1
|
Sin MK, Cheng Y, Ahmed A, Roseman JM, Dowling NM, Zamrini E. Cerebral Amyloid Angiopathy, Dementia, and Alzheimer Neuropathologic Changes: Findings From the ACT Autopsy Cohort. Neurology 2024; 103:e210009. [PMID: 39481068 PMCID: PMC11527483 DOI: 10.1212/wnl.0000000000210009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral amyloid angiopathy (CAA) is common in older adults and is associated with dementia. Less is known whether this association is mediated by Alzheimer disease (AD) neuropathologic changes, the examination of which was the objective of this study. METHODS This was a retrospective cross-sectional examination of the Kaiser Permanente Washington database of the Adult Changes in Thought (ACT) autopsy cohort with information on CAA, dementia, the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (amyloid neuritic plaques), and Braak (tau neurofibrillary tangles). CAA was diagnosed by immunohistochemistry and dementia by ACT Consensus Diagnostic Conference. AD neuropathology was categorized by CERAD scores and Braak stages. Multivariable logistic regression models were used to estimate odds ratios (ORs) and 95% CIs of the associations of CAA with dementia, adjusting for age at death and sex, and with additional adjustments separately for CERAD scores (moderate-severe vs mild-absent), Braak stages (V-VI vs 0-IV), APOE ε4, and stroke. Formal mediation analyses were conducted to estimate age-sex-adjusted OR (95% CI) for natural indirect effects (NIEs) of CERAD scores and Braak stages. RESULTS The 848 participants had a mean age of 86.7 ± 4.6 years at death, and 57.6% were female. CAA was present in 322 participants (38.0%), of whom 152, 145, and 25 had mild, moderate, and severe CAA, respectively. Dementia was present in 384 participants (45.3%), of whom 317 had AD. Dementia was more common in those with CAA than without (53.7% vs 40.1%; age-sex-adjusted OR 1.57, 95% CI 1.18-2.10). This association remained significant after separate adjustment for other covariates but lost significance when adjusted for CERAD scores (OR 1.27, 95% CI 0.93-1.71) and Braak stages (OR 0.96, 95% CI 0.69-1.33). Findings from our formal mediation analyses show that ORs (95% CIs) for NIE of CERAD scores and Braak stages were 1.25 (1.13-1.37) and 1.63 (1.38-1.88), respectively, and CERAD scores and Braak stages mediated 53% and 111% of the total association, respectively. DISCUSSION We observed a significant association between CAA and dementia that disappeared when adjusted for CERAD or Braak stages. Findings from our mediation analyses suggest that the CAA-dementia association may be potentially mediated by AD neuropathologic changes. This hypothesis needs to be tested in future mechanistic studies in AD accounting for unmeasured confounders.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Yan Cheng
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Ali Ahmed
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Jeffrey M Roseman
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - N Maritza Dowling
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Edward Zamrini
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| |
Collapse
|
2
|
Wu C, Zhou Q, Huang Y, Yan F, Yang Z, He L, Li Q, Li L. Genetic Variants ε2 and ε4 of APOE Predict Mortality and Poor Outcome Independently in Spontaneous Intracerebral Hemorrhage Within the Chinese Han Population. Am J Med Genet B Neuropsychiatr Genet 2024:e33010. [PMID: 39370746 DOI: 10.1002/ajmg.b.33010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/19/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
The heightened mortality and disability rates, coupled with restricted neurological recovery post intracerebral hemorrhage (ICH), have sparked considerable attention toward its treatment and results. Simultaneously, the influence of the APOE gene on ICH prognosis has been well-documented. This research aimed to explore the relationship between specific APOE alleles in the present cohort and the incidences of mortality, recurrence, and adverse prognosis, as determined by neurological function assessments in ICH patients. Data on patients diagnosed with ICH and hospitalized in the Department of Neurology at our institution from October 2021 to March 2022 were collected, including determining their APOE genotypes. A 1-year follow-up was conducted to evaluate mortality, ICH recurrence, and modified Rankin Scale (mRS) scores at 3 and 12 months. Poor prognosis was defined as an mRS score of ≥ 3. Initially, we analyzed the relationships between different APOE alleles and mortality, recurrence, and poor prognosis. Subsequently, we explored additional factors influencing each prognostic outcome and conducted multivariate analysis to identify independent risk factors. An analysis was conducted on 289 patients diagnosed with ICH. The presence of the ε2 allele was found to be a significant independent predictor for unfavorable outcomes at both 3 months (p = 0.022, OR = 2.138, 95% CI [2.041, 3.470]) and 1 year (p = 0.020, OR = 5.116, 95% CI [5.044, 5.307]). Moreover, the ε4 allele was established as an independent risk factor for ICH recurrence within 1 year (p = 0.025, OR = 2.326, 95% CI [1.163, 2.652]), as well as for mortality at 3 months (p = 0.037, OR = 4.250, 95% CI [4.068, 4.920]) and 1 year (p = 0.023, OR = 4.109, 95% CI [4.016, 4.739]). In conclusions, Both APOE ε2 and ε4 variants independently heighten mortality risk, recurrence, and poor prognosis after ICH. The substantial influence underscores the need for additional investigation into the impact of APOE genotype on ICH prognosis.
Collapse
Affiliation(s)
- Chuyue Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qinji Zhou
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yu Huang
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Fei Yan
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Zhenjie Yang
- School of Medicine, Chongqing University, Chongqing, China
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lei He
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Qian Li
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Li Li
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Xiang Y, Rodrigues MA, Lerpiniere C, Moullaali TJ, Loan JJM, Wilkinson T, Humphreys CA, Smith C, Al-Shahi Salman R, Samarasekera N. Factors associated with cognitive impairment before intracerebral haemorrhage: community-based neuropathological study. Brain Commun 2024; 6:fcae275. [PMID: 39229490 PMCID: PMC11369820 DOI: 10.1093/braincomms/fcae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/21/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Little is known about whether clinical, radiological or neuropathological features are associated with cognitive impairment before intracerebral haemorrhage. We conducted a community-based cohort study of 125 adults with intracerebral haemorrhage (lobar n = 71, non-lobar n = 54) with consent to brain autopsy. We compared small vessel disease biomarkers on diagnostic CT head and neuropathological findings including neurofibrillary tangles and amyloid plaques in adults without cognitive impairment versus cognitive impairment without dementia versus dementia before intracerebral haemorrhage, stratified by lobar and non-lobar intracerebral haemorrhage. In non-lobar intracerebral haemorrhage, severe cortical atrophy was less common in those without cognitive impairment (8/36, 22%) and cognitive impairment without dementia (0/9, 0%) versus dementia (5/9, 56%); P = 0.008. Irrespective of intracerebral haemorrhage location, adults without cognitive impairment had milder neurofibrillary tangle pathology measured by median Braak stage (lobar intracerebral haemorrhage: no cognitive impairment 2 [interquartile range, 2-3] versus cognitive impairment without dementia 4 [2-6] versus dementia 5.5 [4-6]; P = 0.004; non-lobar intracerebral haemorrhage: no cognitive impairment 2 [1-2] versus cognitive impairment without dementia 2 [1-2] versus dementia 5 [3-6]; P < 0.001). Irrespective of intracerebral haemorrhage location, adults without cognitive impairment had milder amyloid plaque pathology measured by median Thal stage (lobar intracerebral haemorrhage: no cognitive impairment 2 [1-2] versus cognitive impairment without dementia 2 [2-3] versus dementia 2.5 [2-3.5]; P = 0.033; non-lobar intracerebral haemorrhage: no cognitive impairment 1 [0-1] versus cognitive impairment without dementia 0 [0-2] versus dementia 3 [2-3]; P = 0.002). Our findings suggest that irrespective of intracerebral haemorrhage location, adults with cognitive impairment before an intracerebral haemorrhage have more Alzheimer's disease neuropathologic change.
Collapse
Affiliation(s)
- Yawen Xiang
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark A Rodrigues
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Department of Neuroradiology, NHS Lothian, Edinburgh EH16 4SA, UK
| | - Christine Lerpiniere
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Tom J Moullaali
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Faculty of Medicine, The George Institute for Global Health, University of New South Wales, Sydney, NSW 2042, Australia
| | - James J M Loan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Tim Wilkinson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | | | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | - Neshika Samarasekera
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
4
|
Sin MK, Dowling NM, Roseman JM, Ahmed A, Zamrini E. Late-Life Blood Pressure and Cerebral Amyloid Angiopathy: Findings from the U.S. National Alzheimer's Coordinating Center Uniform Dataset. Neurol Int 2024; 16:821-832. [PMID: 39195563 DOI: 10.3390/neurolint16040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
High blood pressure (BP) and cerebral amyloid angiopathy (CAA) are two common risk factors for intracranial hemorrhage, potentially leading to cognitive impairment. Less is known about the relationship between BP and CAA, the examination of which was the objective of this study. We analyzed data from 2510 participants in the National Alzheimer's Coordinating Center (NACC) who had information on longitudinal BP measurements before death and on CAA from autopsy. Using the average of four systolic BPs (SBPs) prior to death, SBP was categorized into three groups: <120 mmHg (n = 435), 120-139 mmHg (n = 1335), and ≥140 mmHg (n = 740). CAA was diagnosed using immunohistochemistry in 1580 participants and categorized as mild (n = 759), moderate (n = 529), or severe (n = 292). When adjusted for age at death, sex, APOE genotype, Braak, CERAD, antihypertensive medication use, and microinfarcts, the odds ratios (95% CIs) for CAA associated with SBPs of 120-139 and ≥140 mmHg were 0.91 (0.74-1.12) and 1.00 (0.80-1.26), respectively. Findings from predictor effect plots show no variation in the probability of CAA between the three SBP categories. Microbleeds had no association with CAA, but among those with SBP ≥ 130 mmHg, the proportion of those with microbleeds was numerically greater in those with more severe CAA (p for trend, 0.084). In conclusion, we found no evidence of an association between SBP and CAA. Future studies need to develop non-invasive laboratory tests to diagnose CAA and prospectively examine this association and its implication on the pathophysiology and outcome of Alzheimer's disease.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | - N Maritza Dowling
- Department of Acute & Chronic Care, School of Nursing, George Washington University, Washington, DC 20147, USA
- Department of Epidemiology & Biostatistics, Milken School of Public Health, George Washington University, Washington, DC 20147, USA
| | - Jeffrey M Roseman
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ali Ahmed
- Center for Data Science and Outcomes Research, Veterans Affairs Medical Center, Washington, DC 20242, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
- Department of Medicine, School of Medicine, Georgetown University, Washington, DC 20057, USA
| | - Edward Zamrini
- Center for Data Science and Outcomes Research, Veterans Affairs Medical Center, Washington, DC 20242, USA
- Department of Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
- Biomedical Informatics Center, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Munsterman D, Falcione S, Long R, Boghozian R, Joy T, Camicioli R, Smith EE, Jickling GC. Cerebral amyloid angiopathy and the immune system. Alzheimers Dement 2024; 20:4999-5008. [PMID: 38881491 PMCID: PMC11247707 DOI: 10.1002/alz.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/18/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of amyloid protein in the walls of cerebral blood vessels. This deposition of amyloid causes damage to the cerebral vasculature, resulting in blood-brain barrier disruption, cerebral hemorrhage, cognitive decline, and dementia. The role of the immune system in CAA is complex and not fully understood. While the immune system has a clear role in the rare inflammatory variants of CAA (CAA related inflammation and Abeta related angiitis), the more common variants of CAA also have immune system involvement. In a protective role, immune cells may facilitate the clearance of beta-amyloid from the cerebral vasculature. The immune system can also contribute to CAA pathology, promoting vascular injury, blood-brain barrier breakdown, inflammation, and progression of CAA. In this review, we summarize the role of the immune system in CAA, including the potential of immune based treatment strategies to slow vascular disease in CAA and associated cognitive impairment, white matter disease progression, and reduce the risk of cerebral hemorrhage. HIGHLIGHTS: The immune system has a role in cerebral amyloid angiopathy (CAA) which is summarized in this review. There is an inflammatory response to beta-amyloid that may contribute to brain injury and cognitive impairment. Immune cells may facilitate the clearance of beta-amyloid from the cerebral vasculature. Improved understanding of the immune system in CAA may afford novel treatment to improve outcomes in patients with CAA.
