0001] and their cilia were shorter (2.55 μm ± 0.41 for WT cells versus 2.16 μm ± 0.23 for Bbs4 null cells; P < 0.0001). While the microtubular cytoskeleton and cortical actin were intact, actin stress fibre formation was severely disrupted, forming abnormal apical stress fibre aggregates. Furthermore, we observed over-abundant focal adhesions (FAs) in Bbs4-, Bbs6- and Bbs8-deficient cells. In view of these findings and the role of RhoA in regulation of actin filament polymerization, we showed that RhoA-GTP levels were highly upregulated in the absence of Bbs proteins. Upon treatment of Bbs4-deficient cells with chemical inhibitors of RhoA, we were able to restore the cilia length and number as well as the integrity of the actin cytoskeleton. Together these findings indicate that Bbs proteins play a central role in the regulation of the actin cytoskeleton and control the cilia length through alteration of RhoA levels.
Collapse
Affiliation(s)
| | - Priyanka Pravincumar
- School of Engineering and Materials Science, Queen Mary University of London, London, UK and
| | - Anna Diaz-Font
- Molecular Medicine Unit, UCL Institute of Child Health London, London, UK
| | - Helen May-Simera
- National Institute of Deafness and Communication Disorders, NIH, Bethesda, MD, USA
| | - Dagan Jenkins
- Molecular Medicine Unit, UCL Institute of Child Health London, London, UK
| | - Martin Knight
- School of Engineering and Materials Science, Queen Mary University of London, London, UK and
| | - Philip L. Beales
- Molecular Medicine Unit, UCL Institute of Child Health London, London, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Hurd TW, Otto EA, Mishima E, Gee HY, Inoue H, Inazu M, Yamada H, Halbritter J, Seki G, Konishi M, Zhou W, Yamane T, Murakami S, Caridi G, Ghiggeri G, Abe T, Hildebrandt F. Mutation of the Mg2+ transporter SLC41A1 results in a nephronophthisis-like phenotype. J Am Soc Nephrol 2013; 24:967-77. [PMID: 23661805 DOI: 10.1681/asn.2012101034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nephronophthisis (NPHP)-related ciliopathies are recessive, single-gene disorders that collectively make up the most common genetic cause of CKD in the first three decades of life. Mutations in 1 of the 15 known NPHP genes explain less than half of all cases with this phenotype, however, and the recently identified genetic causes are exceedingly rare. As a result, a strategy to identify single-gene causes of NPHP-related ciliopathies in single affected families is needed. Although whole-exome resequencing facilitates the identification of disease genes, the large number of detected genetic variants hampers its use. Here, we overcome this limitation by combining homozygosity mapping with whole-exome resequencing in a sibling pair with an NPHP-related ciliopathy. Whole-exome capture revealed a homozygous splice acceptor site mutation (c.698G>T) in the renal Mg(2+) transporter SLC41A1. This mutation resulted in skipping of exon 6 of SLC41A1, resulting in an in-frame deletion of a transmembrane helix. Transfection of cells with wild-type or mutant SLC41A1 revealed that deletion of exon 6 completely blocks the Mg(2+) transport function of SLC41A1. Furthermore, in normal human kidney tissue, endogenous SLC41A1 specifically localized to renal tubules situated at the corticomedullary boundary, consistent with the region of cystogenesis observed in NPHP and related ciliopathies. Last, morpholino-mediated knockdown of slc41a1 expression in zebrafish resulted in ventral body curvature, hydrocephalus, and cystic kidneys, similar to the effects of knocking down other NPHP genes. Taken together, these data suggest that defects in the maintenance of renal Mg(2+) homeostasis may lead to tubular defects that result in a phenotype similar to NPHP.
