1
|
Bolano-Díaz C, Verdú-Díaz J, Díaz-Manera J. MRI for the diagnosis of limb girdle muscular dystrophies. Curr Opin Neurol 2024; 37:536-548. [PMID: 39132784 DOI: 10.1097/wco.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW In the last 30 years, there have many publications describing the pattern of muscle involvement of different neuromuscular diseases leading to an increase in the information available for diagnosis. A high degree of expertise is needed to remember all the patterns described. Some attempts to use artificial intelligence or analysing muscle MRIs have been developed. We review the main patterns of involvement in limb girdle muscular dystrophies (LGMDs) and summarize the strategies for using artificial intelligence tools in this field. RECENT FINDINGS The most frequent LGMDs have a widely described pattern of muscle involvement; however, for those rarer diseases, there is still not too much information available. patients. Most of the articles still include only pelvic and lower limbs muscles, which provide an incomplete picture of the diseases. AI tools have efficiently demonstrated to predict diagnosis of a limited number of disease with high accuracy. SUMMARY Muscle MRI continues being a useful tool supporting the diagnosis of patients with LGMD and other neuromuscular diseases. However, the huge variety of patterns described makes their use in clinics a complicated task. Artificial intelligence tools are helping in that regard and there are already some accessible machine learning algorithms that can be used by the global medical community.
Collapse
Affiliation(s)
- Carla Bolano-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - José Verdú-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Neuromuscular Diseases Laboratory, Insitut de Recerca de l'Hospital de la Santa Creu i Sant Pau
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
2
|
Esteller D, Schiava M, Verdú-Díaz J, Villar-Quiles RN, Dibowski B, Venturelli N, Laforet P, Alonso-Pérez J, Olive M, Domínguez-González C, Paradas C, Vélez B, Kostera-Pruszczyk A, Kierdaszuk B, Rodolico C, Claeys K, Pál E, Malfatti E, Souvannanorath S, Alonso-Jiménez A, de Ridder W, De Smet E, Papadimas G, Papadopoulos C, Xirou S, Luo S, Muelas N, Vilchez JJ, Ramos-Fransi A, Monforte M, Tasca G, Udd B, Palmio J, Sri S, Krause S, Schoser B, Fernández-Torrón R, López de Munain A, Pegoraro E, Farrugia ME, Vorgerd M, Manousakis G, Chanson JB, Nadaj-Pakleza A, Cetin H, Badrising U, Warman-Chardon J, Bevilacqua J, Earle N, Campero M, Díaz J, Ikenaga C, Lloyd TE, Nishino I, Nishimori Y, Saito Y, Oya Y, Takahashi Y, Nishikawa A, Sasaki R, Marini-Bettolo C, Guglieri M, Straub V, Stojkovic T, Carlier RY, Díaz-Manera J. Analysis of muscle magnetic resonance imaging of a large cohort of patient with VCP-mediated disease reveals characteristic features useful for diagnosis. J Neurol 2023; 270:5849-5865. [PMID: 37603075 PMCID: PMC10632218 DOI: 10.1007/s00415-023-11862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.
Collapse
Affiliation(s)
- Diana Esteller
- Neurology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Rocío-Nur Villar-Quiles
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Boris Dibowski
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Nadia Venturelli
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Pascal Laforet
- Département de Neurologie Hôpital Raymond-Poincaré Garches France Inserm U1179, Garches, France
| | - Jorge Alonso-Pérez
- Servicio de Neurología. Hospital Virgen de la Candelaria, Tenerife, Spain
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Montse Olive
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Domínguez-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Paradas
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Beatriz Vélez
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Carmelo Rodolico
- UOC di Neurologia e Malattie Neuromuscolari, AOU Policlinico "G. Martino", Rome, Italy
| | - Kristl Claeys
- Neurologie, Neuromusculair Referentiecentrum, Universitaire Ziekenhuizen, Leuven, Belgium
| | - Endre Pál
- Neurology Department, University of Pécs, Pécs, Hungary
| | - Edoardo Malfatti
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | - Sarah Souvannanorath
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | | | - Willem de Ridder
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - Eline De Smet
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | | | - Sofia Xirou
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | - Sushan Luo
- Neurology Department, Huashan Hospital, Fudan University, Shangai, China
| | - Nuria Muelas
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Juan J Vilchez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Alba Ramos-Fransi
- Unitat de Malalties Neuromusculars, Servei de Neurologia, Hospital Germans Tries I Pujol, Badalona, Spain
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Bjarne Udd
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Johanna Palmio
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Srtuhi Sri
- Sree Chitra Tirunal Insitute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sabine Krause
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Roberto Fernández-Torrón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Mathias Vorgerd
- Heimer Institut for Muscle Research, Klinikum Bergmannsheil Ruhr, University Bochum, Bochum, Germany
| | | | - Jean Baptiste Chanson
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hakan Cetin
- Neurology Department, Medical University of Vienna, Vienna, Austria
| | | | | | - Jorge Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Nicholas Earle
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Mario Campero
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Jorge Díaz
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yukako Nishimori
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | - Yoshiaki Takahashi
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | | | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Robert Y Carlier
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom.
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Cheung A, Audhya IF, Szabo SM, Friesen M, Weihl CC, Gooch KL. Patterns of Clinical Progression Among Patients With Autosomal Recessive Limb-Girdle Muscular Dystrophy: A Systematic Review. J Clin Neuromuscul Dis 2023; 25:65-80. [PMID: 37962193 DOI: 10.1097/cnd.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES As the clinical course of autosomal recessive limb-girdle muscular dystrophy (LGMDR) is highly variable, this study characterized the frequency of loss of ambulation (LOA) among patients by subtype (LGMDR1, LGMDR2, LGMDR3-6, LGMDR9, LGMDR12) and progression to cardiac and respiratory involvement among those with and without LOA. METHODS Systematic literature review. RESULTS From 2929 abstracts screened, 418 patients were identified with ambulatory status data (LOA: 265 [63.4%]). Cardiac and/or respiratory function was reported for 142 patients (34.0%; all with LOA). Among these, respiratory involvement was most frequent in LGMDR3-6 (74.1%; mean [SD] age 23.9 [11.0] years) and cardiac in LGMDR9 (73.3%; mean [SD] age 23.7 [17.7] years). Involvement was less common in patients without LOA except in LGMDR9 (71.4% respiratory and 52.4% cardiac). CONCLUSIONS This study described the co-occurrence of LOA, cardiac, and respiratory involvement in LGMDR and provides greater understanding of the clinical progression of LGMDR.
Collapse
Affiliation(s)
| | | | | | | | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
4
|
Hicks MR, Liu X, Young CS, Saleh K, Ji Y, Jiang J, Emami MR, Mokhonova E, Spencer MJ, Meng H, Pyle AD. Nanoparticles systemically biodistribute to regenerating skeletal muscle in DMD. J Nanobiotechnology 2023; 21:303. [PMID: 37641124 PMCID: PMC10463982 DOI: 10.1186/s12951-023-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/09/2023] [Indexed: 08/31/2023] Open
Abstract
Skeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease. In this study, we utilized a versatile intravenously injectable mesoporous silica nanoparticle (MSNP) based nanocarrier system to explore mechanisms of biodistribution in skeletal muscle of mdx mouse models of DMD including wildtype, dystrophic, and severely dystrophic mice. Moreover, MSNPs could be imaged in live mice and whole muscle tissues enabling investigation of how biodistribution is altered by different types of muscle pathology such as inflammation or fibrosis. We found MSNPs were tenfold more likely to aggregate within select mdx muscles relative to wild type, such as gastrocnemius and quadriceps. This was accompanied by decreased biodistribution in off-target organs. We found the greatest factor affecting preferential delivery was the regenerative state of the dystrophic skeletal muscle with the highest MSNP abundance coinciding with the regions showing the highest level of embryonic myosin staining and intramuscular macrophage uptake. To demonstrate, muscle regeneration regulated MSNP distribution, we experimentally induced regeneration using barium chloride which resulted in a threefold increase of intravenously injected MSNPs to sites of regeneration 7 days after injury. These discoveries provide the first evidence that nanoparticles have selective biodistribution to skeletal muscle in DMD to areas of active regeneration and that nanoparticles could enable diagnostic and selective drug delivery in DMD skeletal muscle.
Collapse
Affiliation(s)
- Michael R Hicks
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Xiangsheng Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Courtney S Young
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- MyoGene Bio, San Diego, CA, USA
| | - Kholoud Saleh
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ying Ji
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jinhong Jiang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Michael R Emami
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ekaterina Mokhonova
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Melissa J Spencer
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Huan Meng
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - April D Pyle
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Palma-Flores C, Cano-Martínez LJ, Fernández-Valverde F, Torres-Pérez I, de Los Santos S, Hernández-Hernández JM, Hernández-Herrera AF, García S, Canto P, Zentella-Dehesa A, Coral-Vázquez RM. Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model. J Mol Histol 2023; 54:405-413. [PMID: 37358754 DOI: 10.1007/s10735-023-10136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of β-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.
Collapse
Affiliation(s)
- Carlos Palma-Flores
- Catedrático CONACYT, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Javier Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Itzel Torres-Pérez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Sergio de Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Manuel Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City, Mexico
| | - Adriana Fabiola Hernández-Herrera
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Silvia García
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Ramón Mauricio Coral-Vázquez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico.
- Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
6
|
Alawneh I, Stosic A, Gonorazky H. Muscle MRI patterns for limb girdle muscle dystrophies: systematic review. J Neurol 2023:10.1007/s00415-023-11722-1. [PMID: 37129643 DOI: 10.1007/s00415-023-11722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Limb girdle muscle dystrophies (LGMDs) are a group of inherited neuromuscular disorders comprising more than 20 genes. There have been increasing efforts to characterize this group with Muscle MRI. However, due to the complexity and similarities, the interpretation of the MRI patterns is usually done by experts in the field. Here, we proposed a step-by-step image interpretation of Muscle MRI in LGDM by evaluating the variability of muscle pattern involvement reported in the literature. A systematic review with an open start date to November 2022 was conducted to describe all LGMDs' muscle MRI patterns. Eighty-eight studies were included in the final review. Data were found to describe muscle MRI patterns for 15 out of 17 LGMDs types. Although the diagnosis of LGMDs is challenging despite the advanced genetic testing and other diagnostic modalities, muscle MRI is shown to help in the diagnosis of LGMDs. To further increase the yield for muscle MRI in the neuromuscular field, larger cohorts of patients need to be conducted.