Collapse
Affiliation(s)
| | - Sarina Falcione
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Rebecca Long
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Twinkle Joy
- Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Eric E. Smith
- Clinical NeurosciencesHotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | | |
Collapse
|
6
|
Theodorou A, Tsantzali I, Stefanou MI, Sacco S, Katsanos AH, Shoamanesh A, Karapanayiotides T, Koutroulou I, Stamati P, Werring DJ, Cordonnier C, Palaiodimou L, Zompola C, Boviatsis E, Stavrinou L, Frantzeskaki F, Steiner T, Alexandrov AV, Paraskevas GP, Tsivgoulis G. CSF and plasma biomarkers in cerebral amyloid angiopathy: A single-center study and a systematic review/meta-analysis. Eur Stroke J 2024:23969873241260538. [PMID: 38869035 DOI: 10.1177/23969873241260538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION There are limited data regarding cerebrospinal fluid (CSF) and plasma biomarkers among patients with Cerebral Amyloid Angiopathy (CAA). We sought to investigate the levels of four biomarkers [β-amyloids (Aβ42 and Aβ40), total tau (tau) and phosphorylated tau (p-tau)] in CAA patients compared to healthy controls (HC) and patients with Alzheimer Disease (AD). PATIENTS AND METHODS A systematic review and meta-analysis of published studies, including also a 5 year single-center cohort study, with available data on CSF and plasma biomarkers in symptomatic sporadic CAA versus HC and AD was conducted. Biomarkers' comparisons were investigated using random-effects models based on the ratio of mean (RoM) biomarker concentrations. RoM < 1 and RoM > 1 indicate lower and higher biomarker concentration in CAA compared to another population, respectively. RESULTS We identified nine cohorts, comprising 327 CAA patients (mean age: 71 ± 5 years; women: 45%) versus 336 HC (mean age: 65 ± 5 years; women: 45%) and 384 AD patients (mean age: 68 ± 3 years; women: 53%) with available data on CSF biomarkers. CSF Aβ42 levels [RoM: 0.47; 95% CI: 0.36-0.62; p < 0.0001], Aβ40 levels [RoM: 0.70; 95% CI: 0.63-0.79; p < 0.0001] and the ratio Aβ42/Aβ40 [RoM: 0.62; 95% CI: 0.39-0.98; p = 0.0438] differentiated CAA from HC. CSF Aβ40 levels [RoM: 0.73; 95% CI: 0.64-0.83; p = 0.0003] differentiated CAA from AD. CSF tau and p-tau levels differentiated CAA from HC [RoM: 1.71; 95% CI: 1.41-2.09; p = 0.0002 and RoM: 1.44; 95% CI: 1.20-1.73; p = 0.0014, respectively] and from AD [RoM: 0.65; 95% CI: 0.58-0.72; p < 0.0001 and RoM: 0.64; 95% CI: 0.57-0.71; p < 0.0001, respectively]. Plasma Aβ42 [RoM: 1.14; 95% CI: 0.89-1.45; p = 0.2079] and Aβ40 [RoM: 1.07; 95% CI: 0.91-1.25; p = 0.3306] levels were comparable between CAA and HC. CONCLUSIONS CAA is characterized by a distinct CSF biomarker pattern compared to HC and AD. CSF Aβ40 levels are lower in CAA compared to HC and AD, while tau and p-tau levels are higher in CAA compared to HC, but lower in comparison to AD patients.
Collapse
Affiliation(s)
- Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Tsantzali
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Italy
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Ashkan Shoamanesh
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Theodoros Karapanayiotides
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Ioanna Koutroulou
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, Larissa, Greece
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Charlotte Cordonnier
- University Lille, Inserm, CHU Lille, U1172, LilNCog, Lille Neuroscience and Cognition, France
| | - Lina Palaiodimou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Zompola
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Lampis Stavrinou
- Second Department of Neurosurgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Frantzeska Frantzeskaki
- Second Critical Care Department, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Thorsten Steiner
- Departments of Neurology, Klinikum Frankfurt Höchst, Frankfurt and Heidelberg University Hospital, Heidelberg, Germany
| | - Andrei V Alexandrov
- Department of Neurology, University of Arizona, Banner University Medical Center, Phoenix
| | - Georgios P Paraskevas
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
7
|
Dubbelman MA, Diez I, Gonzalez C, Amariglio RE, Becker JA, Chhatwal JP, Gatchel JR, Johnson KA, Locascio JJ, Udeogu OJ, Wang S, Papp KV, Properzi MJ, Rentz DM, Schultz AP, Sperling RA, Vannini P, Marshall GA. Amyloid and tau burden relate to longitudinal changes in the performance of complex everyday activities among cognitively unimpaired older adults: results from the performance-based Harvard Automated Phone Task. Front Aging Neurosci 2024; 16:1420290. [PMID: 38934017 PMCID: PMC11199537 DOI: 10.3389/fnagi.2024.1420290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Background Changes in everyday functioning constitute a clinically meaningful outcome, even in the early stages of Alzheimer's disease. Performance-based assessments of everyday functioning might help uncover these early changes. We aimed to investigate how changes over time in everyday functioning relate to tau and amyloid in cognitively unimpaired older adults. Methods Seventy-six cognitively unimpaired participants (72 ± 6 years old, 61% female) completed multiple Harvard Automated Phone Task (APT) assessments over 2.0 ± 0.9 years. The Harvard APT consists of three tasks, performed through an automated phone system, in which participants refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and transfer money to pay a bill (APT-Bank). Participants underwent Pittsburgh compound-B and flortaucipir positron emission tomography scans at baseline. We computed distribution volume ratios for a cortical amyloid aggregate and standardized uptake volume ratios for medial temporal and neocortical tau regions. In separate linear mixed models, baseline amyloid by time and tau by time interactions were used to predict longitudinal changes in performance on the Harvard APT tasks. Three-way amyloid by tau by time interactions were also investigated. Lastly, we examined associations between tau and change in Harvard APT scores in exploratory voxel-wise whole-brain analyses. All models were adjusted for age, sex, and education. Results Amyloid [unstandardized partial regression coefficient estimate (β) = -0.007, 95% confidence interval (95% CI) = (-0.013, -0.001)], and medial temporal tau [β = -0.013, 95% CI = (-0.022, -0.004)] were associated with change over time in years on APT-PCP only, i.e., higher baseline amyloid and higher baseline tau were associated with steeper rate of decline of APT-PCP. Voxel-wise analyses showed widespread associations between tau and change in APT-PCP scores over time. Conclusion Even among cognitively unimpaired older adults, changes over time in the performance of cognitively complex everyday activities relate to cortical amyloid and widespread cerebral tau burden at baseline. These findings support the link between Alzheimer's disease pathology and function and highlight the importance of measuring everyday functioning in preclinical disease stages.
Collapse
Affiliation(s)
- Mark A. Dubbelman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ibai Diez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher Gonzalez
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Rebecca E. Amariglio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - J. Alex Becker
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jasmeer P. Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jennifer R. Gatchel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Keith A. Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph J. Locascio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Onyinye J. Udeogu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sharon Wang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn V. Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael J. Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dorene M. Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aaron P. Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Reisa A. Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patrizia Vannini
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Gad A. Marshall
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Hervella P, Alonso-Alonso ML, Sampedro-Viana A, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Ouro A, Romaus-Sanjurjo D, Campos F, Sobrino T, Castillo J, Leira Y, Iglesias-Rey R. Differential blood-based biomarkers of subcortical and deep brain small vessel disease. Ther Adv Neurol Disord 2024; 17:17562864241243274. [PMID: 38827243 PMCID: PMC11143814 DOI: 10.1177/17562864241243274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 06/04/2024] Open
Abstract
Background Cerebral small vessel disease is the most common cause of lacunar strokes (LS). Understanding LS pathogenesis is vital for predicting disease severity, prognosis, and developing therapies. Objectives To research molecular profiles that differentiate LS in deep brain structures from those in subcortical white matter. Design Prospective case-control study involving 120 patients with imaging-confirmed LS and a 120 control group. Methods We examined the relationship between Alzheimer's disease biomarkers [amyloid beta (Aβ1-40, Aβ1-42)], serum inflammatory marker (interleukin-6, IL-6), and endothelial dysfunction markers [soluble tumor necrosis factor-like weak inducer of apoptosis, and pentraxin-3 (sTWEAK, PTX3)] with respect to LS occurring in deep brain structures and subcortical white matter. In addition, we investigated links between LS, leukoaraiosis presence (white matter hyperintensities, WMHs), and functional outcomes at 3 months. Poor outcome was defined as a modified Rankin scale >2 at 3 months. Results Significant differences were observed in levels of IL-6, PTX3, and sTWEAK between patients with deep lacunar infarcts and those with recent small subcortical infarcts (20.8 versus 15.6 pg/mL, p < 0.001; 7221.3 versus 4624.4 pg/mL, p < 0.0001; 2528.5 versus 1660.5 pg/mL, p = 0.001). Patients with poor outcomes at 3 months displayed notably higher concentrations of these biomarkers compared to those with good outcomes. By contrast, Aβ1-40 and Aβ1-42 were significantly lower in patients with deep LS (p < 0.0001). Aβ1-42 levels were significantly higher in patients with LS in subcortical white matter who had poor outcomes. WMH severity only showed a significant association with deep LS and correlated with sTWEAK (p < 0.0001). Conclusion The pathophysiological mechanisms of lacunar infarcts in deep brain structures seem different from those in the subcortical white matter. As a result, specific therapeutic and preventive strategies should be explored.