Collapse
|
37
|
M'hamdi O, Redin C, Stoetzel C, Ouertani I, Chaabouni M, Maazoul F, M'rad R, Mandel JL, Dollfus H, Muller J, Chaabouni H. Clinical and genetic characterization of Bardet-Biedl syndrome in Tunisia: defining a strategy for molecular diagnosis. Clin Genet 2013; 85:172-7. [PMID: 23432027 DOI: 10.1111/cge.12129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/11/2023]
Abstract
Bardet-Biedl syndrome (BBS, OMIM 209900) is a rare genetic disorder characterized by obesity, retinitis pigmentosa, post axial polydactyly, cognitive impairment, renal anomalies and hypogonadism. The aim of this study is to provide a comprehensive clinical and molecular analysis of a cohort of 11 Tunisian BBS consanguineous families in order to give insight into clinical and genetic spectrum and the genotype-phenotype correlations. Molecular analysis using combined sequence capture and high-throughput sequencing of 30 ciliopathies genes revealed 11 mutations in 11 studied families. Five mutations were novel and six were previously described. Novel mutations included c.1110G>A and c.39delA (p.G13fs*41) in BBS1, c.115+5G>A in BBS2, c.1272+1G>A in BBS6, c.1181_1182insGCATTTATACC in BBS10 (p.S396Lfs*6). Described mutations included c.436C>T (p.R146*) and c.1473+4A>G in BBS1, c.565C> (p.R189*) in BBS2, deletion of exons 4-6 in BBS4, c.149T>G (p.L50R) in BBS5, and c.459+1G>A in BBS8; most frequent mutations were described in BBS1 (4/11, 37%) and BBS2 (2/11, 18%) genes. No phenotype-genotype correlation was evidenced. This data expands the mutations profile of BBS genes in Tunisia and suggests a divergence of the genetic spectrum comparing Tunisian and other populations.
Collapse
Affiliation(s)
- O M'hamdi
- Faculté de médecine de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ajmal M, Khan MI, Neveling K, Tayyab A, Jaffar S, Sadeque A, Ayub H, Abbasi NM, Riaz M, Micheal S, Gilissen C, Ali SHB, Azam M, Collin RWJ, Cremers FPM, Qamar R. Exome sequencing identifies a novel and a recurrent BBS1 mutation in Pakistani families with Bardet-Biedl syndrome. Mol Vis 2013; 19:644-53. [PMID: 23559858 PMCID: PMC3616519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/19/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the genetic cause of Bardet-Biedl syndrome (BBS) in two consanguineous Pakistani families. METHODS Clinical characterization of the affected individuals in both families was performed with ophthalmic examination, electroretinography, electrocardiography, and liver and renal profiling. Seventeen genes are known to be associated with BBS, so exome sequencing was preferred over candidate gene sequencing. One affected individual from both families was selected for exome sequencing. Segregation of the identified variants was confirmed with Sanger sequencing. RESULTS Retinitis pigmentosa, obesity, and learning difficulties were present in the affected individuals in both families. In family A, a sixth finger (polydactyly) of the proband's sister was removed by a surgical operation leaving a scar on the little finger. Polydactyly was also present in both affected individuals from family B. All diagnostic symptoms were characteristic of BBS in both families. In both affected individuals from family A, exome sequencing identified a novel homozygous mutation (c.47+1G>T) in BBS1 that inactivates the splice donor site at the end of exon 1. In family B, a previously reported mutation, c.442G>A; p.(Asp148Asn), was detected. CONCLUSIONS Exome sequencing is an efficient and cost-effective technique for identifying mutations in genetically heterogeneous diseases. In addition, intrafamilial phenotypic variability in family A argues for the modifying effect of other still unknown modifier alleles.
