1
|
Xie Y, Ping Y, Yu P, Liu W, Chen X, Wang Q, Chen Y, Duan X, Wang X. The rs9402373 polymorphism of CTGF gene may not be related to inflammatory bowel disease susceptibility in Chinese population based on ARMS-PCR genotyping. Heliyon 2023; 9:e17003. [PMID: 37484218 PMCID: PMC10361113 DOI: 10.1016/j.heliyon.2023.e17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 04/10/2023] [Accepted: 06/03/2023] [Indexed: 07/25/2023] Open
Abstract
Background It has been confirmed that the connective tissue growth factor (CTGF) gene rs9402373 polymorphism is associated with fibrotic and inflammatory diseases. However, studies on the relationship between polymorphisms in CTGF rs9402373 and inflammatory bowel disease (IBD) remain rare. Therefore, the aim of this study was to assess the association between the CTGF rs9402373 polymorphism and IBD susceptibility in a Chinese population. Materials and methods To establish an amplification refractory mutation system (ARMS) PCR technology for genotyping CTGF gene rs9402373 polymorphism, we designed two specific forward primers for the wild and mutant types by placing the allele-specific nucleotide at the penultimate position of the '3' end of the primer. Then, 10 samples were randomly selected and rechecked by DNA sequencing to verify the accuracy of this method. We further used the established method to detect specimens collected from 191 patients with inflammatory bowel disease, including 120 Crohn's disease (CD) and 71 ulcerative colitis (UC), and 110 healthy Han Chinese individuals. Results We successfully established the ARMS-PCR method for genotyping, and the results of 10 randomly selected samples were completely consistent with DNA sequencing. The rs9402373 G allele frequencies in UC and CD cases were 38.03% and 43.75%, respectively, and in controls, they were 41.82%. No significant difference was found in minor allele frequencies between the UC or CD and control groups (P = 0.473, P = 0.676). Genotype analysis demonstrated that there was no relationship between CTGF rs9402373 polymorphism and the risk of IBD regardless of the inheritance mode (P > 0.05). Conclusions In this preliminary study, we successfully developed a simple, efficient and cost-effective method for genotyping CTGF rs9402373 polymorphism. The polymorphism may not be related to IBD susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Yiyi Xie
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Ying Ping
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Pan Yu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Weiwei Liu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | | | - Qi Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Yuhua Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Xiuzhi Duan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Xuchu Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, China
| |
Collapse
|
2
|
Tejera-Muñoz A, Rodríguez I, Del Río-García Á, Mohamedi Y, Martín M, Chiminazzo V, Suárez-Álvarez B, López-Larrea C, Ruiz-Ortega M, Rodrigues-Díez RR. The CCN2 Polymorphism rs12526196 Is a Risk Factor for Ascending Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms232315406. [PMID: 36499730 PMCID: PMC9740045 DOI: 10.3390/ijms232315406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a downstream mediator of other profibrotic factors including transforming growth factor (TGF)-β and angiotensin II. However, recent evidence from our group demonstrated the direct role of CCN2 in maintaining aortic wall homeostasis and acute and lethal aortic aneurysm development induced by angiotensin II in the absence of CCN2 in mice. In order to translate these findings to humans, we evaluated the potential association between three polymorphisms in the CCN2 gene and the presence of a thoracic aortic aneurysm (TAA). Patients with and without TAA retrospectively selected were genotyped for rs6918698, rs9402373 and rs12526196 polymorphisms related to the CCN2 gene. Multivariable logistic regression models were performed. In our population of 366 patients (69 with TAA), no associations were found between rs6918698 and rs9402373 and TAA. However, the presence of one C allele from rs12526196 was associated with TAA comparing with the TT genotype, independently of risk factors such as sex, age, hypertension, type of valvulopathy and the presence of a bicuspid aortic valve (OR = 3.17; 95% CI = 1.30-7.88; p = 0.011). In conclusion, we demonstrated an association between the C allele of rs12526196 in the CCN2 gene and the presence of TAA. This study extrapolates to humans the relevance of CCN2 in aortic aneurysm observed in mice and postulates, for the first time, a potential protective role to CCN2 in aortic aneurysm pathology. Our results encourage future research to explore new variants in the CCN2 gene that could be predisposed to TAA development.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain
- Research Support Unit, Hospital General Mancha Centro, 13600 Alcázar de San Juan, Spain
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Álvaro Del Río-García
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Yamina Mohamedi
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Martín
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Cardiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Valentina Chiminazzo
- Biostatistics and Epidemiology Platform, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Álvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
- Servicio de Inmunología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain
- Correspondence: (M.R.-O.); (R.R.R.-D.)