Collapse
Affiliation(s)
- Pablo Hervella
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
- Hospital Clínico Universitario de Ferrol, Ferrol, Spain
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Campos
- Translational Stroke Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Yago Leira
- Hospital Clínico Universitario, Rúa Travesa da Choupana, s/n 15706 Santiago de Compostela, Spain
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Hospital Clínico Universitario, Rúa Travesa da Choupana, s/n 15706 Santiago de Compostela, Spain
- Neuroimaging and Biotechnology Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Gainey M, Niles A, Imeh-Nathaniel S, Goodwin RL, Roley LT, Win O, Nathaniel TI, Imeh-Nathaniel A. Comorbidities in patients with vascular dementia and Alzheimer's disease with Neuropsychiatric symptoms. Geriatr Nurs 2024; 57:217-223. [PMID: 38696879 DOI: 10.1016/j.gerinurse.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION This study aimed to examine baseline risk factors in Alzheimer's Disease (AD) and Vascular dementia (VaD) patients with neuropsychiatry symptoms (NPS), and determine whether specific risk factors differ by subtypes of dementia for AD and VaD patients with NPS. METHODS A retrospective data analysis was conducted to evaluate similarities and differences in the risk factors for AD and VaD with NPS. The analysis included 2949 patients with VaD and 6341 patients with clinical confirmation of AD and VaD with or without NPS collected between February 2016 and August 2021. The multivariate logistic regression analysis was used to determine the risk factors associated with AD and VaD with NPS, by predicting the increasing odds (odds ratios (ORs) of an association of a specific baseline risk factor with AD or VaD with NPS. The validity of the regression models was tested using a Hosmer-Lemeshow test, while the Receiver Operating Curve (ROC) was used to test the sensitivity of the models. RESULTS In the adjusted analysis TSH (OR = 1.781, 95 % CI, p = 0.0025) and CHF (OR = 1.620, 95 %, p = 0.016) were associated with VaD with NPS, while a history of emergency department(ED) admission (OR = 0.277, 95 % CI, p = 0.003) likely to be associated with VaD patients without NPS. For AD patients, a history of CVA (OR = 1.395, 95 % CI, p = 0.032) and cancer (OR = 1.485, 95 % CI, p = 0.013) were associated with AD patients with NPS. DISCUSSION The findings of this study indicate that an abnormal thyroid gland and CHF were linked to VaD patients with behavioral disturbances, while CVA and cancer were linked to AD patients with behavioral disturbances. These findings suggest the need to develop management strategies for the care of patients with AD and VaD with NPS.
Collapse
Affiliation(s)
- Mallory Gainey
- University of South Carolina, School of Medicine-Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Addison Niles
- PRISMA Health UP-State South Carolina, 701 Grove Rd, Greenville, SC, 29605, USA
| | | | | | | | - Ohmar Win
- PRISMA Health UP-State South Carolina, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Thomas I Nathaniel
- University of South Carolina, School of Medicine-Greenville, 701 Grove Rd, Greenville, SC, 29605, USA.
| | | |
Collapse
|
10
|
Foschi M, D’Anna L, Gabriele C, Conversi F, Gabriele F, De Santis F, Orlandi B, De Santis F, Ornello R, Sacco S. Sex Differences in the Epidemiology of Intracerebral Hemorrhage Over 10 Years in a Population-Based Stroke Registry. J Am Heart Assoc 2024; 13:e032595. [PMID: 38410943 PMCID: PMC10944030 DOI: 10.1161/jaha.123.032595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND We investigated incidence and outcome of spontaneous intracerebral hemorrhage (ICH) in a population-based stroke registry and provided data to inform on the figures of the disease in women and in men. METHODS AND RESULTS Our prospective population-based registry included patients with first-ever ICH occurring from January 2011 to December 2020. Incidence rates were standardized to the 2011 Italian and European population, and incidence rate ratios were calculated. Multivariate hazard ratios for 30-day and 1-year fatality were estimated with Cox regression, including components of the ICH score and sex. We included 748 first-ever ICHs (41.3% women). Women were significantly older than men at ICH onset (78.9±12.6 versus 73.2±13.6 years; P<0.001) and showed higher clinical severity on presentation (median National Institutes of Health Stroke Scale score, 11 [interquartile range, 6-20] versus 9 [interquartile range, 4-15], respectively; P=0.016). The crude annual incidence rate was 20.2 (95% CI, 18.0-22.6) per 100 000 person-years in women and 30.2 (95% CI, 27.4-33.2) per 100 000 person-years in men); incidence was lower in women versus men (incidence rate ratio, 0.67 [95% CI, 0.58-0.78]; P<0.001) and did not change over time in both sexes (P for trend=0.073 and 0.904, respectively). Unadjusted comparison showed higher 1-year case-fatality rates in women versus men (48.5% versus 40.1%; P=0.026). After adjusting for components of the ICH score, female sex lost significance as a predictor of mortality. CONCLUSIONS We found lower ICH incidence in women than in men. However, women showed a higher 1-year case-fatality rate versus men, which was likely related to older age at ICH onset and higher clinical severity. Identification of factors explaining the reported differences is important to develop targeted interventions.
Collapse
Affiliation(s)
- Matteo Foschi
- Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly
| | - Lucio D’Anna
- Department of Stroke and Neuroscience, Charing Cross HospitalImperial College London National Health Service Healthcare TrustLondonUK
- Department of Brain SciencesImperial College LondonLondonUK
| | - Claudia Gabriele
- Department of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
| | - Francesco Conversi
- Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly
| | - Francesca Gabriele
- Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly
| | - Federica De Santis
- Department of Neurology and Stroke Unit of Avezzano‐SulmonaL’AquilaItaly
| | - Berardino Orlandi
- Department of Neurology and Stroke Unit of Avezzano‐SulmonaL’AquilaItaly
| | - Federico De Santis
- Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly
| |
Collapse
|
11
|
Grainger BT, McFadyen JD, Tran H. Between a rock and a hard place: resumption of oral anticoagulant therapy after intracranial hemorrhage. J Thromb Haemost 2024; 22:594-603. [PMID: 37913910 DOI: 10.1016/j.jtha.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Intracranial hemorrhage (ICH) is the most feared and lethal complication of oral anticoagulant (OAC) therapy. Resumption of OAC after ICH has long posed a challenge for clinicians, complicated by the expanding range of anticoagulant agents available in modern clinical practice, including direct OACs and, more recently, factor XI and XII inhibitors. A review of the current literature found support for resuming OAC in the majority of patients after ICH based on pooled retrospective data showing that resumption is associated with a lower risk of mortality and thromboembolism without a significantly increased risk of recurrent hemorrhage. The optimal time to resume OAC is less clear; however, the available evidence suggests that the composite risk of both recurrent hemorrhage and thromboembolism is likely minimized, somewhere between 4 and 6 weeks, after ICH in most patients. Specific considerations to guide the optimal resumption time in the individual patient include ICH location, mechanism, and anticoagulant class. Patients with mechanical heart valves and intracerebral malignancy represent high-risk groups who require more nuanced decision making. Here, we appraise the literature with the aim of providing a practical guide for clinicians while also discussing priorities for future investigation.
Collapse
Affiliation(s)
- Brian T Grainger
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia.
| | - James D McFadyen
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Huyen Tran
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Banerjee G, Farmer SF, Hyare H, Jaunmuktane Z, Mead S, Ryan NS, Schott JM, Werring DJ, Rudge P, Collinge J. Iatrogenic Alzheimer's disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med 2024; 30:394-402. [PMID: 38287166 PMCID: PMC10878974 DOI: 10.1038/s41591-023-02729-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aβ) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aβ as the root cause of AD. We previously reported human transmission of Aβ pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aβ seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aβ can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aβ assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Stroke Service, National Hospital for Neurology and Neurosurgery, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Collinge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
13
|
Li Z, Bu X, Cheng J, Deng L, Lv X, Wang Z, Hu X, Yang T, Yin H, Liu X, Zhao L, Xie P, Li Q. Impact of early cognitive impairment on outcome trajectory in patients with intracerebral hemorrhage. Ann Clin Transl Neurol 2024; 11:368-376. [PMID: 38009388 PMCID: PMC10863917 DOI: 10.1002/acn3.51957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE To assess the prevalence and factors associated with early cognitive impairment in intracerebral hemorrhage (ICH) patients and to describe short-term recovery trajectories among ICH patients with early cognitive impairment. METHODS We prospectively enrolled ICH patients without baseline dementia in our institutions. Cognitive function was assessed using mini-mental state examination (MMSE), and functional outcome was evaluated at discharge, 3, and 6 months after symptoms onset using the modified Rankin Scale (mRS). We used multinomial logistic regression models to investigate potential risk factors and generalized linear models to analyze the functional outcome data. RESULTS Out of 181 patients with ICH, 167 were included in the final analysis. Early cognitive impairment occurred in 60.48% of patients with ICH. Age (odds ratio [OR] per 1-year increase, 1.037; 95% confidence interval [CI], 1.003-1.071; p = 0.034), National Institutes of Health Stroke Scale (NIHSS) score (OR per 1-point increase, 1.146; 95% CI, 1.065-1.233; p < 0.001) and lobar ICH location (OR, 4.774; 95% CI, 1.810-12.593; p = 0.002) were associated with early cognitive impairment in ICH patients. Patients with ≥10 years of education were less likely to experience early cognitive impairment (OR, 0.323; 95% CI, 0.133-0.783; p = 0.012). Participants with early cognitive impairment had a higher risk of poor outcome (OR, 4.315; 95% CI, 1.503-12.393; p = 0.005) than those without. Furthermore, there was a significantly faster functional recovery rate for those without early cognitive impairment compared with those with at 3 and 6 months (p < 0.05). INTERPRETATION Early cognitive impairment was prevalent and associated with poor outcomes in ICH patients, which decelerated short-term functional recovery.
