1
|
Lannon M, Duda T, Mastrolonardo A, Huang E, Martyniuk A, Farrokhyar F, Xie F, Bhandari M, Kalia SK, Sharma S. Economic Evaluations Comparing Deep Brain Stimulation to Best Medical Therapy for Movement Disorders: A Meta-Analysis. PHARMACOECONOMICS 2024; 42:41-68. [PMID: 37751075 DOI: 10.1007/s40273-023-01318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Movement disorders (Parkinson's disease, essential tremor, primary dystonia) are a debilitating group of conditions that are progressive in nature. The mainstay of treatment is best medical therapy; however, a number of surgical therapies are available, including deep brain stimulation. Economic evaluations are an important aspect of evidence to inform decision makers regarding funding allocated to these therapies. OBJECTIVE This systematic review and meta-analysis evaluated the cost effectiveness of including deep brain stimulation compared with best medical therapy for movement disorder indications in the adult population. METHODS Ovid Medical Literature Analysis and Retrieval System Online, Embase, and Cochrane Central Register of Controlled Trials were queried. Only economic evaluations reporting incremental cost-effectiveness ratios for including deep brain stimulation versus best medical therapy for movement disorders were included. Studies were reviewed in duplicate for inclusion and data abstraction. Data were harmonized using the Consumer Price Index and Purchasing Power Parity to standardize values to 2022 US dollars. For inclusion in meta-analyses, studies were required to have sufficient data available to calculate an estimate of the incremental net benefit. Meta-analyses of pooled incremental net benefit based on the time horizon were performed. The study was registered at PROSPERO (CRD42022335436). RESULTS There were 2190 studies reviewed, with 14 economic evaluations included following a title/abstract and full-text review. Only studies considering Parkinson's disease were available for the meta-analysis. Quality of the identified studies was low, with moderate transferability to the American Healthcare System, and certainty of evidence was low. However, studies with a longer time horizon (15 years to lifetime) were found to have significant positive incremental net benefit (indicating cost effectiveness) for including deep brain stimulation with a mean difference of US$40,504.81 (95% confidence interval 2422.42-78,587.19). CONCLUSIONS Deep brain stimulation was cost effective for Parkinson's disease when considered over the course of the patient's remaining life after implantation. TRIAL REGISTRATION Clinical Trial Registration: PROSPERO (CRD42022335436).
Collapse
Affiliation(s)
- Melissa Lannon
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada.
| | - Taylor Duda
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
| | | | - Ellissa Huang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amanda Martyniuk
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
| | - Forough Farrokhyar
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| | - Feng Xie
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| | - Mohit Bhandari
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
- Division of Orthopaedic Surgery, McMaster University, Hamilton, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Sunjay Sharma
- Division of Neurosurgery, McMaster University, 237 Barton Street East, Hamilton, ON, Canada
- Department of Health, Evidence, Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Patel K, Kalikavil Puthanveedu D, Vijayaraghavan A, Kesavapisharady K, Sarma G, Sarma SP, Krishnan S. Deep Brain Stimulation for Parkinson's Disease-the Developing World's Perspective. Mov Disord Clin Pract 2023; 10:1750-1758. [PMID: 38094655 PMCID: PMC10715347 DOI: 10.1002/mdc3.13901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2024] Open
Abstract
Background Deep brain stimulation (DBS) is the most widely used device-assisted therapy in patients with moderately advanced stages of Parkinson's disease (PD) experiencing motor complications. Only a minority of eligible patients get the opportunity to undergo DBS in the developing world. Objectives To examine the proportion and characteristics of patients with motor complications of PD who are willing for DBS and who undergo surgery. Methods Patients with motor complications of PD eligible for DBS over a five-year study period (2016-2020) were included. The demographic, clinical and socio-economic characteristics and information on their status in 2021 were collected and analyzed. Results Among 1017 patients, 223 had motor symptoms qualifying for DBS and follow-up information available. Only 78 (35%) opted for surgery. The willing patients had higher socioeconomic status, were older and had longer duration of PD and motor complications, more freezing of gait, cognitive symptoms, and neuropsychiatric disturbances. 37 of them were found unfit during pre-operative work-up; only 41 (18%) with motor complications were finally taken up for DBS. Age, duration or severity of motor symptoms did not differ between patients who were finally selected for surgery and those who were not. Conclusions Less than one-fifth of our patients with motor complications of PD finally underwent DBS. The patients appeared to wait till the late stages of PD, before making a decision on availing surgical treatment. The delay resulted in nearly half of them being found unfit in pre-operative work-up. Our findings may enable clinicians to counsel eligible patients more efficiently.
Collapse
Affiliation(s)
- Khushboo Patel
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Divya Kalikavil Puthanveedu
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Asish Vijayaraghavan
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Krishnakumar Kesavapisharady
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| | - Sankara P. Sarma
- Achutha Menon Centre for Health Science StudiesSree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Syam Krishnan
- Comprehensive Care Centre for Movement DisordersSree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST)ThiruvananthapuramIndia
| |
Collapse
|
3
|
Rački V, Hero M, Rožmarić G, Papić E, Raguž M, Chudy D, Vuletić V. Cognitive Impact of Deep Brain Stimulation in Parkinson’s Disease Patients: A Systematic Review. Front Hum Neurosci 2022; 16:867055. [PMID: 35634211 PMCID: PMC9135964 DOI: 10.3389/fnhum.2022.867055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionParkinson’s disease (PD) patients have a significantly higher risk of developing dementia in later disease stages, leading to severe impairments in quality of life and self-functioning. Questions remain on how deep brain stimulation (DBS) affects cognition, and whether we can individualize therapy and reduce the risk for adverse cognitive effects. Our aim in this systematic review is to assess the current knowledge in the field and determine if the findings could influence clinical practice.MethodsWe have conducted a systematic review according to PRISMA guidelines through MEDLINE and Embase databases, with studies being selected for inclusion via a set inclusion and exclusion criteria.ResultsSixty-seven studies were included in this systematic review according to the selected criteria. This includes 6 meta-analyses, 18 randomized controlled trials, 17 controlled clinical trials, and 26 observational studies with no control arms. The total number of PD patients encompassed in the studies cited in this review is 3677, not including the meta-analyses.ConclusionCognitive function in PD patients can deteriorate, in most cases mildly, but still impactful to the quality of life. The strongest evidence is present for deterioration in verbal fluency, while inconclusive evidence is still present for executive function, memory, attention and processing speed. Global cognition does not appear to be significantly impacted by DBS, especially if cognitive screening is performed prior to the procedure, as lower baseline cognitive function is connected to poor outcomes. Further randomized controlled studies are required to increase the level of evidence, especially in the case of globus pallidus internus DBS, pedunculopontine nucleus DBS, and the ventral intermediate nucleus of thalamus DBS, and more long-term studies are required for all respective targets.