Collapse
Affiliation(s)
- Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Imran Khan
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ali Tayyab
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sulman Jaffar
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan,Department of Ophthalmology, Shifa International Hospital, Islamabad, Pakistan
| | - Ahmed Sadeque
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Humaira Ayub
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nasir Mahmood Abbasi
- Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Moeen Riaz
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Shazia Micheal
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Syeda Hafiza Benish Ali
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Maleeha Azam
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frans P. M. Cremers
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Raheel Qamar
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan,Al-Nafees Medical College & Hospital, Isra University, Islamabad, Pakistan
| |
Collapse
|
39
|
Khan S, Ullah I, Irfanullah, Touseef M, Basit S, Khan MN, Ahmad W. Novel homozygous mutations in the genes ARL6 and BBS10 underlying Bardet-Biedl syndrome. Gene 2012; 515:84-8. [PMID: 23219996 DOI: 10.1016/j.gene.2012.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/21/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder resulting from structural and functional defects in numerous organs. Frequent manifestations reported in the syndrome include obesity, renal dysplasia, cognitive impairment, postaxial polydactyly, pigmentary retinal degeneration and hypogonadism. To date, 17 genes causing BBS have been identified. Two of these BBS1 and BBS10 are the most frequently mutated genes. The present report describes two consanguineous families (A, B) with clinical manifestations of BBS. Linkage in the family A was established to ARL6 on chromosome 3q11.2, while family B showed linkage to BBS10 on chromosome 12q21.2. Sequence analysis revealed a novel homozygous missense mutation (c.281T>C, p.Ile94Thr) in the gene ARL6 in family A and a nonsense mutation (c.1075C>T, p.Gln359*) in the gene BBS10 in family B. Mutations identified in the present study extend the body of evidence implicating the genes ARL6 and BBS10 in causing Bardet-Biedl syndrome.
Collapse
Affiliation(s)
- Saadullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
40
|
Büscher AK, Cetiner M, Büscher R, Wingen AM, Hauffa BP, Hoyer PF. Obesity in patients with Bardet-Biedl syndrome: influence of appetite-regulating hormones. Pediatr Nephrol 2012; 27:2065-2071. [PMID: 22669322 DOI: 10.1007/s00467-012-2220-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a genetic disorder with obesity as one of the major phenotypic criterion, which is proposed to be of neuroendocrine origin. Therefore, disturbances in appetite-regulating hormones have been considered as causative factors. Acyl ghrelin is an orexigenic hormone, whereas its desacylated form, obestatin, and leptin have the opposite functions. Ghrelin is negatively regulated in relation to nutritional status. The aim of this study was to evaluate the impact of hormone alterations on obesity development in BBS patients. METHODS Total and acylated ghrelin, obestatin, leptin and adiponectin were measured in eight children with BBS. The results were analyzed in relation to auxological parameters [body mass index (BMI), height]. RESULTS The mean BMI was significantly increased in BBS patients compared to the controls. Plasma levels of acylated ghrelin, total ghrelin and obestatin were slightly elevated in BBS patients compared to controls, as was the acyl/total ghrelin ratio. Leptin levels were significantly elevated in BBS patients. CONCLUSION BBS patients lack the negative regulatory mechanisms of appetite-regulating hormones with respect to nutritional status and exhibit resistance to anorexigenic leptin. This results in a shift towards the orexigenic effects of this self-regulating system. These alterations may in part be responsible for the disturbed appetite regulation in BBS patients.
Collapse
Affiliation(s)
- Anja K Büscher
- Department of Paediatrics II, Paediatric Nephrology, Endocrinology, Gastroenterology and Transplant Medicine, Children's Hospital, University of Duisburg-Essen, Essen, Germany. .,Paediatrics II, Children's Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany.