Collapse
Affiliation(s)
- Issa Alawneh
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Ana Stosic
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hernan Gonorazky
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
7
|
Panicucci C, Casalini S, Damasio BM, Brolatti N, Pedemonte M, Biolcati Rinaldi A, Morando S, Doglio L, Raffaghello L, Fiorillo C, Zara F, Tasca G, Bruno C. Long-term clinical and MRI follow-up in two POMT2-related limb girdle muscular dystrophy (LGMDR14) patients. Brain Dev 2023; 45:306-313. [PMID: 36797079 DOI: 10.1016/j.braindev.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION POMT2-related limb girdle muscular dystrophy (LGMDR14) is a rare muscular dystrophy caused by mutations in the POMT2 gene. Thus far only 26 LGMDR14 subjects have been reported and no longitudinal natural history data are available. CASE REPORT We describe two LGMDR14 patients followed for 20 years since infancy. Both patients presented a childhood-onset, slowly progressive pelvic girdle muscular weakness leading to loss of ambulation in the second decade in one patient, and cognitive impairment without detectable brain structural abnormalities. Glutei, paraspinal, and adductor muscles were the primarily involved muscles at MRI. DISCUSSION This report provides natural history data on LGMDR14 subjects, with a focus on longitudinal muscle MRI. We also reviewed the LGMDR14 literature data, providing information on the LGMDR14 disease progression. Considering the high prevalence of cognitive impairment in LGMDR14 patients, a reliable application of functional outcome measures can be challenging, therefore a muscle MRI follow-up to assess disease evolution is recommended.
Collapse
Affiliation(s)
- Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sara Casalini
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Noemi Brolatti
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marina Pedemonte
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Simone Morando
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luca Doglio
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy
| | - Giorgio Tasca
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy.
| |
Collapse
|
8
|
Clinical, genetic profile and disease progression of sarcoglycanopathies in a large cohort from India: high prevalence of SGCB c.544A > C. Neurogenetics 2022; 23:187-202. [DOI: 10.1007/s10048-022-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
9
|
Audhya IF, Cheung A, Szabo SM, Flint E, Weihl CC, Gooch KL. Progression to Loss of Ambulation Among Patients with Autosomal Recessive Limb-girdle Muscular Dystrophy: A Systematic Review. J Neuromuscul Dis 2022; 9:477-492. [PMID: 35527561 PMCID: PMC9398075 DOI: 10.3233/jnd-210771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The impact of age at autosomal recessive limb girdle muscular dystrophy (LGMDR) onset on progression to loss of ambulation (LOA) has not been well established, particularly by subtype. Objectives: To describe the characteristics of patients with adult-, late childhood-, and early childhood-onset LGMDR by subtype and characterize the frequency and timing of LOA. Methods: A systematic review was conducted in MEDLINE, Embase and the Cochrane library. Frequency and timing of LOA in patients with LGMDR1, LGMDR2/Miyoshi myopathy (MM), LGMDR3-6, LGMDR9, and LGMDR12 were synthesized from published data. Results: In 195 studies, 695 (43.4%) patients had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset of disease across subtypes among those with a reported age at onset (n = 1,603); distribution of age at onset varied between subtypes. Among patients with LOA (n = 228), adult-onset disease was uncommon in LGMDR3-6 (14%) and frequent in LGMDR2/MM (42%); LGMDR3-6 cases with LOA primarily had early childhood-onset (74%). Mean (standard deviation [SD]) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7], n = 56) and longest for those with late childhood-onset LGMDR2/MM (21.4 [11.5], n = 36). Conclusions: This review illustrated that patients with early childhood-onset disease tend to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. These findings provide a greater understanding of progression to LOA by LGMDR subtype, which may help inform clinical trial design and provide a basis for natural history studies.
Collapse
Affiliation(s)
| | | | | | - Emma Flint
- Broadstreet HEOR, Vancouver, BC, V6A 1A4 Canada
| | - Conrad C Weihl
- Washington University School of Medicine, St.Louis, MO, USA
| | | |
Collapse
|
10
|
Abdulhady H, Sakr HM, Elsayed NS, El-Sobky TA, Fahmy N, Saadawy AM, Elsedfy H. Ambulatory Duchenne muscular dystrophy children: cross-sectional correlation between function, quantitative muscle ultrasound and MRI. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2022; 41:1-14. [PMID: 35465338 PMCID: PMC9004336 DOI: 10.36185/2532-1900-063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 01/24/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive genetic muscle disease. Quantitative muscle ultrasound (US), muscle MRI, and functional tools are important to delineate characteristics of muscle involvement. We aimed to establish correlations between clinical/functional and above-named imaging tools respecting their diagnostic and prognostic role in DMD children. A cross-sectional retrospective study of 27 steroid-naive, ambulant male children/adolescents with genetically-confirmed DMD (mean age, 8.8 ± 3.3 years). Functional performance was assessed using motor function measure (MFM) which assess standing/transfer (D1), proximal (D2) and distal (D3) motor function, and six-minute walk test (6MWT). Imaging evaluation included quantitative muscle MRI which measured muscle fat content in a specific location of right rectus femoris by mDixon sequence. Quantitative muscle US measured right rectus femoris muscle brightness in standardized US image as an indicator of muscle fat content. We found a highly significant positive correlation between the mean MFM total score and 6MWT (R = 0.537, p = 0.007), and a highly significant negative correlation between fat content by muscle US and MFM total score (R = -0.603, p = 0.006) and its D1 subscore (R =-0.712, p = 0.001), and a significant negative correlation between fat content by US and 6MWT (R = -0.529, p = 0.02), and a significant positive correlation between muscle fat content by mDixon MRI and patient's age (R = 0.617, p = 0.01). Quantitative muscle US correlates significantly with clinical/functional assessment tools as MFM and 6MWT, and augments their role in disease-tracking of DMD. Quantitative muscle US has the potential to act as a substitute to functional assessment tools.
Collapse
Affiliation(s)
- Hala Abdulhady
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hossam M. Sakr
- Department of Diagnostic and Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt,Correspondence Hossam M. Sakr Department of Diagnostic and Interventional Radiology and Molecular Imaging Faculty of Medicine, Ain Shams University, Abbassia square, 11381 Cairo, Egypt. E-mail:
| | - Nermine S. Elsayed
- Department of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer A. El-Sobky
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagia Fahmy
- Neuromuscular Unit, Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr M. Saadawy
- Department of Diagnostic and Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba Elsedfy
- Department of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Li C, Haller G, Weihl CC. Current and Future Approaches to Classify VUSs in LGMD-Related Genes. Genes (Basel) 2022; 13:genes13020382. [PMID: 35205425 PMCID: PMC8871643 DOI: 10.3390/genes13020382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
Next-generation sequencing (NGS) has revealed large numbers of genetic variants in LGMD-related genes, with most of them classified as variants of uncertain significance (VUSs). VUSs are genetic changes with unknown pathological impact and present a major challenge in genetic test interpretation and disease diagnosis. Understanding the phenotypic consequences of VUSs can provide clinical guidance regarding LGMD risk and therapy. In this review, we provide a brief overview of the subtypes of LGMD, disease diagnosis, current classification systems for investigating VUSs, and a potential deep mutational scanning approach to classify VUSs in LGMD-related genes.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (C.L.); (G.H.)
| | - Gabe Haller
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (C.L.); (G.H.)
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (C.L.); (G.H.)
- Correspondence:
| |
Collapse
|
12
|
Xie Z, Sun C, Liu C, Chu X, Gang Q, Yu M, Zheng Y, Meng L, Li F, Xia D, Wang L, Li Y, Deng J, Lv H, Wang Z, Zhang W, Yuan Y. First Identification of Rare Exonic and Deep Intronic Splice-Altering Variants in Patients With Beta-Sarcoglycanopathy. Front Pediatr 2022; 10:900280. [PMID: 35813381 PMCID: PMC9257024 DOI: 10.3389/fped.2022.900280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The precise genetic diagnosis of a sarcoglycanopathy or dystrophinopathy is sometimes extremely challenging, as pathogenic non-coding variants and/or complex structural variants do exist in DMD or sarcoglycan genes. This study aimed to determine the genetic diagnosis of three patients from two unrelated families with a suspected sarcoglycanopathy or dystrophinopathy based on their clinical, radiological, and pathological features, for whom routine genomic detection approaches failed to yield a definite genetic diagnosis. METHODS Muscle-derived reverse transcription-polymerase chain reaction analysis and/or TA cloning of DMD, SGCA, SGCB, SGCD, and SGCG mRNA were performed to identify aberrant transcripts. Genomic Sanger sequencing around the aberrant transcripts was performed to detect possible splice-altering variants. Bioinformatic and segregation studies of the detected genomic variants were performed in both families. RESULTS In patients F1-II1 and F1-II2, we identified two novel pathogenic compound heterozygous variants in SGCB. One is a deep intronic splice-altering variant (DISV), c.243 + 1558C > T in intron 2 causing the activation of an 87-base pair (bp) pseudoexon, and the other one is a non-canonical splicing site variant, c.243 + 6T > A leading to the partial intron inclusion of 10-bp sequence. A novel DISV, c.243 + 1576C > G causing a 106-bp pseudoexon activation, and a nonsense variant in SGCB were identified in compound heterozygous state in patient F2-II1. Unexpectedly, the predicted nonsense variant, c.334C > T in exon 3, created a new donor splice site in exon 3 that was stronger than the natural one, resulting in a 97-bp deletion of exon 3 (r.333_429del). CONCLUSION This is the first identification of rare exonic and DISVs in the SGCB gene.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chengyue Sun
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Chang Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xujun Chu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Dongliang Xia
- Science and Technology, Running Gene Inc., Beijing, China
| | - Li Wang
- Science and Technology, Running Gene Inc., Beijing, China
| | - Ying Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Garibaldi M, Nicoletti T, Bucci E, Fionda L, Leonardi L, Morino S, Tufano L, Alfieri G, Lauletta A, Merlonghi G, Perna A, Rossi S, Ricci E, Tartaglione T, Petrucci A, Pennisi EM, Salvetti M, Cutter G, Díaz-Manera J, Silvestri G, Antonini G. Muscle MRI in Myotonic Dystrophy type 1 (DM1): refining muscle involvement and implications for clinical trials. Eur J Neurol 2021; 29:843-854. [PMID: 34753219 PMCID: PMC9299773 DOI: 10.1111/ene.15174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only few studies reported muscle imaging data on small cohorts of patients with Myotonic dystrophy type 1 (DM1). We aimed to investigate the muscle involvement in a large cohort of patients, to refine the pattern of muscle involvement, to better understand the pathophysiological mechanisms of muscle weakness and to identify potential imaging biomarkers for disease activity and severity. METHODS 134 DM1 patients underwent a cross-sectional muscle MRI study. STIR and T1- sequences in lower and upper body were analysed. Fat replacement, muscle atrophy and STIR positivity were evaluated using three different scales. Correlations between MRI scores, clinical features and genetic background were investigated. RESULTS The most frequent pattern of muscle involvement in T1 consisted of fat replacement of the tongue, sternocleidomastoideus, paraspinalis, gluteus minimus, distal quadriceps and gastrocnemius medialis. Degree of fat replacement at MRI correlated with clinical severity and disease duration, but not with CTG expansion. Fat replacement was also detected in milder/asymptomatic patients. More than 80% of patients had STIR positive signal in muscles. Most DM1 patients also showed a variable degree of muscle atrophy regardless MRI signs of fat replacement. A subset of patients (20%) showed a "marbled" muscle appearance. CONCLUSIONS muscle MRI is a sensitive biomarker of disease severity also for the milder spectrum of disease. STIR hyperintensty seems to precede fat replacement in T1. Beyond fat replacement, STIR positivity, muscle atrophy and "marbled" appearance suggest further mechanisms of muscle wasting and weakness in DM1, representing additional outcome measures and therapeutical targets for forthcoming clinical trials.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Tommaso Nicoletti
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Alessia Perna
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Salvatore Rossi
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Enzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167, Rome, Italy
| | - Antonio Petrucci
- Neurology Unit, San Camillo-Forlanini Hospital, 00152, Rome, Italy
| | | | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, Italy
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Hospitals NHS Foundation Trust, NE1 3BZ, Newcastle upon Tyne, United Kingdom.,Neuromuscular Disorders Unit. Neurology Department, Universitat Autònoma de Barcelona. Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, UK.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 08041, Spain
| | - Gabriella Silvestri
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| |
Collapse
|
14
|
Gómez-Andrés D, Oulhissane A, Quijano-Roy S. Two decades of advances in muscle imaging in children: from pattern recognition of muscle diseases to quantification and machine learning approaches. Neuromuscul Disord 2021; 31:1038-1050. [PMID: 34736625 DOI: 10.1016/j.nmd.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Muscle imaging has progressively gained popularity in the neuromuscular field. Together with detailed clinical examination and muscle biopsy, it has become one of the main tools for deep phenotyping and orientation of etiological diagnosis. Even in the current era of powerful new generation sequencing, muscle MRI has arisen as a tool for prioritization of certain genetic entities, supporting the pathogenicity of variants of unknown significance and facilitating diagnosis in cases with an initially inconclusive genetic study. Although the utility of muscle imaging is increasingly clear, it has not reached its full potential in clinical practice. Pattern recognition is known for a number of diseases and will certainly be enhanced by the use of machine learning approaches. For instance, MRI heatmap representations might be confronted with molecular results by obtaining a probabilistic diagnosis based in each disease "MRI fingerprints". Muscle ultrasound as a screening tool and quantified techniques such as Dixon MRI seem still underdeveloped. In this paper, we aim to appraise the advances in recent years in pediatric muscle imaging and try to define areas of uncertainty and potential advances that might become standardized to be widely used in the future.