Collapse
Affiliation(s)
- Valentino Rački
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Mario Hero
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Eliša Papić
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, Clinical Hospital Dubrava, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimira Vuletić
- Department of Neurology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Clinic of Neurology, Clinical Hospital Center Rijeka, Rijeka, Croatia
- *Correspondence: Vladimira Vuletić,
| |
Collapse
|
4
|
Mahlknecht P, Foltynie T, Limousin P, Poewe W. How Does Deep Brain Stimulation Change the Course of Parkinson's Disease? Mov Disord 2022; 37:1581-1592. [PMID: 35560443 PMCID: PMC9545904 DOI: 10.1002/mds.29052] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
A robust body of evidence from randomized controlled trials has established the efficacy of deep brain stimulation (DBS) in reducing off time and dyskinesias in levodopa‐treated patients with Parkinson's disease (PD). These effects go along with improvements in on period motor function, activities of daily living, and quality of life. In addition, subthalamic DBS is effective in controlling drug‐refractory PD tremor. Here, we review the available data from long‐term observational and controlled follow‐up studies in DBS‐treated patients to re‐examine the persistence of motor and quality of life benefits and evaluate the effects on disease progression, major disability milestones, and survival. Although there is consistent evidence from observational follow‐up studies in DBS‐treated patients over 5–10 years and beyond showing sustained improvement of motor control, the long‐term impact of DBS on overall progression of disability in PD is less clear. Whether DBS reduces or delays the development of later motor and non‐motor disability milestones in comparison to best medical management strategies is difficult to answer by uncontrolled observational follow‐up, but there are signals from controlled long‐term observational studies suggesting that subthalamic DBS may delay some of the late‐stage disability milestones including psychosis, falls, and institutionalization, and also slightly prolongs survival compared with matched medically managed patients. These observations could be attributable to the sustained improvements in motor function and reduction in medication‐induced side effects, whereas there is no clinical evidence of direct effects of DBS on the underlying disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
5
|
Jain K, Ramesh R, Krishnan S, Kesavapisharady K, Divya KP, Sarma SP, Kishore A. Cognitive outcome following bilateral subthalamic nucleus deep brain stimulation for Parkinson's disease-a comparative observational study in Indian patients. Acta Neurol Belg 2022; 122:447-456. [PMID: 34448152 DOI: 10.1007/s13760-021-01778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms and motor complications of Parkinson's disease (PD). The intervention is expected to result in some cognitive changes, the nature of which is not uniform across the studies which have reported them. PD itself is associated with progressive cognitive decline and hence longitudinal follow-up studies with medically managed control group of patients are needed to explore the cognitive deficits attributable to DBS. METHODS We conducted a prospective comparative observational study to assess the effects of bilateral STN DBS on cognition. Cognitive functions were assessed at baseline and after a minimum of two years after surgery, and compared with baseline and follow-up assessments in patients on medical management alone. RESULTS Thirty-four patients with PD who underwent bilateral STN DBS and thirty-four medically managed patients participated in the study. At a mean follow-up of around 33 months, we found a significant decline in verbal fluency scores in the DBS group compared to those on medical management alone (1.15 ± 1.23 vs 0.59 ± 0.93, p = 0.034) and a trend for decline was noted in digit span test. There was no difference in the performance in tests addressing other cognitive domains, or tests of global cognitive function. No patient developed dementia. Motor functions and activities of daily living (ADL) were significantly better in the surgical group. CONCLUSION STN DBS results in minor deficits in executive functions, particularly verbal fluency. These may be inconsequential, considering the marked improvement in motor functions and ADL.
Collapse
|
6
|
de Noordhout AM, Mouchamps M, Remacle JM, Delstanche S, Bonhomme V, Gonce M. Subthalamic deep brain stimulation versus best medical treatment: a 12-year follow-up. Acta Neurol Belg 2022; 122:197-202. [PMID: 35084704 PMCID: PMC8894213 DOI: 10.1007/s13760-022-01874-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Electrical stimulation of the sub-thalamic nucleus (STN-DBS) is well established to alleviate motor fluctuations in advanced Parkinson's disease but little is known about its very long-term efficacy. METHODS We followed over 12 years 15 parkinsonian patients having undergone STN-DBS and compared them to a matched group of 14 patients with best medical drug therapy. All had been considered as good candidates for surgery. They were allocated to each group depending on their own decision. RESULTS After 12 years, mortality rates were similar in both groups. In the DBS group, best "on" UPDRS III scores (on medications, on stimulation) remained significantly better and dyskinesia shorter and weaker than in the drug-treated group (on medication only). Yet, looking at independent life and quality of life (QoL) evaluated with PDQ39, no significant difference could be observed between groups at the end of follow-up, probably due to development of dopa- and stimulation-resistant motor and non-motor symptoms like falls, freezing, dementia, apathy and depression, the latter two more frequent in the DBS group. CONCLUSION Drug- and DBS-resistant symptoms and signs occur more often after long disease evolution and in elder patients. It might be why differences in QoL between both groups no longer existed after twelve years as, compared to other studies, our patients were older at inclusion.
Collapse
Affiliation(s)
| | | | | | - Stéphanie Delstanche
- University Department of Neurology, Hôpital de la Citadelle, 4000, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anaesthesiology, Hôpital de la Citadelle, 4000, Liège, Belgium
| | - Michel Gonce
- University Department of Neurology, Hôpital de la Citadelle, 4000, Liège, Belgium
| |
Collapse
|
7
|
Jahanshahi M, Leimbach F, Rawji V. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson's Disease and Identification of Relevant Factors. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2191-2209. [PMID: 36155529 DOI: 10.3233/jpd-223446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) successfully controls the motor symptoms of Parkinson's disease (PD) but has associated cognitive side-effects. OBJECTIVE Establish the short- and long-term cognitive effects of STN-DBS in PD. METHODS Both the short-term and long-term effects of STN-DBS on cognition were examined through evaluation of the controlled studies that compared patients with STN-DBS to unoperated PD patients, thus controlling for illness progression. We also reviewed the literature to identify the factors that influence cognitive outcome of STN-DBS in PD. RESULTS The meta-analysis of the short-term cognitive effects of STN-DBS revealed moderate effect sizes for semantic and phonemic verbal fluency and small effect sizes for psychomotor speed and language, indicating greater decline in the STN-DBS operated than the unoperated patients in these cognitive domains. The longer-term STN-DBS results from controlled studies indicated rates of cognitive decline/dementia up to 32%; which are no different from the rates from the natural progression of PD. Greater executive dysfunction and poorer memory pre-operatively, older age, higher pre-operative doses of levodopa, and greater axial involvement are some of the factors associated with worse cognition after STN-DBS in PD. CONCLUSION This evidence can be used to inform patients and their families about the short-term and long-term risks of cognitive decline following STN-DBS surgery and aid the team in selection of suitable candidates for surgery.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Friederike Leimbach
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Vishal Rawji
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| |
Collapse
|
8
|
Gilbert F, Lancelot M. Incoming ethical issues for deep brain stimulation: when long-term treatment leads to a 'new form of the disease'. JOURNAL OF MEDICAL ETHICS 2021; 47:20-25. [PMID: 32409626 DOI: 10.1136/medethics-2019-106052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Deep brain stimulation (DBS) has been regarded as an efficient and safe treatment for Parkinson's disease (PD) since being approved by the Food and Drug Administration (FDA) in 1997. It is estimated that more than 150 000 patients have been implanted, with a forecasted rapid increase in uptake with population ageing. Recent longitudinal follow-up studies have reported a significant increase in postoperative survival rates of patients with PD implanted with DBS as compared with those not implanted with DBS. Although DBS tends to increase life expectancy for most patients with PD, this medical benefit does not come without attendant negative consequences. For example, emerging forms of iatrogenic harms are sometimes induced-harms which were not initially expected when clinicians proposed neurosurgery and patients or their guardians consented to the treatment. We report and discuss the clinical case of a patient who was implanted with DBS more than 20 years ago (at the time of writing) and is now experiencing unexpected stages of PD. This case illustrates how extending the life span without improving quality of life may introduce a burden of harms for patients and families. As well, this case shows why we should prepare for the expanding numbers of PD-implanted patients experiencing a gain of longevity but with severe stages of disease leading to diminution in quality of life. This newly observed effect of DBS treatment requires us to explore ethical questions related to iatrogenic harms, informed consent, end of life and caregivers' burden.
