1
|
Proschinger S, Belen S, Adammek F, Schlagheck ML, Rademacher A, Schenk A, Warnke C, Bloch W, Zimmer P. Sportizumab - Multimodal progressive exercise over 10 weeks decreases Th17 frequency and CD49d expression on CD8 + T cells in relapsing-remitting multiple sclerosis: A randomized controlled trial. Brain Behav Immun 2025; 124:397-408. [PMID: 39675643 DOI: 10.1016/j.bbi.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) represents a neuroinflammatory autoimmune disease characterized by the predominance of circulating T cell subsets with proinflammatory characteristics and increased central nervous system (CNS)-homing potential. Substantial evidence confirms various beneficial effects of chronic exercise interventions in MS, but it is unknown how long-term multi-modal intense exercise affects MS-associated lymphocytes that are commonly targeted by medication in persons with relapsing remitting MS (pwRRMS). METHODS A total of 45 participants with defined RRMS were randomized to either the exercise (n = 22) or passive waitlist-control group (n = 23). A 10-week intervention consisting of progressive resistance and strength-endurance exercises was applied (3x/week à 60 min). Blood was drawn before (T1) and after (T2) the intervention period. Flow cytometry was used for phenotyping lymphocyte subsets. RESULTS Relative protein expression of CD49d within CD8+ T cells, quantified via mean fluorescence intensity (MFI), is significantly associated with the Expanded Disability Status Scale (p = 0.007, r = 0.440), decreased in the exercise group (p = 0.001) only, and was significantly lower in the exercise compared to the control group at T2 (p < 0.001). T helper (Th) 17 cell frequency decreased only in the exercise group (p < 0.001). CD8+CD20+ T cell frequency was significantly lower in the exercise compared to the control group at T2 (p = 0.003), without showing significant time effects. CONCLUSION The 10-week multimodal exercise intervention mainly affected circulating T cells harboring a pathophysiological phenotype in MS. The findings of a decreased frequency of pathogenic Th17 cells and the reduced CNS-homing potential of CD8+ T cells, indicated by reduced CD49d MFI, substantiate the positive effects of exercise on cellular biomarkers involved in disease activity and progression in MS. To confirm exercise-mediated beneficial effects on both disease domains, clinical endpoints (i.e., relapse rate, lesion formation, EDSS score) should be assessed together with these cellular and molecular markers in studies with a larger sample size and a duration of six to twelve months or longer.
Collapse
Affiliation(s)
- Sebastian Proschinger
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Sergen Belen
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany; Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Frederike Adammek
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Marit Lea Schlagheck
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | | | - Alexander Schenk
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany.
| |
Collapse
|
2
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Helgudóttir SS, Mørkholt AS, Lichota J, Bruun-Nyzell P, Andersen MC, Kristensen NMJ, Johansen AK, Zinn MR, Jensdóttir HM, Nieland JDV. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regen Res 2024; 19:1437-1445. [PMID: 38051885 PMCID: PMC10883494 DOI: 10.4103/1673-5374.387965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
Collapse
Affiliation(s)
| | | | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Christian Andersen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nanna Marie Juhl Kristensen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Amanda Krøger Johansen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mikela Reinholdt Zinn
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hulda Maria Jensdóttir
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- 2N Pharma ApS, NOVI Science Park, Aalborg, Denmark
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
Ciron J, Bourre B, Castelnovo G, Guennoc AM, De Sèze J, Ben-Amor AF, Savarin C, Vermersch P. Holistic, Long-Term Management of People with Relapsing Multiple Sclerosis with Cladribine Tablets: Expert Opinion from France. Neurol Ther 2024; 13:503-518. [PMID: 38488979 PMCID: PMC11136930 DOI: 10.1007/s40120-024-00589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Cladribine tablets (CladT) has been available for therapeutic use in France since March 2021 for the management of highly active relapsing multiple sclerosis (RMS). This high-efficacy disease-modifying therapy (DMT) acts as an immune reconstitution therapy. In contrast to most high-efficacy DMTs, which act via continuous immunosuppression, two short courses of oral treatment with CladT at the beginning of years 1 and 2 of treatment provide long-term control of MS disease activity in responders to treatment, without the need for any further pharmacological treatment for several years. Although the labelling for CladT does not provide guidance beyond the initial treatment courses, real-world data on the therapeutic use of CladT from registries of previous clinical trial participants and patients treated in routine practice indicate that MS disease activity is controlled for a period of years beyond this time for a substantial proportion of patients. Moreover, this clinical experience has provided useful information on how to initiate and manage treatment with CladT. In this article we, a group of expert neurologists from France, provide recommendations on the initiation of CladT in DMT-naïve patients, how to switch from existing DMTs to CladT for patients with continuing MS disease activity, how to manage patients during the first 2 years of treatment and finally, how to manage patients with or without MS disease activity in years 3, 4 and beyond after initiating treatment with CladT. We believe that optimisation of the use of CladT beyond its initial courses of treatment will maximise the benefits of this treatment, especially early in the course of MS when suppression of focal inflammation in the CNS is a clinical priority to limit MS disease progression.