Collapse
Affiliation(s)
- David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, ERN-RND - EURO-NMD, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; European Network for Reference Centers on Neuromuscular Disorders (Euro-NMD ERN)
| | - Amal Oulhissane
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France
| | - Susana Quijano-Roy
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France; UMR 1179, Laboratoire handicap neuromusculaire: physiopathologie biothérapie pharmacologie appliquées (END-ICAP), UFR Simone Veil, Montigny Le Bretonneux, France; French Network of Neuromuscular Reference Centers (FILNEMUS), France.
| |
Collapse
|
15
|
Tan D, Ge L, Fan Y, Wei C, Yang H, Liu A, Xiao J, Xiong H, Zhu Y. Muscle magnetic resonance imaging in patients with LAMA2-related muscular dystrophy. Neuromuscul Disord 2021; 31:1144-1153. [PMID: 34702656 DOI: 10.1016/j.nmd.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
LAMA2-related muscular dystrophy (LAMA2-MD) is classified into congenital muscular dystrophy type 1A (MDC1A) and autosomal recessive limb-girdle muscular dystrophy-23 (LGMDR23). The purpose of this study was to identify the involvement pattern of thigh muscles of LAMA2-MD patients on magnetic resonance imaging. Fourteen MDC1A and 3 LGMDR23 patients were included, with 21 known and 8 novel LAMA2 disease-causing variants. In LAMA2-MD, the gluteus maximus, anterior (quadriceps femoris) and posterior (adductor magnus and biceps femoris) thigh muscles were extensively and severely affected with fatty infiltration, with relatively sparing of the adductor longus. The pattern of muscle involvement was similar between MDC1A and LGMDR23, but more severe in MDC1A, as well as in LAMA2-MD patients without ambulation. The rather peculiar pattern of the adductor magnus and long head of the biceps femoris first and severely affected in the mid-thigh level was found in LGMDR23. Strong correlation between fatty infiltration and age as well as disease duration was observed for the adductor longus in MDC1A. Edema and atrophy selectively involved in some muscles. The pattern of fatty infiltration on thigh muscle MRI of LAMA2-MD could provide important information for the diagnosis, differential diagnosis and assessment of clinical severity.
Collapse
Affiliation(s)
- Dandan Tan
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Lin Ge
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Haipo Yang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Aijie Liu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China.
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing 100034, China.
| |
Collapse
|
16
|
Siddiqui S, Polavarapu K, Bardhan M, Preethish-Kumar V, Joshi A, Nashi S, Vengalil S, Raju S, Chawla T, Leena S, Mathur A, Nayak S, Mohan D, Shamim U, Prasad C, Lochmüller H, Faruq M, Nalini A. Distinct and Recognisable Muscle MRI Pattern in a Series of Adults Harbouring an Identical GMPPB Gene Mutation. J Neuromuscul Dis 2021; 9:95-109. [PMID: 34633329 DOI: 10.3233/jnd-200628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE Mutations in the GMPPB gene affect glycosylation of α-dystroglycan, leading to varied clinical phenotypes. We attempted to delineate the muscle MR imaging spectrum of GMPPB-related Congenital Myasthenic syndrome (CMS) in a single-center cohort study. OBJECTIVE To identify the distinct patterns of muscle involvement in GMPPB gene mutations. METHODS We analyzed the muscle MR images of 7 genetically proven cases of GMPPB dystroglycanopathy belonging to three families and studied the potential qualitative imaging pattern to aid in clinico -radiological diagnosis in neuromuscular practice. All individuals underwent muscle MRI (T1, T2, STIR/PD Fat sat. sequences in 1.5 T machine) of the lower limbs. Qualitative assessment and scoring were done for muscle changes using Mercuri staging for fibro-fatty replacement on T1 sequence and Borsato score for myoedema on STIR sequence. RESULTS All patients were of South Indian origin and presented as slowly progressive childhood to adult-onset fatigable limb-girdle muscle weakness, elevated creatine kinase level, and positive decrement response in proximal muscles. Muscle biopsy revealed features of dystrophy. All patients demonstrated identical homozygous mutation c.1000G > A in the GMPPB gene. MRI demonstrated early and severe involvement of paraspinal muscles, gluteus minimus, and relatively less severe involvement of the short head of the biceps femoris. A distinct proximo-distal gradient of affliction was identified in the glutei, vasti, tibialis anterior and peronei. Also, a postero-anterior gradient was observed in the gracilis muscle. CONCLUSION Hitherto unreported, the distinctive MR imaging pattern described here, coupled with relatively slowly progressive symptoms of fatigable limb-girdle weakness, would facilitate an early diagnosis of the milder form of GMPPB- dystroglycanopathy associated with homozygous GMPPB gene mutation.
Collapse
Affiliation(s)
- Shahyan Siddiqui
- Department of Neuroimaging and Interventional radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Aditi Joshi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sanita Raju
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Tanushree Chawla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Shingavi Leena
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Aradhana Mathur
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sushmita Nayak
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dhaarini Mohan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Chandrajit Prasad
- Department of Neuroimaging and Interventional radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
17
|
Quijano-Roy S, Haberlova J, Castiglioni C, Vissing J, Munell F, Rivier F, Stojkovic T, Malfatti E, Gómez García de la Banda M, Tasca G, Costa Comellas L, Benezit A, Amthor H, Dabaj I, Gontijo Camelo C, Laforêt P, Rendu J, Romero NB, Cavassa E, Fattori F, Beroud C, Zídková J, Leboucq N, Løkken N, Sanchez-Montañez Á, Ortega X, Kynčl M, Metay C, Gómez-Andrés D, Carlier RY. Diagnostic interest of whole-body MRI in early- and late-onset LAMA2 muscular dystrophies: a large international cohort. J Neurol 2021; 269:2414-2429. [PMID: 34559299 DOI: 10.1007/s00415-021-10806-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND LAMA2-related muscular dystrophy (LAMA2-RD) encompasses a group of recessive muscular dystrophies caused by mutations in the LAMA2 gene, which codes for the alpha-2 chain of laminin-211 (merosin). Diagnosis is straightforward in the classic congenital presentation with no ambulation and complete merosin deficiency in muscle biopsy, but is far more difficult in milder ambulant individuals with partial merosin deficiency. OBJECTIVE To investigate the diagnostic utility of muscle imaging in LAMA2-RD using whole-body magnetic resonance imaging (WBMRI). RESULTS 27 patients (2-62 years, 21-80% with acquisition of walking ability and 6 never ambulant) were included in an international collaborative study. All carried two pathogenic mutations, mostly private missense changes. An intronic variant (c.909 + 7A > G) was identified in all the Chilean cases. Three patients (two ambulant) showed intellectual disability, epilepsy, and brain structural abnormalities. WBMRI T1w sequences or T2 fat-saturated images (Dixon) revealed abnormal muscle fat replacement predominantly in subscapularis, lumbar paraspinals, gluteus minimus and medius, posterior thigh (adductor magnus, biceps femoris, hamstrings) and soleus. This involvement pattern was consistent for both ambulant and non-ambulant patients. The degree of replacement was predominantly correlated to the disease duration, rather than to the onset or the clinical severity. A "COL6-like sandwich sign" was observed in several muscles in ambulant adults, but different involvement of subscapularis, gluteus minimus, and medius changes allowed distinguishing LAMA2-RD from collagenopathies. The thigh muscles seem to be the best ones to assess disease progression. CONCLUSION WBMRI in LAMA2-RD shows a homogeneous pattern of brain and muscle imaging, representing a supportive diagnostic tool.
