1
|
Chakraborty S, Singh A, Perveen S, Chowdhury MR, Ali S, Gupta N, Gulati S, Kabra M. Correlation Between Neuronal Apoptosis Inhibitory Protein (NAIP), SMN2, and SMA Phenotypes: A Tertiary Care Centre Experience From India. Am J Med Genet A 2025:e64057. [PMID: 40099840 DOI: 10.1002/ajmg.a.64057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/08/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
SMN2 copy number fails to answer variability in the SMA phenotype completely. We aimed to evaluate the copy number variation in NAIP and SMN2: c.859G>C and A-44G variants as disease modifiers and their correlation with the SMA phenotype. Based on the motor milestones achieved, patients with homozygous deletion of SMN1 exon 7 were classified into SMA Types I-IV. The copy numbers of SMN1 exon 8, SMN2, and NAIP were determined using the MLPA assay. Sanger sequencing was performed for the SMN2 variants. The cohort of 142 patients included nearly equal numbers of patients of SMA Types I, II, and III. The disease severity correlated with the SMN2 and NAIP copy number, with a lower copy number predicting a worse outcome. In addition, we evaluated the SMA genotype (SMN1 exon 8, SMN2 copy number, and NAIP copy number) as a predictor of SMA severity and found that most of the SMA Type I patients had a genotype of 0-2-0, SMA Type II patients had a genotype of 0-3-1, Type III patients had a genotype of 0-3-2 and 0-3-1, and Type IV patients had a genotype of 0-4-2. None of the patients from the cohort had the two modifier variants. The combined genotype of SMN1 exon 8 copy number-SMN2 copy number-NAIP copy number could accurately predict the SMA phenotype. The absence of SMN2: c.859G>C and A-44G variants in any of our patients points to the rarity of these variants in the Indian population.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Amita Singh
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Shama Perveen
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhumita Roy Chowdhury
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Salman Ali
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Division of Child Neurology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Yao M, Jiang L, Yan Y, Yu Y, Chen Y, Wang X, Feng Y, Cui Y, Zhou D, Gao F, Mao S. Analytical validation of the amplification refractory mutation system polymerase chain reaction-capillary electrophoresis assay to diagnose spinal muscular atrophy. Clin Chem Lab Med 2024; 62:2405-2414. [PMID: 38860968 DOI: 10.1515/cclm-2024-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/26/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletion and compound heterozygous mutations in survival motor neuron 1 (SMN1), with severity tied to the copy number of survival motor neuron 2 (SMN2). This study aimed to develop a rapid and comprehensive method for the diagnosis of SMA. METHODS A total of 292 children with clinically suspected SMA and 394 family members were detected by the amplification refractory mutation system polymerase chain reaction-capillary electrophoresis (ARMS-PCR-CE) method, which targeted 19 reported mutations, and the results were compared with those in multiplex ligation-dependent probe amplification (MLPA). Individuals with identified point mutations were further confirmed by SMN1 long-range PCR and Sanger sequencing. RESULTS A total of 202 children with SMA, 272 carriers, and 212 normal individuals were identified in this study. No difference was found in the R-value distribution of exons 7 and 8 in SMN1 and SMN2 among these cohorts, with coefficients of variation consistently below 0.08. To detect exon 7 and 8 copy numbers in SMN1 and SMN2, the ARMS-PCR-CE results were concordant with those of MLPA. Approximately 4.95 % (10/202) of the study patients had compound heterozygous mutations. CONCLUSIONS The ARMS-PCR-CE assay is a comprehensive, rapid, and accurate diagnostic method for SMA that simultaneously detects copy numbers of exons 7 and 8 in SMN1/SMN2, as well as 19 point mutations in SMN1 and 2 enhancers in SMN2. This approach can effectively reduce the time frame for diagnosis, facilitating early intervention and preventing birth defects.
Collapse
Affiliation(s)
- Mei Yao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Liya Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yue Yan
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yicheng Yu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yuwei Chen
- Xiamen Biofast Biotechnology Co., Ltd., Xiamen, P.R. China
| | - Xiaoyi Wang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yijie Feng
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Yiqin Cui
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Feng Gao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| | - Shanshan Mao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
| |
Collapse
|
3
|
Maretina M, Koroleva V, Shchugareva L, Glotov A, Kiselev A. The Relevance of Spinal Muscular Atrophy Biomarkers in the Treatment Era. Biomedicines 2024; 12:2486. [PMID: 39595052 PMCID: PMC11591959 DOI: 10.3390/biomedicines12112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that currently has an approved treatment for all forms of the disease. Previously, biomarkers were primarily used for diagnostic purposes, such as detecting the presence of the disease or determining a specific clinical type of SMA. Currently, with the availability of therapy, biomarkers have become more valuable due to their potential for prognostic, predictive, and pharmacodynamic applications. This review describes the most promising physiological, functional, imaging and molecular biomarkers for SMA, derived from different patients' tissues. The review summarizes information about classical biomarkers that are already used in clinical practice as well as fresh findings on promising biomarkers that have been recently disclosed. It highlights the usefulness, limitations, and strengths of each potential biomarker, indicating the purposes for which each is best suited and when combining them may be most beneficial.
Collapse
Affiliation(s)
- Marianna Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (M.M.); (A.G.)
| | - Valeria Koroleva
- Municipal Hospital for Children No. 1, 198205 Saint-Petersburg, Russia; (V.K.); (L.S.)
| | - Lyudmila Shchugareva
- Municipal Hospital for Children No. 1, 198205 Saint-Petersburg, Russia; (V.K.); (L.S.)
- Department of Pediatric Neuropathology and Neurosurgery, North-Western State Medical University Named After I.I. Mechnikov, 191015 Saint-Petersburg, Russia
| | - Andrey Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (M.M.); (A.G.)
| | - Anton Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (M.M.); (A.G.)
| |
Collapse
|
4
|
Chudakova D, Kuzenkova L, Fisenko A, Savostyanov K. In Search of Spinal Muscular Atrophy Disease Modifiers. Int J Mol Sci 2024; 25:11210. [PMID: 39456991 PMCID: PMC11508272 DOI: 10.3390/ijms252011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a progressive neurodegenerative disease with "continuum of clinical severity", which can be modulated by genetic and epigenetic factors known as disease modifiers (DMs). Individuals (even siblings) with the same defects in SMN1 gene might have strikingly different types of SMA, supposedly due to the impact of DMs. There are several therapeutic options for SMA, all of them focusing on the restoration of the SMN protein levels to normal. Determining DMs and the pathways in which they are involved might aid in enhancing existing curative approaches. Furthermore, DMs might become novel therapeutic targets or prognostic biomarkers of the disease. This narrative review provides a brief overview of the genetics and pathobiology of SMA, and its bona fide modifiers. We describe novel, emerging DMs, approaches and tools used to identify them, as well as their potential mechanisms of action and impact on disease severity. We also propose several disease-modifying molecular mechanisms which could provide a partial explanation of the staggering variability of SMA phenotypes.
Collapse
Affiliation(s)
| | | | | | - Kirill Savostyanov
- National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
5
|
Yang H, Yang J, Xue Y, Liao L, Cai Q, Luo R. Cognitive impairment in children with 5q-associated spinal muscular atrophy type 1: two case reports and the review of the literature. Front Pediatr 2024; 12:1407341. [PMID: 39398417 PMCID: PMC11466754 DOI: 10.3389/fped.2024.1407341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutations in the survival motor neuron 1 (SMN1) gene on chromosome 5, leading to the degeneration of lower motor neurons. There are few studies on cognitive impairment comorbid with SMA. Here, we report two cases of severe cognitive impairment in Chinese children with SMA type 1, marking the first such reports in this demographic. We propose that severe cognitive dysfunction may be a comorbidity of SMA. Clinicians should consider SMA in patients presenting with severe muscle weakness and atrophy accompanied by cognitive impairments, to avoid misdiagnosis and oversight.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Jie Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Yawen Xue
- Department of Pediatric Neurology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lihui Liao
- Department of Pediatric Neurology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qianyun Cai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ouyang S, Peng X, Huang W, Bai J, Wang H, Jin Y, Jiao H, Wei M, Ge X, Song F, Qu Y. Association among biomarkers, phenotypes, and motor milestones in Chinese patients with 5q spinal muscular atrophy types 1-3. Front Neurol 2024; 15:1382410. [PMID: 39286802 PMCID: PMC11404040 DOI: 10.3389/fneur.2024.1382410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Background Biomarkers can be used to assess the severity of spinal muscular atrophy (5q SMA; SMA). Despite their potential, the relationship between biomarkers and clinical outcomes in SMA remains underexplored. This study aimed to assess the association among biomarkers, phenotypes, and motor milestones in Chinese patients diagnosed with SMA. Methods We collected retrospective clinical and follow-up data of disease-modifying therapy (DMT)-naïve patients with SMA at our center from 2019 to 2021. Four biomarkers were included: survival motor neuron 2 (SMN2) copies, neuronal apoptosis inhibitory protein (NAIP) copies, full-length SMN2 (fl-SMN2), and F-actin bundling protein plastin 3 (PLS3) transcript levels. Data were analyzed and stratified according to SMA subtype. Results Of the 123 patients, 30 were diagnosed with Type 1 (24.3%), 56 with Type 2 (45.5%), and 37 with Type 3 (30.1%). The mortality rate for Type 1 was 50%, with median survival times of 2 and 8 months for types 1a and 1b, respectively. All four biomarkers were correlated with disease severity. Notably, fl-SMN2 transcript levels increased with SMN2 copies and were higher in Type 2b than those in Type 2a (p = 0.028). Motor milestone deterioration was correlated with SMN2 copies, NAIP copies, and fl-SMN2 levels, while PLS3 levels were correlated with standing and walking function. Discussion Our findings suggest that SMN2 copies contribute to survival and that fl-SMN2 may serve as a valuable biomarker for phenotypic variability in SMA Type 2 subtypes. These insights can guide future research and clinical management of SMA.