Collapse
Affiliation(s)
- Frederic Gilbert
- School of Humanities, University of Tasmania, Hobart, Tasmania, Australia
- Center for Neurotechnology, University of Washington, Seattle, U.S.A
| | - Mathilde Lancelot
- SPHERE, Paris Diderot University / University of Paris, Paris, France
| |
Collapse
|
9
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
10
|
Thomsen BLC, Jensen SR, Clausen A, Karlsborg M, Jespersen B, Løkkegaard A. Deep Brain Stimulation in Parkinson's Disease: Still Effective After More Than 8 Years. Mov Disord Clin Pract 2020; 7:788-796. [PMID: 33033736 PMCID: PMC7534016 DOI: 10.1002/mdc3.13040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Background Deep brain stimulation of the subthalamic nucleus (STN-DBS) is well established and the most effective treatment for advanced Parkinson's disease (PD). However, little is known of the long-term effects. Objectives The aim of this study was to examine the long-term effects of STN-DBS in PD and evaluate the effect of reprogramming after more than 8 years of treatment. Methods A total of 82 patients underwent surgery in Copenhagen between 2001 and 2008. Before surgery and at 8 to 15 years follow-up, the patients were rated with the Unified Parkinson's Disease Rating Scale (UPDRS) with and without stimulation and medicine. Furthermore, at long-term follow-up, the patients were offered a systemic reprogramming of the stimulation settings. Data from patients' medical records were collected. The mean (range) age at surgery was 60 (42-78) years, and the duration of disease was 13 (5-25) years. A total of 30 patients completed the long-term follow-up. Results The mean reduction of the motor UPDRS by medication before surgery was 52%. The improvement of motor UPDRS with stimulation alone compared with motor UPDRS with neither stimulation nor medication was 61% at 1 year and 39% at 8 to 15 years after surgery (before reprogramming). Compared with before surgery, medication was reduced by 55% after 1 year and 44% after 8 to 15 years. After reprogramming, most patients improved. Conclusions STN-DBS remains effective in the long run, with a sustained reduction of medication in the 30 of 82 patients available for long-term follow-up. Reprogramming is effective even in the late stages of PD and after many years of treatment.
Collapse
Affiliation(s)
- Birgitte L C Thomsen
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark.,Faculty of Health and Medical Science University of Copenhagen Copenhagen Denmark
| | - Steen R Jensen
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark
| | - Anders Clausen
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark
| | - Merete Karlsborg
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark
| | - Bo Jespersen
- Department of Neurosurgery Rigshospitalet University Hospital Copenhagen Denmark
| | - Annemette Løkkegaard
- Department of Neurology Bispebjerg and Frederiksberg University Hospital Copenhagen Denmark.,Faculty of Health and Medical Science University of Copenhagen Copenhagen Denmark
| |
Collapse
|
11
|
David FJ, Munoz MJ, Corcos DM. The effect of STN DBS on modulating brain oscillations: consequences for motor and cognitive behavior. Exp Brain Res 2020; 238:1659-1676. [PMID: 32494849 PMCID: PMC7415701 DOI: 10.1007/s00221-020-05834-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
In this review, we highlight Professor John Rothwell's contribution towards understanding basal ganglia function and dysfunction, as well as the effects of subthalamic nucleus deep brain stimulation (STN DBS). The first section summarizes the rate and oscillatory models of basal ganglia dysfunction with a focus on the oscillation model. The second section summarizes the motor, gait, and cognitive mechanisms of action of STN DBS. In the final section, we summarize the effects of STN DBS on motor and cognitive tasks. The studies reviewed in this section support the conclusion that high-frequency STN DBS improves the motor symptoms of Parkinson's disease. With respect to cognition, STN DBS can be detrimental to performance especially when the task is cognitively demanding. Consolidating findings from many studies, we find that while motor network oscillatory activity is primarily correlated to the beta-band, cognitive network oscillatory activity is not confined to one band but is subserved by activity in multiple frequency bands. Because of these findings, we propose a modified motor and associative/cognitive oscillatory model that can explain the consistent positive motor benefits and the negative and null cognitive effects of STN DBS. This is clinically relevant because STN DBS should enhance oscillatory activity that is related to both motor and cognitive networks to improve both motor and cognitive performance.
Collapse
Affiliation(s)
- Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.
| | - Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
12
|
Ng JH, See AAQ, Xu Z, King NKK. Longitudinal medication profile and cost savings in Parkinson's disease patients after bilateral subthalamic nucleus deep brain stimulation. J Neurol 2020; 267:2443-2454. [PMID: 32367298 DOI: 10.1007/s00415-020-09741-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Deep brain stimulation of the subthalamic nucleus (STN DBS) has been shown to reduce antiparkinsonian medication in Parkinson's disease. We aimed to investigate the changes in long-term medication profile with STN DBS. METHODS Antiparkinsonian medication data for 56 patients were collected from as early as 3 years before STN DBS up to 10 years after. Cost spending on medication changes was analyzed. Mean levodopa equivalent daily dose (LEDD) was projected 10 years into the future based on preoperative data to create a comparator group wherein the patients did not undergo STN DBS. Use of neuroleptics and antidepressants was also recorded. RESULTS LEDD requirement was significantly reduced by a mean of 31 ± 2% over 10 years after DBS, from 1049 ± 381 mg at pre-DBS baseline, to 713 ± 392 mg at 1 year post-DBS, and 712 ± 385 mg at 10 years post-DBS. This was associated with a mean reduction of 35 ± 3% in medicine cost. Modeled LEDD requirements for not having STN DBS were in the range of 1489 mg to 2721 mg at 10 years post-DBS (109-282% higher than the observed mean LEDD in DBS cohort). The proportion of patients increased from 5% before STN DBS to 14% at 10 year post-DBS for neuroleptics, and 11-23% for antidepressants. CONCLUSION STN DBS led to LEDD reduction and antiparkinsonian medication cost savings in our South-East Asian cohort. Medication reduction with STN DBS in our cohort over the 10-year period was comparable to those reported in Western populations.