Collapse
Affiliation(s)
- Jonathan Ciron
- Department of Neurology, Centre de Ressources et de Compétences Sclérose en Plaques (CRC-SEP), Toulouse University Hospital, Hôpital Pierre-Paul Riquet, Toulouse, France
- INSERM UMR1291, CNRS UMR5051, Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse III, Toulouse, France
| | | | - Giovanni Castelnovo
- Department of Neurology, Nîmes University Hospital, Hopital Caremeau, Nîmes, France
| | | | - Jérôme De Sèze
- Department of Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Ali Frederic Ben-Amor
- Knowlepsy Investment, Marseille Innovation, Technopôle de Château-Gombert, Marseille, France
| | - Carine Savarin
- Merck Santé S.A.S., an Affiliate of Merck KGaA, Lyon, France
| | - Patrick Vermersch
- Univ. Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France.
| |
Collapse
|
5
|
Budimkic MS, Ivanovic J, Momcilovic N, Mesaros S, Drulovic J. Eyebrow alopecia associated with cladribine treatment for multiple sclerosis. Neurol Sci 2023; 44:3735-3736. [PMID: 37249666 DOI: 10.1007/s10072-023-06874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Affiliation(s)
- Maja Stefanovic Budimkic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovana Ivanovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Nikola Momcilovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Sarlota Mesaros
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Drulovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
Al-Hashel J, Ahmed SF, AlMojel M, Alroughani R. A prospective observational longitudinal study with a two-year follow-up of multiple sclerosis patients on Cladribine. Clin Neurol Neurosurg 2023; 232:107885. [PMID: 37459794 DOI: 10.1016/j.clineuro.2023.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Cladribine was approved for the treatment of multiple sclerosis (MS). Real-world data is very limited. OBJECTIVES To study the effectiveness and the safety of Cladribine treatment in only one group of MS patients after treatment with Cladribine for two years. METHODS This observational, longitudinal prospective study. Eligible subjects were relapsing remitting MS patients who had at least two-year follow-up after Cladribine treatment. The primary endpoint was the proportion of relapse free patients. Secondary endpoints were ARR, change in EDSS scores, the proportion of patients with CDP, MRI activity, and NEDA-3 status, also the rate of occurrence of AEs. Patients were assessed for primary and secondary endpoints at the end of two years of follow-up. RESULTS Of a total of seventy-two patients, 59 (81.9 %) were females, mean age of 36.32 + 10.06 years old, mean disease duration 7.21 + 6.19. Most patients (n = 32; 44.4 %) were naïve to any treatment. Forty patients (55.6 %) completed two courses of treatment. The primary endpoint showed that most of our cohort was relapse free (85 % versus 25 %; P < 0.001), Secondary endpoints showed that ARR was significantly reduced 0.15 + 0.36 versus 0.85 + 0.53; P < 0.01). Most of the cohort 90 % have no progression of disability. Few subjects had new T2 lesions (7.5 % versus 70.8 %; P < 0.001 and gadolinium enhancement 5 % versus 66.7 %; P < 0.001) in MRI compared to baseline. No evidence of disease activity 3 (NEDA-3) was achieved in 30 (75 %) patients. It was achieved in 87.5 % of naive patients versus 66.7 % in patients who received prior disease modification drugs before Cladribine initiation. Infections 6 (n = 6; 8.4 %) lymphocytopenia (n = 3; 4.2 %), and elevated liver enzymes (n = 1; 1.4 %) were reported. CONCLUSION Cladribine treatment reduced significantly relapse rate and MRI activity. It was safe and tolerable. Early initiation of cladribine is associated with favorable outcomes.