Collapse
Affiliation(s)
- Zuo‐Qiao Li
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiao‐Qing Bu
- Department of Epidemiology, School of Public HealthChongqing Medical UniversityChongqingChina
| | - Jing Cheng
- Department of Neurology and NeurosurgeryThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lan Deng
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xin‐Ni Lv
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zi‐Jie Wang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiao Hu
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tian‐Nan Yang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hao Yin
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xue‐Yun Liu
- Department of NeurologyThe Second Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Li‐Bo Zhao
- Department of NeurologyYongchuan Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Cerebrovascular Disease ResearchChongqingChina
| | - Peng Xie
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qi Li
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurologyThe Second Affiliated Hospital of Anhui Medical UniversityAnhuiChina
- Chongqing Key Laboratory of Cerebrovascular Disease ResearchChongqingChina
| |
Collapse
|
14
|
Wang K, Zhang B, Du H, Duan H, Jiang Z, Fang S. Research landscape and trends of cerebral amyloid angiopathy: a 25-year scientometric analysis. Front Neurol 2024; 14:1334360. [PMID: 38259658 PMCID: PMC10800472 DOI: 10.3389/fneur.2023.1334360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Cerebral amyloid angiopathy (CAA), a cerebral small vessel disease affecting leptomeningeal and cortical small blood vessels, is a common cause of spontaneous lobar intracerebral hemorrhage and cognitive impairment, particularly in elderly patients. This study aims to investigate the field of CAA research from a scientometric perspective. Methods Publications related to CAA from January 1st, 1999 to September 29th, 2023 were retrieved from the Web of Science Core Collection database. The scientometric software VOSviewer and CiteSpace were used to analyze and visualize the publication trends, countries/regions, institutions, authors, journals, cited references, and keywords of CAA. Results A total of 2,798 publications related to CAA from 73 countries/regions, led by the United States, were included. The number of publications showed an increasing trend over time. Massachusetts General Hospital was the most productive institution, and authors Greenberg and Charidimou published the most papers and were most frequently co-cited. Journal of Alzheimer's Disease was the most prolific journal in this field, and Neurology was the most co-cited journal. Apart from "cerebral amyloid angiopathy", the most frequently used keywords were "Alzheimer's disease", "amyloid beta", "intracerebral hemorrhage", and "dementia". The burst keywords in recent years included "cortical superficial siderosis" and "dysfunction". Conclusions This scientometric analysis provides a comprehensive overview of CAA research over the past 25 years, and offers important insights for future research directions and scientific decision-making in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaokuan Fang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang L, Liu Q, Yue D, Liu J, Fu Y. Cerebral Amyloid Angiopathy: An Undeniable Small Vessel Disease. J Stroke 2024; 26:1-12. [PMID: 38326703 PMCID: PMC10850457 DOI: 10.5853/jos.2023.01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) has been proven to be the most common pathological change in cerebral small vessel disease except arteriosclerosis. In recent years, with the discovery of imaging technology and new imaging markers, the diagnostic rate of CAA has greatly improved. CAA plays an important role in non-hypertensive cerebral hemorrhage and cognitive decline. This review comprehensively describes the etiology, epidemiology, pathophysiological mechanisms, clinical features, imaging manifestations, imaging markers, diagnostic criteria, and treatment of CAA to facilitate its diagnosis and treatment and reduce mortality.
Collapse
Affiliation(s)
- Litao Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqi Yue
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Fu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Merella P, Casu G, Chessa P, Atzori E, Bandino S, Deiana G. When Atrial Fibrillation Meets Cerebral Amyloid Angiopathy: Current Evidence and Strategies. J Clin Med 2023; 12:7704. [PMID: 38137773 PMCID: PMC10743760 DOI: 10.3390/jcm12247704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Non-valvular atrial fibrillation (AF) and cerebral amyloid angiopathy (CAA) are two common diseases in elderly populations. Despite the effectiveness of oral anticoagulant therapy in cardioembolic stroke prevention, intracranial hemorrhage represents the most serious complication of these therapies. Cerebral amyloid angiopathy is one of the main risk factors for spontaneous intracranial bleeding, and this risk is highly increased by age and concomitant antithrombotic therapies. Cerebral amyloid angiopathy can be silent for years and then manifest with clinical features simulating TIA (TIA-mimics) or stroke in AF patients, pushing clinicians to rapidly start VKAs or DOACs, thus increasing the risk of intracranial bleeding if the diagnosis of CAA was unknown. Because the cerebral amyloid angiopathy is easily diagnosed with non-contrast MRI, suspecting the disease can avoid catastrophic complications. In this review, we will provide physicians managing anticoagulant therapies with key tips to familiarize themselves with cerebral amyloid angiopathy, with a focus on the possible clinical presentations and on the diagnostic criteria.
Collapse
Affiliation(s)
- Pierluigi Merella
- Department of Cardiology, Azienda Ospedaliero Universitaria di Sassari, Via De Nicola 1, 07100 Sassari, Italy; (G.C.); (E.A.); (S.B.)
| | - Gavino Casu
- Department of Cardiology, Azienda Ospedaliero Universitaria di Sassari, Via De Nicola 1, 07100 Sassari, Italy; (G.C.); (E.A.); (S.B.)
- Faculty of Medicine, University of Sassari, 07100 Sassari, Italy
| | - Paola Chessa
- Department of Pharmacy, San Francesco Hospital, 08100 Nuoro, Italy;
| | - Enrico Atzori
- Department of Cardiology, Azienda Ospedaliero Universitaria di Sassari, Via De Nicola 1, 07100 Sassari, Italy; (G.C.); (E.A.); (S.B.)
| | - Stefano Bandino
- Department of Cardiology, Azienda Ospedaliero Universitaria di Sassari, Via De Nicola 1, 07100 Sassari, Italy; (G.C.); (E.A.); (S.B.)
| | - Gianluca Deiana
- Department of Neurology and Stroke Unit, San Francesco Hospital, 08100 Nuoro, Italy;
| |
Collapse
|
17
|
Hampel H, Elhage A, Cho M, Apostolova LG, Nicoll JAR, Atri A. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain 2023; 146:4414-4424. [PMID: 37280110 PMCID: PMC10629981 DOI: 10.1093/brain/awad188] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Excess accumulation and aggregation of toxic soluble and insoluble amyloid-β species in the brain are a major hallmark of Alzheimer's disease. Randomized clinical trials show reduced brain amyloid-β deposits using monoclonal antibodies that target amyloid-β and have identified MRI signal abnormalities called amyloid-related imaging abnormalities (ARIA) as possible spontaneous or treatment-related adverse events. This review provides a comprehensive state-of-the-art conceptual review of radiological features, clinical detection and classification challenges, pathophysiology, underlying biological mechanism(s) and risk factors/predictors associated with ARIA. We summarize the existing literature and current lines of evidence with ARIA-oedema/effusion (ARIA-E) and ARIA-haemosiderosis/microhaemorrhages (ARIA-H) seen across anti-amyloid clinical trials and therapeutic development. Both forms of ARIA may occur, often early, during anti-amyloid-β monoclonal antibody treatment. Across randomized controlled trials, most ARIA cases were asymptomatic. Symptomatic ARIA-E cases often occurred at higher doses and resolved within 3-4 months or upon treatment cessation. Apolipoprotein E haplotype and treatment dosage are major risk factors for ARIA-E and ARIA-H. Presence of any microhaemorrhage on baseline MRI increases the risk of ARIA. ARIA shares many clinical, biological and pathophysiological features with Alzheimer's disease and cerebral amyloid angiopathy. There is a great need to conceptually link the evident synergistic interplay associated with such underlying conditions to allow clinicians and researchers to further understand, deliberate and investigate on the combined effects of these multiple pathophysiological processes. Moreover, this review article aims to better assist clinicians in detection (either observed via symptoms or visually on MRI), management based on appropriate use recommendations, and general preparedness and awareness when ARIA are observed as well as researchers in the fundamental understanding of the various antibodies in development and their associated risks of ARIA. To facilitate ARIA detection in clinical trials and clinical practice, we recommend the implementation of standardized MRI protocols and rigorous reporting standards. With the availability of approved amyloid-β therapies in the clinic, standardized and rigorous clinical and radiological monitoring and management protocols are required to effectively detect, monitor, and manage ARIA in real-world clinical settings.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Aya Elhage
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Min Cho
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James A R Nicoll
- Division of Clinical Neurosciences, Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ 85351, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Sin MK, Zamrini E, Ahmed A, Nho K, Hajjar I. Anti-Amyloid Therapy, AD, and ARIA: Untangling the Role of CAA. J Clin Med 2023; 12:6792. [PMID: 37959255 PMCID: PMC10647766 DOI: 10.3390/jcm12216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Anti-amyloid therapies (AATs), such as anti-amyloid monoclonal antibodies, are emerging treatments for people with early Alzheimer's disease (AD). AATs target amyloid β plaques in the brain. Amyloid-related imaging abnormalities (ARIA), abnormal signals seen on magnetic resonance imaging (MRI) of the brain in patients with AD, may occur spontaneously but occur more frequently as side effects of AATs. Cerebral amyloid angiopathy (CAA) is a major risk factor for ARIA. Amyloid β plays a key role in the pathogenesis of AD and of CAA. Amyloid β accumulation in the brain parenchyma as plaques is a pathological hallmark of AD, whereas amyloid β accumulation in cerebral vessels leads to CAA. A better understanding of the pathophysiology of ARIA is necessary for early detection of those at highest risk. This could lead to improved risk stratification and the ultimate reduction of symptomatic ARIA. Histopathological confirmation of CAA by brain biopsy or autopsy is the gold standard but is not clinically feasible. MRI is an available in vivo tool for detecting CAA. Cerebrospinal fluid amyloid β level testing and amyloid PET imaging are available but do not offer specificity for CAA vs amyloid plaques in AD. Thus, developing and testing biomarkers as reliable and sensitive screening tools for the presence and severity of CAA is a priority to minimize ARIA complications.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | | | - Ali Ahmed
- VA Medical Center, Washington, DC 20242, USA;
| | - Kwangsik Nho
- School of Medicine, Indianna University, Indianapolis, IN 46202, USA;
| | - Ihab Hajjar
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| |
Collapse
|
19
|
Banerjee G, Collinge J, Fox NC, Lashley T, Mead S, Schott JM, Werring DJ, Ryan NS. Clinical considerations in early-onset cerebral amyloid angiopathy. Brain 2023; 146:3991-4014. [PMID: 37280119 PMCID: PMC10545523 DOI: 10.1093/brain/awad193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an important cerebral small vessel disease associated with brain haemorrhage and cognitive change. The commonest form, sporadic amyloid-β CAA, usually affects people in mid- to later life. However, early-onset forms, though uncommon, are increasingly recognized and may result from genetic or iatrogenic causes that warrant specific and focused investigation and management. In this review, we firstly describe the causes of early-onset CAA, including monogenic causes of amyloid-β CAA (APP missense mutations and copy number variants; mutations of PSEN1 and PSEN2) and non-amyloid-β CAA (associated with ITM2B, CST3, GSN, PRNP and TTR mutations), and other unusual sporadic and acquired causes including the newly-recognized iatrogenic subtype. We then provide a structured approach for investigating early-onset CAA, and highlight important management considerations. Improving awareness of these unusual forms of CAA amongst healthcare professionals is essential for facilitating their prompt diagnosis, and an understanding of their underlying pathophysiology may have implications for more common, late-onset, forms of the disease.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, London, W1 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| |
Collapse
|
20
|
Bangari DS, Lanigan LG, Cramer SD, Grieves JL, Meisner R, Rogers AB, Galbreath EJ, Bolon B. Toxicologic Neuropathology of Novel Biotherapeutics. Toxicol Pathol 2023; 51:414-431. [PMID: 38380881 DOI: 10.1177/01926233241230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - René Meisner
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | |
Collapse
|
21
|
Thomas J, Jezzard P, Webb AJS. Low-frequency oscillations in the brain show differential regional associations with severity of cerebral small vessel disease: a systematic review. Front Neurosci 2023; 17:1254209. [PMID: 37719157 PMCID: PMC10501452 DOI: 10.3389/fnins.2023.1254209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Cerebral small vessel disease (cSVD) is associated with endothelial dysfunction but the pathophysiology is poorly understood. Low-frequency oscillations (LFOs) in the BOLD signal partly reflect cerebrovascular function and have the potential to identify endothelial dysfunction in cSVD. A systematic review was performed to assess the reported relationships between imaging markers of cSVD and LFOs. Methods Medline and EMBASE were searched for original studies reporting an association between LFOs and STRIVE-defined imaging markers of cSVD, including: white matter hyperintensities (WMH), enlarged perivascular spaces, lacunes, CADASIL, and cerebral microbleeds, from inception to September 1, 2022. Variations in LFOs were extracted, where available, on a global, tissue-specific, or regional level, in addition to participant demographics, data acquisition, methods of analysis, and study quality. Where a formal meta-analysis was not possible, differences in the number of studies reporting LFO magnitude by presence or severity of cSVD were determined by sign test. Results 15 studies were included from 841 titles. Studies varied in quality, acquisition parameters, and in method of analysis. Amplitude of low-frequency fluctuation (ALFF) in resting state fMRI was most commonly assessed (12 studies). Across 15 studies with differing markers of cSVD (9 with WMH; 1 with cerebral microbleeds; 1 with lacunar infarcts; 1 with CADASIL; 3 with multiple markers), LFOs in patients with cSVD were decreased in the posterior cortex (22 of 32 occurrences across all studies, p = 0.05), increased in the deep grey nuclei (7 of 7 occurrences across all studies, p = 0.016), and potentially increased in the temporal lobes (9 of 11 occurrences across all studies, p = 0.065). Conclusion Despite limited consensus on the optimal acquisition and analysis methods, there was reasonably consistent regional variation in LFO magnitude by severity of cSVD markers, supporting its potential as a novel index of endothelial dysfunction. We propose a consistent approach to measuring LFOs to characterise targetable mechanisms underlying cSVD.