Collapse
Affiliation(s)
- Susana Quijano-Roy
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Jana Haberlova
- Department of Paediatric Neurology, Motol University Hospital, Prague, Czech Republic
| | - Claudia Castiglioni
- Pediatric Neurology Department, Clinica Las Condes, Santiago de Chile, Chile
- Instituto Nacional de Rehabilitación Pedro Aguirre Cerda, Santiago de Chile, Chile
| | - John Vissing
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francina Munell
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - François Rivier
- Department of Pediatric Neurology and Reference Center for Neuromuscular Diseases AOC, CHU Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Tanya Stojkovic
- APHP, Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, Institute of Myology, Paris, France
| | - Edoardo Malfatti
- Univ Paris Est UPE, INSERM, U955 IMRB, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Hôpital Henri Mondor, Créteil, France
| | - Marta Gómez García de la Banda
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Giorgio Tasca
- Unità Operativa Complessa Di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Laura Costa Comellas
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - Audrey Benezit
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Helge Amthor
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Ivana Dabaj
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- CHU de Rouen, Service de Néonatologie, Réanimation pédiatrique, Neuropédiatrie et Éducation Fonctionnelle de L'enfant, INSERM U 1245, ED497, 76000, Rouen, France
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Pascal Laforêt
- Nord/Est/Ile de France Neuromuscular Reference Center, PHENIX FHU, Hôpital Raymond-Poincaré, AP-HP. INSERM U1179, Garches, France
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, GIN, Grenoble, France
| | - Norma B Romero
- Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eliana Cavassa
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Fabiana Fattori
- Unit for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Christophe Beroud
- APHM, Laboratoire de Génétique Moléculaire, Hôpital TIMONE Enfants; Aix Marseille University, INSERM, MMG, Marseille, France
| | - Jana Zídková
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | | | - Nicoline Løkken
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ángel Sanchez-Montañez
- Pediatric Neuroradiology, Radiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ximena Ortega
- Diagnostic Imaging Service, Clinica Las Condes, Santiago de Chile, Chile
| | - Martin Kynčl
- Department of Radiology, Motol University Hospital, Prague, Czech Republic
| | - Corinne Metay
- AP-HP, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, GH Pitié Salpêtrière, Paris, France
- Sorbonne Université - Inserm UMRS974, Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Paris, France
| | - David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035.
| | - Robert Y Carlier
- APHP, GH Université Paris-Saclay, DMU Smart Imaging, Medical Imaging Department, Raymond Poincaré Teaching Hospital, Garches, France
| |
Collapse
|
18
|
Monforte M, Bortolani S, Torchia E, Cristiano L, Laschena F, Tartaglione T, Ricci E, Tasca G. Diagnostic magnetic resonance imaging biomarkers for facioscapulohumeral muscular dystrophy identified by machine learning. J Neurol 2021; 269:2055-2063. [PMID: 34486074 DOI: 10.1007/s00415-021-10786-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The diagnosis of facioscapulohumeral muscular dystrophy (FSHD) can be challenging in patients not displaying the classical phenotype or with atypical clinical features. Despite the identification by magnetic resonance imaging (MRI) of selective patterns of muscle involvement, their specificity and added diagnostic value are unknown. METHODS We aimed to identify the radiological features more useful to distinguish FSHD from other myopathies and test the diagnostic accuracy of MRI. A retrospective cohort of 295 patients (187 FSHD, 108 non-FSHD) studied by upper and lower-limb muscle MRI was analyzed. Scans were evaluated for the presence of 15 radiological features. A random forest machine learning algorithm was used to identify the most relevant for FSHD diagnosis. Different patterns were created by their combination and diagnostic accuracy of each of them was tested. RESULTS The combination of trapezius involvement and bilateral subscapularis muscle sparing achieved the best diagnostic accuracy (0.89, 95% Confidence Interval [0.85-0.92]) with 0.90 [0.85-0.94] sensitivity and 0.88 [0.80-0.93] specificity. This pattern correctly identified 91% atypical FSHD patients of our cohort. The combination of trapezius involvement, bilateral subscapularis and iliopsoas sparing and asymmetric involvement of upper and lower-limb muscles was pathognomonic for FSHD, yielding a specificity of 0.99 [0.95-1.00]. CONCLUSIONS We identified MRI patterns that showed a high diagnostic power in promptly discriminating FSHD from other muscle disorders, with comparable performance irrespective of typical or atypical clinical features. Upper girdle in addition to lower-limb muscle imaging should be extensively implemented in the diagnostic workup to support or exclude a diagnosis of FSHD.
Collapse
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Torchia
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | | | | | - Tommaso Tartaglione
- Dipartimento di Radiologia, IDI IRCCS, Rome, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy. .,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
19
|
Pozsgai E, Griffin D, Potter R, Sahenk Z, Lehman K, Rodino-Klapac LR, Mendell JR. Unmet needs and evolving treatment for limb girdle muscular dystrophies. Neurodegener Dis Manag 2021; 11:411-429. [PMID: 34472379 DOI: 10.2217/nmt-2020-0066] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) represent a major group of muscle disorders. Treatment is sorely needed and currently expanding based on safety and efficacy adopting principles of single-dosing gene therapy for monogenic autosomal recessive disorders. Gene therapy has made in-roads for LGMD and this review describes progress that has been achieved for these conditions. This review first provides a background on the definition and classification of LGMDs. The major effort focuses on progress in LGMD gene therapy, from experimental studies to clinical trials. The disorders discussed include the LGMDs where the most work has been done including calpainopathies (LGMD2A/R1), dysferlinopathies (LGMD2B/R2) and sarcoglycanopathies (LGMD2C/R5, LGMD2D/R3, LGMD2E/R4). Early success in clinical trials provides a template to move the field forward and potentially apply emerging technology like CRISPR/Cas9 that may enhance the scope and efficacy of gene therapy applied to patient care.
Collapse
Affiliation(s)
- Eric Pozsgai
- Sarepta Therapeutics, Inc., Cambridge, MA 02142, USA
| | | | | | - Zarife Sahenk
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics & Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Kelly Lehman
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | - Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics & Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Vainzof M, Souza LS, Gurgel-Giannetti J, Zatz M. Sarcoglycanopathies: an update. Neuromuscul Disord 2021; 31:1021-1027. [PMID: 34404573 DOI: 10.1016/j.nmd.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Sarcoglycanopathies are the most severe forms of autosomal recessive limb-girdle muscular dystrophies (LGMDs), constituting about 10-25% of LGMDs. The clinical phenotype is variable, but onset is usually in the first decade of life. Patients present muscle hypertrophy, elevated CK, variable muscle weaknesses, and progressive loss of ambulation. Four subtypes are known: LGMDR3, LGMDR4, LGMDR5 and LGMDR6, caused, respectively, by mutations in the SGCA, SGCB,SGCG and SGCD genes. Their four coded proteins, α-SG, ß-SG, λ-SG and δ-SG are part of the dystrophin-glycoprotein complex (DGC) present in muscle sarcolemma, which acts as a linker between the cytoskeleton of the muscle fiber and the extracellular matrix, providing mechanical support to the sarcolemma during myofiber contraction. Many different mutations have already been identified in all the sarcoglycan genes, with a predominance of some mutations in different populations. The diagnosis is currently based on the molecular screening for these mutations. Therapeutic approaches include the strategy of gene replacement mediated by a vector derived from adeno-associated virus (AAV). Pre-clinical studies have shown detectable levels of SG proteins in the muscle, and some improvement in the phenotype, in animal models. Therapeutic trials in humans are ongoing.
Collapse
Affiliation(s)
- Mariz Vainzof
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Lucas S Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Department of Pediatrics, Service of Neuropediatrics from Federal, University of Minas Gerais, Belo Horizonte, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Khawajazada T, Kass K, Rudolf K, de Stricker Borch J, Sheikh AM, Witting N, Vissing J. Muscle involvement assessed by quantitative magnetic resonance imaging in patients with anoctamin 5 deficiency. Eur J Neurol 2021; 28:3121-3132. [PMID: 34145687 DOI: 10.1111/ene.14979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Using magnetic resonance imaging (MRI) and stationary dynamometry, the aim was to investigate the muscle affection in paraspinal muscles and lower extremities and compare the muscle affection in men and women with anoctamin 5 (ANO5) deficiency. METHODS Seventeen patients (seven women) with pathogenic ANO5-mutations were included. Quantitative muscle fat fraction of back and leg muscles were assessed by Dixon MRI. Muscle strength was assessed by stationary dynamometer. Results were compared with 11 matched, healthy controls. RESULTS Muscle involvement pattern in men with ANO5-deficiency is characterized by a severe fat replacement of hamstrings, adductor and gastrocnemius muscles, while paraspinal muscles are only mildly affected, while preserved gracilis and sartorius muscles were hypertrophied. Women with ANO5-myopathy, of the same age as male patients, were very mildly affected, showing muscle affection and strength resembling that found in healthy persons, with the exception of the gluteus minimus and medius and gastrocnemii muscles that were significantly replaced by fat. Although individual muscles showed clear asymmetric involvement in a few muscle groups, the overall muscle involvement was symmetric. CONCLUSIONS Patients with ANO5-deficiency have relatively preserved paraspinal muscles on imaging and only mild reduction of trunk extension strength in men only. Our study quantifies the large difference in muscle affection in lower extremity between women and men with ANO5-deficiency. The clinical notion is that affection may be very asymmetric in ANO5-deficiency, but the present study shows that while this may be true for a few muscles, the general impression is that muscle affection is very symmetric.
Collapse
Affiliation(s)
- Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Konni Kass
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rudolf
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Aisha Munawar Sheikh
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Aivazoglou LU, Guimarães JB, Link TM, Costa MAF, Cardoso FN, de Mattos Lombardi Badia B, Farias IB, de Rezende Pinto WBV, de Souza PVS, Oliveira ASB, de Siqueira Carvalho AA, Aihara AY, da Rocha Corrêa Fernandes A. MR imaging of inherited myopathies: a review and proposal of imaging algorithms. Eur Radiol 2021; 31:8498-8512. [PMID: 33881569 DOI: 10.1007/s00330-021-07931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the imaging modalities used to assess muscle changes in myopathies, to provide an overview of the inherited myopathies focusing on their patterns of muscle involvement in magnetic resonance imaging (MR), and to propose up-to-date imaging-based diagnostic algorithms that can help in the diagnostic workup. CONCLUSION Familiarization with the most common and specific patterns of muscular involvement in inherited myopathies is very important for radiologists and neurologists, as imaging plays a significant role in diagnosis and follow-up of these patients. KEY POINTS • Imaging is an increasingly important tool for diagnosis and follow-up in the setting of inherited myopathies. • Knowledge of the most common imaging patterns of muscle involvement in inherited myopathies is valuable for both radiologists and neurologists. • In this review, we present imaging-based algorithms that can help in the diagnostic workup of myopathies.