Collapse
Affiliation(s)
- Jasem Al-Hashel
- Department of Neurology, Ibn Sina Hospital, P.O. Box 25427, Safat 13115, Kuwait; Department of Medicine, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Samar Farouk Ahmed
- Department of Neurology, Ibn Sina Hospital, P.O. Box 25427, Safat 13115, Kuwait; Department of Neurology and Psychiatry, Minia University, P.O. Box 61519, Minia 61111, Egypt
| | - Malak AlMojel
- Department of Medicine, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Raed Alroughani
- Division of Neurology, Amiri Hospital, Arabian Gulf Street, Sharq 13041, Kuwait; MS Clinic, Ibn Sina Hospital, P.O. Box 25427, Safat 13115, Kuwait
| |
Collapse
|
7
|
Centonze D, Amato MP, Brescia Morra V, Cocco E, De Stefano N, Gasperini C, Gallo P, Pozzilli C, Trojano M, Filippi M. Multiple sclerosis patients treated with cladribine tablets: expert opinion on practical management after year 4. Ther Adv Neurol Disord 2023; 16:17562864231183221. [PMID: 37434878 PMCID: PMC10331342 DOI: 10.1177/17562864231183221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive neurological disease involving neuroinflammation, neurodegeneration, and demyelination. Cladribine tablets are approved for immune reconstitution therapy in patients with highly active relapsing-remitting MS based on favorable efficacy and tolerability results from the CLARITY study that have been confirmed in long-term extension studies. The approved 4-year dosing regimen foresees a cumulative dose of 3.5 mg/kg administered in two cycles administered 1 year apart, followed by 2 years of observation. Evidence on managing patients beyond year 4 is scarce; therefore, a group of 10 neurologists has assessed the available evidence and formulated an expert opinion on management of the growing population of patients now completing the approved 4-year regimen. We propose five patient categories based on response to treatment during the first 4-year regimen, and corresponding management pathways that envision close monitoring with clinical visits, magnetic resonance imaging (MRI) and/or biomarkers. At the first sign of clinical or radiological disease activity, patients should receive a highly effective disease-modifying therapy, comprising either a full cladribine regimen as described in regulatory documents (cumulative dose 7.0 mg/kg) or a comparably effective treatment. Re-treatment decisions should be based on the intensity and timing of onset of disease activity, clinical and radiological assessments, as well as patient eligibility for treatment and treatment preference.
Collapse
Affiliation(s)
- Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133 Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Center and Department of Neuroscience (NSRO), Federico II University, Naples, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health and Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, Rome, Italy
| | - Paolo Gallo
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
8
|
Jamali E, Shapoori S, Farrokhi MR, Vakili S, Rostamzadeh D, Iravanpour F, Tavakoli Oliaee R, Jafarinia M. Effect of Disease-Modifying Therapies on COVID-19 Vaccination Efficacy in Multiple Sclerosis Patients: A Comprehensive Review. Viral Immunol 2023; 36:368-377. [PMID: 37276047 DOI: 10.1089/vim.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
According to current knowledge, the etiopathogenesis of multiple sclerosis (MS) is complex, involving genetic background as well as several environmental factors that result in dysimmunity in the central nervous system (CNS). MS is an immune-mediated, inflammatory neurological disease affecting the CNS. As part of its attack on the axons of the CNS, MS witnesses varying degrees of myelin and axonal loss. A total of about 20 disease-modifying therapies (DMTs) are available today that, both in clinical trials and in real-world studies, reduce disease activity, such as relapses, magnetic resonance imaging lesions, and disability accumulation. Currently, the world is facing an outbreak of the new coronavirus disease 2019 (COVID-19), which originated in Wuhan, Hubei Province, China, in December 2019 and spread rapidly around the globe. Viral infections play an important role in triggering and maintaining neuroinflammation through direct and indirect mechanisms. There is an old association between MS and viral infections. In the context of MS-related chronic inflammatory damage within the CNS, there has been concern regarding COVID-19 worsening neurological damage. A high rate of disability and increased susceptibility to infection have made MS patients particularly vulnerable. In addition, DMTs have been a concern during the pandemic since many DMTs have immunosuppressive properties. In this article, we discuss the impact of DMTs on COVID-19 risks and the effect of DMTs on COVID-19 vaccination efficacy and outcome in MS patients.