Collapse
Affiliation(s)
- James Thomas
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Jezzard
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alastair J. S. Webb
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Wu Y, Huang X, Yang L, Liu Y. Purinergic neurotransmission receptor P2X4 silencing alleviates intracerebral hemorrhage-induced neuroinflammation by blocking the NLRP1/Caspase-1 pathway. Sci Rep 2023; 13:14288. [PMID: 37652931 PMCID: PMC10471699 DOI: 10.1038/s41598-023-40748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
This study is performed to explore the role of P2X4 in intracerebral hemorrhage (ICH) and the association between P2X4 and the NLRP1/Caspase-1 pathway. The mouse ICH model was established via collagenase injection into the right basal ganglia. P2X4 expression in brain tissues was knocked down via intracerebroventricular injection with adeno-associated virus (AAV) harboring shRNA against shP2X4. The gene expression of P2X4 and protein levels related to NLRP1 inflammasome were detected using qRT-PCR and Western blot analysis, respectively. Muramyl dipeptide (an activator of NLRP1) was used to activate NLRP1 in brain tissues. ICH induced high expression of P2X4 in mouse brain tissues. The knockdown of P2X4 alleviated short- and long-term neurological deficits of ICH mice, as well as inhibited the tissue expression and serum levels of pro-inflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-1β. Additionally, the expressions of NLRP1, ASC, and pro-Caspase-1 were down-regulated upon P2X4 silencing. Moreover, neurological impairment and the expression and secretion of cytokines after P2X4 silencing were aggravated by the additional administration of MDP. P2X4 knockdown represses neuroinflammation in brain tissues after ICH. Mechanistically, P2X4 inhibition exerts a neuroprotective effect in ICH by blocking the NLRP1/Caspase-1 pathway.
Collapse
Affiliation(s)
- Yuanshui Wu
- Department of Neurosurgery, ShangRao People's Hospital, No. 87, Shuyuan Road, Shangrao City, 334000, Jiangxi Province, China.
| | - Xiaoli Huang
- JiangXi Medical College, No. 399, Zhimin Road, Xinzhou District, Shangrao City, 334099, Jiangxi Province, China
| | - Le Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou City, 510515, Guangdong Province, China
| | - Yuanjie Liu
- JiangXi Medical College, No. 399, Zhimin Road, Xinzhou District, Shangrao City, 334099, Jiangxi Province, China
| |
Collapse
|
23
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
24
|
Coughlan C, Lim E, Chandratheva A, Jager R, Werring DJ. Cerebral amyloid angiopathy-related inflammation: a rare but important cause of acute confusion on the general medical take. Br J Hosp Med (Lond) 2023; 84:1-3. [PMID: 37646551 DOI: 10.12968/hmed.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Charles Coughlan
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emma Lim
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arvind Chandratheva
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rolf Jager
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - David J Werring
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
26
|
Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, Sohrabi HR, Kozberg MG, Shirzadi Z, Terwindt GM, van Buchem MA, Smith EE, Werring DJ, Martins RN, Wermer MJH, Greenberg SM. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol 2023; 22:632-642. [PMID: 37236210 DOI: 10.1016/s1474-4422(23)00114-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 05/28/2023]
Abstract
Cerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid β, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions. This timeline of stages and the mechanistic processes that link them have substantial implications for identifying disease-modifying interventions for cerebral amyloid angiopathy and potentially for other cerebral small vessel diseases.
Collapse
Affiliation(s)
- Emma A Koemans
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jasmeer P Chhatwal
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mariel G Kozberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Gisela M Terwindt
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Ralph N Martins
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Marieke J H Wermer
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Steven M Greenberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS. Vascular contributions to Alzheimer's disease. Transl Res 2023; 254:41-53. [PMID: 36529160 PMCID: PMC10481451 DOI: 10.1016/j.trsl.2022.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bolanle M Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeremy H Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
28
|
Chen Zhou ZH, Salvador Álvarez E, Hilario Barrio A, Cárdenas Del Carre AM, Romero Coronado J, Ramos González A. Primary and secondary non-traumatic intra-cerebral haemorrhage: MRI findings. RADIOLOGÍA (ENGLISH EDITION) 2023; 65:149-164. [PMID: 37059580 DOI: 10.1016/j.rxeng.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 04/03/2023]
Abstract
Intracranial haemorrhage (ICH) accounts for 10-30% of strokes, being the form with the worst prognosis. The causes of cerebral haemorrhage can be both primary, mainly hypertensive and amyloid angiopathy, and secondary, such as tumours or vascular lesions. Identifying the aetiology of bleeding is essential since it determines the treatment to be performed and the patient's prognosis. The main objective of this review is to review the main magnetic resonance imaging (MRI) findings of the primary and secondary causes of ICH, focusing on those radiological signs that help guide bleeding due to primary angiopathy or secondary to an underlying lesion. The indications for MRI in the event of non-traumatic intracranial haemorrhage will also be reviewed.
Collapse
Affiliation(s)
- Z H Chen Zhou
- Departamento de Radiodiagnóstico, Sección de Neuroradiología, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - E Salvador Álvarez
- Departamento de Radiodiagnóstico, Sección de Neuroradiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Hilario Barrio
- Departamento de Radiodiagnóstico, Sección de Neuroradiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A M Cárdenas Del Carre
- Departamento de Radiodiagnóstico, Sección de Neuroradiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J Romero Coronado
- Departamento de Radiodiagnóstico, Sección de Neuroradiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Ramos González
- Departamento de Radiodiagnóstico, Sección de Neuroradiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
29
|
Rossi J, Hermier M, Eker OF, Berthezene Y, Bani-Sadr A. Etiologies of spontaneous acute intracerebral hemorrhage: A pictorial review. Clin Imaging 2023; 95:10-23. [PMID: 36577316 DOI: 10.1016/j.clinimag.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Spontaneous acute intracerebral hemorrhage (SAIH) is a common and life-threatening condition that affects more than three million patients each year. Of these, one in three patients die within one month of onset and the remaining two in three patients have varying degrees of disability and neurological impairment. The role of radiology is paramount in optimizing patient outcomes by diagnosing SAIH, its potential complications, and the most likely etiology. While the positive diagnosis of SAIH is straightforward, the etiologic diagnosis is broad, covering primary SAIH (hypertension, cerebral amyloid angiopathy) and secondary SAIH (vascular malformations, nonatheromatous vasculopathies, neoplasia, coagulation disorders, toxicants). This pictorial review illustrates the imaging of spontaneous SAIH with an emphasis on etiologic workup.
Collapse
Affiliation(s)
- Julien Rossi
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Marc Hermier
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Omer Faruk Eker
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Yves Berthezene
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France; CREATIS Laboratory, CNRS UMR 5220, INSERM U 5220, Claude Bernard Lyon I University, 7 avenue Jean Capelle O, 69100 Villeurbanne, France
| | - Alexandre Bani-Sadr
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France; CREATIS Laboratory, CNRS UMR 5220, INSERM U 5220, Claude Bernard Lyon I University, 7 avenue Jean Capelle O, 69100 Villeurbanne, France.
| |
Collapse
|
30
|
Biessels GJ, Costa AS. Cerebral Amyloid Angiopathy-How to Translate Updated Diagnostic Criteria for This Multifaceted Disorder to Clinical Practice? JAMA Neurol 2023; 80:225-226. [PMID: 36689205 DOI: 10.1001/jamaneurol.2022.5060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This Viewpoint discusses recent efforts to update diagnostic criteria for cerebral amyloid angiopathy as well as questions and challenges in counseling patients about prognosis and deciding on optimal treatment.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Center Juelich and RWTH Aachen, Aachen, Germany
| |
Collapse
|
31
|
Zuliani G, Marsillach J, Trentini A, Rosta V, Cervellati C. Lipoprotein-Associated Phospholipase A2 Activity as Potential Biomarker of Vascular Dementia. Antioxidants (Basel) 2023; 12:597. [PMID: 36978845 PMCID: PMC10045550 DOI: 10.3390/antiox12030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
A wealth of evidence suggests that Lipoprotein-associated phospholipase A2 (Lp-PLA2) plays a relevant role in atherogenesis and inflammation, which in turn are associated with the risk of developing dementia. The aim of this study was to evaluate whether serum Lp-PLA2 activity might be an early and/or late biomarker for different forms of dementia. Serum Lp-PLA2 activity was assessed in older patients with mild cognitive impairment (MCI, n = 166; median clinical follow-up = 29 months), Late-Onset Alzheimer's disease (LOAD, n = 176), vascular dementia (VAD, n = 43), dementia characterized by an overlap between LOAD and VAD (AD-VAD MIXED dementia) (n = 136), other dementia subtypes (n = 45), and cognitively normal controls (n = 151). We found a significant trend towards higher levels of Lp-PLA2 activity in VAD compared with the other groups (ANOVA, p = 0.028). Similarly, Lp-PLA2 activity was greater in MCI converting to VAD compared with those that did not or did convert to the other types of dementia (ANOVA, p = 0.011). After adjusting for potential confounders, high levels of Lp-PLA2 activity were associated with the diagnosis of VAD (O.R. = 2.38, 95% C.I. = 1.06-5.10), but not with other types of dementia. Our data suggest that increased serum Lp-PLA2 activity may represent a potential biomarker for the diagnosis of VAD.