Collapse
Affiliation(s)
- Shijia Ouyang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyin Peng
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Wenchen Huang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Jiao
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Maoti Wei
- Center of Clinical Epidemiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Xiushan Ge
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
7
|
Matesanz SE, Brigatti KW, Young M, Yum SW, Strauss KA. Preemptive dual therapy for children at risk for infantile-onset spinal muscular atrophy. Ann Clin Transl Neurol 2024; 11:1868-1878. [PMID: 38817128 PMCID: PMC11251472 DOI: 10.1002/acn3.52093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Compare efficacy of gene therapy alone (monotherapy) or in combination with an SMN2 augmentation agent (dual therapy) for treatment of children at risk for spinal muscular atrophy type 1. METHODS Eighteen newborns with biallelic SMN1 deletions and two SMN2 copies were treated preemptively with monotherapy (n = 11) or dual therapy (n = 7) and followed for a median of 3 years. Primary outcomes were independent sitting and walking. Biomarkers were serial muscle ultrasonography (efficacy) and sensory action potentials (safety). RESULTS Gene therapy was administered by 7-43 postnatal days; dual therapy with risdiplam (n = 6) or nusinersen (n = 1) was started by 15-39 days. Among 18 children enrolled, 17 sat, 15 walked, and 44% had motor delay (i.e., delay or failure to achieve prespecified milestones). Those on dual therapy sat but did not walk at an earlier age. 91% of muscle ultrasounds conducted within 60 postnatal days were normal but by 3-61 months, 94% showed echogenicity and/or fasciculation of at least one muscle group; these changes were indistinguishable between monotherapy and dual therapy cohorts. Five children with three SMN2 copies were treated with monotherapy in parallel: all sat and walked on time and had normal muscle sonograms at all time points. No child on dual therapy experienced treatment-associated adverse events. All 11 participants who completed sensory testing (including six on dual therapy) had intact sural sensory responses. INTERPRETATION Preemptive dual therapy is well tolerated and may provide modest benefit for children at risk for severe spinal muscular atrophy but does not prevent widespread degenerative changes.
Collapse
Affiliation(s)
- Susan E. Matesanz
- Division of Neurology, Children's Hospital of PhiladelphiaPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Millie Young
- Clinic for Special ChildrenGordonvillePennsylvaniaUSA
| | - Sabrina W. Yum
- Division of Neurology, Children's Hospital of PhiladelphiaPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kevin A. Strauss
- Clinic for Special ChildrenGordonvillePennsylvaniaUSA
- Horae Gene Therapy CenterUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
8
|
Tan J, Zhang J, Sun R, Jiang Z, Wang Y, Ma D, Jiao J, Chen H, Lin Y, Zhang Q, Xu Z, Hu P. Evaluating the performance of four assays for carrier screening of spinal muscular atrophy. Clin Chim Acta 2023; 548:117496. [PMID: 37479010 DOI: 10.1016/j.cca.2023.117496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIMS Spinal muscular atrophy (SMA) is an autosomal recessive inherited neuromuscular condition caused by biallelic mutations in the survival of motor neuron 1 (SMN1) gene. A homozygous deletion of the SMN1 gene accounts for approximately 95-98% of SMA patients. A highly homologous gene survival motor neuron 2 (SMN2) can partially compensate for SMN1 deletion, and its copy number is associated with disease severity. Population-based carrier screening by simultaneous quantification of SMN1 and SMN2 copy numbers is the best method to prevent SMA. MATERIALS AND METHODS In this study, a total of 516 samples were re-tested for the SMN1 copy number by using quantitative polymerase chain reaction (qPCR), multiplex ligation probe amplification (MLPA), droplet digital PCR (ddPCR), high-resolution melting (HRM) analysis, and PCR-based capillary electrophoresis (PCR/CE) simultaneously. Then, the performance of these methods was compared by using MLPA results as the reference. RESULTS The results of qPCR, ddPCR, HRM, and PCR/CE in detecting heterozygous deletion of SMN1 exon 7 and the results of ddPCR, HRM, and PCR/CE in detecting ≥2 copies of SMN1 exon7 are totally consistent with those of MLPA. The sensitivity and specificity of qPCR for detection of 2 copies of SMN1 exon 7 were 99.7% and 98.8%, respectively. The sensitivity and specificity of qPCR for detection of >2 copies of SMN1 exon 7 were 96.3% and 99.8%, respectively. Compared with the MLPA results, the sensitivity and specificity of qPCR and HRM for detection of heterozygous deletion of SMN1 exon 8 were 100% and 100%, respectively. They were 99.4% and 100%, respectively for detection of 2 copies, and 100% and 100%, respectively for detection of >2 copies. The results of PCR/CE in detecting SMN1 exon 8 were consistent with those of MLPA. CONCLUSION All these four methods show excellent performance in detecting heterozygous deletion of SMN1 exon 7. All PCR/CE results are totally concordant with those of MLPA. As the most cost-effective method, qPCR also shows high sensitivity and specificity in detecting SMN1. Taken together, our study provides useful information to select appropriate methods for SMA carrier screening.
Collapse
Affiliation(s)
- Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Ruihong Sun
- Department of Laboratory Medicine, The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhu Jiang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Yuguo Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Jiao Jiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Hao Chen
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Yingchun Lin
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Qinxin Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China.
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China.
| |
Collapse
|
9
|
Nadal M, Anton R, Dorca‐Arévalo J, Estébanez‐Perpiñá E, Tizzano EF, Fuentes‐Prior P. Structure and function analysis of Sam68 and hnRNP A1 synergy in the exclusion of exon 7 from SMN2 transcripts. Protein Sci 2023; 32:e4553. [PMID: 36560896 PMCID: PMC10031812 DOI: 10.1002/pro.4553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the absence of a functional copy of the Survival of Motor Neuron 1 gene (SMN1). The nearly identical paralog, SMN2, cannot compensate for the loss of SMN1 because exon 7 is aberrantly skipped from most SMN2 transcripts, a process mediated by synergistic activities of Src-associated during mitosis, 68 kDa (Sam68/KHDRBS1) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1. This results in the production of a truncated, nonfunctional protein that is rapidly degraded. Here, we present several crystal structures of Sam68 RNA-binding domain (RBD). Sam68-RBD forms stable symmetric homodimers by antiparallel association of helices α3 from two monomers. However, the details of domain organization and the dimerization interface differ significantly from previously characterized homologs. We demonstrate that Sam68 and hnRNP A1 can simultaneously bind proximal motifs within the central region of SMN2 (ex7). Furthermore, we show that the RNA-binding pockets of the two proteins are close to each other in their heterodimeric complex and identify contact residues using crosslinking-mass spectrometry. We present a model of the ternary Sam68·SMN2 (ex7)·hnRNP A1 complex that reconciles all available information on SMN1/2 splicing. Our findings have important implications for the etiology of SMA and open new avenues for the design of novel therapeutics to treat splicing diseases.
Collapse
Affiliation(s)
- Marta Nadal
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Rosa Anton
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Jonatan Dorca‐Arévalo
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
- Present address:
Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of BellvitgeHospitalet de Llobregat, University of BarcelonaBarcelonaSpain
| | - Eva Estébanez‐Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of BiologyInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Eduardo F. Tizzano
- Medicine Genetics GroupVall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of Clinical and Molecular GeneticsHospital Vall d'HebronBarcelonaSpain
| | - Pablo Fuentes‐Prior
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| |
Collapse
|
10
|
Zang J, Johannsen J, Denecke J, Weiss D, Koseki JC, Nießen A, Müller F, Nienstedt JC, Flügel T, Pflug C. Flexible endoscopic evaluation of swallowing in children with type 1 spinal muscular atrophy. Eur Arch Otorhinolaryngol 2023; 280:1329-1338. [PMID: 36209319 PMCID: PMC9547642 DOI: 10.1007/s00405-022-07685-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE This study aimed to report on implementing flexible endoscopic evaluation of swallowing (FEES) in infants and toddlers with type 1 spinal muscular atrophy (SMA). In addition, a comparison of FEES results and clinical scores was carried out. METHODS A prospective pilot study was conducted including ten symptomatic children with SMA type 1 (two SMN2 copies). They started treatment with one of the three currently approved therapies for SMA at a median age of 3.8 months (range 0.7-8.9). FEES was performed according to a standard protocol using Penetration-Aspiration Scale (PAS) and Murray Secretion Scale as a primary outcome. The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) for motor function, Neuromuscular Disease Swallowing Status Scale (NdSSS), Oral and Swallowing Abilities Tool (OrSAT), and single clinical swallowing-related parameters were also assessed. RESULTS Distinct swallowing disorders were already evident in eight children at inclusion. The most common findings from FEES were pharyngeal secretion pooling, penetration, and aspiration of saliva and food as well as delayed initiation of swallowing. Despite an average increase in motor function, no comparable improvement was found in swallowing function. None of the surveyed clinical scores showed a significant dependence on PAS in a mixed linear model. CONCLUSIONS Valuable information regarding the status of dysphagia can be gathered endoscopically, particularly concerning secretion management and when oral intake is limited. Currently available clinical tools for children with type 1 may represent a change in nutritional status but are not yet mature enough to conclude swallowing ability. Further development is still required.