| | - Metin Cetiner
- Department of Paediatrics II, Paediatric Nephrology, Endocrinology, Gastroenterology and Transplant Medicine, Children's Hospital, University of Duisburg-Essen, Essen, Germany
| | - Rainer Büscher
- Department of Paediatrics II, Paediatric Nephrology, Endocrinology, Gastroenterology and Transplant Medicine, Children's Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anne-Margret Wingen
- Department of Paediatrics II, Paediatric Nephrology, Endocrinology, Gastroenterology and Transplant Medicine, Children's Hospital, University of Duisburg-Essen, Essen, Germany
| | - Berthold P Hauffa
- Department of Paediatrics II, Paediatric Nephrology, Endocrinology, Gastroenterology and Transplant Medicine, Children's Hospital, University of Duisburg-Essen, Essen, Germany
| | - Peter F Hoyer
- Department of Paediatrics II, Paediatric Nephrology, Endocrinology, Gastroenterology and Transplant Medicine, Children's Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
41
|
Zhang Q, Liu Q, Austin C, Drummond I, Pierce EA. Knockdown of ttc26 disrupts ciliogenesis of the photoreceptor cells and the pronephros in zebrafish. Mol Biol Cell 2012; 23:3069-78. [PMID: 22718903 PMCID: PMC3418303 DOI: 10.1091/mbc.e12-01-0019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The article describes characterization of the cilia protein Ttc26. The data show that Ttc26 is localized in the transition zone of primary cilia and photoreceptor cells. Knockdown of Ttc26 produced defective cilia in murine inner medullary collecting duct 3 cells and ciliogenesis defects in retinal photoreceptor and motile cilia in the pronephros in zebrafish. In our effort to understand genetic disorders of the photoreceptor cells of the retina, we have focused on intraflagellar transport in photoreceptor sensory cilia. From previous mouse proteomic data we identified a cilia protein Ttc26, orthologue of dyf-13 in Caenorhabditis elegans, as a target. We localized Ttc26 to the transition zone of photoreceptor and to the transition zone of cilia in cultured murine inner medullary collecting duct 3 (mIMCD3) renal cells. Knockdown of Ttc26 in mIMCD3 cells produced shortened and defective primary cilia, as revealed by immunofluorescence and scanning electron microscopy. To study Ttc26 function in sensory cilia in vivo, we utilized a zebrafish vertebrate model system. Morpholino knockdown of ttc26 in zebrafish embryos caused ciliary defects in the pronephric kidney at 27 h postfertilization and distension/dilation of pronephros at 5 d postfertilization (dpf). In the eyes, the outer segments of photoreceptor cells appeared shortened or absent, whereas cellular lamination appeared normal in retinas at 5 dpf. This suggests that loss of ttc26 function prevents normal ciliogenesis and differentiation in the photoreceptor cells, and that ttc26 is required for normal development and differentiation in retina and pronephros. Our studies support the importance of Ttc26 function in ciliogenesis and suggest that screening for TTC26 mutations in human ciliopathies is justified.
Collapse
Affiliation(s)
- Qi Zhang
- Ocular Genomics Institute & Berman-Gund Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
42
|
Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics 2012; 5:577-622. [PMID: 22155605 PMCID: PMC3525251 DOI: 10.1186/1479-7364-5-6-577] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.
Collapse
Affiliation(s)
- Nasheen Naidoo
- Centre for Molecular Epidemiology, Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
43
|
Neveling K, den Hollander AI, Cremers FPM, Collin RWJ. Identification and analysis of inherited retinal disease genes. Methods Mol Biol 2012; 935:3-23. [PMID: 23150357 DOI: 10.1007/978-1-62703-080-9_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inherited retinal diseases display a very high degree of clinical and genetic heterogeneity, which poses challenges in identifying the underlying defects in known genes and in identifying novel retinal disease genes. Here, we outline the state-of-the-art techniques to find the causative DNA variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
44
|
Putoux A, Attie-Bitach T, Martinovic J, Gubler MC. Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. Pediatr Nephrol 2012; 27:7-15. [PMID: 21246219 DOI: 10.1007/s00467-010-1751-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 12/12/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a multisystemic developmental disorder diagnosed on the basis of the presence of obesity, retinal defects, polydactyly, hypogonadism, renal dysfunction, and learning disabilities. The syndrome is genetically heterogeneous with 14 BBS genes identified to date. Since the cloning of the first gene in 2000, a combination of genetic, in vitro, and in vivo studies have highlighted ciliary dysfunction as a primary cause of BBS pathology. Pleiotropy of ciliopathy phenotypes and complex genetic interactions between causal and modifying alleles of ciliary genes contribute to phenotypic variability. In particular, kidney disease in BBS is clinically heterogeneous, but is now recognized as a cardinal feature and a major cause of mortality in BBS.