Collapse
Affiliation(s)
- Laís Uyeda Aivazoglou
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Julio Brandão Guimarães
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil. .,Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Thomas M Link
- Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Maria Alice Freitas Costa
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Fabiano Nassar Cardoso
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| | - Bruno de Mattos Lombardi Badia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Igor Braga Farias
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Alzira Alves de Siqueira Carvalho
- Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC - Departamento de Neurociências, Av. Lauro Gomes, 2000, Santo André, SP, 09060-870, Brazil
| | - André Yui Aihara
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Artur da Rocha Corrêa Fernandes
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| |
Collapse
|
23
|
Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. Int J Mol Sci 2021; 22:ijms22052502. [PMID: 33801487 PMCID: PMC7958856 DOI: 10.3390/ijms22052502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle, the most abundant tissue in the body, is heterogeneous. This heterogeneity forms the basis of muscle diversity, which is reflected in the specialized functions of muscles in different parts of the body. However, these different parts are not always clearly delimitated, and this often gives rise to gradients within the same muscle and even across the body. During the last decade, several studies on muscular disorders both in mice and in humans have observed particular distribution patterns of muscle weakness during disease, indicating that the same mutation can affect muscles differently. Moreover, these phenotypical differences reveal gradients of severity, existing alongside other architectural gradients. These two factors are especially prominent in sarcoglycanopathies. Nevertheless, very little is known about the mechanism(s) driving the phenotypic diversity of the muscles affected by these diseases. Here, we will review the available literature on sarcoglycanopathies, focusing on phenotypic differences among affected muscles and gradients, characterization techniques, molecular signatures, and cell population heterogeneity, highlighting the possibilities opened up by new technologies. This review aims to revive research interest in the diverse disease phenotype affecting different muscles, in order to pave the way for new therapeutic interventions.
Collapse
|
24
|
Lehmann Urban D, Mohamed M, Ludolph AC, Kassubek J, Rosenbohm A. The value of qualitative muscle MRI in the diagnostic procedures of myopathies: a biopsy-controlled study in 191 patients. Ther Adv Neurol Disord 2021; 14:1756286420985256. [PMID: 33737953 PMCID: PMC7934066 DOI: 10.1177/1756286420985256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Background and aims The role of muscle magnetic resonance imaging (MRI) in the diagnostic procedures of myopathies is still controversially discussed. The current study was designed to analyze the status of qualitative muscle MRI, electromyography (EMG), and muscle biopsy in different cases of clinically suspected myopathy. Methods A total of 191 patients (male: n = 112, female: n = 79) with suspected myopathy who all received muscle MRI, EMG, and muscle biopsy for diagnostic reasons were studied, with the same location of biopsy and muscle MRI (either upper or lower extremities or paravertebral muscles). Muscle MRIs were analyzed using standard rating protocols by two different raters independently. Results Diagnostic findings according to biopsy results and genetic testing were as follow: non-inflammatory myopathy: n = 65, inflammatory myopathy (myositis): n = 51, neurogenic: n = 18, unspecific: n = 23, and normal: n = 34. The majority of patients showed myopathic changes in the EMG. Edema, atrophy, muscle fatty replacement, and contrast medium enhancement (CM uptake) in MRI were observed across all final diagnostic groups. Only 30% of patients from the myositis group (n = 15) showed CM uptake. Discussion and conclusion The study provides guidance in the definition of the impact of muscle MRI in suspected myopathy: despite being an important diagnostic tool, qualitative MRI findings could not distinguish different types of neuromuscular diagnostic groups in comparison with the gold standard histopathologic diagnosis and/or genetic testing. The results suggest that neither muscle edema nor gadolinium enhancement are able to secure a diagnosis of myositis. The current results do not support qualitative MRI as aiding in the diagnostic distinction of various myopathies. Quantitative muscle MRI is, however, useful in the diagnostic procedure of a suspected neuromuscular disease, especially with regard to assessing progression of a chronic myopathy by quantification of the degree of atrophy and fatty replacement and in exploring patterns of muscle group involvements in certain genetic myopathies.
Collapse
Affiliation(s)
| | - Mohamed Mohamed
- Department of Radiology/Neuroradiology, University and Rehabilitation Clinics Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| | - Angela Rosenbohm
- Department of Neurology, Ulm University, Oberer Eselsberg 45, Ulm, Germany
| |
Collapse
|
25
|
Fernández-Eulate G, Leturcq F, Laforêt P, Richard I, Stojkovic T. [Sarcoglycanopathies: state of the art and therapeutic perspectives]. Med Sci (Paris) 2021; 36 Hors série n° 2:22-27. [PMID: 33427632 DOI: 10.1051/medsci/2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarcoglycanopathies are the third most common cause of autosomal recessive limb girdle muscular dystrophies (LGMD). They are the result of a deficiency in one of the sarcoglycans a, b, g, or d. The usual clinical presentation is that of a symmetrical involvement of the muscles of the pelvic and scapular girdles as well as of the trunk, associated with more or less severe cardio-respiratory impairment and a marked increase of serum CK levels. The first symptoms appear during the first decade, the loss of ambulation occurring often during the second decade. Lesions observed on the muscle biopsy are dystrophic. This is associated with a decrease or an absence of immunostaining of the sarcoglycan corresponding to the mutated gene and, to a lesser degree, of the other three sarcoglycans. Many mutations have been reported in the four incriminated genes and some of them are prevalent in certain populations. To date, there is no curative treatment, which does not prevent the development of many clinical trials, especially in gene therapy.
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - France Leturcq
- Laboratoire de biochimie génétique. APHP, Hôpital Cochin, Paris, France
| | - Pascal Laforêt
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France. APHP, CHU Raymond Poincaré, Garches. Université Paris-Saclay, France
| | - Isabelle Richard
- Généthon, 91000, Évry, France - Université Paris-Saclay, Université d'Evry, Inserm, Généthon, unité de recherche Integrare UMR_S951, 91000, Évry, France
| | - Tanya Stojkovic
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
26
|
Angelini C, Pegoraro V. Assessing diagnosis and managing respiratory and cardiac complications of sarcoglycanopathy. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2020.1865916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Corrado Angelini
- Center for Neuromuscular Diseases, IRCCS San Camillo Hospital, Venice, Italy
| | - Valentina Pegoraro
- Center for Neuromuscular Diseases, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
27
|
Guimarães-Costa R, Fernández-Eulate G, Wahbi K, Leturcq F, Malfatti E, Behin A, Leonard-Louis S, Desguerre I, Barnerias C, Nougues MC, Isapof A, Estournet-Mathiaud B, Quijano-Roy S, Fayssoil A, Orlikowski D, Fauroux B, Richard I, Semplicini C, Romero NB, Querin G, Eymard B, Laforêt P, Stojkovic T. Clinical correlations and long-term follow-up in 100 patients with sarcoglycanopathies. Eur J Neurol 2020; 28:660-669. [PMID: 33051934 DOI: 10.1111/ene.14592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/08/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE To describe a large series of patients with α, β, and γ sarcoglycanopathies (LGMD-R3, R4, and R5) and study phenotypic correlations and disease progression. METHODS A multicentric retrospective study in four centers in the Paris area collecting neuromuscular, respiratory, cardiac, histologic, and genetic data. The primary outcome of progression was age of loss of ambulation (LoA); disease severity was established according to LoA before or after 18 years of age. Time-to-event analysis was performed. RESULTS One hundred patients (54 γ-SG; 41 α-SG; 5 β-SG) from 80 families were included. The γ-SG patients had earlier disease onset than α-SG patients (5.5 vs. 8 years; p = 0.022) and β-SG patients (24.4 years). Axial muscle weakness and joint contractures were frequent and exercise intolerance was observed. At mean follow-up of 22.9 years, 65.3% of patients were wheelchair-bound (66.7% α-SG, 67.3% γ-SG, 40% β-SG). Dilated cardiomyopathy occurred in all sarcoglycanopathy subtypes, especially in γ-SG patients (p = 0.01). Thirty patients were ventilated and six died. Absent sarcoglycan protein expression on muscle biopsy and younger age at onset were associated with earlier time to LoA (p = 0.021 and p = 0.002). Age at onset was an independent predictor of both severity and time to LoA (p = 0.0004 and p = 0.009). The α-SG patients showed genetic heterogeneity, whereas >90% of γ-SG patients carried the homozygous c.525delT frameshift variant. Five new mutations were identified. CONCLUSIONS This large multicentric series delineates the clinical spectrum of patients with sarcoglycanopathies. Age at disease onset is an independent predictor of severity of disease and LoA, and should be taken into account in future clinical trials.
Collapse
Affiliation(s)
- R Guimarães-Costa
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - G Fernández-Eulate
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - K Wahbi
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - F Leturcq
- Department of Biochemistry and Molecular Genetics, Cochin Hospital, Paris, France
| | - E Malfatti
- Department of Neurology, APHP, Raymond Poincaré Hospital, Nord-Est/Ile-de-France Neuromuscular Reference Center, Versailles Paris-Saclay, U 1179 INSERM, Versailles Saint-Quentin-en-Yvelines University, Saint-Aubin, France
| | - A Behin
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - S Leonard-Louis
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - I Desguerre
- Developmental Diseases Clinic, Necker-Enfants Malades Hospital, Paris, France
| | - C Barnerias
- Developmental Diseases Clinic, Necker-Enfants Malades Hospital, Paris, France
| | - M C Nougues
- Department of Neuropediatrics, Nord-Est/Ile-de-France Neuromuscular Reference Center, Armand-Trousseau Children's Hospital, Paris, France
| | - A Isapof
- Department of Neuropediatrics, Nord-Est/Ile-de-France Neuromuscular Reference Center, Armand-Trousseau Children's Hospital, Paris, France
| | - B Estournet-Mathiaud
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, APHP Paris-Saclay. UVSQ U1179 INSERM, Garches, France
| | - S Quijano-Roy
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, APHP Paris-Saclay. UVSQ U1179 INSERM, Garches, France
| | - A Fayssoil
- Pneumology Intensive Care Unit, Raymond Poincaré Hospital, Paris, France
| | - D Orlikowski
- Resuscitation Department and Domiciliary Ventilation Unit, Raymond Poincaré Hospital, Paris, France
| | - B Fauroux
- Pneumology Department, Armand-Trousseau Children's Hospital, Paris, France
| | - I Richard
- INTEGRARE, Genethon, Inserm, Evry University, Paris-Saclay University, Evry, France
| | - C Semplicini
- Department of Neurosciences, University of Padua, Padua, Italy
| | - N B Romero
- Neuromuscular Morphology Unit, Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - G Querin
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - B Eymard
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - P Laforêt
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Neurology Department, Raymond-Poincaré Hospital, Garches, France
| | - T Stojkovic
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
28
|
Díaz-Manera J, Walter G, Straub V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 2020; 63:640-650. [PMID: 33155691 DOI: 10.1002/mus.27099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pompe disease is characterized by a deficiency of acid alpha-glucosidase that results in muscle weakness and a variable degree of disability. There is an approved therapy based on enzymatic replacement that has modified disease progression. Several reports describing muscle magnetic resonance imaging (MRI) features of Pompe patients have been published. Most of the studies have focused on late-onset Pompe disease (LOPD) and identified a characteristic pattern of muscle involvement useful for the diagnosis. In addition, quantitative MRI studies have shown a progressive increase in fat in skeletal muscles of LOPD over time and they are increasingly considered a good tool to monitor progression of the disease. The studies performed in infantile-onset Pompe disease patients have shown less consistent changes. Other more sophisticated muscle MRI sequences, such as diffusion tensor imaging or glycogen spectroscopy, have also been used in Pompe patients and have shown promising results.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Barcelona, Spain
| | - Glenn Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Warman-Chardon J, Diaz-Manera J, Tasca G, Straub V. 247th ENMC International Workshop: Muscle magnetic resonance imaging - Implementing muscle MRI as a diagnostic tool for rare genetic myopathy cohorts. Hoofddorp, The Netherlands, September 2019. Neuromuscul Disord 2020; 30:938-947. [PMID: 33004285 DOI: 10.1016/j.nmd.2020.08.360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Jodi Warman Chardon, Neurology/Genetics, The Ottawa Hospital/Research Institute, Canada; Children's Hospital of Eastern Ontario/Research Institute, Canada
| | - Jordi Diaz-Manera
- Neuromuscular Disorders Unit, Neurology department, Hospital Universitari de la Santa Creu i Sant Pau, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain; John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK.