Collapse
Affiliation(s)
- Jana Zang
- grid.13648.380000 0001 2180 3484Department of Voice, Speech and Hearing Disorders, University Dysphagia Center, University Medical Center Hamburg‐Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jessika Johannsen
- grid.13648.380000 0001 2180 3484Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Denecke
- grid.13648.380000 0001 2180 3484Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deike Weiss
- grid.13648.380000 0001 2180 3484Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana-Christiane Koseki
- grid.13648.380000 0001 2180 3484Department of Voice, Speech and Hearing Disorders, University Dysphagia Center, University Medical Center Hamburg‐Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Almut Nießen
- grid.13648.380000 0001 2180 3484Department of Voice, Speech and Hearing Disorders, University Dysphagia Center, University Medical Center Hamburg‐Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Frank Müller
- grid.13648.380000 0001 2180 3484Department of Voice, Speech and Hearing Disorders, University Dysphagia Center, University Medical Center Hamburg‐Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Julie Cläre Nienstedt
- grid.13648.380000 0001 2180 3484Department of Voice, Speech and Hearing Disorders, University Dysphagia Center, University Medical Center Hamburg‐Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Till Flügel
- grid.13648.380000 0001 2180 3484Department of Voice, Speech and Hearing Disorders, University Dysphagia Center, University Medical Center Hamburg‐Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christina Pflug
- grid.13648.380000 0001 2180 3484Department of Voice, Speech and Hearing Disorders, University Dysphagia Center, University Medical Center Hamburg‐Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Abstract
Spinal muscular atrophy (SMA) is caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles. Over the past decade, disease-modifying therapies have become available based on splicing modulation of the SMN2 with SMN1 gene replacement, which if initiated significantly modifies the natural course of the disease. Newborn screening for SMA has been implemented in an increasing number of centers; however, available evidence for these new treatments is often limited to a small spectrum of patients concerning age and disease stage.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Jerry R Mendell
- Department of Neurology and Pediatrics, Center for Gene Therapy, Abigail Wexner Research Institute, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
12
|
Messina S, Sframeli M, Maggi L, D'Amico A, Bruno C, Comi G, Mercuri E. Spinal muscular atrophy: state of the art and new therapeutic strategies. Neurol Sci 2022; 43:615-624. [PMID: 33871750 DOI: 10.1007/s10072-021-05258-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Spinal muscular atrophy (SMA) is a severe disorder of motor neurons and the most frequent cause of genetic mortality, due to respiratory complications. We are facing an exciting era with three available therapeutic options in a disease considered incurable for more than a century. However, the availability of effective approaches has raised up ethical, medical, and financial issues that are routinely faced by the SMA community. Each therapeutic strategy has its weaknesses and strengths and clinicians need to know them to optimize clinical care. In this review, the state of the art and the results and challenges of the new SMA therapeutic strategies are highlighted.
Collapse
Affiliation(s)
- Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy. .,NEuroMuscular Omnicentre (NEMO) Sud Clinical Centre, University Hospital "G. Martino", Messina, Italy.
| | - Maria Sframeli
- NEuroMuscular Omnicentre (NEMO) Sud Clinical Centre, University Hospital "G. Martino", Messina, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disease Unit, Foundation IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giacomo Comi
- Neuromuscular and Rare Disease Unit, La Fondazione IRCCS Ca' Granda Ospedale Maggiore di Milano Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Eugenio Mercuri
- Department of Child Neurology, University Policlinico Gemelli, Rome, Italy
| |
Collapse
|
13
|
Dumas SA, Villalón E, Bergman EM, Wilson KJ, Marugan JJ, Lorson CL, Burnett BG. A combinatorial approach increases SMN level in SMA model mice. Hum Mol Genet 2022; 31:2989-3000. [PMID: 35419606 PMCID: PMC9433732 DOI: 10.1093/hmg/ddac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced expression of the survival motor neuron (SMN) protein. Current disease-modifying therapies increase SMN levels and dramatically improve survival and motor function of SMA patients. Nevertheless, current treatments are not cures and autopsy data suggest that SMN induction is variable. Our group and others have shown that combinatorial approaches that target different modalities can improve outcomes in rodent models of SMA. Here we explore if slowing SMN protein degradation and correcting SMN splicing defects could synergistically increase SMN production and improve the SMA phenotype in model mice. We show that co-administering ML372, which inhibits SMN ubiquitination, with an SMN-modifying antisense oligonucleotide (ASO) increases SMN production in SMA cells and model mice. In addition, we observed improved spinal cord, neuromuscular junction and muscle pathology when ML372 and the ASO were administered in combination. Importantly, the combinatorial approach resulted in increased motor function and extended survival of SMA mice. Our results demonstrate that a combination of treatment modalities synergistically increases SMN levels and improves pathophysiology of SMA model mice over individual treatment.
Collapse
Affiliation(s)
- Samantha A Dumas
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, USA
| | - Elizabeth M Bergman
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| | - Kenneth J Wilson
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892-2152, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, Discovery Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892-2152, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
14
|
Deep Molecular Characterization of Milder Spinal Muscular Atrophy Patients Carrying the c.859G>C Variant in SMN2. Int J Mol Sci 2022; 23:ijms23158289. [PMID: 35955418 PMCID: PMC9368089 DOI: 10.3390/ijms23158289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype−phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype−phenotype correlations and improve prognostic outcomes.
Collapse
|
15
|
Sarv S, Kahre T, Vaidla E, Pajusalu S, Muru K, Põder H, Gross-Paju K, Ütt S, Žordania R, Talvik I, Õiglane-Shlik E, Muhu K, Õunap K. The Birth Prevalence of Spinal Muscular Atrophy: A Population Specific Approach in Estonia. Front Genet 2022; 12:796862. [PMID: 35003227 PMCID: PMC8729775 DOI: 10.3389/fgene.2021.796862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Rare diseases are an important population health issue and many promising therapies have been developed in recent years. In light of novel genetic treatments expected to significantly improve spinal muscular atrophy (SMA) patients' quality of life and the urgent need for SMA newborn screening (NBS), new epidemiological data were needed to implement SMA NBS in Estonia. Objective: We aimed to describe the birth prevalence of SMA in the years 1996-2020 and to compare the results with previously published data. Methods: We retrospectively analyzed clinical and laboratory data of SMA patients referred to the Department of Clinical Genetics of Tartu University Hospital and its branch in Tallinn. Results: Fifty-seven patients were molecularly diagnosed with SMA. SMA birth prevalence was 1 per 8,286 (95% CI 1 per 6,130-11,494) in Estonia. Patients were classified as SMA type 0 (1.8%), SMA I (43.9%), SMA II (22.8%), SMA III (29.8%), and SMA IV (1.8%). Two patients were compound heterozygotes with an SMN1 deletion in trans with a novel single nucleotide variant NM_000344.3:c.410dup, p.(Asn137Lysfs*11). SMN2 copy number was assessed in 51 patients. Conclusion: In Estonia, the birth prevalence of SMA is similar to the median birth prevalence in Europe. This study gathered valuable information on the current epidemiology of SMA, which can guide the implementation of spinal muscular atrophy to the newborn screening program in Estonia.
Collapse
Affiliation(s)
- Siiri Sarv
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Eve Vaidla
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Haide Põder
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Katrin Gross-Paju
- Centre for Neurological Diseases, West-Tallinn Central Hospital, Tallinn, Estonia.,Department of Health Technologies, eMed Lab, TalTech, Tallinn, Estonia
| | - Sandra Ütt
- Centre for Neurological Diseases, West-Tallinn Central Hospital, Tallinn, Estonia
| | - Riina Žordania
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Inga Talvik
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Eve Õiglane-Shlik
- Children's Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kristina Muhu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
16
|
Kray KM, McGovern VL, Chugh D, Arnold WD, Burghes AHM. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic ∆7SMA mice. Neurobiol Dis 2021; 159:105488. [PMID: 34425216 PMCID: PMC8502210 DOI: 10.1016/j.nbd.2021.105488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by survival motor neuron (SMN) protein deficiency which results in motor neuron loss and muscle atrophy. SMA is caused by a mutation or deletion of the survival motor neuron 1 (SMN1) gene and retention of the nearly identical SMN2 gene. SMN2 contains a C to T change in exon 7 that results in exon 7 exclusion from 90% of transcripts. SMN protein lacking exon 7 is unstable and rapidly degraded. The remaining full-length transcripts from SMN2 are insufficient for normal motor neuron function leading to the development of SMA. Three different therapeutic approaches that increase full-length SMN (FL-SMN) protein production are approved for treatment of SMA patients. Studies in both animal models and humans have demonstrated increasing SMN levels prior to onset of symptoms provides the greatest therapeutic benefit. Treatment of SMA, after some motor neuron loss has occurred, is also effective but to a lesser degree. The SMN∆7 mouse model is a well characterized model of severe or type 1 SMA, dying at 14 days of age. Here we treated three groups of ∆7SMA mice starting before, roughly during, and after symptom onset to determine if combining two mechanistically distinct SMN inducing therapies could improve the therapeutic outcome both before and after motor neuron loss. We found, compared with individual therapies, that morpholino antisense oligonucleotide (ASO) directed against ISS-N1 combined with the small molecule compound RG7800 significantly increased FL-SMN transcript and protein production resulting in improved survival and weight of ∆7SMA mice. Moreover, when give late symptomatically, motor unit function was completely rescued with no loss in function at 100 days of age in the dual treatment group. We have therefore shown that this dual therapeutic approach successfully increases SMN protein and rescues motor function in symptomatic ∆7SMA mice.
Collapse
Affiliation(s)
- Kaitlyn M Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Deepti Chugh
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA; Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Thomsen G, Burghes AHM, Hsieh C, Do J, Chu BTT, Perry S, Barkho B, Kaufmann P, Sproule DM, Feltner DE, Chung WK, McGovern VL, Hevner RF, Conces M, Pierson CR, Scoto M, Muntoni F, Mendell JR, Foust KD. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat Med 2021; 27:1701-1711. [PMID: 34608334 DOI: 10.1038/s41591-021-01483-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Spinal muscular atrophy type 1 (SMA1) is a debilitating neurodegenerative disease resulting from survival motor neuron 1 gene (SMN1) deletion/mutation. Onasemnogene abeparvovec (formerly AVXS-101) is a gene therapy that restores SMN production via one-time systemic administration. The present study demonstrates widespread biodistribution of vector genomes and transgenes throughout the central nervous system (CNS) and peripheral organs, after intravenous administration of an AAV9-mediated gene therapy. Two symptomatic infants with SMA1 enrolled in phase III studies received onasemnogene abeparvovec. Both patients died of respiratory complications unrelated to onasemnogene abeparvovec. One patient had improved motor function and the other died shortly after administration before appreciable clinical benefit could be observed. In both patients, onasemnogene abeparvovec DNA and messenger RNA distribution were widespread among peripheral organs and in the CNS. The greatest concentration of vector genomes was detected in the liver, with an increase over that detected in CNS tissues of 300-1,000-fold. SMN protein, which was low in an untreated SMA1 control, was clearly detectable in motor neurons, brain, skeletal muscle and multiple peripheral organs in treated patients. These data support the fact that onasemnogene abeparvovec has effective distribution, transduction and expression throughout the CNS after intravenous administration and restores SMN expression in humans.