Collapse
Affiliation(s)
- Jing Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Angela An Qi See
- Department of Neurosurgery, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Nicolas Kon Kam King
- Department of Neurosurgery, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
13
|
Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol 2020; 15:234-242. [PMID: 30778210 DOI: 10.1038/s41582-019-0145-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The efficacy of deep brain stimulation (DBS) for Parkinson disease (PD) is well established for up to 1 or 2 years, but long-term outcome data are still limited. In this Review, we critically discuss the evidence on the long-term outcomes of DBS and consider the clinical implications. Although many patients are lost to follow-up, the evidence indicates that subthalamic nucleus DBS improves motor function for up to 10 years, although the magnitude of improvement tends to decline over time. Functional scores recorded during on-medication periods worsen more quickly than those recorded in off periods, consistent with the degeneration of non-dopaminergic pathways. Dyskinesia, motor fluctuations and activities of daily living in off periods remain improved at 5 years, but quality-of-life scores have usually fallen below preoperative levels. The incidence and severity of dementia among patients receiving DBS are comparable to those among patients who receive medical treatment. Severe adverse events are rare, but adverse events such as dysarthria are common and probably under-reported. Long-term data on the outcomes of globus pallidus interna DBS are limited and mostly confirm the efficacy for dyskinesia. A trend towards offering DBS in the earlier stages of PD creates a need to identify factors that predict long-term outcomes and to discuss realistic expectations with patients preoperatively.
Collapse
Affiliation(s)
- Patricia Limousin
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK. .,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
14
|
Hitti FL, Ramayya AG, McShane BJ, Yang AI, Vaughan KA, Baltuch GH. Long-term outcomes following deep brain stimulation for Parkinson's disease. J Neurosurg 2020; 132:205-210. [PMID: 30660117 DOI: 10.3171/2018.8.jns182081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective treatment for several movement disorders, including Parkinson's disease (PD). While this treatment has been available for decades, studies on long-term patient outcomes have been limited. Here, the authors examined survival and long-term outcomes of PD patients treated with DBS. METHODS The authors conducted a retrospective analysis using medical records of their patients to identify the first 400 consecutive patients who underwent DBS implantation at their institution from 1999 to 2007. The medical record was used to obtain baseline demographics and neurological status. The authors performed survival analyses using Kaplan-Meier estimation and multivariate regression using Cox proportional hazards modeling. Telephone surveys were used to determine long-term outcomes. RESULTS Demographics for the cohort of patients with PD (n = 320) were as follows: mean age of 61 years, 70% male, 27% of patients had at least 1 medical comorbidity (coronary artery disease, congestive heart failure, diabetes mellitus, atrial fibrillation, or deep vein thrombosis). Kaplan-Meier survival analysis on a subset of patients with at least 10 years of follow-up (n = 200) revealed a survival probability of 51% (mean age at death 73 years). Using multivariate regression, the authors found that age at implantation (HR 1.02, p = 0.01) and male sex (HR 1.42, p = 0.02) were predictive of reduced survival. Number of medical comorbidities was not significantly associated with survival (p > 0.5). Telephone surveys were completed by 40 surviving patients (mean age 55.1 ± 6.4 years, 72.5% male, 95% subthalamic nucleus DBS, mean follow-up 13.0 ± 1.7 years). Tremor responded best to DBS (72.5% of patients improved), while other motor symptoms remained stable. Ability to conduct activities of daily living (ADLs) remained stable (dressing, 78% of patients; running errands, 52.5% of patients) or worsened (preparing meals, 50% of patients). Patient satisfaction, however, remained high (92.5% happy with DBS, 95% would recommend DBS, and 75% felt it provided symptom control). CONCLUSIONS DBS for PD is associated with a 10-year survival rate of 51%. Survey data suggest that while DBS does not halt disease progression in PD, it provides durable symptomatic relief and allows many individuals to maintain ADLs over long-term follow-up greater than 10 years. Furthermore, patient satisfaction with DBS remains high at long-term follow-up.
Collapse
|
15
|
Sultanova SG, Fedorova NV, Bril EV, Gamaleya AA, Tomskiy AA. [Deep brain stimulation effect on postural instability and gait disorders in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:123-130. [PMID: 31626229 DOI: 10.17116/jnevro2019119091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An effect of deep brain stimulation on postural instability and gait disorders in Parkinson's disease S.G. Sultanova, N.V. Fedorova, E.V. Bril, A.A. Gamaleya, A.A. Tomskiy During the last time, surgical treatment of patients with Parkinson's disease has firmly taken its place in the general algorithm for managing patients with this pathology. Deep brain electrostimulation is the most advanced and promising method, which allows the reduction in the severity of main clinical manifestations of the disease, including axial symptoms. It is noted that certain temporal aspects of parkinsonian gait disorder remain therapeutically resistant. Subthalamic nucleus stimulation was also reported to improve levodopa-responsive freezing of gait. In this review, the authors summarize the effects of deep brain stimulation on gait and postural symptoms.
Collapse
Affiliation(s)
- S G Sultanova
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - N V Fedorova
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - E V Bril
- Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - A A Gamaleya
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - A A Tomskiy
- Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| |
Collapse
|
16
|
Samura K, Miyagi Y, Kawaguchi M, Yoshida F, Okamoto T, Kawashima M. Predictive Factors of Antiparkinsonian Drug Reduction after Subthalamic Stimulation for Parkinson's Disease. Neurol Med Chir (Tokyo) 2019; 59:331-336. [PMID: 31231086 PMCID: PMC6753254 DOI: 10.2176/nmc.oa.2019-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) improves motor symptoms in individuals with advanced Parkinson’s disease (PD) and enables physicians to reduce doses of antiparkinsonian drugs. We investigated possible predictive factors for the successful reduction of antiparkinsonian drug dosage after STN-DBS. We evaluated 33 PD patients who underwent bilateral STN-DBS. We assessed rates of reduction of the levodopa-equivalent daily dose (LEDD) and levodopa daily dose (LDD) by comparing drug doses before vs. 6-months post-surgery. We used correlation coefficients to measure the strength of the relationships between LEDD and LDD reduction rates and preoperative factors including age, disease duration, preoperative LEDD and LDD, unified Parkinson’s Disease Rating Scale part-II and -III, levodopa response rate, Mini-Mental State Examination score, dyskinesia score, Hamilton Rating Scale for depression, and the number of non-motor symptoms. The average LEDD and LDD reduction rates were 61.0% and 70.4%, respectively. Of the variables assessed, only the number of psychiatric/cognitive symptoms was significantly correlated with the LEDD reduction rate. No other preoperative factors were correlated with the LEDD or LDD reduction rate. A wide range of preoperative psychiatric and cognitive symptoms may predict the successful reduction of antiparkinsonian drugs after STN-DBS.