| | - Raúl R. Rodrigues-Díez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
- Correspondence: (M.R.-O.); (R.R.R.-D.)
| |
Collapse
|
3
|
Jaffa MA, Gebregziabher M, Jaffa AA. Shared parameter and copula models for analysis of semicontinuous longitudinal data with nonrandom dropout and informative censoring. Stat Methods Med Res 2022; 31:451-474. [PMID: 34806502 PMCID: PMC8891057 DOI: 10.1177/09622802211060519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Analysis of longitudinal semicontinuous data characterized by subjects' attrition triggered by nonrandom dropout is complex and requires accounting for the within-subject correlation, and modeling of the dropout process. While methods that address the within-subject correlation and missing data are available, approaches that incorporate the nonrandom dropout, also referred to informative right censoring, in the modeling step are scarce due to the computational intensity and possible intractable integration needed for its implementation. Appreciating the complexity of this problem and the need for a new methodology that is feasible for implementation, we propose to extend a framework of likelihood-based marginalized two-part models to account for informative right censoring. The censoring process is modeled using two approaches: (1) Poisson censoring for the count of visits before dropout and (2) survival time to dropout. Novel consideration was given to the proposed joint modeling approaches for the semicontinuous and censoring components of the likelihood function which included (1) shared parameter, and (2) Clayton copula. The cross-part and within-part correlations were accounted for through a complex random effect structure that models correlated random intercepts and slopes. Feasibility of implementation, and accuracy of these approaches were investigated using extensive simulation studies and clinical application.
Collapse
Affiliation(s)
- Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon, P.O.Box 11-0236 Riad El-Solh / Beirut, Lebanon 1107 2020
| | - Mulugeta Gebregziabher
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, P.O.Box 11-0236 Riad El-Solh / Beirut, Lebanon 1107 2020
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int J Mol Sci 2020; 21:ijms21103487. [PMID: 32429045 PMCID: PMC7278940 DOI: 10.3390/ijms21103487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
Collapse
|
5
|
Wang G, Ouyang J, Li S, Wang H, Lian B, Liu Z, Xie L. The analysis of risk factors for diabetic nephropathy progression and the construction of a prognostic database for chronic kidney diseases. J Transl Med 2019; 17:264. [PMID: 31409386 PMCID: PMC6693179 DOI: 10.1186/s12967-019-2016-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Diabetic nephropathy (DN) affects about 40% of diabetes mellitus (DM) patients and is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD) all over the world, especially in high- and middle-income countries. Most DN has been present for years before it is diagnosed. Currently, the treatment of DN is mainly to prevent or delay disease progression. Although many important molecules have been discovered in hypothesis-driven research over the past two decades, advances in DN management and new drug development have been very limited. Moreover, current animal/cell models could not replicate all the features of human DN, while the development of Epigenetics further demonstrates the complexity of the mechanism of DN progression. To capture the key pathways and molecules that actually affect DN progression from numerous published studies, we collected and analyzed human DN prognostic markers (independent risk factors for DN progression). Methods One hundred and fifty-one DN prognostic markers were collected manually by reading 2365 papers published between 01/01/2002 and 12/15/2018. One hundred and fifteen prognostic markers of other four common CKDs were also collected. GO and KEGG enrichment analysis was done using g:Profiler, and a relationship network was built based on the KEGG database. Tissue origin distribution was derived mainly from The Human Protein Atlas (HPA), and a database of these prognostic markers was constructed using PHP Version 5.5.15 and HTML5. Results Several pathways were significantly enriched corresponding to different end point events. It is shown that the TNF signaling pathway plays a role through the process of DN progression and adipocytokine signaling pathway is uniquely enriched in ESRD. Molecules, such as TNF, IL6, SOD2, etc. are very important for DN progression, among which, it seems that “AGER” plays a pivotal role in the mechanism. A database, dbPKD, was constructed containing all the collected prognostic markers. Conclusions This study developed a database for all prognostic markers of five common CKDs, offering some bioinformatics analyses of DN prognostic markers, and providing useful insights towards understanding the fundamental mechanism of human DN progression and for identifying new therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s12967-019-2016-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Wang
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Shen Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Hui Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Baofeng Lian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Zhihong Liu
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China. .,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China.