Collapse
Affiliation(s)
- Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 NE Roosevelt Way, Seattle, WA 98105, USA
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
32
|
Chen Zhou Z, Salvador Álvarez E, Hilario Barrio A, María Cárdenas del Carre A, Romero Coronado J, Ramos González A. Hemorragia cerebral primaria y secundaria no traumática: Hallazgos en RM. RADIOLOGIA 2023. [DOI: 10.1016/j.rx.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Zhou G, Xiang T, Xu Y, He B, Wu L, Zhu G, Xie J, Yao L, Xiao Z. Fruquintinib/HMPL-013 ameliorates cognitive impairments and pathology in a mouse model of cerebral amyloid angiopathy (CAA). Eur J Pharmacol 2023; 939:175446. [PMID: 36470443 DOI: 10.1016/j.ejphar.2022.175446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-β (Aβ) accumulation, and always accompanied by Alzheimer's disease (AD). The mechanisms revealing CAA pathogenesis are still unclear, and it is challenging to develop an efficient therapeutic strategy for its treatment. Vascular endothelial growth factor (VEGF) and its receptors including VEGFR-1,-2,-3 activation are involved in Aβ processing, and modulate numerous cellular events associated with central nervous system (CNS) diseases. In the present study, we attempted to explore the regulatory function of fruquintinib (also named as HMPL-013), a highly selective inhibitor of VEGFR-1,-2,-3 tyrosine kinases, on CAA progression in Tg-SwDI mice. Here, we found that HMPL-013-rich diet consumption for 12 months significantly improved the behavioral performances and cerebral blood flow (CBF) of Tg-SwDI mice compared with the vehicle group. Importantly, HMPL-013 administration considerably reduced Aβ1-40 and Aβ1-42 burden in cortex and hippocampus of Tg-SwDI mice through regulating Aβ metabolism process. Congo red staining confirmed Aβ deposition in vessel walls, reflecting CAA formation, which was, however, strongly ameliorated after HMPL-013 treatment. Neuron death, aberrant glial activation and pro-inflammatory response in brain tissues of Tg-SwDI mice were dramatically alleviated after HMPL-013 consumption. More studies showed that the protective effects of HMPL-013 against CAA might be partially attributed to its regulation on the expression of genes associated with blood vasculature. Intriguingly, VEGF and phosphorylated VEGFR-1,-2 protein expression levels were remarkably decreased by HMPL-013 in cortex and hippocampus of Tg-SwDI mice, which were validated in HMPL-013-treated brain vascular endothelial cells (BVECs) under hypoxia. Finally, we found that VEGF-induced human umbilical vein endothelial cells (HUVEC) proliferation and tube formation were strongly abolished upon HMPL-013 exposure. Collectively, all these findings demonstrated that oral administration of HMPL-013 had therapeutic potential against CAA by reducing Aβ deposition, inflammation and neuron death via suppressing VEGF/VEGFR-1,-2 signaling.
Collapse
Affiliation(s)
- Guijuan Zhou
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China; Department of Rehabilitation Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Tao Xiang
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Yan Xu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Bing He
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Guanghua Zhu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Juan Xie
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Lan Yao
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Zijian Xiao
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China.
| |
Collapse
|
34
|
Jang H, Chun MY, Kim HJ, Na DL, Seo SW. The effects of imaging markers on clinical trajectory in cerebral amyloid angiopathy: a longitudinal study in a memory clinic. Alzheimers Res Ther 2023; 15:14. [PMID: 36635759 PMCID: PMC9835259 DOI: 10.1186/s13195-023-01161-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND We investigated the relevance of various imaging markers for the clinical trajectory of cerebral amyloid angiopathy (CAA) patients in a memory clinic. METHODS A total of 226 patients with probable CAA were included in this study with a mean follow-up period of 3.5 ± 2.7 years. Although all had more than one follow-up visit, 173 underwent follow-up Mini-Mental Status Examination (MMSE) and Clinical Dementia Rating Sum of Boxes (CDR-SB) ranging from 2 to 15 time points. Among 226, 122 patients underwent amyloid-β (Aβ) PET imaging. The prevalence of intracerebral hemorrhage (ICH) and its imaging predictors was investigated. The effects of CAA imaging markers and Aβ PET positivity on longitudinal cognition based on the MMSE and CDR-SB were evaluated using mixed effects models. RESULTS During the follow-up, 10 (4.4%) patients developed ICH: cortical superficial siderosis (cSS; hazard ratio [HR], 6.45) and previous lobar ICH (HR, 4.9), but lobar cerebral microbleeds (CMBs) were not predictors of ICH development. The presence of CMIs (p = 0.045) and Aβ positivity (p = 0.002) were associated with worse MMSE trajectory in CAA patients. Regarding CDR-SB trajectory, only Aβ positivity was marginally associated with worse longitudinal change (p = 0.050). CONCLUSION The results of the present study indicated that various imaging markers in CAA patients have different clinical relevance and predictive values for further clinical courses.
Collapse
Affiliation(s)
- Hyemin Jang
- grid.414964.a0000 0001 0640 5613Samsung Alzheimer’s Convergence Research Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Min Young Chun
- grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Hee Jin Kim
- grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Duk L. Na
- grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,Happymind Clinic, Seoul, South Korea
| | - Sang Won Seo
- grid.414964.a0000 0001 0640 5613Samsung Alzheimer’s Convergence Research Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351 South Korea ,grid.414964.a0000 0001 0640 5613Neuroscience Center, Samsung Medical Center, Seoul, South Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
35
|
Chen CH, Khnaijer MK, Beaudin AE, McCreary CR, Gee M, Saad F, Frayne R, Ismail Z, Pike GB, Camicioli R, Smith EE. Subcortical volumes in cerebral amyloid angiopathy compared with Alzheimer's disease and controls. Front Neurosci 2023; 17:1139196. [PMID: 37139517 PMCID: PMC10149850 DOI: 10.3389/fnins.2023.1139196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Previous reports have suggested that patients with cerebral amyloid angiopathy (CAA) may harbor smaller white matter, basal ganglia, and cerebellar volumes compared to age-matched healthy controls (HC) or patients with Alzheimer's disease (AD). We investigated whether CAA is associated with subcortical atrophy. Methods The study was based on the multi-site Functional Assessment of Vascular Reactivity cohort and included 78 probable CAA (diagnosed according to the Boston criteria v2.0), 33 AD, and 70 HC. Cerebral and cerebellar volumes were extracted from brain 3D T1-weighted MRI using FreeSurfer (v6.0). Subcortical volumes, including total white matter, thalamus, basal ganglia, and cerebellum were reported as proportion (%) of estimated total intracranial volume. White matter integrity was quantified by the peak width of skeletonized mean diffusivity. Results Participants in the CAA group were older (74.0 ± 7.0, female 44%) than the AD (69.7 ± 7.5, female 42%) and HC (68.8 ± 7.8, female 69%) groups. CAA participants had the highest white matter hyperintensity volume and worse white matter integrity of the three groups. After adjusting for age, sex, and study site, CAA participants had smaller putamen volumes (mean differences, -0.024% of intracranial volume; 95% confidence intervals, -0.041% to -0.006%; p = 0.005) than the HCs but not AD participants (-0.003%; -0.024 to 0.018%; p = 0.94). Other subcortical volumes including subcortical white matter, thalamus, caudate, globus pallidus, cerebellar cortex or cerebellar white matter were comparable between all three groups. Conclusion In contrast to prior studies, we did not find substantial atrophy of subcortical volumes in CAA compared to AD or HCs, except for the putamen. Differences between studies may reflect heterogeneity in CAA presenting syndromes or severity.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mary Klir Khnaijer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Andrew E. Beaudin
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Cheryl R. McCreary
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Myrlene Gee
- Division of Neurology, Department of Medicine and Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Feryal Saad
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Richard Camicioli
- Division of Neurology, Department of Medicine and Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Eric E. Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- *Correspondence: Eric E. Smith,
| |
Collapse
|
36
|
Michno W, Koutarapu S, Camacho R, Toomey C, Stringer K, Minta K, Ge J, Jha D, Fernandez‐Rodriguez J, Brinkmalm G, Zetterberg H, Blennow K, Ryan NS, Lashley T, Hanrieder J. Chemical traits of cerebral amyloid angiopathy in familial British-, Danish-, and non-Alzheimer's dementias. J Neurochem 2022; 163:233-246. [PMID: 36102248 PMCID: PMC9828067 DOI: 10.1111/jnc.15694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/β-amyloid (Aβ) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with Aβ, while in contrast no Aβ deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and Aβ co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with Aβ x-42 and Aβ x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated Aβ. When compared with FDD, Aβ in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with Aβ3pE-40 and Aβ3-40 but not with Aβx-42 species. This suggests an increased aggregation propensity of Aβ in FDD that promotes co-aggregation of both Aβ and ADan. Further, CAA maturity appears to be mainly governed by Aβ content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology. Cover Image for this issue: https://doi.org/10.1111/jnc.15424.
Collapse
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
- Department of Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Srinivas Koutarapu
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Rafael Camacho
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Christina Toomey
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Katie Stringer
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Karolina Minta
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Junyue Ge
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Durga Jha
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
| | - Julia Fernandez‐Rodriguez
- Center for Cellular Imaging, Core FacilitiesThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute, UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Natalie S. Ryan
- UK Dementia Research Institute, UCLLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| | - Tammaryn Lashley
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology, University College LondonLondonUK
| | - Jörg Hanrieder
- Department of Psychiatry and NeurochemistrySahlgrenska Academy, University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
- Dementia Research Center, Department of Neurodegenerative DiseaseQueen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
37
|
Sharma B, Gee M, Nelles K, Cox E, Irving E, Saad F, Yuan J, McCreary CR, Ismail Z, Camicioli R, Smith E. Gait in Cerebral Amyloid Angiopathy. J Am Heart Assoc 2022; 11:e025886. [PMID: 36129041 PMCID: PMC9673747 DOI: 10.1161/jaha.121.025886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Background Gait is a complex task requiring coordinated efforts of multiple brain networks. To date, there is little evidence on whether gait is altered in cerebral amyloid angiopathy (CAA). We aimed to identify impairments in gait performance and associations between gait impairment and neuroimaging markers of CAA, cognition, and falls. Methods and Results Gait was assessed using the Zeno Walkway during preferred pace and dual task walks, and grouped into gait domains (Rhythm, Pace, Postural Control, and Variability). Participants underwent neuropsychological testing and neuroimaging. Falls and fear of falling were assessed through self-report questionnaires. Gait domain scores were standardized and analyzed using linear regression adjusting for age, sex, height, and other covariates. Participants were patients with CAA (n=29), Alzheimer disease with mild dementia (n=16), mild cognitive impairment (n=24), and normal elderly controls (n=47). CAA and Alzheimer disease had similarly impaired Rhythm, Pace, and Variability, and higher dual task cost than normal controls or mild cognitive impairment. Higher Pace score was associated with better global cognition, processing speed, and memory. Gait measures were not correlated with microbleed count or white matter hyperintensity volume. Number of falls was not associated with gait domain scores, but participants with low fear of falling had higher Pace (odds ratio [OR], 2.61 [95% CI, 1.59-4.29]) and lower Variability (OR, 1.64 [95% CI, 1.10-2.44]). Conclusions CAA is associated with slower walking, abnormal rhythm, and greater gait variability than in healthy controls. Future research is needed to identify the mechanisms underlying gait impairments in CAA, and whether they predict future falls.