Collapse
Affiliation(s)
- Kazuhiro Samura
- Department of Neurosurgery, International University of Health and Welfare, School of Medicine
| | - Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Fukuoka Mirai Hospital
| | - Minako Kawaguchi
- Department of Neurosurgery, Faculty of Medicine, Kyushu University
| | - Fumiaki Yoshida
- Department of Neurosurgery, Faculty of Medicine, Kyushu University.,Department of Anatomy and Physiology, Faculty of Medicine, Saga University
| | | | - Masatou Kawashima
- Department of Neurosurgery, International University of Health and Welfare, School of Medicine
| |
Collapse
|
17
|
Cernera S, Okun MS, Gunduz A. A Review of Cognitive Outcomes Across Movement Disorder Patients Undergoing Deep Brain Stimulation. Front Neurol 2019; 10:419. [PMID: 31133956 PMCID: PMC6514131 DOI: 10.3389/fneur.2019.00419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: Although the benefit in motor symptoms for well-selected patients with deep brain stimulation (DBS) has been established, cognitive declines associated with DBS can produce suboptimal clinical responses. Small decrements in cognition can lead to profound effects on quality of life. The growth of indications, the expansion of surgical targets, the increasing complexity of devices, and recent changes in stimulation paradigms have all collectively drawn attention to the need for re-evaluation of DBS related cognitive outcomes. Methods: To address the impact of cognitive changes following DBS, we performed a literature review using PubMed. We searched for articles focused on DBS and cognition. We extracted information about the disease, target, number of patients, assessment of time points, cognitive battery, and clinical outcomes. Diseases included were dystonia, Tourette syndrome (TS), essential tremor (ET), and Parkinson's disease (PD). Results: DBS was associated with mild cognitive issues even when rigorous patient selection was employed. Dystonia studies reported stable or improved cognitive scores, however one study using reliable change indices indicated decrements in sustained attention. Additionally, DBS outcomes were convoluted with changes in medication dose, alleviation of motor symptoms, and learning effects. In the largest, prospective TS study, an improvement in attentional skills was noted, whereas smaller studies reported variable declines across several cognitive domains. Although, most studies reported stable cognitive outcomes. ET studies largely demonstrated deficits in verbal fluency, which had variable responses depending on stimulation setting. Recently, studies have focused beyond the ventral intermediate nucleus, including the post-subthalamic area and zona incerta. For PD, the cognitive results were heterogeneous, although deficits in verbal fluency were consistent and related to the micro-lesion effect. Conclusion: Post-DBS cognitive issues can impact both motor and quality of life outcomes. The underlying pathophysiology of cognitive changes post-DBS and the identification of pathways underpinning declines will require further investigation. Future studies should employ careful methodological designs. Patient specific analyses will be helpful to differentiate the effects of medications, DBS and the underlying disease state, including disease progression. Disease progression is often an underappreciated factor that is important to post-DBS cognitive issues.
Collapse
Affiliation(s)
- Stephanie Cernera
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
18
|
Lau B, Meier N, Serra G, Czernecki V, Schuepbach M, Navarro S, Cornu P, Grabli D, Agid Y, Vidailhet M, Karachi C, Welter ML. Axial symptoms predict mortality in patients with Parkinson disease and subthalamic stimulation. Neurology 2019; 92:e2559-e2570. [PMID: 31043471 PMCID: PMC6556086 DOI: 10.1212/wnl.0000000000007562] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/25/2019] [Indexed: 12/01/2022] Open
Abstract
Objective To characterize how disease progression is associated with mortality in a large cohort of patients with Parkinson disease (PD) with long-term follow-up after subthalamic nucleus deep brain stimulation (STN-DBS). Methods Motor and cognitive disabilities were assessed before and 1, 2, 5, and 10 years after STN-DBS in 143 consecutive patients with PD. We measured motor symptoms “off” and “on” levodopa and STN-DBS and recorded causes of death. We used linear mixed models to characterize symptom progression, including interactions between treatment conditions and time to determine how treatments changed efficacy. We used joint models to link symptom progression to mortality. Results Median observation time was 12 years after surgery, during which akinesia, rigidity, and axial symptoms worsened, with mean increases of 8.8 (SD 6.5), 1.8 (3.1), and 5.4 (4.1) points from year 1–10 after surgery (“on” dopamine/“on” STN-DBS), respectively. Responses to dopaminergic medication and STN-DBS were attenuated with time, but remained effective for all except axial symptoms, for which both treatments and their combination were predicted to be ineffective 20 years after surgery. Cognitive status significantly declined. Forty-one patients died, with a median time to death of 9 years after surgery. The current level of axial disability was the only symptom that significantly predicted death (hazard ratio 4.30 [SE 1.50] per unit of square-root transformed axial score). Conclusions We quantified long-term symptom progression and attenuation of dopaminergic medication and STN-DBS treatment efficacy in patients with PD and linked symptom progression to mortality. Axial disability significantly predicts individual risk of death after surgery, which may be useful for planning therapeutic strategies in PD.
Collapse
Affiliation(s)
- Brian Lau
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France.
| | - Niklaus Meier
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Giulia Serra
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Virginie Czernecki
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Michael Schuepbach
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Soledad Navarro
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Philippe Cornu
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - David Grabli
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Yves Agid
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Marie Vidailhet
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Carine Karachi
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France
| | - Marie-Laure Welter
- From INSERM 1127 (B.L., N.M., Y.A., M.V., C.K., M.-L.W.), Sorbonne Universités, Université Pierre et Marie Curie-Paris Université Paris 06 6, Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France; Department of Neurology (N.M., M.S.), Hôpital Universitaire de Bern, Switzerland; Clinical Investigation Centre (N.M., G.S.), Department of Neurology (V.C., D.G., M.V.), and Department of Neurosurgery (S.N., P.C., C.K.), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris; and Department of Neurophysiology (M.-L.W.), CHU Charles Nicolle, Rouen University, France.
| |
Collapse
|
19
|
Nickl RC, Reich MM, Pozzi NG, Fricke P, Lange F, Roothans J, Volkmann J, Matthies C. Rescuing Suboptimal Outcomes of Subthalamic Deep Brain Stimulation in Parkinson Disease by Surgical Lead Revision. Neurosurgery 2019; 85:E314-E321. [DOI: 10.1093/neuros/nyz018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Clinical trials have established subthalamic deep-brain-stimulation (STN-DBS) as a highly effective treatment for motor symptoms of Parkinson disease (PD), but in clinical practice outcomes are variable. Experienced centers are confronted with an increasing number of patients with partially “failed” STN-DBS, in whom motor benefit doesn’t meet expectations. These patients require a complex multidisciplinary and standardized workup to identify the likely cause.
OBJECTIVE
To describe outcomes in a series of PD patients undergoing lead revision for suboptimal motor benefit after STN-DBS surgery and characterize selection criteria for surgical revision.