| |
Collapse
|
6
|
Jaffa MA, Gebregziabher M, Garrett SM, Luttrell DK, Lipson KE, Luttrell LM, Jaffa AA. Analysis of longitudinal semicontinuous data using marginalized two-part model. J Transl Med 2018; 16:301. [PMID: 30400798 PMCID: PMC6219033 DOI: 10.1186/s12967-018-1674-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/27/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF), is a secreted matricellular factor that has been linked to increased risk of cardiovascular disease in diabetic subjects. Despite the biological role of CTGF in diabetes, it still remains unclear how CTGF expression is regulated. In this study, we aim to identify the clinical parameters that modulate plasma CTGF levels measured longitudinally in type 1 diabetic patients over a period of 10 years. A number of patients had negligible measured values of plasma CTGF that formed a point mass at zero, whereas others had high positive values of CTGF that were measured on a continuous scale. The observed combination of excessive zero and continuous positively distributed non-zero values in the CTGF outcome is referred to as semicontinuous data. METHODS We propose a novel application of a marginalized two-part model (mTP) extended to accommodate longitudinal semicontinuous data in which the marginal mean is expressed in terms of the covariates and estimates of their effect on the mean responses are generated. The continuous component is assumed to follow distributions that stem from the generalized gamma family whereas the binary measure is analyzed using logistic model and both have correlated random effects. Other approaches including the one- and two-part with uncorrelated and correlated random effects models were also applied and their estimates were all compared. RESULTS Our results using the mTP model identified intensive glucose control treatment and smoking as clinical factors that were associated with decreased and increased odds of observing non-zero CTGF values respectively. In addition, hemoglobin A1c, systolic blood pressure, and high density lipoprotein were all shown to be significant risk factors that contribute to increasing CTGF levels. These findings were consistently observed under the mTP model but varied with the distributions for the other models. Accuracy and precision of the mTP model was further validated using simulation studies. CONCLUSION The mTP model identified new clinical determinants that modulate the levels of CTGF in diabetic subjects. Applicability of this approach can be extended to other biomarkers measured in patient populations that display a combination of negligible zero and non-zero values.
Collapse
Affiliation(s)
- Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon.
| | - Mulugeta Gebregziabher
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Sara M Garrett
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Deirdre K Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, Levtchenko E, Kuypers D, Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69:44-66. [DOI: 10.1016/j.matbio.2018.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
8
|
Donlon TA, Morris BJ, He Q, Chen R, Masaki KH, Allsopp RC, Willcox DC, Tranah GJ, Parimi N, Evans DS, Flachsbart F, Nebel A, Kim DH, Park J, Willcox BJ. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity. J Gerontol A Biol Sci Med Sci 2017; 72:1038-1044. [PMID: 27365368 PMCID: PMC5861942 DOI: 10.1093/gerona/glw116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p < .05 level for 2 SNPs in CTGF and 7 in EGFR. Two in CTGF and two in EGFR remained significant after Bonferroni correction. The SNPs of both CTGF and EGFR were in a haplotype block in each respective gene. Haplotype analysis confirmed the suggestive association found by χ2 analysis. We noted an excess of heterozygotes among the longevity cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu
| | - Brian J Morris
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| | - Qimei He
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
| | - Randi Chen
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
| | - Kamal H Masaki
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| | - Richard C Allsopp
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii
| | - D Craig Willcox
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
- Department of Human Welfare, Okinawa International University, Japan
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco
| | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco
| | | | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Germany
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joobae Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Bradley J Willcox
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| |
Collapse
|
9
|
Abou Msallem J, Chalhoub H, Al-Hariri M, Saad L, Jaffa MA, Ziyadeh FN, Jaffa AA. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes. Am J Physiol Renal Physiol 2015; 309:F980-90. [PMID: 26447218 DOI: 10.1152/ajprenal.00233.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.