Collapse
Affiliation(s)
- Elham Jamali
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Peyvand Pathobiology and Genetic Laboratory, Shiraz, Iran
| | - Shima Shapoori
- Science Foundation Ireland (SFI), Center for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davoud Rostamzadeh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Farideh Iravanpour
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Tavakoli Oliaee
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Barmpagiannos K, Theotokis P, Petratos S, Pagnin M, Einstein O, Kesidou E, Boziki M, Artemiadis A, Bakirtzis C, Grigoriadis N. The Diversity of Astrocyte Activation during Multiple Sclerosis: Potential Cellular Targets for Novel Disease Modifying Therapeutics. Healthcare (Basel) 2023; 11:healthcare11111585. [PMID: 37297725 DOI: 10.3390/healthcare11111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Neuroglial cells, and especially astrocytes, constitute the most varied group of central nervous system (CNS) cells, displaying substantial diversity and plasticity during development and in disease states. The morphological changes exhibited by astrocytes during the acute and chronic stages following CNS injury can be characterized more precisely as a dynamic continuum of astrocytic reactivity. Different subpopulations of reactive astrocytes may be ascribed to stages of degenerative progression through their direct pathogenic influence upon neurons, neuroglia, the blood-brain barrier, and infiltrating immune cells. Multiple sclerosis (MS) constitutes an autoimmune demyelinating disease of the CNS. Despite the previously held notion that reactive astrocytes purely form the structured glial scar in MS plaques, their continued multifaceted participation in neuroinflammatory outcomes and oligodendrocyte and neuronal function during chronicity, suggest that they may be an integral cell type that can govern the pathophysiology of MS. From a therapeutic-oriented perspective, astrocytes could serve as key players to limit MS progression, once the integral astrocyte-MS relationship is accurately identified. This review aims toward delineating the current knowledge, which is mainly focused on immunomodulatory therapies of the relapsing-remitting form, while shedding light on uncharted approaches of astrocyte-specific therapies that could constitute novel, innovative applications once the role of specific subgroups in disease pathogenesis is clarified.
Collapse
Affiliation(s)
- Konstantinos Barmpagiannos
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| |
Collapse
|
10
|
Maleki A, Crispino E, Italia SA, Di Salvatore V, Chiacchio MA, Sips F, Bursi R, Russo G, Maimone D, Pappalardo F. Moving forward through the in silico modeling of multiple sclerosis: Treatment layer implementation and validation. Comput Struct Biotechnol J 2023; 21:3081-3090. [PMID: 37266405 PMCID: PMC10230825 DOI: 10.1016/j.csbj.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Multiple sclerosis is an autoimmune inflammatory disease that affects the central nervous system through chronic demyelination and loss of oligodendrocytes. Since the relapsing-remitting form is the most prevalent, relapse-reducing therapies are a primary choice for specialists. Universal Immune System Simulator is an agent-based model that simulates the human immune system dynamics under physiological conditions and during several diseases, including multiple sclerosis. In this work, we extended the UISS-MS disease layer by adding two new treatments, i.e., cladribine and ocrelizumab, to show that UISS-MS can be potentially used to predict the effects of any existing or newly designed treatment against multiple sclerosis. To retrospectively validate UISS-MS with ocrelizumab and cladribine, we extracted the clinical and MRI data from patients included in two clinical trials, thus creating specific cohorts of digital patients for predicting and validating the effects of the considered drugs. The obtained results mirror those of the clinical trials, demonstrating that UISS-MS can correctly simulate the mechanisms of action and outcomes of the treatments. The successful retrospective validation concurred to confirm that UISS-MS can be considered a digital twin solution to be used as a support system to inform clinical decisions and predict disease course and therapeutic response at a single patient level.