Collapse
Affiliation(s)
- Breni Sharma
- Cumming School of MedicineUniversity of CalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryAlbertaCanada
| | - Myrlene Gee
- Department of Medicine (Neurology)University of AlbertaEdmontonAlbertaCanada
| | - Krista Nelles
- Department of Medicine (Neurology)University of AlbertaEdmontonAlbertaCanada
| | - Emily Cox
- Hotchkiss Brain InstituteUniversity of CalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryAlbertaCanada
| | - Elisabeth Irving
- Hotchkiss Brain InstituteUniversity of CalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryAlbertaCanada
| | - Feryal Saad
- Hotchkiss Brain InstituteUniversity of CalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryAlbertaCanada
- Seaman Family MR Research CentreUniversity of CalgaryAlbertaCanada
| | - Jerald Yuan
- Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Cheryl R. McCreary
- Hotchkiss Brain InstituteUniversity of CalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryAlbertaCanada
- Seaman Family MR Research CentreUniversity of CalgaryAlbertaCanada
| | - Zahinoor Ismail
- Cumming School of MedicineUniversity of CalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryAlbertaCanada
- Seaman Family MR Research CentreUniversity of CalgaryAlbertaCanada
- Departments of Psychiatry and Community Health SciencesUniversity of CalgaryAlbertaCanada
| | - Richard Camicioli
- Department of Medicine (Neurology)University of AlbertaEdmontonAlbertaCanada
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Eric E. Smith
- Cumming School of MedicineUniversity of CalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryAlbertaCanada
- Seaman Family MR Research CentreUniversity of CalgaryAlbertaCanada
| |
Collapse
|
38
|
Venular amyloid accumulation in transgenic Fischer 344 Alzheimer’s disease rats. Sci Rep 2022; 12:15287. [PMID: 36088484 PMCID: PMC9464208 DOI: 10.1038/s41598-022-19549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Strong evidence demonstrates a significant association between cerebral amyloid angiopathy (CAA) and Alzheimer’s disease (AD). For this reason, interest in understanding the underlying vascular pathologies that contribute to AD remain. CAA research has primarily focused on arterioles and capillaries, overlooking the draining venules. Therefore, this study sought to examine venular amyloid pathology and its relationship to arteriolar amyloidosis throughout AD progression in the TgF344-AD rat model. Antibodies targeting the amyloid-beta peptide (Aβ) sequence suggest morphological differences between arteriolar and venular amyloid. Mass spectrometric analyses of isolated cortical parenchymal plaques, arteriolar and venular amyloid demonstrated presence of Aβ in all three samples, as well as proteins known to be associated with AD. Histopathological analysis indicates a significant age effect for both arteriolar and venular amyloid accumulation, with accumulation initiated in the somatosensory cortex followed by the motor and cingulate cortex. Lastly, significant arteriolar amyloid accumulates relative to venular amyloid deposition in AD progression. Overall, understanding venular and arteriolar amyloid pathology provides insight into the complex connection between CAA and AD.
Collapse
|
39
|
Pizzini FB, Conti E, Bianchetti A, Splendiani A, Fusco D, Caranci F, Bozzao A, Landi F, Gandolfo N, Farina L, Miele V, Trabucchi M, Frisoni GB, Bastianello S. Radiological assessment of dementia: the Italian inter-society consensus for a practical and clinically oriented guide to image acquisition, evaluation, and reporting. LA RADIOLOGIA MEDICA 2022; 127:998-1022. [PMID: 36070064 PMCID: PMC9508052 DOI: 10.1007/s11547-022-01534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice. RESULTS We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report. In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine.
Collapse
Affiliation(s)
- Francesca B. Pizzini
- Radiology, Department of Diagnostic and Public Health, University of Verona, Piazzale L.A. Scuro, 10, 37100 Verona, Italy
| | - Enrico Conti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angelo Bianchetti
- Department of Medicine and Rehabilitation, Clinical Institute S. Anna-Gruppo San Donato, Brescia, Italy
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Domenico Fusco
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ferdinando Caranci
- Department of Medicine of Precision, School of Medicine, “Luigi Vanvitelli” University of Campania, 80147 Naples, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Rome, Italy
| | - Francesco Landi
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy
| | - Lisa Farina
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Vittorio Miele
- Dipartimento Di Radiodiagnostica Emergenza-Urgenza, Azienda Universitaria Careggi, Florence, Italy
| | - Marco Trabucchi
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
- University of “Tor Vergata”, Rome, Italy
| | - Giovanni B. Frisoni
- Centre de La Mémoire, Geneva University and University Hospitals, 1205 Geneva, Switzerland
| | - Stefano Bastianello
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Zou J, Chen H, Liu C, Cai Z, Yang J, Zhang Y, Li S, Lin H, Tan M. Development and validation of a nomogram to predict the 30-day mortality risk of patients with intracerebral hemorrhage. Front Neurosci 2022; 16:942100. [PMID: 36033629 PMCID: PMC9400715 DOI: 10.3389/fnins.2022.942100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 12/28/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a stroke syndrome with an unfavorable prognosis. Currently, there is no comprehensive clinical indicator for mortality prediction of ICH patients. The purpose of our study was to construct and evaluate a nomogram for predicting the 30-day mortality risk of ICH patients. Methods ICH patients were extracted from the MIMIC-III database according to the ICD-9 code and randomly divided into training and verification cohorts. The least absolute shrinkage and selection operator (LASSO) method and multivariate logistic regression were applied to determine independent risk factors. These risk factors were used to construct a nomogram model for predicting the 30-day mortality risk of ICH patients. The nomogram was verified by the area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA). Results A total of 890 ICH patients were included in the study. Logistic regression analysis revealed that age (OR = 1.05, P < 0.001), Glasgow Coma Scale score (OR = 0.91, P < 0.001), creatinine (OR = 1.30, P < 0.001), white blood cell count (OR = 1.10, P < 0.001), temperature (OR = 1.73, P < 0.001), glucose (OR = 1.01, P < 0.001), urine output (OR = 1.00, P = 0.020), and bleeding volume (OR = 1.02, P < 0.001) were independent risk factors for 30-day mortality of ICH patients. The calibration curve indicated that the nomogram was well calibrated. When predicting the 30-day mortality risk, the nomogram exhibited good discrimination in the training and validation cohorts (C-index: 0.782 and 0.778, respectively). The AUCs were 0.778, 0.733, and 0.728 for the nomogram, Simplified Acute Physiology Score II (SAPSII), and Oxford Acute Severity of Illness Score (OASIS), respectively, in the validation cohort. The IDI and NRI calculations and DCA analysis revealed that the nomogram model had a greater net benefit than the SAPSII and OASIS scoring systems. Conclusion This study identified independent risk factors for 30-day mortality of ICH patients and constructed a predictive nomogram model, which may help to improve the prognosis of ICH patients.
Collapse
Affiliation(s)
- Jianyu Zou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huihuang Chen
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cuiqing Liu
- Department of Nursing, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhenbin Cai
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie Yang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunlong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojin Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongsheng Lin
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hongsheng Lin,
| | - Minghui Tan
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Minghui Tan,
| |
Collapse
|
41
|
Goeldlin M, Stewart C, Radojewski P, Wiest R, Seiffge D, Werring DJ. Clinical neuroimaging in intracerebral haemorrhage related to cerebral small vessel disease: contemporary practice and emerging concepts. Expert Rev Neurother 2022; 22:579-594. [PMID: 35850578 DOI: 10.1080/14737175.2022.2104157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION About 80% of all non-traumatic intracerebral haemorrhage (ICH) are caused by the sporadic cerebral small vessel diseases deep perforator arteriopathy (DPA, also termed hypertensive arteriopathy or arteriolosclerosis) and cerebral amyloid angiopathy (CAA), though these frequently co-exist in older people. Contemporary neuroimaging (MRI and CT) detects an increasing spectrum of haemorrhagic and non-haemorrhagic imaging biomarkers of small vessel disease which may identify the underlying arteriopathies. AREAS COVERED We discuss biomarkers for cerebral small vessel disease subtypes in ICH, and explore their implications for clinical practice and research. EXPERT OPINION ICH is not a single disease, but results from a defined range of vascular pathologies with important implications for prognosis and treatment. The terms "primary" and "hypertensive" ICH are poorly defined and should be avoided, as they encourage incomplete investigation and classification. Imaging-based criteria for CAA will show improved diagnostic accuracy, but specific imaging biomarkers of DPA are needed. Ultra-high-field 7T-MRI using structural and quantitative MRI may provide further insights into mechanisms and pathophysiology of small vessel disease. We expect neuroimaging biomarkers and classifications to allow personalized treatments (e.g. antithrombotic drugs) in clinical practice and to improve patient selection and monitoring in trials of targeted therapies directed at the underlying arteriopathies.
Collapse
Affiliation(s)
- Martina Goeldlin
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Catriona Stewart
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Piotr Radojewski
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital University Hospital Bern, Switzerland
| | - David Seiffge
- Department of Neurology, Inselspital Bern University Hospital and University of Bern, Bern, Switzerland
| | - David J Werring
- Stroke Research Group, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
42
|
Gokcal E, Horn MJ, Becker JA, Das AS, Schwab K, Biffi A, Rost N, Rosand J, Viswanathan A, Polimeni JR, Johnson KA, Greenberg SM, Gurol ME. Effect of vascular amyloid on white matter disease is mediated by vascular dysfunction in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 2022; 42:1272-1281. [PMID: 35086372 PMCID: PMC9207495 DOI: 10.1177/0271678x221076571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We postulated that vascular dysfunction mediates the relationship between amyloid load and white matter hyperintensities (WMH) in cerebral amyloid angiopathy (CAA). Thirty-eight cognitively healthy patients with CAA (mean age 70 ± 7.1) were evaluated. WMH was quantified and expressed as percent of total intracranial volume (pWMH) using structural MRI. Mean global cortical Distribution Volume Ratio representing Pittsburgh Compound B (PiB) uptake (PiB-DVR) was calculated from PET scans. Time-to-peak [TTP] of blood oxygen level-dependent response to visual stimulation was used as an fMRI measure of vascular dysfunction. Higher PiB-DVR correlated with prolonged TTP (r = 0.373, p = 0.021) and higher pWMH (r = 0.337, p = 0.039). Prolonged TTP also correlated with higher pWMH (r = 0.485, p = 0.002). In a multivariate linear regression model, TTP remained independently associated with pWMH (p = 0.006) while PiB-DVR did not (p = 0.225). In a bootstrapping model, TTP had a significant indirect effect (ab = 0.97, 95% CI: 0.137-2.461), supporting that the association between PiB-DVR and pWMH is mediated by TTP response. There was no longer a direct effect independent of the hypothesized pathway. Our study suggests that the effect of vascular amyloid load on white matter disease is mediated by vascular dysfunction in CAA. Amyloid lowering strategies might prevent pathophysiological processes leading to vascular dysfunction, therefore limiting ischemic brain injury.