Collapse
Affiliation(s)
- Audrey Putoux
- INSERM U-781, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | |
Collapse
|
45
|
Choquet H, Meyre D. Molecular basis of obesity: current status and future prospects. Curr Genomics 2011; 12:154-68. [PMID: 22043164 PMCID: PMC3137001 DOI: 10.2174/138920211795677921] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 12/15/2022] Open
Abstract
Obesity is a global health problem that is gradually affecting each continent of the world. Obesity is a heterogeneous disorder, and the biological causes of obesity are complex. The rapid increase in obesity prevalence during the past few decades is due to major societal changes (sedentary lifestyle, over-nutrition) but who becomes obese at the individual level is determined to a great extent by genetic susceptibility. In this review, we evidence that obesity is a strongly heritable disorder, and provide an update on the molecular basis of obesity. To date, nine loci have been involved in Mendelian forms of obesity and 58 loci contribute to polygenic obesity, and rare and common structural variants have been reliably associated with obesity. Most of the obesity genes remain to be discovered, but promising technologies, methodologies and the use of “deep phenotyping” lead to optimism to chip away at the ‘missing heritability’ of obesity in the near future. In the longer term, the genetic dissection of obesity will help to characterize disease mechanisms, provide new targets for drug design, and lead to an early diagnosis, treatment, and prevention of obesity.
Collapse
Affiliation(s)
- Hélène Choquet
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
46
|
Vehaskari VM. Genetics and CKD. Adv Chronic Kidney Dis 2011; 18:317-23. [PMID: 21896372 DOI: 10.1053/j.ackd.2011.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/10/2011] [Accepted: 07/11/2011] [Indexed: 01/15/2023]
Abstract
The diagnosis of hereditary monogenic kidney diseases is frequently delayed, in part because of physicians' unfamiliarity with the relatively rare conditions or because of the late onset of symptoms in some patients. Molecular biology methods have clarified the underlying mutations in several types of CKD, and in the process have revealed previously unknown genes and pathogenetic pathways. Mutations affecting the integrity of the glomerular filtration barrier cause proteinuria or nephrotic syndrome; different types of Alport syndrome are caused by mutations in glomerular basement membrane type IV collagen; dysfunction of the primary cilium of tubule cells may lead to a variety of inherited progressive tubulointerstitial diseases; atypical hemolytic-uremic syndrome is frequently caused by inherited complement deficiencies; and progressive kidney injury develops in many inherited systemic or metabolic disorders. Some genetic diseases may not manifest until late childhood or adulthood. Accurate diagnosis is important for appropriate treatment, prognosis, genetic counseling, and possible renal transplantation.
Collapse
|
47
|
Sattar S, Gleeson JG. The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol 2011; 53:793-798. [PMID: 21679365 PMCID: PMC3984879 DOI: 10.1111/j.1469-8749.2011.04021.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A group of disorders with disparate symptomatology, including congenital cerebellar ataxia, retinal blindness, liver fibrosis, polycystic kidney disease, and polydactyly, have recently been united under a single disease mechanism called 'ciliopathies'. The ciliopathies are due to defects of the cellular antenna known as the primary cilium, a microtubule-based extension of cellular membranes found in nearly all cell types. Key among these ciliopathies is Joubert syndrome, displaying ataxia, oculomotor apraxia, and mental retardation* with a pathognomonic 'molar tooth sign' on brain magnetic resonance imaging. The importance of ciliary function in neuronal development has been appreciated only in the last decade with the classification of Joubert syndrome as a ciliopathy. This, together with the identification of many of the clinical features of ciliopathies in individuals with Joubert syndrome and the localization of Joubert syndrome's causative gene products at or near the primary cilium, have defined a new class of neurological disease. Cilia are involved in diverse cellular processes including protein trafficking, photoreception, embryonic axis patterning, and cell cycle regulation. Ciliary dysfunction can affect a single tissue or manifest as multi-organ involvement. Ciliary defects have been described in retinopathies such as retinitis pigmentosa and Leber congenital amaurosis (defects in photoreceptor ciliary protein complexes), renal syndromes with nephronophthisis and cystic dysplastic kidneys, and liver conditions such as fibrosis and biliary cirrhosis. Recognizing the diverse presentations of the ciliopathies and screening strategies following diagnosis is an important part of the treatment plan of children with cilia-related disorders.