Collapse
Affiliation(s)
- Avisa Maleki
- Department of Mathematics and Computer Science, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Elena Crispino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, Catania 95125, Italy
| | - Serena Anna Italia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Valentina Di Salvatore
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Maria Assunta Chiacchio
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Fianne Sips
- InSilicoTrials Technologies BV, 's Hertogenbosch, the Netherlands
| | - Roberta Bursi
- InSilicoTrials Technologies BV, 's Hertogenbosch, the Netherlands
| | - Giulia Russo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- Mimesis SRL, Catania, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, UOC Neurologia, ARNAS Garibaldi, P.zza S. Maria di Gesù, Catania 95124, Italy
| | - Francesco Pappalardo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| |
Collapse
|
11
|
Rolfes L, Pfeuffer S, Skuljec J, He X, Su C, Oezalp SH, Pawlitzki M, Ruck T, Korsen M, Kleinschnitz K, Aslan D, Hagenacker T, Kleinschnitz C, Meuth SG, Pul R. Immune Response to Seasonal Influenza Vaccination in Multiple Sclerosis Patients Receiving Cladribine. Cells 2023; 12:cells12091243. [PMID: 37174643 PMCID: PMC10177067 DOI: 10.3390/cells12091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Cladribine has been approved for the treatment of multiple sclerosis (MS) and its administration results in a long-lasting depletion of lymphocytes. As lymphopenia is known to hamper immune responses to vaccination, we evaluated the immunogenicity of the influenza vaccine in patients undergoing cladribine treatment at different stages vs. controls. The antibody response in 90 cladribine-treated MS patients was prospectively compared with 10 control subjects receiving platform immunotherapy (NCT05019248). Serum samples were collected before and six months after vaccination. Response to vaccination was determined by the hemagglutination-inhibition test. Postvaccination seroprotection rates against influenza A were comparable in cladribine-treated patients and controls (H1N1: 94.4% vs. 100%; H3N2: 92.2% vs. 90.0%). Influenza B response was lower in the cladribine cohort (61.1% vs. 80%). The increase in geometric mean titers was lower in the cladribine group vs. controls (H1N1: +98.5 vs. +188.1; H3N2: +225.3 vs. +300.0; influenza B: +40.0 vs. +78.4); however, titers increased in both groups for all strains. Seroprotection was achieved irrespective of vaccination timing and lymphocyte subset counts at the time of vaccination in the cladribine cohort. To conclude, cladribine-treated MS patients can mount an adequate immune response to influenza independently of treatment duration and time interval to the last cladribine administration.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology, HeinrichHeine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Steffen Pfeuffer
- Department of Neurology, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Jelena Skuljec
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Xia He
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Chuanxin Su
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Sinem-Hilal Oezalp
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Marc Pawlitzki
- Department of Neurology, HeinrichHeine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, HeinrichHeine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Melanie Korsen
- Department of Neurology, HeinrichHeine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Konstanze Kleinschnitz
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Derya Aslan
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| | - Sven G Meuth
- Department of Neurology, HeinrichHeine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Medicine Essen, 45127 Essen, Germany
- Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Medicine Essen, 45127 Essen, Germany
| |
Collapse
|
12
|
Gu S, Hou Y, Dovat K, Dovat S, Song C, Ge Z. Synergistic effect of HDAC inhibitor Chidamide with Cladribine on cell cycle arrest and apoptosis by targeting HDAC2/c-Myc/RCC1 axis in acute myeloid leukemia. Exp Hematol Oncol 2023; 12:23. [PMID: 36849955 PMCID: PMC9972767 DOI: 10.1186/s40164-023-00383-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND More effective targeted therapy and new combination regimens are needed for Acute myeloid leukemia (AML), owing to the unsatisfactory long-term prognosis of the disease. Here, we investigated the synergistic effect and the mechanism of a histone deacetylase inhibitor, Chidamide in combination with Cladribine, a purine nucleoside antimetabolite analog in the disease. METHODS Cell counting kit-8 assays and Chou-Talalay's combination index were used to examine the synergistic effect of Chidamide and Cladribine on AML cell lines (U937, THP-1, and MV4-11) and primary AML cells. PI and Annexin-V/PI assays were used to detect the cell cycle effect and apoptosis effect, respectively. Global transcriptome analysis, RT-qPCR, c-MYC Knockdown, western blotting, co-immunoprecipitation, and chromatin immunoprecipitation assays were employed to explore the molecule mechanisms. RESULTS The combination of Chidamide with Cladribine showed a significant increase in cell proliferation arrest, the G0/G1 phase arrest, and apoptosis compared to the single drug control in AML cell lines along with upregulated p21Waf1/Cip1 expression and downregulated CDK2/Cyclin E2 complex, and elevated cleaved caspase-9, caspase-3, and PARP. The combination significantly suppresses the c-MYC expression in AML cells, and c-MYC knockdown significantly increased the sensitivity of U937 cells to the combination compared to single drug control. Moreover, we observed HDAC2 interacts with c-Myc in AML cells, and we further identified that c-Myc binds to the promoter region of RCC1 that also could be suppressed by the combination through c-Myc-dependent. Consistently, a positive correlation of RCC1 with c-MYC was observed in the AML patient cohort. Also, RCC1 and HDAC2 high expression are associated with poor survival in AML patients. Finally, we also observed the combination significantly suppresses cell growth and induces the apoptosis of primary cells in AML patients with AML1-ETO fusion, c-KIT mutation, MLL-AF6 fusion, FLT3-ITD mutation, and in a CMML-BP patient with complex karyotype. CONCLUSIONS Our results demonstrated the synergistic effect of Chidamide with Cladribine on cell growth arrest, cell cycle arrest, and apoptosis in AML and primary cells with genetic defects by targeting HDAC2/c-Myc/RCC1 signaling in AML. Our data provide experimental evidence for the undergoing clinical trial (Clinical Trial ID: NCT05330364) of Chidamide plus Cladribine as a new potential regimen in AML.