METHODS
We investigated 9 PD patients with STN-DBS, who had unsatisfactory outcomes despite intensive neurological management. Surgical revision was considered if the ratio of DBS vs levodopa-induced improvement of UPDRS-III (DBS-rr) was below 75% and the electrodes were found outside the dorsolateral STN.
RESULTS
Fifteen electrodes were replaced via stereotactic revision surgery into the dorsolateral STN without any adverse effects. Median displacement distance was 4.1 mm (range 1.6-8.42 mm). Motor symptoms significantly improved (38.2 ± 6.6 to 15.5 ± 7.9 points, P < .001); DBS-rr increased from 64% to 190%.
CONCLUSION
Patients with persistent OFFmotor symptoms after STN-DBS should be screened for levodopa-responsiveness, which can serve as a benchmark for best achievable motor benefit. Even small horizontal deviations of the lead from the optimal position within the dorsolateral STN can cause stimulation responses, which are markedly inferior to the levodopa response. Patients with an image confirmed lead displacement and preserved levodopa response are candidates for lead revision and can expect significant motor improvement from appropriate lead replacement.
Collapse
Affiliation(s)
- Robert C Nickl
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| | - Martin M Reich
- Department of Neurology, Julius-Maximilians-University Hospital, Wuerzburg, Germany
| | | | - Patrick Fricke
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| | - Florian Lange
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| | - Jonas Roothans
- Department of Neurology, Julius-Maximilians-University Hospital, Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, Julius-Maximilians-University Hospital, Wuerzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, Julius-Maximilians-University Hospital, Wue-rzburg, Germany
| |
Collapse
|
20
|
Fischer DL, Sortwell CE. BDNF provides many routes toward STN DBS-mediated disease modification. Mov Disord 2018; 34:22-34. [PMID: 30440081 PMCID: PMC6587505 DOI: 10.1002/mds.27535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
The concept that subthalamic nucleus deep brain stimulation (STN DBS) may be disease modifying in Parkinson's disease (PD) is controversial. Several clinical trials that enrolled subjects with late‐stage PD have come to disparate conclusions on this matter. In contrast, some clinical studies in early‐ to midstage subjects have suggested a disease‐modifying effect. Dopaminergic innervation of the putamen is essentially absent in PD subjects within 4 years after diagnosis, indicating that any neuroprotective therapy, including STN DBS, will require intervention within the immediate postdiagnosis interval. Preclinical prevention and early intervention paradigms support a neuroprotective effect of STN DBS on the nigrostriatal system via increased brain‐derived neurotrophic factor (BDNF). STN DBS‐induced increases in BDNF provide a multitude of mechanisms capable of ameliorating dysfunction and degeneration in the parkinsonian brain. A biomarker for measuring brain‐derived neurotrophic factor‐trkB signaling, though, is not available for clinical research. If a prospective clinical trial were to examine whether STN DBS is disease modifying, we contend the strongest rationale is not dependent on a preclinical neuroprotective effect per se, but on the myriad potential mechanisms whereby STN DBS‐elicited brain‐derived neurotrophic factor‐trkB signaling could provide disease modification. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- D Luke Fischer
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Caryl E Sortwell
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Hauenstein Neuroscience Center, Mercy Health St. Mary's, Grand Rapids, Michigan, USA
| |
Collapse
|
21
|
Bot M, van den Munckhof P, Schmand BA, de Bie RMA, Schuurman PR. Electrode Penetration of the Caudate Nucleus in Deep Brain Stimulation Surgery for Parkinson's Disease. Stereotact Funct Neurosurg 2018; 96:223-230. [PMID: 30176664 DOI: 10.1159/000489944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 05/10/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the possible influence of electrode trajectories penetrating the caudate nucleus (CN) on cognitive outcomes in deep brain stimulation (DBS) surgery for Parkinson's disease (PD). BACKGROUND It is currently unclear how mandatory CN avoidance during trajectory planning is. DESIGN/METHODS Electrode trajectories were determined to be inside, outside, or in border region of the CN. Pre- and postoperative neuropsychological tests of each trajectory group were compared in order to evaluate possible differences in cognitive outcomes 12 months after bilateral STN DBS. RESULTS One hundred six electrode tracks in 53 patients were evaluated. Bilateral penetration of the CN occurred in 15 (28%) patients, while unilateral penetration occurred in 28 (53%). In 19 (36%) patients tracks were located in the border region of the CN. There was no electrode penetration of the CN in 10 (19%) patients. No difference in cognitive outcomes was found between the different groups. CONCLUSION Cognitive outcome was not influenced by DBS electrode tracks penetrating the CN. It is both feasible and sensible to avoid electrode tracks through the CN when possible, considering its function and anatomical position. However, penetration of the CN can be considered without major concerns regarding cognitive decline when this facilitates optimal trajectory planning due to specific individual anatomical variations.
Collapse
Affiliation(s)
- Maarten Bot
- Department of Neurosurgery, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Ben A Schmand
- Department of Psychology, Academic Medical Center, Amsterdam, the Netherlands
| | - Rob M A de Bie
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | - P Richard Schuurman
- Department of Neurosurgery, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Rossi M, Bruno V, Arena J, Cammarota Á, Merello M. Challenges in PD Patient Management After DBS: A Pragmatic Review. Mov Disord Clin Pract 2018; 5:246-254. [PMID: 30363375 PMCID: PMC6174419 DOI: 10.1002/mdc3.12592] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/01/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) represents an effective and universally applied therapy for Parkinson's disease (PD) motor complications. However, certain procedure-related problems and unrealistic patient expectations may detract specialists from indicating DBS more widely despite significant clinical effects. METHODS This review provides a pragmatic educational summary of the most conflicting postoperative management issues in patients undergoing DBS for PD. RESULTS DBS in PD has been associated with certain complications and post-procedural management issues, which can complicate surgical outcome interpretation. Many PD patients consider DBS outcomes negative due to unfulfilled expectations, even when significant motor symptom improvement is achieved. Speech, gait, postural stability, and cognition may worsen after DBS and body weight may increase. Although DBS may induce impulse control disorders in some cases, in others, it may actually improve them when dopamine agonist dosage is reduced after surgery. However, apathy may also arise, especially when dopaminergic medication tapering is rapid. Gradual loss of response with time suggests disease progression, rather than the wearing off of DBS effects. Furthermore, implantable pulse generator expiration is considered a movement disorder emergency, as it may worsen parkinsonian symptoms or cause life-threatening akinetic crises due to malignant DBS withdrawal syndrome. CONCLUSION Major unsolved issues occurring after DBS therapy preclude complete patient satisfaction. Multidisciplinary management at experienced centers, as well as careful and comprehensive delivery of information to patients, should contribute to make DBS outcome expectations more realistic and allow post procedural complications to be better accepted.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Verónica Bruno
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)Buenos AiresArgentina
| | - Julieta Arena
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Ángel Cammarota
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
23
|
The striatal cholinergic system in L-dopa-induced dyskinesias. J Neural Transm (Vienna) 2018; 125:1251-1262. [PMID: 29492663 DOI: 10.1007/s00702-018-1845-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Cholinergic signaling plays a key role in regulating striatal function. The principal source of acetylcholine in the striatum is the cholinergic interneurons which, although low in number, densely arborize to modulate striatal neurotransmission. This modulation occurs via strategically positioned nicotinic and muscarinic acetylcholine receptors that influence striatal dopamine, GABA and other neurotransmitter release. Cholinergic interneurons integrate multiple striatal synaptic inputs and outputs to regulate motor activity under normal physiological conditions. Consequently, an imbalance between these systems is associated with basal ganglia disorders. Here, we provide an overview of how striatal cholinergic interneurons modulate striatal activity under normal and pathological conditions. Numerous studies show that nigrostriatal damage such as that occurs with Parkinson's disease affects cholinergic receptor-mediated striatal activity. This altered cholinergic signaling is an important contributor to Parkinson's disease as well as to the dyskinesias that develop with L-dopa therapy, the gold standard for treatment. Indeed, multiple preclinical studies show that cholinergic receptor drugs may be beneficial for the treatment of L-dopa-induced dyskinesias. In this review, we discuss the evidence indicating that therapeutic modulation of the cholinergic system, particularly targeting of nicotinic cholinergic receptors, may offer a novel approach to manage this debilitating side effect of dopamine replacement therapy for Parkinson's disease.