Collapse
Affiliation(s)
| | - Arthur H M Burghes
- Department of Neurology, The Ohio State University, Columbus, OH, USA. .,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
| | | | - Janet Do
- Novartis Gene Therapies, Bannockburn, IL, USA
| | | | | | | | | | | | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, CA, USA
| | - Miriam Conces
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Mariacristina Scoto
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Hospital Trust, London, UK
| | - Francesco Muntoni
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Hospital Trust, London, UK
| | - Jerry R Mendell
- Department of Neurology, The Ohio State University, Columbus, OH, USA.,Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
18
|
Megarbane A, Bizzari S, Deepthi A, Sabbagh S, Mansour H, Chouery E, Hmaimess G, Jabbour R, Mehawej C, Alame S, Hani A, Hasbini D, Ghanem I, Koussa S, Al-Ali MT, Obeid M, Talea DB, Lefranc G, Levy N, Leturcq F, El Hayek S, Delague V, Urtizberea A. A 20-year Clinical and Genetic Neuromuscular Cohort Analysis in Lebanon: An International Effort. J Neuromuscul Dis 2021; 9:193-210. [PMID: 34602496 PMCID: PMC8842757 DOI: 10.3233/jnd-210652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Clinical and molecular data on the occurrence and frequency of inherited neuromuscular disorders (NMD) in the Lebanese population is scarce. OBJECTIVE This study aims to provide a retrospective overview of hereditary NMDs based on our clinical consultations in Lebanon. METHODS Clinical and molecular data of patients referred to a multi-disciplinary consultation for neuromuscular disorders over a 20-year period (1999-2019) was reviewed. RESULTS A total of 506 patients were diagnosed with 62 different disorders encompassing 10 classes of NMDs. 103 variants in 49 genes were identified. In this cohort, 81.4%of patients were diagnosed with motor neuron diseases and muscular dystrophies, with almost half of these described with spinal muscular atrophy (SMA) (40.3%of patients). We estimate a high SMA incidence of 1 in 7,500 births in Lebanon. Duchenne and Becker muscular dystrophy were the second most frequently diagnosed NMDs (17%of patients). The latter disorders were associated with the highest number of variants (39) identified in this study. A highly heterogeneous presentation of Limb Girdle Muscular Dystrophy and Charcot-Marie-Tooth disease was notably identified. The least common disorders (5.5%of patients) involved congenital, metabolic, and mitochondrial myopathies, congenital myasthenic syndromes, and myotonic dystrophies. A review of the literature for selected NMDs in Lebanon is provided. CONCLUSIONS Our study indicates a high prevalence and underreporting of heterogeneous forms of NMDs in Lebanon- a major challenge with many novel NMD treatments in the pipeline. This report calls for a regional NMD patient registry.
Collapse
Affiliation(s)
- Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.,Institut Jérôme Lejeune, Paris, France
| | | | | | - Sandra Sabbagh
- Department of Pediatrics, Hôtel Dieu de France Hospital, Beirut, Lebanon
| | - Hicham Mansour
- Department of Pediatrics, Saint George Hospital, Balamand University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ghassan Hmaimess
- Department of Pediatrics, Saint George Hospital, Balamand University, Beirut, Lebanon
| | - Rosette Jabbour
- Department of Neurology, Saint George Hospital, Balamand University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Saada Alame
- Department of Neuropediatrics, Lebanese University, Beirut, Lebanon
| | - Abeer Hani
- Departments of Pediatrics and Neurology, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Dana Hasbini
- Department of Pediatric Neurology, Rafic Hariri University Hospital, Beirut, Lebanon
| | - Ismat Ghanem
- Department of Orthopedics, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Salam Koussa
- Department of Neurology, Geitaoui Lebanese University Hospital, Beirut, Lebanon
| | | | - Marc Obeid
- Genetic laboratory, American University of Science and Technology, Lebanon
| | - Diana Bou Talea
- Genetic laboratory, American University of Science and Technology, Lebanon
| | - Gerard Lefranc
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, France
| | - Nicolas Levy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | | | | |
Collapse
|
19
|
The Importance of Digging into the Genetics of SMN Genes in the Therapeutic Scenario of Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22169029. [PMID: 34445733 PMCID: PMC8396600 DOI: 10.3390/ijms22169029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
After 26 years of discovery of the determinant survival motor neuron 1 and the modifier survival motor neuron 2 genes (SMN1 and SMN2, respectively), three SMN-dependent specific therapies are already approved by FDA and EMA and, as a consequence, worldwide SMA patients are currently under clinical investigation and treatment. Bi-allelic pathogenic variants (mostly deletions) in SMN1 should be detected in SMA patients to confirm the disease. Determination of SMN2 copy number has been historically employed to correlate with the phenotype, predict disease evolution, stratify patients for clinical trials and to define those eligible for treatment. In view that discordant genotype-phenotype correlations are present in SMA, besides technical issues with detection of SMN2 copy number, we have hypothesized that copy number determination is only the tip of the iceberg and that more deepen studies of variants, sequencing and structures of the SMN2 genes are necessary for a better understanding of the disease as well as to investigate possible influences in treatment responses. Here, we highlight the importance of a comprehensive approach of SMN1 and SMN2 genetics with the perspective to apply for better prediction of SMA in positive neonatal screening cases and early diagnosis to start treatments.
Collapse
|
20
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
21
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
22
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Blasco-Pérez L, Paramonov I, Leno J, Bernal S, Alias L, Fuentes-Prior P, Cuscó I, Tizzano EF. Beyond copy number: A new, rapid, and versatile method for sequencing the entire SMN2 gene in SMA patients. Hum Mutat 2021; 42:787-795. [PMID: 33739559 PMCID: PMC8252042 DOI: 10.1002/humu.24200] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is caused by bi‐allelic loss or pathogenic variants in the SMN1 gene. SMN2, the highly homologous copy of SMN1, is considered the major phenotypic modifier of the disease. Determination of SMN2 copy number is essential to establish robust genotype–phenotype correlations and predict disease evolution, to stratify patients for clinical trials, as well as to define those eligible for treatment. Discordant genotype–phenotype correlations are not uncommon in SMA, some of which are due to intragenic SMN2 variants that may influence the amount of complete SMN transcripts and, therefore, of full‐length SMN protein. Detection of these variants is crucial to predict SMA phenotypes in the present scenario of therapeutic advances and with the perspective of SMA neonatal screening and early diagnosis to start treatments. Here, we present a novel, affordable, and versatile method for complete sequencing of the SMN2 gene based on long‐range polymerase chain reaction and next‐generation sequencing. The method was validated by analyzing samples from 53 SMA patients who lack SMN1, allowing to characterize paralogous, rare variants, and single‐nucleotide polymorphisms of SMN2 as well as SMN2–SMN1 hybrid genes. The method identifies partial deletions and can be adapted to determine rare pathogenic variants in patients with at least one SMN1 copy.
Collapse
Affiliation(s)
- Laura Blasco-Pérez
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| | - Ida Paramonov
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| | - Jordi Leno
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| | - Sara Bernal
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)
| | - Laura Alias
- Genetics Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)
| | - Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ivon Cuscó
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)
| | - Eduardo F Tizzano
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
24
|
Milligan JN, Larson JL, Filipovic-Sadic S, Laosinchai-Wolf W, Huang YW, Ko TM, Abbott KM, Lemmink HH, Toivonen M, Schleutker J, Gentile C, Van Deerlin VM, Zhu H, Latham GJ. Multisite Evaluation and Validation of a Sensitive Diagnostic and Screening System for Spinal Muscular Atrophy that Reports SMN1 and SMN2 Copy Number, along with Disease Modifier and Gene Duplication Variants. J Mol Diagn 2021; 23:753-764. [PMID: 33798739 DOI: 10.1016/j.jmoldx.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy is a severe autosomal recessive disease caused by disruptions in the SMN1 gene. The nearly identical SMN2 gene copy number is associated with disease severity. SMN1 duplication markers, such as c.∗3+80T>G and c.∗211_∗212del, can assess residual carrier risk. An SMN2 disease modifier (c.859G>C) can help inform prognostic outcomes. The emergence of multiple precision gene therapies for spinal muscular atrophy requires accurate and rapid detection of SMN1 and SMN2 copy numbers to enable early treatment and optimal patient outcomes. We developed and evaluated a single-tube PCR/capillary electrophoresis assay system that quantifies SMN1/2 copy numbers and genotypes three additional clinically relevant variants. Analytical validation was performed with human cell lines and whole blood representing varying SMN1/2 copies on four capillary electrophoresis instrument models. In addition, four independent laboratories used the assay to test 468 residual clinical genomic DNA samples. The results were ≥98.3% concordant with consensus SMN1/2 exon 7 copy numbers, determined using multiplex ligation-dependent probe amplification and droplet digital PCR, and were 100% concordant with Sanger sequencing for the three variants. Furthermore, copy number values were 98.6% (SMN1) and 97.1% (SMN2) concordant to each laboratory's own reference results.