Collapse
Affiliation(s)
- Shifteh Sattar
- Department of Neurosciences and Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences and Paediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
48
|
Hebrard M, Manes G, Bocquet B, Meunier I, Coustes-Chazalette D, Hérald E, Sénéchal A, Bolland-Augé A, Zelenika D, Hamel CP. Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families. Eur J Hum Genet 2011; 19:1256-63. [PMID: 21792230 DOI: 10.1038/ejhg.2011.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Among inherited retinal dystrophies, autosomal recessive retinitis pigmentosa (arRP) is the most genetically heterogenous condition with 32 genes currently known that account for ~60 % of patients. Molecular diagnosis thus requires the tedious systematic sequencing of 506 exons. To rapidly identify the causative mutations, we devised a strategy that combines gene mapping and phenotype assessment in small non-consanguineous families. Two unrelated sibships with arRP had whole-genome scan using SNP microchips. Chromosomal regions were selected by calculating a score based on SNP coverage and genotype identity of affected patients. Candidate genes from the regions with the highest scores were then selected based on phenotype concordance of affected patients with previously described phenotype for each candidate gene. For families RP127 and RP1459, 33 and 40 chromosomal regions showed possible linkage, respectively. By comparing the scores with the phenotypes, we ended with one best candidate gene for each family, namely tubby-like protein 1 (TULP1) and C2ORF71 for RP127 and RP1459, respectively. We found that RP127 patients were compound heterozygous for two novel TULP1 mutations, p.Arg311Gln and p.Arg342Gln, and that RP1459 patients were compound heterozygous for two novel C2ORF71 mutations, p.Leu777PhefsX34 and p.Leu777AsnfsX28. Phenotype assessment showed that TULP1 patients had severe early onset arRP and that C2ORF71 patients had a cone rod dystrophy type of arRP. Only two affected individuals in each sibship were sufficient to lead to mutation identification by screening the best candidate gene selected by a combination of gene mapping and phenotype characterization.
Collapse
Affiliation(s)
- Maxime Hebrard
- INSERM U 1051, Institute for Neurosciences of Montpellier, 80 rue Augustin Fliche, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen J, Smaoui N, Hammer MBH, Jiao X, Riazuddin SA, Harper S, Katsanis N, Riazuddin S, Chaabouni H, Berson EL, Hejtmancik JF. Molecular analysis of Bardet-Biedl syndrome families: report of 21 novel mutations in 10 genes. Invest Ophthalmol Vis Sci 2011; 52:5317-24. [PMID: 21642631 DOI: 10.1167/iovs.11-7554] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is genetically heterogeneous with 15 BBS genes currently identified, accounting for approximately 70% of cases. The aim of our study was to define further the spectrum of BBS mutations in a cohort of 44 European-derived American, 8 Tunisian, 1 Arabic, and 2 Pakistani families (55 families in total) with BBS. METHODS A total of 142 exons of the first 12 BBS-causing genes were screened by dideoxy sequencing. Cases in which no mutations were found were then screened for BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, and INPP5E. RESULTS Forty-three mutations, including 8 frameshift mutations, 10 nonsense mutations, 4 splice site mutations, 1 deletion, and 20 potentially or probably pathogenic missense variations, were identified in 46 of the 55 families studied (84%). Of these, 21 (2 frameshift mutations, 4 nonsense mutations, 4 splice site mutations, 1 deletion, and 10 missense variations) were novel. The molecular genetic findings raised the possibility of triallelic inheritance in 7 Caucasian families, 1 Arabian family, and 1 Tunisian patient. No mutations were detected for BBS4, BBS11, BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, or INPP5E. CONCLUSIONS This mutational analysis extends the spectrum of known BBS mutations. Identification of 21 novel mutations highlights the genetic heterogeneity of this disorder. Differences in European and Tunisian patients, including the high frequency of the M390R mutation in Europeans, emphasize the population specificity of BBS mutations with potential diagnostic implications. The existence of some BBS cases without mutations in any currently identified BBS genes suggests further genetic heterogeneity.
Collapse
Affiliation(s)
- Jianjun Chen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|