Collapse
|
24
|
Freeze B, Acosta D, Pandya S, Zhao Y, Raj A. Regional expression of genes mediating trans-synaptic alpha-synuclein transfer predicts regional atrophy in Parkinson disease. NEUROIMAGE-CLINICAL 2018; 18:456-466. [PMID: 29868450 PMCID: PMC5984599 DOI: 10.1016/j.nicl.2018.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 11/09/2022]
Abstract
Multiple genes have been implicated in Parkinson disease pathogenesis, but the relationship between regional expression of these genes and regional dysfunction across the brain is unknown. We address this question by joint analysis of high resolution magnetic resonance imaging data from the Parkinson's Progression Markers Initiative and regional genetic microarray expression data from the Allen Brain Atlas. Regional brain atrophy and genetic expression was co-registered to a common 86 region brain atlas and robust multivariable regression analysis was performed to identify genetic predictors of regional brain atrophy. Top candidate genes from GWAS analysis, as well as genes implicated in trans-synaptic alpha-synuclein transfer and autosomal recessive PD were included in our analysis. We identify three genes with expression patterns that are highly significant predictors of regional brain atrophy. The two most significant predictors are LAG3 and RAB5A, genes implicated in trans-synaptic synuclein transfer. Other well-validated PD-related genes do not have expression patterns that predict regional atrophy, suggesting that they may serve other roles such as disease initiation factors. Joint volumetric and microarray analysis identifies gene expression patterns that predict the PD atrophy pattern. The most highly predictive genes, LAG3 and RAB5A, are implicated in trans-synaptic alpha-synuclein transfer. The expression patterns of alpha-synuclein and otherPD-related genes do not predict atrophy.
Collapse
Affiliation(s)
- Benjamin Freeze
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States.
| | - Diana Acosta
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States
| | - Sneha Pandya
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States
| | - Yize Zhao
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, United States
| | - Ashish Raj
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States; Department of Radiology, University of California, San Francisco, United States
| |
Collapse
|
25
|
Fagundes VDC, Rieder CRM, da Cruz AN, Beber BC, Portuguez MW. Deep Brain Stimulation Frequency of the Subthalamic Nucleus Affects Phonemic and Action Fluency in Parkinson's Disease. PARKINSON'S DISEASE 2016; 2016:6760243. [PMID: 28050309 PMCID: PMC5165157 DOI: 10.1155/2016/6760243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022]
Abstract
Introduction. Deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) has been linked to a decline in verbal fluency. The decline can be attributed to surgical effects, but the relative contributions of the stimulation parameters are not well understood. This study aimed to investigate the impact of the frequency of STN-DBS on the performance of verbal fluency tasks in patients with PD. Methods. Twenty individuals with PD who received bilateral STN-DBS were evaluated. Their performances of verbal fluency tasks (semantic, phonemic, action, and unconstrained fluencies) upon receiving low-frequency (60 Hz) and high-frequency (130 Hz) STN-DBS were assessed. Results. The performances of phonemic and action fluencies were significantly different between low- and high-frequency STN-DBS. Patients showed a decrease in these verbal fluencies for high-frequency STN-DBS. Conclusion. Low-frequency STN-DBS may be less harmful to the verbal fluency of PD patients.
Collapse
Affiliation(s)
- Valéria de Carvalho Fagundes
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (InsCer), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Carlos R. M. Rieder
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Federal University of Health Sciences from Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Aline Nunes da Cruz
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Mirna Wetters Portuguez
- Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (InsCer), Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Højlund A, Petersen MV, Sridharan KS, Østergaard K. Worsening of Verbal Fluency After Deep Brain Stimulation in Parkinson's Disease: A Focused Review. Comput Struct Biotechnol J 2016; 15:68-74. [PMID: 27994799 PMCID: PMC5155048 DOI: 10.1016/j.csbj.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 11/28/2022] Open
Abstract
Worsening of verbal fluency after treatment with deep brain stimulation in Parkinson's disease patients is one of the most often reported cognitive adverse effect. The underlying mechanisms of this decline are not well understood. The present focused review assesses the evidence for the reliability of the often-reported decline of verbal fluency, as well as the evidence for the suggested mechanisms including disease progression, reduced medication levels, electrode positions, and stimulation effect vs. surgical effects. Finally, we highlight the need for more systematic investigations of the large degree of heterogeneity in the prevalence of verbal fluency worsening after DBS, as well as provide suggestions for future research.
Collapse
Affiliation(s)
- Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Mikkel V Petersen
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Kousik Sarathy Sridharan
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| | - Karen Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Dept. of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
27
|
Arbuthnott GW, Garcia-Munoz M. Are the Symptoms of Parkinsonism Cortical in Origin? Comput Struct Biotechnol J 2016; 15:21-25. [PMID: 28694933 PMCID: PMC5484763 DOI: 10.1016/j.csbj.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
We present three reasons to suspect that the major deleterious consequence of dopamine loss from the striatum is a cortical malfunction. We suggest that it is cortex, rather than striatum, that should be considered as the source of the debilitating symptoms of Parkinson's disease (PD) since:Cortical synapses onto striatal dendritic spines are lost in PD. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted following antidromic activation of cortical neurons. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas, regions intimately associated with motor behaviour.
These three reasons combined with evidence that the current summary diagram of the basal ganglia involvement in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than striatal malfunction, is overdue. Suggested experimental contributions support the proposal of a cortical participation in PD. DBS produces antidromic activation of motor cortex and desynchronizes beta oscillations. Loss of dopamine decreases dendritic spines in the striatal D2 projection neurons. Motor thalamus distributes terminals into frontal cortex layer I. Thalamocortical-layer I activity increases with locomotion.