Collapse
Affiliation(s)
| | | | | | | | - Ya-Wen Huang
- GenePhile Bioscience Laboratory, Ko's Obstetrics and Gynecology Clinic, Taipei City, Taiwan
| | - Tsang-Ming Ko
- GenePhile Bioscience Laboratory, Ko's Obstetrics and Gynecology Clinic, Taipei City, Taiwan
| | - Kristin M Abbott
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Minna Toivonen
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Johanna Schleutker
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland; Institute of Biomedicine, University of Turku, Turun yliopisto, Finland
| | - Caren Gentile
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Huiping Zhu
- Research and Development, Asuragen Inc., Austin, Texas
| | - Gary J Latham
- Research and Development, Asuragen Inc., Austin, Texas
| |
Collapse
|
25
|
Lusakowska A, Jedrzejowska M, Kaminska A, Janiszewska K, Grochowski P, Zimowski J, Sierdzinski J, Kostera-Pruszczyk A. Observation of the natural course of type 3 spinal muscular atrophy: data from the polish registry of spinal muscular atrophy. Orphanet J Rare Dis 2021; 16:150. [PMID: 33761963 PMCID: PMC7992780 DOI: 10.1186/s13023-021-01771-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is one of the most frequent and severe genetic diseases leading to premature death or severe motor disability. New therapies have been developed in recent years that change the natural history of the disease. The aim of this study is to describe patients included in the Polish Registry of SMA, with a focus on the course of type 3 SMA (SMA3) before the availability of disease-modifying treatments. RESULTS 790 patients with SMA were included in the registry (173 with type 1 [SMA1], 218 with type 2 [SMA2], 393 with SMA3, and six with type 4 SMA [SMA4]), most (52%) of whom were adults. Data on SMN2 gene copy number were available for 672 (85%) patients. The mean age of onset was 5 months for SMA1, 11.5 months for SMA2, and 4.5 years for SMA3. In patients with SMA3, the first symptoms occurred earlier in those with three copies of SMN2 than in those with four copies of SMN2 (3.2 years vs. 6.7 years). The age of onset of SMA3 was younger in girls than in boys (3.1 years vs. 5.7 years), with no new cases observed in women older than 16 years. Male patients outnumbered female patients, especially among patients with SMA3b (49 female vs. 85 male patients) and among patients with SMA3 with four copies of SMN2 (30 female vs. 69 male patients). 44% of patients with SMA3 were still able to walk; in those who were not still able to walk, the mean age of immobilization was 14.0 years. Patients with SMA3a (age of onset < 3 years) and three copies of SMN2 had significantly worse prognosis for remaining ambulant than patients with SMA3b (age of onset ≥ 3 years) and four copies of SMN2. CONCLUSIONS The Registry of SMA is an effective tool for assessing the disease course in the real world setting. SMN2 copy number is an important prognostic factor for the age of onset and ambulation in SMA3. Sex and age of disease onset also strongly affect the course of SMA. Data supplied by this study can aid treatment decisions.
Collapse
Affiliation(s)
- Anna Lusakowska
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland
| | - Maria Jedrzejowska
- Rare Diseases Research Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kaminska
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Janiszewska
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Grochowski
- Student Research Group of Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Janusz Sierdzinski
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Kostera-Pruszczyk
- Department of Neurology, European Reference Network EURO-NMD, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
26
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
27
|
Keinath MC, Prior DE, Prior TW. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. APPLICATION OF CLINICAL GENETICS 2021; 14:11-25. [PMID: 33531827 PMCID: PMC7846873 DOI: 10.2147/tacg.s239603] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a heritable neuromuscular disorder that causes degeneration of the alpha motor neurons from anterior horn cells in the spinal cord, which causes severe progressive hypotonia and muscular weakness. With a carrier frequency of 1 in 40–50 and an estimated incidence of 1 in 10,000 live births, SMA is the second most common autosomal recessive disorder. Affected individuals with SMA have a homozygous loss of function of the survival motor neuron gene SMN1 on 5q13 but keep the modifying SMN2 gene. The most common mutation causing SMA is a homozygous deletion of the SMN1 exon 7, which can be readily detected and used as a sensitive diagnostic test. Because SMN2 produces a reduced number of full-length transcripts, the number of SMN2 copies can modify the clinical phenotype and as such, becomes an essential predictive factor. Population-based SMA carrier screening identifies carrier couples that may pass on this genetic disorder to their offspring and allows the carriers to make informed reproductive choices or prepare for immediate treatment for an affected child. Three treatments have recently been approved by the Food and Drug Administration (FDA). Nusinersen increases the expression levels of the SMN protein using an antisense oligonucleotide to alter splicing of the SMN2 transcript. Onasemnogene abeparvovec is a gene therapy that utilizes an adeno-associated virus serotype 9 vector to increase low functional SMN protein levels. Risdiplam is a small molecule that alters SMN2 splicing in order to increase functional SMN protein. Newborn screening for SMA has been shown to be successful in allowing infants to be treated before the loss of motor neurons and has resulted in improved clinical outcomes. Several of the recommendations and guidelines in the review are based on studies performed in the United States.
Collapse
Affiliation(s)
- Melissa C Keinath
- Pathology, University Hospitals Center for Human Genetics, Cleveland, OH, USA
| | - Devin E Prior
- Neurology, Mount Auburn Hospital, Cambridge, MA, USA
| | - Thomas W Prior
- Pathology, University Hospitals Center for Human Genetics, Cleveland, OH, USA
| |
Collapse
|
28
|
Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 2021; 22:53-64. [PMID: 33415588 DOI: 10.1007/s10048-020-00630-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1-SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.
Collapse
|
29
|
Jędrzejowska M. Advances in Newborn Screening and Presymptomatic Diagnosis of Spinal Muscular Atrophy. Degener Neurol Neuromuscul Dis 2020; 10:39-47. [PMID: 33364872 PMCID: PMC7751307 DOI: 10.2147/dnnd.s246907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy 5q (SMA5q) is one of the most severe and common genetic diseases. In the natural course, the disease leads to premature death (in acute forms) or severe motor disability (in chronic forms). As the genetic basis of SMA is very homogenous, the diagnostics are based entirely on simple and sensitive genetic testing. In the last few years, innovative methods of therapy have been developed based on SMN2 gene modification, such as splicing, or replacement of the damaged SMN1 gene (gene therapy). Although these approaches have shown high efficacy, results depend on the age/disease stage at which therapy is initiated. The best results have been obtained in presymptomatic patients. Indeed, introduction of therapy in the pre- or early symptomatic stage of the disease seems to be crucial for maximizing effects. Thus, all the criteria for the implementation of neonatal screening for SMA have been met, and many countries, ie, the USA, Germany, Belgium, and Australia, have started NBS national/pilot programs for SMA. The initial results of these programs indicate a high frequency of the disease, reaching 1 per 7 thousand live births in Europe, as well as early symptomatology (first weeks of life in severe cases) and a high frequency of patients with 4 SMN2 copies. Overall, the time for therapy inclusion in patients with 4 SMN2 copies remain under discussion. More precise predictors/biomarkers of the clinical course are needed. At the same time, it seems advisable to offer other solutions, such as population carrier screening. As the long-term effects of different treatments on the natural history of SMA are unknown, the natural history of the disease needs to be re-evaluated.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Rare Diseases Research Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
30
|
Cuscó I, Bernal S, Blasco-Pérez L, Calucho M, Alias L, Fuentes-Prior P, Tizzano EF. Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy. NEUROLOGY-GENETICS 2020; 6:e530. [PMID: 33324756 PMCID: PMC7713720 DOI: 10.1212/nxg.0000000000000530] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Objective Assessment of SMN2 copy number in patients with spinal muscular atrophy (SMA) is essential to establish careful genotype-phenotype correlations and predict disease evolution. This issue is becoming crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatment, as this value is critical to stratify patients for clinical trials and to define those eligible to receive medication. Several technical pitfalls and interindividual variations may account for reported discrepancies in the estimation of SMN2 copy number and establishment of phenotype-genotype correlations. Methods We propose a management guide based on a sequence of specified actions once SMN2 copy number is determined for a given patient. Regardless of the method used to estimate the number of SMN2 copies, our approach focuses on the manifestations of the patient to recommend how to proceed in each case. Results We defined situations according to SMN2 copy number in a presymptomatic scenario of screening, in which we predict the possible evolution, and when a symptomatic patient is genetically confirmed. Unexpected discordant cases include patients having a single SMN2 copy but noncongenital disease forms, 2 SMN2 copies compatible with type II or III SMA, and 3 or 4 copies of the gene showing more severe disease than expected. Conclusions Our proposed guideline would help to systematically identify discordant SMA cases that warrant further genetic investigation. The SMN2 gene, as the main modifier of SMA phenotype, deserves a more in-depth study to provide more accurate genotype-phenotype correlations.
Collapse
Affiliation(s)
- Ivon Cuscó
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sara Bernal
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laura Blasco-Pérez
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maite Calucho
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Laura Alias
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pablo Fuentes-Prior
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Eduardo F Tizzano
- Medicine Genetics Group (I.C., L.B.-P., M.C., E.F.T.), Vall dHebron Research Institute (VHIR), Barcelona; Department of Clinical and Molecular Genetics (I.C., L.B.-P., M.C., E.F.T.), Hospital Vall dHebron, Barcelona; Department of Genetics (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Biomedical Research Institute Sant Pau (IIB Sant Pau) (S.B., L.A.), Hospital de la Santa Creu i Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII, U-705 Barcelona) (S.B., L.A.), Madrid; Molecular Bases of Disease (P.F.-P.), Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
31
|
Souza PVS, Pinto WBVR, Ricarte A, Badia BML, Seneor DD, Teixeira DT, Caetano L, Gonçalves EA, Chieia MAT, Farias IB, Bertini E, Oliveira ASB. Clinical and radiological profile of patients with spinal muscular atrophy type 4. Eur J Neurol 2020; 28:609-619. [PMID: 33090613 DOI: 10.1111/ene.14587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Spinal muscular atrophy (SMA) is the most important cause of motor neuron disease in childhood, and continues to represent the leading genetic cause of infant death. Adulthood-onset SMA (SMA type 4) is rare, with few isolated cases reported. The objective of the present study was to describe a cohort of patients with SMA type 4. METHODS A cross-sectional study was conducted to characterize clinical, genetic, radiological and neurophysiological features of patients with adulthood-onset SMA. Correlation analysis of functional assessment with genetic, radiological and neurophysiological data was performed. RESULTS Twenty patients with SMA type 4 were identified in a Brazilian cohort of 227 patients with SMA. The most common clinical symptom was limb-girdle muscle weakness, observed in 15 patients (75%). The most frequent neurological findings were absent tendon reflexes in 18 (90%) and fasciculations in nine patients (45%). Sixteen patients (80%) had the homozygous deletion of exon 7 in the SMN1 gene, with 12 patients (60%) showing four copies of the SMN2 gene. The functional scales Hammersmith Functional Motor Scale Expanded, Amyotrophic Lateral Sclerosis Functional Rating Scale Revised, Revised Upper Limb Module and Spinal Muscular Atrophy Functional Rating Scale, as well as the six-minute walk and the Time Up and Go tests showed a correlation with duration of disease. Motor Unit Number Index was correlated both with duration of disease and with performance in functional assessment. Radiological studies exhibited a typical pattern, with involvement of biceps femoris short head and gluteus minimus in all patients. CONCLUSION This study represents the largest cohort of patients with SMA type 4 and provides functional, genetic, radiological and neurophysiological features that can be used as potential biomarkers for the new specific genetic therapies for SMA.