Collapse
Affiliation(s)
- J Abou Msallem
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - H Chalhoub
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - M Al-Hariri
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - L Saad
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - M A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon; and
| | - F N Ziyadeh
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - A A Jaffa
- Biochemistry and Molecular Genetics Department, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev Diabet Stud 2015; 12:159-95. [PMID: 26676667 DOI: 10.1900/rds.2015.12.159] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat diabetic retinopathy, there is need to reliably identify and triage people with diabetes. Biomarkers may facilitate a better understanding of diabetic retinopathy, and contribute to the development of novel treatments and new clinical strategies to prevent vision loss in people with diabetes. This article reviews key aspects related to biomarker research, and focuses on some specific biomarkers relevant to diabetic retinopathy.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | | - Anthony C Keech
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - David N O'Neal
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | |
Collapse
|
11
|
Ahmad A, Askari S, Befekadu R, Hahn-Strömberg V. Investigating the association between polymorphisms in connective tissue growth factor and susceptibility to colon carcinoma. Mol Med Rep 2014; 11:2493-503. [PMID: 25502877 PMCID: PMC4337474 DOI: 10.3892/mmr.2014.3083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023] Open
Abstract
There have been numerous studies on the gene expression of connective tissue growth factor (CTGF) in colorectal cancer, however very few have investigated polymorphisms in this gene. The present study aimed to determine whether single nucleotide polymorphisms (SNPs) in the CTGF gene are associated with a higher susceptibility to colon cancer and/or an invasive tumor growth pattern. The CTGF gene was genotyped for seven SNPs (rs6918698, rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) by pyrosequencing. Formalin-fixed paraffin-embedded tissue samples (n=112) from patients diagnosed with colon carcinoma, and an equal number of blood samples from healthy controls, were selected for genomic DNA extraction. The complexity index was measured using images of tumor samples (n=64) stained for cytokeratin-8. The images were analyzed and correlated with the identified CTGF SNPs and clinicopathological parameters of the patients, including age, gender, tumor penetration, lymph node metastasis, systemic metastasis, differentiation and localization of tumor. It was demonstrated that the frequency of the SNP rs6918698 GG genotype was significantly associated (P=0.05) with an increased risk of colon cancer, as compared with the GC and CC genotypes. The other six SNPs (rs1931002, rs9493150, rs12526196, rs12527705, rs9399005 and rs12527379) exhibited no significant difference in the genotype and allele frequencies between patients diagnosed with colon carcinoma and the normal healthy population. A trend was observed between genotype variation at rs6918698 and the complexity index (P=0.052). The complexity index and genotypes for any of the studied SNPs were not significantly correlated with clinical or pathological parameters of the patients. These results indicate that the rs6918698 GG genotype is associated with an increased risk of developing colon carcinoma, and genetic variations at the rs6918698 are associated with the growth pattern of the tumor. The present results may facilitate the identification of potential biomarkers of the disease in addition to drug targets.
Collapse
Affiliation(s)
- Abrar Ahmad
- Department of Clinical Medicine, Örebro University, Örebro 701 81, Sweden
| | - Shlear Askari
- Department of Clinical Medicine, Örebro University, Örebro 701 81, Sweden
| | - Rahel Befekadu
- Department of Laboratory Medicine, Section for Transfusion Medicine, Örebro University Hospital, Örebro 701 85, Sweden
| | | |
Collapse
|
12
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
13
|
James LR, Le C, Doherty H, Kim HS, Maeda N. Connective tissue growth factor (CTGF) expression modulates response to high glucose. PLoS One 2013; 8:e70441. [PMID: 23950936 PMCID: PMC3741286 DOI: 10.1371/journal.pone.0070441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Abstract
Connective tissue growth factor (CTGF) is an important mediator of fibrosis; emerging evidence link changes in plasma and urinary CTGF levels to diabetic kidney disease. To further ascertain the role of CTGF in responses to high glucose, we assessed the consequence of 4 months of streptozotocin-induced diabetes in wild type (+/+) and CTGF heterozygous (+/−) mice. Subsequently, we studied the influence of glucose on gene expression and protein in mice embryonic fibroblasts (MEF) cells derived from wildtype and heterozygous mice. At study initiation, plasma glucose, creatinine, triglyceride and cholesterol levels were similar between non-diabetic CTGF+/+ and CTGF+/− mice. In the diabetic state, plasma glucose levels were increased in CTGF+/+ and CTGF+/− mice (28.2 3.3 mmol/L vs 27.0 3.1 mmol/L), plasma triglyceride levels were lower in CTGF+/− mice than in CTGF+/+ (0.7 0.2 mmol/L vs 0.5 0.1 mmol/L, p<0.05), but cholesterol was essentially unchanged in both groups. Plasma creatinine was higher in diabetic CTGF+/+ group (11.7±1.2 vs 7.9±0.6 µmol/L p<0.01), while urinary albumin excretion and mesangial expansion were reduced in diabetic CTGF+/− animals. Cortices from diabetic mice (both CTGF +/+ and CTGF +/−) manifested higher expression of CTGF and thrombospondin 1 (TSP1). Expression of nephrin was reduced in CTGF +/+ animals; this reduction was attenuated in CTGF+/− group. In cultured MEF from CTGF+/+ mice, glucose (25 mM) increased expression of pro-collagens 1, IV and XVIII as well as fibronectin and thrombospondin 1 (TSP1). In contrast, activation of these genes by high glucose was attenuated in CTGF+/− MEF. We conclude that induction of Ctgf mediates expression of extracellular matrix proteins in diabetic kidney. Thus, genetic variability in CTGF expression directly modulates the severity of diabetic nephropathy.