Collapse
Affiliation(s)
- Siyu Gu
- grid.11135.370000 0001 2256 9319Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009 China
| | - Yue Hou
- grid.11135.370000 0001 2256 9319Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009 China
| | - Katarina Dovat
- grid.29857.310000 0001 2097 4281Hershey Medical Center, Pennsylvania State University Medical College, Hershey, 17033 USA
| | - Sinisa Dovat
- grid.29857.310000 0001 2097 4281Hershey Medical Center, Pennsylvania State University Medical College, Hershey, 17033 USA
| | - Chunhua Song
- grid.29857.310000 0001 2097 4281Hershey Medical Center, Pennsylvania State University Medical College, Hershey, 17033 USA ,grid.412332.50000 0001 1545 0811Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH 43210 USA
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| |
Collapse
|
13
|
Abstract
The multiple sclerosis (MS) neurotherapeutic landscape is rapidly evolving. New disease-modifying therapies (DMTs) with improved efficacy and safety, in addition to an expanding pipeline of agents with novel mechanisms, provide more options for patients with MS. While treatment of MS neuroinflammation is well tailored in the existing DMT armamentarium, concerted efforts are currently underway for identifying neuropathological targets and drug discovery for progressive MS. There is also ongoing research to develop agents for remyelination and neuroprotection. Further insights are needed to guide DMT initiation and sequencing as well as to determine the role of autologous stem cell transplantation in relapsing and progressive MS. This review provides a summary of these updates.
Collapse
Affiliation(s)
- Moein Amin
- Cleveland Clinic, Department of Neurology, Cleveland, OH 44195, USA
| | - Carrie M Hersh
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| |
Collapse
|
14
|
Kohle F, Dalakas MC, Lehmann HC. Repurposing MS immunotherapies for CIDP and other autoimmune neuropathies: unfulfilled promise or efficient strategy? Ther Adv Neurol Disord 2023; 16:17562864221137129. [PMID: 36620728 PMCID: PMC9810996 DOI: 10.1177/17562864221137129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2023] Open
Abstract
Despite advances in the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and other common autoimmune neuropathies (AN), still-many patients with these diseases do not respond satisfactorily to the available treatments. Repurposing of disease-modifying therapies (DMTs) from other autoimmune conditions, particularly multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), is a promising strategy that may accelerate the establishment of novel treatment choices for AN. This approach appears attractive due to homologies in the pathogenesis of these diseases and the extensive post-marketing experience that has been gathered from treating MS and NMOSD patients. The idea is also strengthened by a number of studies that explored the efficacy of DMTs in animal models of AN but also in some CIDP patients. We here review the available preclinical and clinical data of approved MS therapeutics in terms of their applicability to AN, especially CIDP. Promising therapeutic approaches appear to be B cell-directed and complement-targeting strategies, such as anti-CD20/anti-CD19 agents, Bruton's tyrosine kinase inhibitors and anti-C5 agents, as they exert their effects in the periphery. This is a major advantage because, in contrast to MS, their action in the periphery is sufficient to exert significant immunomodulation.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine,
University of Cologne and University Hospital Cologne, Cologne,
Germany
| | - Marinos C. Dalakas
- Department of Neurology, Thomas Jefferson
University, Philadelphia, PA, USA
- Neuroimmunology Unit, National and Kapodistrian
University of Athens Medical School, Athens, Greece
| | - Helmar C. Lehmann
- Department of Neurology, Faculty of Medicine,
University of Cologne and University Hospital Cologne, Kerpener Strasse, 62,
50937 Cologne, Germany
| |
Collapse
|
15
|