Collapse
Affiliation(s)
- P V S Souza
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - W B V R Pinto
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - A Ricarte
- Neurotherapy Rehabilitation Center, São Paulo, SP, Brazil
| | - B M L Badia
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - D D Seneor
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - D T Teixeira
- Neurotherapy Rehabilitation Center, São Paulo, SP, Brazil
| | - L Caetano
- Neurotherapy Rehabilitation Center, São Paulo, SP, Brazil
| | - E A Gonçalves
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - M A T Chieia
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - I B Farias
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - E Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - A S B Oliveira
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
32
|
Spinal muscular atrophy - insights and challenges in the treatment era. Nat Rev Neurol 2020; 16:706-715. [PMID: 33057172 DOI: 10.1038/s41582-020-00413-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deletion or mutation of SMN1. Four subtypes exist, characterized by different clinical severities. New therapeutic approaches have become available in the past few years, dramatically changing the natural history of all SMA subtypes, including substantial clinical improvement with the severe and advanced SMA type 1 variant. Trials have now demonstrated that phenotypic rescue is even more dramatic when pre-symptomatic patients are treated, and emerging real-world data are demonstrating the benefits of intervention even in the chronic phase of the condition. Here, we critically review how the field is rapidly evolving in response to the new therapies and questions that the new treatments have posed, including the effects of treatment at different ages and stages of disease, new phenotypes and long-term outcomes in patients who would not have survived without treatment, and decisions of who to treat and when. We also discuss how the outcomes associated with different timing of therapeutic intervention are contributing to our understanding of the biology and pathogenesis of SMA.
Collapse
|
33
|
Smeriglio P, Langard P, Querin G, Biferi MG. The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification, Diagnosis and Treatment. J Pers Med 2020; 10:jpm10030075. [PMID: 32751151 PMCID: PMC7564782 DOI: 10.3390/jpm10030075] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| | - Paul Langard
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
| | - Giorgia Querin
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Association Institut de Myologie, Plateforme Essais Cliniques Adultes, 75013 Paris, France
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| |
Collapse
|
34
|
Tan CA, Westbrook MJ, Truty R, Kvitek DJ, Kennemer M, Winder TL, Shieh PB. Incorporating Spinal Muscular Atrophy Analysis by Next-Generation Sequencing into a Comprehensive Multigene Panel for Neuromuscular Disorders. Genet Test Mol Biomarkers 2020; 24:616-624. [PMID: 32721234 DOI: 10.1089/gtmb.2019.0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is traditionally molecularly diagnosed by multiplex ligation-dependent probe amplification or quantitative polymerase chain reaction (qPCR). SMA analyses are not routinely incorporated into gene panel analyses for individuals with suspected SMA or broader neuromuscular indications. Aim: We sought to determine whether a next-generation sequencing (NGS) approach that integrates SMA analyses into a multigene neuromuscular disorders panel could detect undiagnosed SMA. Materials and Methods: Sequence and copy number variants of the SMN1/SMN2 genes were simultaneously analyzed in samples from 5304 unselected individuals referred for testing using an NGS-based 122-gene neuromuscular panel. This diagnostic approach was validated using DNA from 68 individuals who had been previously diagnosed with SMA via quantitative PCR for SMN1/SMN2. Results: Homozygous loss of SMN1 was detected in 47 unselected individuals. Heterozygous loss of SMN1 was detected in 118 individuals; 8 had an indeterminate variant in "SMN1 or SMN2" that supported an SMA diagnosis but required additional disambiguation. Of the remaining SMA carriers, 44 had pathogenic variants in other genes. Concordance rates between NGS and qPCR were 100% and 93% for SMN1 and SMN2 copy numbers, respectively. Where there was disagreement, phenotypes were more consistent with the SMN2 results from NGS. Conclusion: Integrating NGS-based SMA testing into a multigene neuromuscular panel allows a single assay to diagnose SMA while comprehensively assessing the spectrum of variants that can occur in individuals with broad differential diagnoses or nonspecific/overlapping neuromuscular features.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Perry B Shieh
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
35
|
Szabó L, Gergely A, Jakus R, Fogarasi A, Grosz Z, Molnár MJ, Andor I, Schulcz O, Goschler Á, Medveczky E, Czövek D, Herczegfalvi Á. Efficacy of nusinersen in type 1, 2 and 3 spinal muscular atrophy: Real world data from Hungarian patients. Eur J Paediatr Neurol 2020; 27:37-42. [PMID: 32456992 DOI: 10.1016/j.ejpn.2020.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a homozygous deletion of the survival motor neuron (SMN) 1 gene. Nusinersen is an antisense oligonucleotide enhancing the production of the SMN protein. It has received approval by the European Medicines Agency (EMA) in 2017, based on the clinical trials demonstrating the effectiveness of nusinersen in several types of SMA. In Hungary, the first patient received nusinersen treatment in April 2018. Our aim is to summarize our experience regarding the efficacy, safety and tolerability of nusinersen in our patients. METHODS Data were collected retrospectively in all types of SMA patients (type 1-3) starting treatment with nusinersen in Hungary between April 2018 and December 2019. Motor functions were evaluated at baseline, at the fourth and all following injections. RESULTS By 31st December 2019, nusinersen therapy was initiated in 54 patients at either of the two Hungarian treatment centres. Mean age of the patients at the start of the treatment was 6.3 years (±5,4 range 0.4-17.9). 13 patients are type 1 (mean 0.78 ± 0.27, range 0.4-1.5 yrs), 21 patients are type 2 (mean 4.5 ± 3.3, range 1.3-12 yrs), 23 patients are type 3 (mean 10.9 ± 5.2, range 2.9-17.9 yrs). Fourteen patients had severe scoliosis, four of them underwent spine stabilizing surgery. During the study period 340 injections were administered without any new safety concerns emerging. The data of 38 patients, who had completed the first six treatments, were included in the final statistical analysis. Motor function has improved in most of the children. By the 307th day visit, on average, a 14.9 (±5,1) point improvement was measured on the CHOP INTEND scale in type 1 patients (p = 0.016). All patients with type 1 SMA who performed the motor evaluation (7/10) have improved by more than four (7-21) points. Regarding type 2 patients, a 7.2 (range -2- 17) point increase from baseline (p < 0.001) on the Hammersmith Functional Motor Scale Expanded (HFMSE) and 4.3 (range: 2-9) point increase (p = 0.031) on the Revised Upper Limb Module (RULM) were found. The distance of the 6 min walk test also increased by 33.9 m on average (range -16 - 106), in type 3 patients. CONCLUSION According to our results nusinersen has the same safety and tolerability profile as in the clinical trials. In a heterogenic patient population of SMA type 1 and 2, nusinersen showed similar efficacy as seen in the pivotal studies. A clinically and statistically significant improvement of motor functions was also detectable in type 3 patients with heterogeneous age distribution.
Collapse
Affiliation(s)
- Léna Szabó
- Semmelweis University 2nd Dept. of Paediatrics, 7-9. Tűzoltó street Budapest, 1094, Hungary.
| | - Anita Gergely
- Bethesda Children's Hospital, 3. Bethesda street, Budapest, 1146, Hungary
| | - Rita Jakus
- Bethesda Children's Hospital, 3. Bethesda street, Budapest, 1146, Hungary
| | - András Fogarasi
- Bethesda Children's Hospital, 3. Bethesda street, Budapest, 1146, Hungary
| | - Zoltán Grosz
- Semmelweis University Institute of Genomic Medicine and Rare Disorders, 78, Üllői street Budapest, 1083, Hungary
| | - Mária Judit Molnár
- Semmelweis University Institute of Genomic Medicine and Rare Disorders, 78, Üllői street Budapest, 1083, Hungary
| | - Ildikó Andor
- Semmelweis University 2nd Dept. of Paediatrics, 7-9. Tűzoltó street Budapest, 1094, Hungary
| | - Orsolya Schulcz
- Bethesda Children's Hospital, 3. Bethesda street, Budapest, 1146, Hungary
| | - Ádám Goschler
- Semmelweis University 2nd Dept. of Paediatrics, 7-9. Tűzoltó street Budapest, 1094, Hungary
| | - Erika Medveczky
- North-Central Buda Centre, New St. John's Hospital and Clinic, 5-9. Bolyai street Budapest, 1023, Hungary
| | - Dorottya Czövek
- Semmelweis University 1st Dept. of Paediatrics, 53-54. Bókay János street Budapest, 1083, Hungary
| | - Ágnes Herczegfalvi
- Semmelweis University 2nd Dept. of Paediatrics, 7-9. Tűzoltó street Budapest, 1094, Hungary
| |
Collapse
|
36
|
Spinal muscular atrophy in Venezuela: quantitative analysis of SMN1 and SMN2 genes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Spinal muscular atrophy (SMA) is mostly caused by homozygous deletions in the survival motor neuron 1 (SMN1) gene. SMN2, its paralogous gene, is a genetic modifier of the disease phenotype, and its copy number is correlated with SMA severity. The purpose of the study was to investigate the number of copies of the SMN1 and SMN2 genes in a Venezuelan population control sample and in patients with a presumptive diagnosis of SMA, besides estimating the frequency of mutation carriers in the population.