| | | |
Collapse
|
30
|
Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in Neuromuscular Diseases: An Emerging Diagnostic Tool and Biomarker for Prognosis and Efficacy. Ann Neurol 2020; 88:669-681. [PMID: 32495452 DOI: 10.1002/ana.25804] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
There is an unmet need to identify biomarkers sensitive to change in rare, slowly progressive neuromuscular diseases. Quantitative magnetic resonance imaging (MRI) of muscle may offer this opportunity, as it is noninvasive and can be carried out almost independent of patient cooperation and disease severity. Muscle fat content correlates with muscle function in neuromuscular diseases, and changes in fat content precede changes in function, which suggests that muscle MRI is a strong biomarker candidate to predict prognosis and treatment efficacy. In this paper, we review the evidence suggesting that muscle MRI may be an important biomarker for diagnosis and to monitor change in disease severity. ANN NEUROL 2020;88:669-681.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Per Widholm
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
31
|
Giacomucci G, Monforte M, Diaz-Manera J, Mul K, Fernandez Torrón R, Maggi L, Marini Bettolo C, Dahlqvist JR, Haberlova J, Camaño P, Gros M, Tartaglione T, Cristiano L, Gerevini S, Calandra P, Deidda G, Giardina E, Sacconi S, Straub V, Vissing J, Van Engelen B, Ricci E, Tasca G. Deep phenotyping of facioscapulohumeral muscular dystrophy type 2 by magnetic resonance imaging. Eur J Neurol 2020; 27:2604-2615. [PMID: 32697863 DOI: 10.1111/ene.14446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE The aim was to define the radiological picture of facioscapulohumeral muscular dystrophy 2 (FSHD2) in comparison with FSHD1 and to explore correlations between imaging and clinical/molecular data. METHODS Upper girdle and/or lower limb muscle magnetic resonance imaging scans of 34 molecularly confirmed FSHD2 patients from nine European neuromuscular centres were analysed. T1-weighted and short-tau inversion recovery (STIR) sequences were used to evaluate the global pattern and to assess the extent of fatty replacement and muscle oedema. RESULTS The most frequently affected muscles were obliquus and transversus abdominis, semimembranosus, soleus and gluteus minimus in the lower limbs; trapezius, serratus anterior, latissimus dorsi and pectoralis major in the upper girdle. Iliopsoas, popliteus, obturator internus and tibialis posterior in the lower limbs and subscapularis, spinati, sternocleidomastoid and levator scapulae in the upper girdle were the most spared. Asymmetry and STIR hyperintensities were consistent features. The pattern of muscle involvement was similar to that of FSHD1, and the combined involvement of trapezius, abdominal and hamstring muscles, together with complete sparing of iliopsoas and subscapularis, was detected in 91% of patients. Peculiar differences were identified in a rostro-caudal gradient, a predominant involvement of lower limb muscles compared to the upper girdle, and in the higher percentage of STIR hyperintensities in FSHD2. CONCLUSION This multicentre study defines the pattern of muscle involvement in FSHD2, providing useful information for diagnostics and clinical trial design. Both similarities and differences between FSHD1 and FSHD2 were detected, which is also relevant to better understand the pathogenic mechanisms underlying the FSHD-related disease spectrum.
Collapse
Affiliation(s)
- G Giacomucci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - M Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - J Diaz-Manera
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - K Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Fernandez Torrón
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Neurology Department, Biodonostia Health Research Institute, Neuromuscular Area, Hospital Donostia, Basque Health Service, Doctor Begiristain, Donostia-San Sebastian, Spain
| | - L Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - C Marini Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J R Dahlqvist
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J Haberlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - P Camaño
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases; Biodonostia-Osakidetza Basque Health Service, Molecular Diagnostics Platform, San Sebastian, Spain
| | - M Gros
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - T Tartaglione
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - L Cristiano
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - S Gerevini
- Neuroradiology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - P Calandra
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - G Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - E Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation IRCSS-University of Rome 'Tor Vergata', Rome, Italy
| | - S Sacconi
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - V Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E Ricci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - G Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
32
|
Holm-Yildiz S, Witting N, Dahlqvist J, de Stricker Borch J, Solheim T, Fornander F, Eisum AS, Duno M, Soerensen T, Vissing J. Permanent muscle weakness in hypokalemic periodic paralysis. Neurology 2020; 95:e342-e352. [PMID: 32580975 DOI: 10.1212/wnl.0000000000009828] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/05/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To map the phenotypic spectrum in 55 individuals with mutations in CACNA1S known to cause hypokalemic periodic paralysis (HypoPP) using medical history, muscle strength testing, and muscle MRI. METHODS Adults with a mutation in CACNA1S known to cause HypoPP were included. Medical history was obtained. Muscle strength and MRI assessments were performed. RESULTS Fifty-five persons were included. Three patients presented with permanent muscle weakness and never attacks of paralysis. Seventeen patients presented with a mixed phenotype of periodic paralysis and permanent weakness. Thirty-one patients presented with the classical phenotype of periodic attacks of paralysis and no permanent weakness. Four participants were asymptomatic. Different phenotypes were present in 9 of 18 families. All patients with permanent weakness had abnormal replacement of muscle by fat on MRI. In addition, 20 of 35 participants with no permanent weakness had abnormal fat replacement of muscle on MRI. The most severely affected muscles were the paraspinal muscles, psoas, iliacus, the posterior muscles of the thigh and gastrocnemius, and soleus of the calf. Age was associated with permanent weakness and correlated with severity of weakness and fat replacement of muscle on MRI. CONCLUSIONS Our results show that phenotype in individuals with HypoPP-causing mutations in CACNA1S varies from asymptomatic to periodic paralysis with or without permanent muscle weakness or permanent weakness as sole presenting picture. Variable phenotypes are found within families. Muscle MRI reveals fat replacement in patients with no permanent muscle weakness, suggesting a convergence of phenotype towards a fixed myopathy with aging.
Collapse
Affiliation(s)
- Sonja Holm-Yildiz
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark.
| | - Nanna Witting
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - Julia Dahlqvist
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - Josefine de Stricker Borch
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - Tuva Solheim
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - Freja Fornander
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - Anne-Sofie Eisum
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - Morten Duno
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - Troels Soerensen
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| | - John Vissing
- From the Copenhagen Neuromuscular Center, Department of Neurology (S.H.-Y., N.W., J.D., J.d.S.B., T.S., F.F., A.-S.E., J.V.), and Department of Clinical Genetics (M.D.), Rigshospitalet, University of Copenhagen; and Neurology Practice (T.S.), Herlev, Denmark
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW As a group, the limb-girdle muscular dystrophies (LGMDs) are the fourth most prevalent genetic muscle disease, yet they are still not well known or understood. This article defines and describes LGMDs, delineates a diagnostic strategy, and discusses treatment of the LGMDs. RECENT FINDINGS In 2018, the definition of the LGMDs was further refined, and a new nomenclature was proposed. Diagnosis of the LGMDs was long guided by the distinctive clinical characteristics of each particular subtype but now integrates use of genetics-with next-generation sequencing panels, exomes, and full genome analysis-early in the diagnostic assessment. Appreciation of the phenotypic diversity of each LGMD subtype continues to expand. This emphasizes the need for precision genetic diagnostics to better understand each subtype and formulate appropriate management for individual patients. Of significant relevance, the explosion of research into therapeutic options accentuates the need for accurate diagnosis, comprehensive disease characterization, and description of the natural histories of the LGMDs to move the field forward and to mitigate disease impact on patients with LGMD. SUMMARY The LGMDs are genetic muscle diseases that superficially appear similar to one another but have important differences in rates of progression and concomitant comorbidities. Definitive diagnoses are crucial to guide management and treatment now and in the future. As targeted treatments emerge, it will be important for clinicians to understand the nomenclature, diagnosis, clinical manifestations, and treatments of the LGMDs.
Collapse
|
34
|
Song J, Fu J, Ma M, Pang M, Li G, Gao L, Zhang J. Lower limb muscle magnetic resonance imaging in Chinese patients with myotonic dystrophy type 1. Neurol Res 2020; 42:170-177. [PMID: 31951783 DOI: 10.1080/01616412.2020.1716494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: Muscle magnetic resonance imaging (MRI) is a reliable noninvasion tool for detecting muscle abnormalities of myopathies. This study aimed to investigate the MRI features of lower limb muscles in Chinese patients with myotonic dystrophy type 1 (DM1) and to evaluate the correlation between clinical factors and muscle MRI.Methods: We retrospectively reviewed the medical records and lower limb muscle MRI in 24 Chinese DM1 patients. Muscular Impairment Rating Scale (MIRS) was used to assess the clinical muscular impairment. Modified Mercuri's scale was used to assess the degree of fatty infiltration. Spearman rank correlation test was used to analyze the relationship between fatty degeneration score with age, age of onset, disease duration, MIRS grading and creatinine kinase (CK) level.Results: Fatty infiltration was found in 22 of 24 DM1 patients and 8 patients were asymmetrically affected. The medial gastrocnemius was the most affected muscle, followed by soleus and tibialis anterior muscles in lower legs. At thigh level, the anterior compartment was usually the most affected region with the rectus femoris relatively spared. 79.2% of DM1 patients had edema in lower limb muscles. The total mean score of fatty infiltration correlated with MIRS grading, age and disease duration but did not correlate with the age of onset or CK level.Conclusion: Here, we found fatty infiltration present in most Chinese DM1 patients with a selective involvement pattern. There is a correlation between the total mean score of fatty infiltration and MIRS grading, age and disease duration.