Collapse
Affiliation(s)
- Elif Gokcal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mitchell J Horn
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J Alex Becker
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alvin S Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristin Schwab
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandro Biffi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Rost
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Keith A Johnson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Edip Gurol
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Wang B, Li X, Li H, Xiao L, Zhou Z, Chen K, Gui L, Hou X, Fan R, Chen K, Wu W, Li H, Hu X. Clinical, Radiological and Pathological Characteristics Between Cerebral Small Vessel Disease and Multiple Sclerosis: A Review. Front Neurol 2022; 13:841521. [PMID: 35812110 PMCID: PMC9263123 DOI: 10.3389/fneur.2022.841521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) and multiple sclerosis (MS) are a group of diseases associated with small vessel lesions, the former often resulting from the vascular lesion itself, while the latter originating from demyelinating which can damage the cerebral small veins. Clinically, CSVD and MS do not have specific signs and symptoms, and it is often difficult to distinguish between the two from the aspects of the pathology and imaging. Therefore, failure to correctly identify and diagnose the two diseases will delay early intervention, which in turn will affect the long-term functional activity for patients and even increase their burden of life. This review has summarized recent studies regarding their similarities and difference of the clinical manifestations, pathological features and imaging changes in CSVD and MS, which could provide a reliable basis for the diagnosis and differentiation of the two diseases in the future.
Collapse
Affiliation(s)
- Bijia Wang
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuegang Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haoyi Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Xiao
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhenhua Zhou
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kangning Chen
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Gui
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianhua Hou
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rong Fan
- Department of Neurology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kang Chen
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjing Wu
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haitao Li
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Haitao Li
| | - Xiaofei Hu
- Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Xiaofei Hu
| |
Collapse
|
44
|
Subclinical cognitive deficits are associated with reduced cerebrovascular response to visual stimulation in mid-sixties men. GeroScience 2022; 44:1905-1923. [PMID: 35648331 DOI: 10.1007/s11357-022-00596-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022] Open
Abstract
Reduced cerebrovascular response to neuronal activation is observed in patients with neurodegenerative disease. In the present study, we examined the correlation between reduced cerebrovascular response to visual activation (ΔCBFVis.Act) and subclinical cognitive deficits in a human population of mid-sixties individuals without neurodegenerative disease. Such a correlation would suggest that impaired cerebrovascular function occurs before overt neurodegenerative disease. A total of 187 subjects (age 64-67 years) of the Metropolit Danish Male Birth Cohort participated in the study. ΔCBFVis.Act was measured using arterial spin labelling (ASL) MRI. ΔCBFVis.Act correlated positively with cognitive performance in: Global cognition (p = 0.046), paired associative memory (p = 0.025), spatial recognition (p = 0.026), planning (p = 0.016), simple processing speed (p < 0.01), and with highly significant correlations with current intelligence (p < 10-5), and more complex processing speed (p < 10-3), the latter two explaining approximately 11-13% of the variance. Reduced ΔCBFVis.Act was independent of brain atrophy. Our findings suggest that inhibited cerebrovascular response to neuronal activation is an early deficit in the ageing brain and associated with subclinical cognitive deficits. Cerebrovascular dysfunction could be an early sign of a trajectory pointing towards the development of neurodegenerative disease. Future efforts should elucidate if maintenance of a healthy cerebrovascular function can protect against the development of dementia.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This article discusses neuroimaging in dementia diagnosis, with a focus on new applications of MRI and positron emission tomography (PET). RECENT FINDINGS Although the historical use of MRI in dementia diagnosis has been supportive to exclude structural etiologies, recent innovations allow for quantification of atrophy patterns that improve sensitivity for supporting the diagnosis of dementia causes. Neuronuclear approaches allow for localization of specific amyloid and tau neuropathology on PET and are available for clinical use, in addition to dopamine transporter scans in dementia with Lewy bodies and metabolic studies with fludeoxyglucose PET (FDG-PET). SUMMARY Using computerized software programs for MRI analysis and cross-sectional and longitudinal evaluations of hippocampal, ventricular, and lobar volumes improves sensitivity in support of the diagnosis of Alzheimer disease and frontotemporal dementia. MRI protocol requirements for such quantification are three-dimensional T1-weighted volumetric imaging protocols, which may need to be specifically requested. Fluid-attenuated inversion recovery (FLAIR) and 3.0T susceptibility-weighted imaging (SWI) sequences are useful for the detection of white matter hyperintensities as well as microhemorrhages in vascular dementia and cerebral amyloid angiopathy. PET studies for amyloid and/or tau pathology can add additional specificity to the diagnosis but currently remain largely inaccessible outside of research settings because of prohibitive cost constraints in most of the world. Dopamine transporter PET scans can help identify Lewy body dementia and are thus of potential clinical value.
Collapse
Affiliation(s)
- Cyrus A. Raji
- Washington University in St. Louis Mallinckrodt Institute of Radiology, Division of Neuroradiology
- Washington University in St. Louis Department of Neurology
- Washington University in St. Louis Neuroimaging Laboratories
- Knight Alzheimer Disease Research Center, Washington University in St. Louis
| | - Tammie L. S. Benzinger
- Washington University in St. Louis Mallinckrodt Institute of Radiology, Division of Neuroradiology
- Washington University in St. Louis Neuroimaging Laboratories
- Knight Alzheimer Disease Research Center, Washington University in St. Louis
- Washington University in St. Louis Department of Neurosurgery
| |
Collapse
|
46
|
Banerjee G, Samra K, Adams ME, Jaunmuktane Z, Parry-Jones AR, Grieve J, Toma AK, Farmer SF, Sylvester R, Houlden H, Rudge P, Mead S, Brandner S, Schott JM, Collinge J, Werring DJ. Iatrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328792. [PMID: 35577510 DOI: 10.1136/jnnp-2022-328792] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
In the last 6 years, following the first pathological description of presumed amyloid-beta (Aβ) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)-attributed to the transmission of Aβ seeds-have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Kiran Samra
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Adrian Robert Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Joan Grieve
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ahmed K Toma
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Richard Sylvester
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
47
|
Horn MJ, Gokcal E, Becker AJ, Das AS, Warren AD, Schwab K, Goldstein JN, Biffi A, Rosand J, Polimeni JR, Viswanathan A, Greenberg SM, Gurol ME. Cerebellar atrophy and its implications on gait in cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328553. [PMID: 35534189 PMCID: PMC10936558 DOI: 10.1136/jnnp-2021-328553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/06/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Recent data suggest that cerebral amyloid angiopathy (CAA) causes haemorrhagic lesions in cerebellar cortex as well as subcortical cerebral atrophy. However, the potential effect of CAA on cerebellar tissue loss and its clinical implications have not been investigated. METHODS Our study included 70 non-demented patients with probable CAA, 70 age-matched healthy controls (HCs) and 70 age-matched patients with Alzheimer's disease (AD). The cerebellum was segmented into percent of cerebellar subcortical volume (pCbll-ScV) and percent of cerebellar cortical volume (pCbll-CV) represented as percent (p) of estimated total intracranial volume. We compared pCbll-ScV and pCbll-CV between patients with CAA, HCs and those with AD. Gait velocity (metres/second) was used to investigate gait function in patients with CAA. RESULTS Patients with CAA had significantly lower pCbll-ScV compared with both HC (1.49±0.1 vs 1.73±0.2, p<0.001) and AD (1.49±0.1 vs 1.66±0.24, p<0.001) and lower pCbll-CV compared with HCs (6.03±0.5 vs 6.23±0.6, p=0.028). Diagnosis of CAA was independently associated with lower pCbll-ScV compared with HCs (p<0.001) and patients with AD (p<0.001) in separate linear regression models adjusted for age, sex and presence of hypertension. Lower pCbll-ScV was independently associated with worse gait velocity (β=0.736, 95% CI 0.28 to 1.19, p=0.002) in a stepwise linear regression analysis including pCbll-CV along with other relevant variables. INTERPRETATION Patients with CAA show more subcortical cerebellar atrophy than HC or patients with AD and more cortical cerebellar atrophy than HCs. Reduced pCbll-ScV correlated with lower gait velocity in regression models including other relevant variables. Overall, this study suggests that CAA causes cerebellar injury, which might contribute to gait disturbance.
Collapse
Affiliation(s)
- Mitchell J Horn
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Elif Gokcal
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Alex J Becker
- Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alvin S Das
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew D Warren
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristin Schwab
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Joshua N Goldstein
- Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Biffi
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Rosand
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan R Polimeni
- Athinoula A Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Anand Viswanathan
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Greenberg
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - M Edip Gurol
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
48
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
49
|
Vargas-George S, Dave KR. Models of cerebral amyloid angiopathy-related intracerebral hemorrhage. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Davis J, Xu F, Zhu X, Van Nostrand WE. rTg-D: A novel transgenic rat model of cerebral amyloid angiopathy Type-2. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100133. [PMID: 36324401 PMCID: PMC9616389 DOI: 10.1016/j.cccb.2022.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Background Cerebral amyloid angiopathy (CAA) is common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a transgenic rat model of capillary CAA type-1 that develops many pathological features of human disease. However, a complementary rat model of larger vessel CAA type-2 disease has been lacking. Methods A novel transgenic rat model (rTg-D) was generated that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops larger vessel CAA type-2. Quantitative biochemical and pathological analyses were performed to characterize the progression of CAA and associated pathologies in aging rTg-D rats. Results rTg-D rats begin to accumulate Aβ in brain and develop varying levels of larger vessel CAA type-2, in the absence of capillary CAA type-1, starting around 18 months of age. Larger vessel CAA was mainly composed of the Aβ40 peptide and most prominent in surface leptomeningeal/pial vessels and arterioles of the cortex and thalamus. Cerebral microbleeds and small vessel occlusions were present mostly in the thalamic region of affected rTg-D rats. In contrast to capillary CAA type-1 the amyloid deposited within the walls of larger vessels of rTg-D rats did not promote perivascular astrocyte and microglial responses or accumulate the Aβ chaperone apolipoprotein E. Conclusion Although variable in severity, the rTg-D rats specifically develop larger vessel CAA type-2 that reflects many of the pathological features of human disease and provide a new model to investigate the pathogenesis of this condition.
Collapse
Key Words
- AD, Alzheimer's disease
- Amyloid β protein
- ApoE, Apolipoprotein E
- Aβ, Amyloid β-protein
- AβPP, Amyloid β-protein precursor
- CAA, Cerebral amyloid angiopathy
- Cerebral amyloid angiopathy
- Dutch mutation
- GFAP, Glial fibrillary acidic protein
- ICH, Intracerebral hemorrhage
- Iba-1, Ionized calcium-binding adapter molecule 1
- Microbleed
- Small vessel disease
- Transgenic rat
- VCID, Vascular cognitive impairment and dementia
- WT, Wild-type
Collapse
Affiliation(s)
- Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Xiaoyue Zhu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - William E. Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| |
Collapse
|