Results
SMN1 and SMN2 gene copies were assessed in 49 Venezuelan dweller unrelated normal individuals and in 94 subjects from 29 families with a SMA presumptive diagnosis, using the quantitative PCR method. A SMN1 deletion carrier frequency of 0.01 and 0.163 of homozygous absence of the SMN2 gene were found in the Venezuelan control sample. Deletion of SMN1 exon 7 was confirmed in 15 families; the remaining 14 index cases had two SMN1 copies and a heterogeneous phenotype not attributable to SMN deletions. Based on clinical features of the index cases and the SMN2 copy number, a positive phenotype-genotype correlation was demonstrated. No disease geographical aggregation was found in the country.
Conclusion
The frequency of carriers of the deletion of exon 7 in SMN1 in the Venezuelan control population was similar to that observed in populations worldwide, while the frequency of 0 copies of the SMN2 gene (16.3 %) seems to be relatively high. All these findings have pertinent implications for the diagnosis and genetic counseling on SMA in Venezuela.
Collapse
|
37
|
Wadman RI, Jansen MD, Stam M, Wijngaarde CA, Curial CAD, Medic J, Sodaar P, Schouten J, Vijzelaar R, Lemmink HH, van den Berg LH, Groen EJN, van der Pol WL. Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy. Brain Commun 2020; 2:fcaa075. [PMID: 32954327 PMCID: PMC7425299 DOI: 10.1093/braincomms/fcaa075] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1–4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1–SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.
Collapse
Affiliation(s)
- Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marc D Jansen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Chantall A D Curial
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jelena Medic
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Peter Sodaar
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jan Schouten
- MRC Holland BV, 1057 DL Amsterdam, the Netherlands
| | | | - Henny H Lemmink
- Department of Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
38
|
Gargaun E. [Antisense oligonucleotides in SMA: lessons learned and literature data]. Med Sci (Paris) 2019; 35 Hors série n° 2:11-14. [PMID: 31859624 DOI: 10.1051/medsci/2019181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Elena Gargaun
- Institut de Myologie, G.H. Pitié-Salpêtrière, Paris, France
| |
Collapse
|
39
|
244th ENMC international workshop: Newborn screening in spinal muscular atrophy May 10-12, 2019, Hoofdorp, The Netherlands. Neuromuscul Disord 2019; 30:93-103. [PMID: 31882184 DOI: 10.1016/j.nmd.2019.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
|
40
|
Mendonça RH, Rocha AJ, Lozano-Arango A, Diaz AB, Castiglioni C, Silva AMS, Reed UC, Kulikowski L, Paramonov I, Cuscó I, Tizzano EF, Zanoteli E. Reply to "Global Central Nervous System Atrophy in Spinal Muscular Atrophy Type 0". Ann Neurol 2019; 86:803. [PMID: 31502291 DOI: 10.1002/ana.25597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Rodrigo H Mendonça
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Antônio J Rocha
- Neuroradiology Section, High Diagnostic Excellence (DASA Group), São Paulo, Brazil
| | | | - Astry B Diaz
- Hernan Henriquez Aravena Regional Hospital, Temuco, Chile
| | | | - André M S Silva
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Umbertina C Reed
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Leslie Kulikowski
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ida Paramonov
- Department of Clinical and Molecular Genetics, Valle Hebron Universitary Hospital, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Ivon Cuscó
- Department of Clinical and Molecular Genetics, Valle Hebron Universitary Hospital, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Valle Hebron Universitary Hospital, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
41
|
Kariyawasam DST, D'Silva A, Lin C, Ryan MM, Farrar MA. Biomarkers and the Development of a Personalized Medicine Approach in Spinal Muscular Atrophy. Front Neurol 2019; 10:898. [PMID: 31481927 PMCID: PMC6709682 DOI: 10.3389/fneur.2019.00898] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent unprecedented advances in treatment for spinal muscular atrophy (SMA) enabled patients to access the first approved disease modifying therapy for the condition. There are however many uncertainties, regarding timing of treatment initiation, response to intervention, treatment effects and long-term outcomes, which are complicated by the evolving phenotypes seen in the post-treatment era for patients with SMA. Biomarkers of disease, with diagnostic, prognostic, predictive, and pharmacodynamic value are thus urgently required, to facilitate a wider understanding in this dynamic landscape. A spectrum of these candidate biomarkers, will be evaluated in this review, including genetic, epigenetic, proteomic, electrophysiological, and imaging measures. Of these, SMN2 appears to be the most significant modifier of phenotype to date, and its use in prognostication shows considerable clinical utility. Longitudinal studies in patients with SMA highlight an emerging role of circulatory markers such as neurofilament, in tracking disease progression and response to treatment. Furthermore, neurophysiological biomarkers such as CMAP and MUNE values show considerable promise in the real word setting, in following the dynamic response and output of the motor unit to therapeutic intervention. The specific value for these possible biomarkers across diagnosis, prognosis, prediction of treatment response, efficacy, and safety will be central to guide future patient-targeted treatments, the design of clinical trials, and understanding of the pathophysiological mechanisms of disease and intervention.
Collapse
Affiliation(s)
- Didu S T Kariyawasam
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Arlene D'Silva
- School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cindy Lin
- Department of Neurophysiology, Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Monique M Ryan
- Department of Neurology, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
42
|
Perspectives in genetic counseling for spinal muscular atrophy in the new therapeutic era: early pre-symptomatic intervention and test in minors. Eur J Hum Genet 2019; 27:1774-1782. [PMID: 31053787 PMCID: PMC6871529 DOI: 10.1038/s41431-019-0415-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/27/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal-recessive neuromuscular disorder representing a continuous spectrum of muscular weakness ranging from compromised neonates to adults with minimal manifestations. Patients show homozygous absence or disease-causing variants of the SMN1 gene (−/− or 0/0) and in carriers only one copy is absent or mutated (1/0). Genetic diagnosis and counseling in SMA present several challenges, including the existence of carriers (2/0) that are undistinguishable of non-carriers (1/1) with current genetic testing methods and the report of patients (0/0) with very mild manifestations and even asymptomatic that are discovered when a full symptomatic case appears in the family. Younger asymptomatic siblings of symptomatic SMA patients are usually never tested until adolescence or adult life. However, following regulatory approval of the first tailored treatment for SMA, the prospects for care of these patients have changed. Early testing, including pre-symptomatic newborn screening and confirmation of diagnosis would change proactive measures and opportunities for therapy based in the actual landscape of new treatments. This review discusses the challenges and new perspectives of genetic counseling in SMA.
Collapse
|
43
|
Ruhno C, McGovern VL, Avenarius MR, Snyder PJ, Prior TW, Nery FC, Muhtaseb A, Roggenbuck JS, Kissel JT, Sansone VA, Siranosian JJ, Johnstone AJ, Nwe PH, Zhang RZ, Swoboda KJ, Burghes AHM. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Hum Genet 2019; 138:241-256. [PMID: 30788592 PMCID: PMC6503527 DOI: 10.1007/s00439-019-01983-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by loss or mutation of the survival motor neuron 1 (SMN1) gene and retention of SMN2. We performed targeted capture and sequencing of the SMN2, CFTR, and PLS3 genes in 217 SMA patients. We identified a 6.3 kilobase deletion that occurred in both SMN1 and SMN2 (SMN1/2) and removed exons 7 and 8. The deletion junction was flanked by a 21 bp repeat that occurred 15 times in the SMN1/2 gene. We screened for its presence in 466 individuals with the known SMN1 and SMN2 copy numbers. In individuals with 1 SMN1 and 0 SMN2 copies, the deletion occurred in 63% of cases. We modeled the deletion junction frequency and determined that the deletion occurred in both SMN1 and SMN2. We have identified the first deletion junction where the deletion removes exons 7 and 8 of SMN1/2. As it occurred in SMN1, it is a pathogenic mutation. We called variants in the PLS3 and SMN2 genes, and tested for association with mild or severe exception patients. The variants A-44G, A-549G, and C-1897T in intron 6 of SMN2 were significantly associated with mild exception patients, but no PLS3 variants correlated with severity. The variants occurred in 14 out of 58 of our mild exception patients, indicating that mild exception patients with an intact SMN2 gene and without modifying variants occur. This sample set can be used in the association analysis of candidate genes outside of SMN2 that modify the SMA phenotype.
Collapse
Affiliation(s)
- Corey Ruhno
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | | | - Pamela J Snyder
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Thomas W Prior
- Department of Pathology, Case Western Reserve Medical Center, Cleveland, OH, USA
| | - Flavia C Nery
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Abdurrahman Muhtaseb
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - John T Kissel
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer J Siranosian
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alec J Johnstone
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pann H Nwe
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ren Z Zhang
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
44
|
Saffari A, Kölker S, Hoffmann GF, Weiler M, Ziegler A. Novel challenges in spinal muscular atrophy - How to screen and whom to treat? Ann Clin Transl Neurol 2018; 6:197-205. [PMID: 30656198 PMCID: PMC6331314 DOI: 10.1002/acn3.689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
In recent years, disease‐modifying and life‐prolonging therapies for spinal muscular atrophy (SMA) have been developed. However, patients are currently diagnosed with significant delay and therapies are often administered in advanced stages of motor neuron degeneration, showing limited effects. Methods to identify children in presymptomatic stages are currently evaluated in newborn screening programs. Yet, not all children develop symptoms shortly after birth raising the question whom to treat and when to initiate therapy. Finally, monitoring disease progression becomes essential to individualize management. Here, we review the literature on screening approaches, strategies to predict disease severity, and biomarkers to monitor therapy.