Collapse
Affiliation(s)
- Jia Song
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan, China
| | - Jun Fu
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan, China
| | - Mingming Ma
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan, China
| | - Mi Pang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan, China
| | - Gang Li
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan, China
| | - Li Gao
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan, China
| |
Collapse
|
35
|
Oliveira Santos M, Coelho P, Roque R, Conceição I. Very late-onset limb-girdle muscular dystrophy type 2D: A milder form with a normal muscle biopsy. J Clin Neurosci 2019; 72:471-473. [PMID: 31836381 DOI: 10.1016/j.jocn.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/01/2019] [Indexed: 11/18/2022]
Abstract
Sarcoglycanopathies are a genetically heterogeneous group of autosomal recessive limb-girdle muscular dystrophies (LGMD) caused by mutations in sarcoglycan genes. We report a Portuguese patient with a very late-onset LGMD phenotype, whose muscle biopsy and immunostaining, in particular for α-sarcoglycan, were unrevealing. Muscle MRI showed a predominant, bilateral and symmetric involvement of the tight muscles and also, to a lesser extent, of the posterior compartment of lower legs muscles. Next generation sequencing (NGS) revealed a known homozygous c.850C > T (p.Arg284Cys) mutation in SGCA gene. Milder forms of α-sarcoglycanopathies could be a challenging diagnosis; particularly if muscle histopathology and α-sarcoglycan immunohistochemistry are unhelpful. NGS plays a crucial role not only for aiding in the establishment of a definite diagnosis, but also for expanding clinical presentations.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal; Institute of Physiology, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | - Pedro Coelho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Rafael Roque
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Isabel Conceição
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal; Institute of Physiology, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
36
|
Xie Z, Xie Z, Yu M, Zheng Y, Sun C, Liu Y, Ling C, Zhu Y, Zhang W, Xiao J, Wang Z, Yuan Y. Value of muscle magnetic resonance imaging in the differential diagnosis of muscular dystrophies related to the dystrophin-glycoprotein complex. Orphanet J Rare Dis 2019; 14:250. [PMID: 31747956 PMCID: PMC6865054 DOI: 10.1186/s13023-019-1242-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dystrophin-glycoprotein complex (DGC)-related muscular dystrophies may present similar clinical and pathological features as well as undetectable mutations thus being sometimes difficult to distinguish. We investigated the value of muscle magnetic resonance imaging (MRI) in the differential diagnosis of DGC-related muscular dystrophies and reported the largest series of Chinese patients with sarcoglycanopathies studied by muscle MRI. RESULTS Fifty-five patients with DGC-related muscular dystrophies, including 22 with confirmed sarcoglycanopathies, 11 with limb-girdle muscular dystrophy 2I (LGMD2I, FKRP-associated dystroglycanopathy), and 22 with dystrophinopathies underwent extensive clinical evaluation, muscle biopsies, genetic analysis, and muscle MRI examinations. Hierarchical clustering of patients according to the clinical characteristics showed that patients did not cluster according to the genotypes. No statistically significant differences were observed between sarcoglycanopathies and LGMD2I in terms of thigh muscle involvement. The concentric fatty infiltration pattern was observed not only in different sarcoglycanopathies (14/22) but also in LGMD2I (9/11). The trefoil with single fruit sign was observed in most patients with dystrophinopathies (21/22), and a few patients with sarcoglycanopathies (4/22) or LGMD2I (2/11). Hierarchical clustering showed that most patients with sarcoglycanopathies or LGMD2I can be distinguished from dystrophinopathies based on the concentric fatty infiltration pattern and trefoil with single fruit sign at the thigh level on muscle MRI. CONCLUSIONS Muscle MRI at the thigh level potentially allows distinction of sarcoglycanopathies or FKRP-associated dystroglycanopathy from dystrophinopathies.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chengyue Sun
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yilin Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
37
|
European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A). J Neurol 2019; 267:45-56. [PMID: 31555977 DOI: 10.1007/s00415-019-09539-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A) is a progressive myopathy caused by deficiency of calpain 3, a calcium-dependent cysteine protease of skeletal muscle, and it represents the most frequent type of LGMD worldwide. In the last few years, muscle magnetic resonance imaging (MRI) has been proposed as a tool for identifying patterns of muscular involvement in genetic disorders and as a biomarker of disease progression in muscle diseases. In this study, 57 molecularly confirmed LGMDR1 patients from a European cohort (age range 7-78 years) underwent muscle MRI and a global evaluation of functional status (Gardner-Medwin and Walton score and ability to raise the arms). RESULTS We confirmed a specific pattern of fatty substitution involving predominantly the hip adductors and hamstrings in lower limbs. Spine extensors were more severely affected than spine rotators, in agreement with higher incidence of lordosis than scoliosis in LGMDR1. Hierarchical clustering of lower limb MRI scores showed that involvement of anterior thigh muscles discriminates between classes of disease progression. Severity of muscle fatty substitution was significantly correlated with CAPN3 mutations: in particular, patients with no or one "null" alleles showed a milder involvement, compared to patients with two null alleles (i.e., predicting absence of calpain-3 protein). Expectedly, fat infiltration scores strongly correlated with functional measures. The "pseudocollagen" sign (central areas of sparing in some muscle) was associated with longer and more severe disease course. CONCLUSIONS We conclude that skeletal muscle MRI represents a useful tool in the diagnostic workup and clinical management of LGMDR1.
Collapse
|
38
|
Winckler PB, da Silva AMS, Coimbra-Neto AR, Carvalho E, Cavalcanti EBU, Sobreira CFR, Marrone CD, Machado-Costa MC, Carvalho AAS, Feio RHF, Rodrigues CL, Gonçalves MVM, Tenório RB, Mendonça RH, Cotta A, Paim JFO, Costa E Silva C, de Aquino Cruz C, Bená MI, Betancur DFA, El Husny AS, de Souza ICN, Duarte RCB, Reed UC, Chaves MLF, Zanoteli E, França MC, Saute JA. Clinicogenetic lessons from 370 patients with autosomal recessive limb-girdle muscular dystrophy. Clin Genet 2019; 96:341-353. [PMID: 31268554 DOI: 10.1111/cge.13597] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022]
Abstract
Limb-girdle muscular dystrophies (LGMD) are a group of genetically heterogeneous disorders characterized by predominantly proximal muscle weakness. We aimed to characterize epidemiological, clinical and molecular data of patients with autosomal recessive LGMD2/LGMD-R in Brazil. A multicenter historical cohort study was performed at 13 centers, in which index cases and their affected relatives' data from consecutive families with genetic or pathological diagnosis of LGMD2/LGMD-R were reviewed from July 2017 to August 2018. Survival curves to major handicap for LGMD2A/LGMD-R1-calpain3-related, LGMD2B/LGMD-R2-dysferlin-related and sarcoglycanopathies were built and progressions according to sex and genotype were estimated. In 370 patients (305 families) with LGMD2/LGMD-R, most frequent subtypes were LGMD2A/LGMD-R1-calpain3-related and LGMD2B/LGMD-R2-dysferlin-related, each representing around 30% of families. Sarcoglycanopathies were the most frequent childhood-onset subtype, representing 21% of families. Five percent of families had LGMD2G/LGMD-R7-telethonin-related, an ultra-rare subtype worldwide. Females with LGMD2B/LGMD-R2-dysferlin-related had less severe progression to handicap than males and LGMD2A/LGMD-R1-calpain3-related patients with truncating variants had earlier disease onset and more severe progression to handicap than patients without truncating variants. We have provided paramount epidemiological data of LGMD2/LGMD-R in Brazil that might help on differential diagnosis, better patient care and guiding future collaborative clinical trials and natural history studies in the field.
Collapse
Affiliation(s)
- Pablo B Winckler
- Neurology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André M S da Silva
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Antônio R Coimbra-Neto
- Department of Neurology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Medical Physiopathology, UNICAMP, Campinas, Brazil
| | - Elmano Carvalho
- Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | | | - Cláudia F R Sobreira
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences, Ribeirão Preto, Brazil
| | - Carlo D Marrone
- Physiatry Division, Hospital São Lucas da Pontifícia Universidade Católica, Porto Alegre, Brazil
- Clinica Marrone, Porto Alegre, Brazil
| | | | | | - Raimunda H F Feio
- Hospital Universitário Bettina Ferro de Souza, Universidade Federal do Pará (UFPA), Belém, Brazil
| | | | | | | | - Rodrigo H Mendonça
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana Cotta
- Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | - Júlia F O Paim
- Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | | | - Camila de Aquino Cruz
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences, Ribeirão Preto, Brazil
| | - Marjory I Bená
- Universidade de São Paulo, Ribeirão Preto Medical School, Department of Neurosciences, Ribeirão Preto, Brazil
| | - Daniel F A Betancur
- Physiatry Division, Hospital São Lucas da Pontifícia Universidade Católica, Porto Alegre, Brazil
| | - Antonette S El Husny
- Hospital Universitário Bettina Ferro de Souza, Universidade Federal do Pará (UFPA), Belém, Brazil
- Centro Universitário do Estado do Pará, Belém, Brazil
| | - Isabel C N de Souza
- Hospital Universitário Bettina Ferro de Souza, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Regina C B Duarte
- Hospital Ophir Loyola, Belém, Brazil
- Department of Neurology, UFPA, Belém, Brazil
| | - Umbertina C Reed
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Márcia L F Chaves
- Neurology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Internal Medicine, UFRGS, Porto Alegre, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Marcondes C França
- Department of Neurology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Medical Physiopathology, UNICAMP, Campinas, Brazil
| | - Jonas A Saute
- Neurology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical Genetics Division, HCPA, Porto Alegre, Brazil
- Department of Internal Medicine, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
39
|
Identification of thiostrepton as a pharmacological approach to rescue misfolded alpha-sarcoglycan mutant proteins from degradation. Sci Rep 2019; 9:6915. [PMID: 31061434 PMCID: PMC6502821 DOI: 10.1038/s41598-019-43399-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2D (LGMD2D) is characterized by a progressive proximal muscle weakness. LGMD2D is caused by mutations in the gene encoding α-sarcoglycan (α-SG), a dystrophin-associated glycoprotein that plays a key role in the maintenance of sarcolemma integrity in striated muscles. We report here on the development of a new in vitro high-throughput screening assay that allows the monitoring of the proper localization of the most prevalent mutant form of α-SG (R77C substitution). Using this assay, we screened a library of 2560 FDA-approved drugs and bioactive compounds and identified thiostrepton, a cyclic antibiotic, as a potential drug to repurpose for LGMD2D treatment. Characterization of the thiostrepton effect revealed a positive impact on R77C-α-SG and other missense mutant protein localization (R34H, I124T, V247M) in fibroblasts overexpressing these proteins. Finally, further investigations of the molecular mechanisms of action of the compound revealed an inhibition of the chymotrypsin-like activity of the proteasome 24 h after thiostrepton treatment and a synergistic effect with bortezomib, an FDA-approved proteasome inhibitor. This study reports on the first in vitro model for LGMD2D that is compatible with high-throughput screening and proposes a new therapeutic option for LGMD2D caused by missense mutations of α-SG.