Collapse
Affiliation(s)
- Leighton R James
- Department of Medicine, University of Florida, Jacksonville, Florida, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Connective tissue growth factor, more recently officially known as CCN-2, is a member of the CCN family of secreted cysteine-rich modular matricellular proteins. Here, we review CCN-2 in diabetic nephropathy with focus on its regulation of extracellular matrix. RECENT FINDINGS CCN-2 is upregulated in the clinical and preclinical models of diabetic nephropathy by multiple stimuli, including elevated glucose, advanced glycation, some types of lipid, various hemodynamic factors, as well as hypoxia and oxidative stress. CCN-2 has bioactivities that suggest it may mediate diabetic nephropathy pathogenesis, especially in extracellular matrix accumulation, through both induction of new matrix and inhibition of matrix degradation. CCN-2 also has proinflammatory functions. Moreover, recent studies using antibodies or antisense technologies in animal and early phase clinical trial settings have shown that inhibition of renal CCN-2 expression or action may prevent diabetic nephropathy. Additionally, determination of renal and blood levels of CCN-2 as a marker of diabetic renal disease and its progression appears to have value. SUMMARY Recent publications implicate CCN-2 as both an evolving marker and mediator of diabetic nephropathy.
Collapse
|
15
|
Gravning J, Ørn S, Kaasbøll OJ, Martinov VN, Manhenke C, Dickstein K, Edvardsen T, Attramadal H, Ahmed MS. Myocardial connective tissue growth factor (CCN2/CTGF) attenuates left ventricular remodeling after myocardial infarction. PLoS One 2012; 7:e52120. [PMID: 23284892 PMCID: PMC3527406 DOI: 10.1371/journal.pone.0052120] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 11/09/2012] [Indexed: 11/19/2022] Open
Abstract
AIMS Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI. METHODS AND RESULTS Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15. CONCLUSION Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.
Collapse
Affiliation(s)
- Jørgen Gravning
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Stein Ørn
- Division of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Ole Jørgen Kaasbøll
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Vladimir N. Martinov
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Cord Manhenke
- Division of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Kenneth Dickstein
- Division of Cardiology, Stavanger University Hospital, Stavanger, Norway
- Institute of Internal Medicine, University of Bergen, Bergen, Norway
| | - Thor Edvardsen
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail:
| | - Mohammed Shakil Ahmed
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Patel SK, Wai B, Macisaac RJ, Grant S, Velkoska E, Ord M, Panagiotopoulos S, Jerums G, Srivastava PM, Burrell LM. The CTGF gene -945 G/C polymorphism is not associated with cardiac or kidney complications in subjects with type 2 diabetes. Cardiovasc Diabetol 2012; 11:42. [PMID: 22533709 PMCID: PMC3439260 DOI: 10.1186/1475-2840-11-42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 11/29/2022] Open
Abstract
Background Connective tissue growth factor (CTGF) has been implicated in the cardiac and kidney complications of type 2 diabetes, and the CTGF −945 G/C polymorphism is associated with susceptibility to systemic sclerosis, a disease characterised by tissue fibrosis. This study investigated the association of the CTGF −945 G/C promoter variant with cardiac complications (left ventricular (LV) hypertrophy (LVH), diastolic and systolic dysfunction) and chronic kidney disease (CKD) in type 2 diabetes. Methods The CTGF −945 G/C polymorphism (rs6918698) was examined in 495 Caucasian subjects with type 2 diabetes. Cardiac structure and function were assessed by transthoracic echocardiography. Kidney function was assessed using estimated glomerular filtration rate (eGFR) and albuminuria, and CKD defined as the presence of kidney damage (decreased kidney function (eGFR <60 ml/min/1.73 m2) or albuminuria). Results The mean age ± SD of the cohort was 62 ± 14 years, with a body mass index (BMI) of 31 ± 6 kg/m2 and median diabetes duration of 11 years [25th, 75th interquartile range; 5, 18]. An abnormal echocardiogram was present in 73% of subjects; of these, 8% had LVH alone, 74% had diastolic dysfunction and 18% had systolic ± diastolic dysfunction. CKD was present in 42% of subjects. There were no significant associations between the CTGF −945 G/C polymorphism and echocardiographic parameters of LV mass or cardiac function, or kidney function both before and after adjustment for covariates of age, gender, BMI, blood pressure and hypertension. CTGF −945 genotypes were not associated with the cardiac complications of LVH, diastolic or systolic dysfunction, nor with CKD. Conclusions In Caucasians with type 2 diabetes, genetic variation in the CTGF −945 G/C polymorphism is not associated with cardiac or kidney complications.