Collapse
Affiliation(s)
- Afshin Saffari
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| | - Markus Weiler
- Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine Center for Child and Adolescent Medicine University Hospital Heidelberg Heidelberg Germany
| |
Collapse
|
45
|
Glascock J, Sampson J, Haidet-Phillips A, Connolly A, Darras B, Day J, Finkel R, Howell RR, Klinger K, Kuntz N, Prior T, Shieh PB, Crawford TO, Kerr D, Jarecki J. Treatment Algorithm for Infants Diagnosed with Spinal Muscular Atrophy through Newborn Screening. J Neuromuscul Dis 2018; 5:145-158. [PMID: 29614695 PMCID: PMC6004919 DOI: 10.3233/jnd-180304] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by the degeneration of alpha motor neurons in the spinal cord, leading to muscular atrophy. SMA is caused by deletions or mutations in the survival motor neuron 1 gene (SMN1). In humans, a nearly identical copy gene, SMN2, is present. Because SMN2 has been shown to decrease disease severity in a dose-dependent manner, SMN2 copy number is predictive of disease severity. Objective: To develop a treatment algorithm for SMA-positive infants identified through newborn screening based upon SMN2 copy number. Methods: A working group comprised of 15 SMA experts participated in a modified Delphi process, moderated by a neutral third-party expert, to develop treatment guidelines. Results: The overarching recommendation is that all infants with two or three copies of SMN2 should receive immediate treatment (n = 13). For those infants in which immediate treatment is not recommended, guidelines were developed that outline the timing and appropriate screens and tests to be used to determine the timing of treatment initiation. Conclusions: The identification SMA affected infants via newborn screening presents an unprecedented opportunity for achievement of maximal therapeutic benefit through the administration of treatment pre-symptomatically. The recommendations provided here are intended to help formulate treatment guidelines for infants who test positive during the newborn screening process.
Collapse
Affiliation(s)
| | | | | | - Anne Connolly
- Washington University School of Medicine, St. Louis, MO, USA
| | - Basil Darras
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - John Day
- Stanford University, Stanford, CA, USA
| | - Richard Finkel
- Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL, USA
| | - R Rodney Howell
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Nancy Kuntz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Thomas Prior
- Department of Molecular Pathology, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Perry B Shieh
- University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas O Crawford
- Departments of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
46
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
47
|
Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018; 28:208-215. [PMID: 29433793 DOI: 10.1016/j.nmd.2018.01.003] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/30/2017] [Accepted: 01/07/2018] [Indexed: 01/01/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss or mutations in SMN1. According to age of onset, achieved motor abilities, and life span, SMA patients are classified into type I (never sit), II (never walk unaided) or III (achieve independent walking abilities). SMN2, the highly homologous copy of SMN1, is considered the most important phenotypic modifier of the disease. Determination of SMN2 copy number is essential to establish careful genotype-phenotype correlations, predict disease evolution, and to stratify patients for clinical trials. We have determined SMN2 copy numbers in 625 unrelated Spanish SMA patients with loss or mutation of both copies of SMN1 and a clear assignation of the SMA type by clinical criteria. Furthermore, we compiled data from relevant worldwide reports that link SMN2 copy number with SMA severity published from 1999 to date (2834 patients with different ethnic and geographic backgrounds). Altogether, we have assembled a database with a total of 3459 patients to delineate more universal prognostic rules regarding the influence of SMN2 copy number on SMA phenotype. This issue is crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatments.
Collapse
|
48
|
Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet 2018; 26:2768-2780. [PMID: 28460014 DOI: 10.1093/hmg/ddx166] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by reduced expression of survival of motor neuron (SMN), a protein expressed in humans by two paralogous genes, SMN1 and SMN2. These genes are nearly identical, except for 10 single-nucleotide differences and a 5-nucleotide insertion in SMN2. SMA is subdivided into four main types, with type I being the most severe. SMN2 copy number is a key positive modifier of the disease, but it is not always inversely correlated with clinical severity. We previously reported the c.859G > C variant in SMN2 exon 7 as a positive modifier in several patients. We have now identified A-44G as an additional positive disease modifier, present in a group of patients carrying 3 SMN2 copies but displaying milder clinical phenotypes than other patients with the same SMN2 copy number. One of the three SMN2 copies appears to have been converted from SMN1, but except for the C6T transition, no other changes were detected. Analyzed with minigenes, SMN1C6T displayed a ∼20% increase in exon 7 inclusion, compared to SMN2. Through systematic mutagenesis, we found that the improvement in exon 7 splicing is mainly attributable to the A-44G transition in intron 6. Using RNA-affinity chromatography and mass spectrometry, we further uncovered binding of the RNA-binding protein HuR to the -44 region, where it acts as a splicing repressor. The A-44G change markedly decreases the binding affinity of HuR, resulting in a moderate increase in exon 7 inclusion.
Collapse
Affiliation(s)
- Xingxing Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Huei Wang
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Junjie Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Thomas W Prior
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, Swoboda KJ, Reyna SP, Sakonju A, Darras BT, Shell R, Kuntz N, Castro D, Parsons J, Connolly AM, Chiriboga CA, McDonald C, Burnette WB, Werner K, Thangarajh M, Shieh PB, Finanger E, Cudkowicz ME, McGovern MM, McNeil DE, Finkel R, Iannaccone ST, Kaye E, Kingsley A, Renusch SR, McGovern VL, Wang X, Zaworski PG, Prior TW, Burghes AHM, Bartlett A, Kissel JT. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol 2017; 82:883-891. [PMID: 29149772 DOI: 10.1002/ana.25101] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Infantile-onset spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality, typically resulting in death preceding age 2. Clinical trials in this population require an understanding of disease progression and identification of meaningful biomarkers to hasten therapeutic development and predict outcomes. METHODS A longitudinal, multicenter, prospective natural history study enrolled 26 SMA infants and 27 control infants aged <6 months. Recruitment occurred at 14 centers over 21 months within the NINDS-sponsored NeuroNEXT (National Network for Excellence in Neuroscience Clinical Trials) Network. Infant motor function scales (Test of Infant Motor Performance Screening Items [TIMPSI], The Children's Hospital of Philadelphia Infant Test for Neuromuscular Disorders, and Alberta Infant Motor Score) and putative physiological and molecular biomarkers were assessed preceding age 6 months and at 6, 9, 12, 18, and 24 months with progression, correlations between motor function and biomarkers, and hazard ratios analyzed. RESULTS Motor function scores (MFS) and compound muscle action potential (CMAP) decreased rapidly in SMA infants, whereas MFS in all healthy infants rapidly increased. Correlations were identified between TIMPSI and CMAP in SMA infants. TIMPSI at first study visit was associated with risk of combined endpoint of death or permanent invasive ventilation in SMA infants. Post-hoc analysis of survival to combined endpoint in SMA infants with 2 copies of SMN2 indicated a median age of 8 months at death (95% confidence interval, 6, 17). INTERPRETATION These data of SMA and control outcome measures delineates meaningful change in clinical trials in infantile-onset SMA. The power and utility of NeuroNEXT to provide "real-world," prospective natural history data sets to accelerate public and private drug development programs for rare disease is demonstrated. Ann Neurol 2017;82:883-891.
Collapse
Affiliation(s)
- Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Christopher S Coffey
- Department of Biostatistics, NeuroNEXT Data Coordinating Center, University of Iowa, Iowa City, IA
| | - Jon W Yankey
- Department of Biostatistics, NeuroNEXT Data Coordinating Center, University of Iowa, Iowa City, IA
| | - Kristin Krosschell
- Departments of Physical Therapy and Human Movement Sciences and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Kathryn J Swoboda
- Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, UT.,Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Sandra P Reyna
- Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, UT.,Biogen, Boston, MA
| | - Ai Sakonju
- Departments of Neurology and Pediatrics, University of Utah, Salt Lake City, UT.,SUNY Upstate Medical Center, Syracuse, NY
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | | | - Nancy Kuntz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | | - Julie Parsons
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO
| | - Anne M Connolly
- Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Claudia A Chiriboga
- Department of Neurology, Columbia College of Physicians and Surgeons, New York, NY
| | | | | | | | | | - Perry B Shieh
- University of California-Los Angeles, Los Angeles, CA
| | | | - Merit E Cudkowicz
- Department of Neurology, NeuroNEXT Clinical Coordinating Center, Massachusetts General Hospital, Boston, MA
| | - Michelle M McGovern
- Department of Neurology, NeuroNEXT Clinical Coordinating Center, Massachusetts General Hospital, Boston, MA
| | - D Elizabeth McNeil
- Biogen, Boston, MA.,National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | | | | | | | - Allison Kingsley
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Samantha R Renusch
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Vicki L McGovern
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Xueqian Wang
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Thomas W Prior
- Department of Molecular Pathology, Ohio State Wexner Medical Center, Columbus, OH
| | - Arthur H M Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Amy Bartlett
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - John T Kissel
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH
| | -
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
50
|
Farrar MA, Park SB, Vucic S, Carey KA, Turner BJ, Gillingwater TH, Swoboda KJ, Kiernan MC. Emerging therapies and challenges in spinal muscular atrophy. Ann Neurol 2017; 81:355-368. [PMID: 28026041 PMCID: PMC5396275 DOI: 10.1002/ana.24864] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022]
Abstract
Spinal muscular atrophy (SMA) is a hereditary neurodegenerative disease with severity ranging from progressive infantile paralysis and premature death (type I) to limited motor neuron loss and normal life expectancy (type IV). Without disease‐modifying therapies, the impact is profound for patients and their families. Improved understanding of the molecular basis of SMA, disease pathogenesis, natural history, and recognition of the impact of standardized care on outcomes has yielded progress toward the development of novel therapeutic strategies and are summarized. Therapeutic strategies in the pipeline are appraised, ranging from SMN1 gene replacement to modulation of SMN2 encoded transcripts, to neuroprotection, to an expanding repertoire of peripheral targets, including muscle. With the advent of preliminary trial data, it can be reasonably anticipated that the SMA treatment landscape will transform significantly. Advancement in presymptomatic diagnosis and screening programs will be critical, with pilot newborn screening studies underway to facilitate preclinical diagnosis. The development of disease‐modifying therapies will necessitate monitoring programs to determine the long‐term impact, careful evaluation of combined treatments, and further acceleration of improvements in supportive care. In advance of upcoming clinical trial results, we consider the challenges and controversies related to the implementation of novel therapies for all patients and set the scene as the field prepares to enter an era of novel therapies. Ann Neurol 2017;81:355–368
Collapse
Affiliation(s)
- Michelle A Farrar
- Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - Susanna B Park
- Brain & Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital and Western Clinical School, University of Sydney, Sydney, Australia
| | - Kate A Carey
- Discipline of Paediatrics, School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburg, Edinburg, United Kingdom
| | - Kathryn J Swoboda
- Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Matthew C Kiernan
- Brain & Mind Centre and Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|