Collapse
Affiliation(s)
- Gordon W Arbuthnott
- OIST Graduate University, Brain Mechanisms for Behaviour Unit, Okinawa, Japan
| | | |
Collapse
|
28
|
Cognitive Changes following Bilateral Deep Brain Stimulation of Subthalamic Nucleus in Parkinson's Disease: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3596415. [PMID: 27314016 PMCID: PMC4893566 DOI: 10.1155/2016/3596415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022]
Abstract
Background. Nowadays, it has been largely acknowledged that deep brain stimulation of subthalamic nucleus (STN DBS) can alleviate motor symptoms of Parkinson's disease, but its effects on cognitive function remain unclear, which are not given enough attention by many clinical doctors and researchers. To date, 3 existing meta-analyses focusing on this issue included self-control studies and have not drawn consistent conclusions. The present study is the first to compare effect sizes of primary studies that include control groups, hoping to reveal the net cognitive outcomes after STN DBS and the clinical significance. Methods. A structured literature search was conducted using strict criteria. Only studies with control group could be included. Data on age, duration of disease, levodopa equivalent dosage (LED), and multiple cognitive scales were collected and pooled. Results. Of 172 articles identified, 10 studies (including 3 randomized controlled trials and 7 nonrandomized controlled studies) were eligible for inclusion. The results suggest that STN DBS results in decreased global cognition, memory, verbal fluency, and executive function compared with control group. No significant difference is found in other cognitive domains. Conclusions. STN DBS seems relatively safe with respect to cognitive function, and further studies should focus on the exact mechanisms of possible verbal deterioration after surgery in the future.
Collapse
|
29
|
Lezcano E, Gómez-Esteban JC, Tijero B, Bilbao G, Lambarri I, Rodriguez O, Villoria R, Dolado A, Berganzo K, Molano A, de Gopegui ER, Pomposo I, Gabilondo I, Zarranz JJ. Long-term impact on quality of life of subthalamic nucleus stimulation in Parkinson's disease. J Neurol 2016; 263:895-905. [PMID: 26964542 DOI: 10.1007/s00415-016-8077-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
Abstract
Long-term impact of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on health-related quality of life (HRQOL) and associated factors in patients with Parkinson's disease (PD) are not clear. In this prospective study, we included 69 PD patients (64 % men, mean age 61.3 ± 7.4 and disease duration 13.2 ± 5.7 years) undergoing STN-DBS. They were evaluated preoperatively (baseline), 1 and 5 years postoperatively assessing 39-item Parkinson's Disease Questionnaire (PDQ-39), Schwab and England Activities of Daily Living Scale (SEADL), Unified Parkinson's Disease Rating Scale (UPDRS) off- and on-medication, patient diaries, dopaminergic treatment, mortality and surgical complications. Five years postoperatively, off-medication, there were improvements from baseline in UPDRS-II and III total (27.2 and 26.7 %, respectively) and SEADL (18.6 % more completely independent patients) (p < 0.05) scores, while on-medication, there was a deterioration in UPDRS-III (37.8 %, mainly axial signs) (p < 0.05) and minor improvements in SEADL (3.7 %). While at 1 year PDQ-39, the summary index improved substantially (36.5 %) (p < 0.05), at 5 years patients regressed (only 8.8 %) (p < 0.05), though changes in PDQ-39 subscores remained significant, with improvements in ADL (18.8 %), emotional well-being (19.0 %), stigma (36.4 %) and discomfort (20.6 %), despite worsening in communication (47.8 %) (p < 0.05). Lower preoperative PDQ-39 summary index and greater 1-year UPDRS-III-off total score gain predicted better long-term HRQOL. STN-DBS produces long-term improvements in HRQOL in PD. Preoperative HRQOL and short-term postoperative changes in off-medication motor status may predict long-term HRQOL in PD following STN-DBS.
Collapse
Affiliation(s)
- Elena Lezcano
- Neurology Department, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurology Department, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, Barakaldo, Spain.
| | - Beatriz Tijero
- Neurology Department, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Gaizka Bilbao
- Neurosurgery Department, Cruces University Hospital, Barakaldo, Spain
| | - Imanol Lambarri
- Neurophysiology Department, Cruces University Hospital, Barakaldo, Spain
| | - Olivia Rodriguez
- Radiology Department, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Villoria
- Radiology Department, Cruces University Hospital, Barakaldo, Spain
| | - Ainara Dolado
- Radiology Department, Cruces University Hospital, Barakaldo, Spain
| | - Koldo Berganzo
- Neurology Department, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Ana Molano
- Neurology Department, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | | | - Iñigo Pomposo
- Neurosurgery Department, Cruces University Hospital, Barakaldo, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, BioCruces Health Research Institute, Barakaldo, Spain
- Neuropsychology of Severe Medical Conditions, Deusto University, Bilbao, Spain
| | - Juan José Zarranz
- Neurology Department, Cruces University Hospital, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| |
Collapse
|
30
|
Perez XA. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson's Disease. Neuropsychol Rev 2015; 25:371-83. [PMID: 26553323 DOI: 10.1007/s11065-015-9303-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
One of the primary deficits in Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta which leads to striatal dopaminergic deficits that underlie the motor symptoms associated with the disease. A plethora of animal models have been developed over the years to uncover the molecular alterations that lead to PD development. These models have provided valuable information on neurotransmitter pathways and mechanisms involved. One such a system is the nicotinic cholinergic system. Numerous studies show that nigrostriatal damage affects nicotinic receptor-mediated dopaminergic signaling; therefore therapeutic modulation of the nicotinic cholinergic system may offer a novel approach to manage PD. In fact, there is evidence showing that nicotinic receptor drugs may be useful as neuroprotective agents to prevent Parkinson's disease progression. Additional preclinical studies also show that nicotinic receptor drugs may be beneficial for the treatment of L-dopa induced dyskinesias. Here, we review preclinical findings supporting the idea that nicotinic receptors are valuable therapeutic targets for PD.
Collapse
Affiliation(s)
- Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| |
Collapse
|
31
|
Bhidayasiri R, Hattori N, Jeon B, Chen RS, Lee MK, Bajwa JA, Mok VCT, Zhang B, Syamsudin T, Tan LCS, Jamora RDG, Pisarnpong A, Poewe W. Asian perspectives on the recognition and management of levodopa ‘wearing-off’ in Parkinson’s disease. Expert Rev Neurother 2015; 15:1285-97. [DOI: 10.1586/14737175.2015.1088783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Langzeiteffekte der tiefen Hirnstimulation bei Bewegungsstörungen. DER NERVENARZT 2014; 85:1551-60. [DOI: 10.1007/s00115-014-4210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
|
34
|
Medical therapy versus deep brain stimulation for advanced PD—long-term outcomes. Nat Rev Neurol 2013. [DOI: 10.1038/nrneurol.2013.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|