Collapse
|
40
|
Alonso-Jimenez A, Kroon RHMJM, Alejaldre-Monforte A, Nuñez-Peralta C, Horlings CGC, van Engelen BGM, Olivé M, González L, Verges-Gil E, Paradas C, Márquez C, Garibaldi M, Gallano P, Rodriguez MJ, Gonzalez-Quereda L, Dominguez Gonzalez C, Vissing J, Fornander F, Eisum ASV, García-Sobrino T, Pardo J, García-Figueiras R, Muelas N, Vilchez JJ, Kapetanovic S, Tasca G, Monforte M, Ricci E, Gomez MT, Bevilacqua JA, Diaz-Jara J, Zamorano II, Carlier RY, Laforet P, Pelayo-Negro A, Ramos-Fransi A, Martínez A, Marini-Bettolo C, Straub V, Gutiérrez G, Stojkovic T, Martín MA, Morís G, Fernández-Torrón R, Lopez De Munaín A, Cortes-Vicente E, Querol L, Rojas-García R, Illa I, Diaz-Manera J. Muscle MRI in a large cohort of patients with oculopharyngeal muscular dystrophy. J Neurol Neurosurg Psychiatry 2019; 90:576-585. [PMID: 30530568 DOI: 10.1136/jnnp-2018-319578] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Oculopharyngeal muscular dystrophy (OPMD) is a genetic disorder caused by an abnormal expansion of GCN triplets within the PABPN1 gene. Previous descriptions have focused on lower limb muscles in small cohorts of patients with OPMD, but larger imaging studies have not been performed. Previous imaging studies have been too small to be able to correlate imaging findings to genetic and clinical data. METHODS We present cross-sectional, T1-weighted muscle MRI and CT-scan data from 168 patients with genetically confirmed OPMD. We have analysed the pattern of muscle involvement in the disease using hierarchical analysis and presented it as heatmaps. Results of the scans were correlated with genetic and clinical data. RESULTS Fatty replacement was identified in 96.7% of all symptomatic patients. The tongue, the adductor magnus and the soleus were the most commonly affected muscles. Muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS We have described a pattern that can be considered characteristic of OPMD. An early combination of fat replacement in the tongue, adductor magnus and soleus can be helpful for differential diagnosis. The findings suggest the natural history of the disease from a radiological point of view. The information generated by this study is of high diagnostic value and important for clinical trial development.
Collapse
Affiliation(s)
- Alicia Alonso-Jimenez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | | | | | - Corinne G C Horlings
- Neurology Department, Radboud university Medical Center, Nijmegen, The Netherlands
| | | | - Montse Olivé
- Pathology Department (Neuropathology), Neuromuscular Disorders Unit, IDIBELL, Hospital de Bellvitge, Barcelona, Spain
| | - Laura González
- Pathology Department (Neuropathology), Neuromuscular Disorders Unit, IDIBELL, Hospital de Bellvitge, Barcelona, Spain
| | - Enric Verges-Gil
- Pathology Department (Neuropathology), Neuromuscular Disorders Unit, IDIBELL, Hospital de Bellvitge, Barcelona, Spain
| | - Carmen Paradas
- Neuromuscular Disorders Unit, Neurology Department, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Celedonio Márquez
- Neuromuscular Disorders Unit, Neurology Department, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Matteo Garibaldi
- Neuromuscular Disorders Unit, Department of Neurology, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Ospedale Sant'Andrea, Rome, Italy
| | - Pía Gallano
- Genetic Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | | | - Lidia Gonzalez-Quereda
- Genetic Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | - Cristina Dominguez Gonzalez
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain.,Neuromuscular Disorders Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Freja Fornander
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Vibæk Eisum
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Julio Pardo
- Neurology Department, Hospital Clínico, Santiago de Compostela, Spain
| | | | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain.,Neuromuscular Research Unit, Neurology Department, Instituto de Investigación Sanitaria la Fe, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - Juan Jesús Vilchez
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain.,Neuromuscular Research Unit, Neurology Department, Instituto de Investigación Sanitaria la Fe, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | | | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A, Gemelli IRCCS, Roem, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A, Gemelli IRCCS, Roem, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A, Gemelli IRCCS, Roem, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - María Teresa Gomez
- Neurology Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Jorge Alfredo Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Programa de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Diaz-Jara
- Centro de imagenología, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Ivonne Ingrid Zamorano
- Servicio de Neurología, Hospital de Puerto Montt, Servicio de Salud del Reloncavi, Los Lagos Region, Chile
| | - Robert Yves Carlier
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Pascal Laforet
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service de neurologie, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Ana Pelayo-Negro
- Neurology Department, University Hospital "Marqués de Valdecilla (IDIVAL)", University of Cantabria, and "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Alba Ramos-Fransi
- Neurology Department, Hospital Germans Trias I Pujol, Barcelona, Spain
| | | | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Gerardo Gutiérrez
- Neurology Department, Hospital Infanta Sofía, San Sebastián de los Reyes, Spain
| | - Tanya Stojkovic
- Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Germán Morís
- Neurology Department, Hospital Universitario Central de Asturias, Asturias, Spain
| | - Roberto Fernández-Torrón
- Neurology Department, Hospital Donostia, San Sebastián, Spain.,Neuromuscular Area, Neurology Service, Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián, Spain
| | - Adolfo Lopez De Munaín
- Neurology Department, Hospital Donostia, San Sebastián, Spain.,Neuromuscular Area, Neurology Service, Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián, Spain
| | - Elena Cortes-Vicente
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | - Luis Querol
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | - Ricardo Rojas-García
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain .,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
41
|
Lu Y, Song X, Ji G, Wu H, Li D, Sun S. Identification of a novel SGCA missense mutation in a case of limb-girdle muscular dystrophy 2D with the absence of four sarcoglycan proteins. Neuropathology 2019; 39:207-211. [PMID: 30989758 PMCID: PMC6850699 DOI: 10.1111/neup.12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/02/2022]
Abstract
Limb‐girdle muscular dystrophy 2D (LGMD2D) is caused by mutations in the α‐sarcoglycan gene (SGCA). Due to lack of specificity, it is impossible to identify LGMD2D only by clinical symptoms and conventional immunohistochemical staining. The loss of any protein (α‐, β‐, γ‐, δ‐sarcoglycan) that represent sarcoglycanopathy may cause reduction or absence of the other three proteins. Here, we report a patient with a complete loss of all the four proteins. Next generation sequencing (NGS) results showed a missense mutation (C.218 C > T) and a partial heterozygous deletion containing exons 7 and 8 of SGCA, which led to the final diagnosis of the patient. The discovery of this new mutation could broaden the spectrum of SGCA mutations, which may be associated with putative LGMD2D, especially when all the four proteins are completely missing.
Collapse
Affiliation(s)
- Yanpeng Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Duan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Shuyan Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
42
|
Alessandrino F, Cristiano L, Cinnante CM, Tartaglione T, Gerevini S, Verdolotti T, Colafati GS, Ghione E, Vitale R, Peverelli L, Brogna C, Berardinelli A, Moggio M, Mercuri EM, Pichiecchio A. Value of structured reporting in neuromuscular disorders. Radiol Med 2019; 124:628-635. [DOI: 10.1007/s11547-019-01012-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/21/2019] [Indexed: 11/27/2022]
|
43
|
Xie Z, Hou Y, Yu M, Liu Y, Fan Y, Zhang W, Wang Z, Xiong H, Yuan Y. Clinical and genetic spectrum of sarcoglycanopathies in a large cohort of Chinese patients. Orphanet J Rare Dis 2019; 14:43. [PMID: 30764848 PMCID: PMC6376703 DOI: 10.1186/s13023-019-1021-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/03/2019] [Indexed: 11/20/2022] Open
Abstract
Background Sarcoglycanopathies comprise four subtypes of autosomal recessive limb-girdle muscular dystrophy (LGMD2C, LGMD2D, LGMD2E, and LGMD2F) that are caused, respectively, by mutations in the SGCG, SGCA, SGCB, and SGCD genes. Knowledge about the clinical and genetic features of sarcoglycanopathies in Chinese patients is limited. The aims of this study were to investigate in detail the clinical manifestations, sarcoglycan expression, and gene mutations in Chinese patients with sarcoglycanopathies and to identify possible correlations between them. Results Of 3638 patients for suspected neuromuscular diseases (1733 with inherited myopathies, 1557 with acquired myopathies, and 348 unknown), 756 patients had next-generation sequencing (NGS) diagnostic panel. Twenty-five patients with sarcoglycanopathies (11.5%) were identified from 218 confirmed LGMDs, comprising 18 with LGMD2D, 6 with LGMD2E, and one with LGMD2C. One patient with LGMD2D also had Charcot-Marie-Tooth 1A. The clinical phenotypes of the patients with LGMD2D or LGMD2E were markedly heterogeneous. Muscle biopsy showed a dystrophic pattern in 19 patients and mild myopathic changes in 6. The percentage of correct prediction of genotype based on expression of sarcoglycan was 36.0% (4 LGMD2D, 4 LGMD2E, and one LGMD2C). There was a statistically significant positive correlation between reduction of α-sarcoglycan level and disease severity in LGMD2D. Thirty-five mutations were identified in SGCA, SGCB, SGCG, and PMP22, 16 of which were novel. Exon 3 of SGCA was a hotspot region for mutations in LGMD2D. The missense mutation c.662G > A (p.R221H) was the most common mutation in SGCA. Missense mutations in both alleles of SGCA were associated with a relative benign disease course. No obvious clinical, sarcoglycan expression, and genetic correlation was found in LGMD2E. Conclusions This study expands the clinical and genetic spectrum of sarcoglycanopathies in Chinese patients and provides evidence that disease severity of LGMD2D may be predicted by α-sarcoglycan expression and SGCA mutation. Electronic supplementary material The online version of this article (10.1186/s13023-019-1021-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yue Hou
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yilin Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, Xishiku St, Xicheng District, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Xishiku St, Xicheng District, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
44
|
Paoletti M, Pichiecchio A, Cotti Piccinelli S, Tasca G, Berardinelli AL, Padovani A, Filosto M. Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Front Neurol 2019; 10:78. [PMID: 30804884 PMCID: PMC6378279 DOI: 10.3389/fneur.2019.00078] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Giorgio Tasca
- Neurology Department, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| |
Collapse
|
45
|
Gonzalez-Quereda L, Gallardo E, Töpf A, Alonso-Jimenez A, Straub V, Rodriguez MJ, Lleixa C, Illa I, Gallano P, Diaz-Manera J. A new mutation of the SCGA gene is the cause of a late onset mild phenotype limb girdle muscular dystrophy type 2D with axial involvement. Neuromuscul Disord 2018; 28:633-638. [DOI: 10.1016/j.nmd.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/21/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
|
46
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|