Collapse
Affiliation(s)
- Sheila K Patel
- Department of Medicine, Austin Health, University of Melbourne, Level 7, Lance Townsend Building, 145 Studley Road, Melbourne, VIC 3084, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 2011; 10:945-63. [PMID: 22129992 DOI: 10.1038/nrd3599] [Citation(s) in RCA: 496] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Members of the CCN family of matricellular proteins are crucial for embryonic development and have important roles in inflammation, wound healing and injury repair in adulthood. Deregulation of CCN protein expression or activities contributes to the pathobiology of various diseases - many of which may arise when inflammation or tissue injury becomes chronic - including fibrosis, atherosclerosis, arthritis and cancer, as well as diabetic nephropathy and retinopathy. Emerging studies indicate that targeting CCN protein expression or signalling pathways holds promise in the development of diagnostics and therapeutics for such diseases. This Review summarizes the biology of CCN proteins, their roles in various pathologies and their potential as therapeutic targets.
Collapse
|
18
|
CCN2 is required for the TGF-β induced activation of Smad1-Erk1/2 signaling network. PLoS One 2011; 6:e21911. [PMID: 21760921 PMCID: PMC3132735 DOI: 10.1371/journal.pone.0021911] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
Connective tissue growth factor (CCN2) is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β3 integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the αvβ3 integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml) having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/αvβ3 integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.
Collapse
|
19
|
Dendooven A, Nguyen TQ, Brosens L, Li D, Tarnow L, Parving HH, Rossing P, Goldschmeding R. The CTGF -945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes. J Negat Results Biomed 2011; 10:4. [PMID: 21548990 PMCID: PMC3112427 DOI: 10.1186/1477-5751-10-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 05/08/2011] [Indexed: 11/16/2022] Open
Abstract
The -945GC polymorphism (rs6918698) in the connective tissue growth factor gene promoter (CTGF/CCN-2) has been associated with end organ damage in systemic sclerosis. Because CTGF is important in progression of diabetic kidney disease, we investigated whether the -945GC polymorphism is associated with plasma CTGF level and outcome in type 1 diabetes. The study cohort consisted of 448 diabetic nephropathy patients and 419 normoalbuminuric diabetic patients with complete data concerning renal function and cardiovascular characteristics. Genomic DNA was genotyped by a QPCR-based SNP assay. We observed no relation between the -945GC polymorphism and plasma CTGF level, and the genotype frequencies were not different in nephropathy patients vs. normoalbuminuric controls. General and cardiovascular mortality, and renal function decline was similar in patients with CC, CG or GG genotypes. In conclusion, the -945GC SNP does not affect plasma CTGF levels, incidence and prognosis of diabetic nephropathy, and cardiovascular outcome.
Collapse
Affiliation(s)
- Amélie Dendooven
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kushwaha S, Vikram A, Jena GB. Protective effects of enalapril in streptozotocin-induced diabetic rat: studies of DNA damage, apoptosis and expression of CCN2 in the heart, kidney and liver. J Appl Toxicol 2011; 32:662-72. [DOI: 10.1002/jat.1670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 01/09/2023]
Affiliation(s)
- S. Kushwaha
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Sector-67, S.A.S. Nagar; Punjab; 160062; India
| | - A. Vikram
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Sector-67, S.A.S. Nagar; Punjab; 160062; India
| | - G. B. Jena
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research; Sector-67, S.A.S. Nagar; Punjab; 160062; India
| |
Collapse
|
21
|
Mastering a mediator: blockade of CCN-2 shows early promise in human diabetic kidney disease. J Cell Commun Signal 2010; 4:189-96. [PMID: 21234125 DOI: 10.1007/s12079-010-0102-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 10/04/2010] [Indexed: 12/13/2022] Open
Abstract
In diabetes complications, CCN-2 (known originally as CTGF) has been implicated in diabetic nephropathy both as a marker and a mediator of disease. This commentary addresses CCN-2 in diabetic nephropathy, in the context of the recent publication of the first human study to inhibit CCN-2 bioactivity in diabetic kidney disease.
Collapse
|