Cortese R, Battaglini M, Sormani MP, Luchetti L, Gentile G, Inderyas M, Alexandri N, De Stefano N. Reduction in grey matter atrophy in patients with relapsing multiple sclerosis following treatment with cladribine tablets. Eur J Neurol 2023; 30:179-186. [PMID: 36168741 PMCID: PMC10091690 DOI: 10.1111/ene.15579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Measures of atrophy in the whole brain can be used to reliably assess treatment effect in clinical trials of patients with multiple sclerosis (MS). Trials assessing the effect of treatment on grey matter (GM) and white matter (WM) atrophy are very informative, but hindered by technical limitations. This study aimed to measure GM and WM volume changes, using a robust longitudinal method, in patients with relapsing MS randomized to cladribine tablets 3.5 mg/kg or placebo in the CLARITY study. METHODS We analysed T1-weighted magnetic resonance sequences using SIENA-XL, from 0 to 6 months (cladribine, n = 267; placebo, n = 265) and 6 to 24 months (cladribine, n = 184; placebo, n = 186). Mean percentage GM and WM volume changes (PGMVC and PWMVC) were compared using a mixed-effect model. RESULTS More GM and WM volume loss was found in patients taking cladribine versus those taking placebo in the first 6 months of treatment (PGMVC: cladribine: -0.53 vs. placebo: -0.25 [p = 0.045]; PWMVC: cladribine: -0.49 vs. placebo: -0.34 [p = 0.137]), probably due to pseudoatrophy. However, over the period 6 to 24 months, GM volume loss was significantly lower in patients on cladribine than in those on placebo (PGMVC: cladribine: -0.90 vs. placebo: -1.27 [p = 0.026]). In this period, volume changes in WM were similar in the two treatment arms (p = 0.52). CONCLUSIONS After a short period of pseudoatrophy, treatment with cladribine 3.5 mg/kg significantly reduced GM atrophy in comparison with placebo. This supports the relevance of GM damage in MS and may have important implications for physical and cognitive disability progression.
Collapse
Affiliation(s)
- Rosa Cortese
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa and Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maira Inderyas
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Boyko AN, Dolgushin MB, Karalkina MA. [New neuroimaging methods in assessing the activity of neuroinflammation in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:8-14. [PMID: 37560828 DOI: 10.17116/jnevro20231230728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The review presents current data on the use of positron emission tomography and single-photon emission computed tomography in multiple sclerosis (MS) to assess the activity of the pathological process, including neuroinflammation, demyelination, activation of microglia, neurodegeneration and local blood flow disorders. These methodologies are a new approach for studying the mechanisms of action and evaluating the clinical effect of disease modifying therapy of MS, especially those capable of penetrating into brain tissue. Among them, the most attention is attracted by cladribine tablets acting on the mechanism of immune reconstitution therapy, most likely with the modulation of immune reactions directly in the brain tissue.
Collapse
Affiliation(s)
- A N Boyko
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M B Dolgushin
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - M A Karalkina
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
17
|
Kalinichenko EN, Babitskaya SV. The Development of the Combination Drug Leukovir ® Tablets for the Treatment of Multiple Sclerosis: A Comprehensive Review. Curr Drug Targets 2023; 24:1271-1281. [PMID: 38037996 DOI: 10.2174/0113894501272301231124074141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
The review is devoted to the development and study of the drug Leukovir® (cladribine+ ribavirin) and its use in the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis, a chronic neurodegenerative disease aiming the risk reduction of relapse and progression of a disability. In clinical trials Leukovir® has proved to be efficient by up to 56 weeks for the treatment of relapsing-remitting and secondary progressive forms of multiple sclerosis. The drug is registered in the Republic of Belarus. The efficacy, safety and tolerability profile of the drug Leukovir® suggests that it is well suited for disease-modifying therapy of multiple sclerosis. Patients require four 35-day courses of treatment, each consisting of seven days of treatment followed by a break of 28 days. The use of Leukovir® has contributed to the suppression of inflammatory process activity according to MRI data and stabilization of the clinical condition. It has reduced the number of relapses in patients with relapsing-remitting and secondary-progressive forms of multiple sclerosis.
Collapse
Affiliation(s)
- Elena N Kalinichenko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| | - Svetlana V Babitskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141, 5/2 Academician V.F. Kuprevich Street, Minsk, Belarus
| |
Collapse
|
18
|
Paolicelli D, Ruggieri M, Manni A, Gargano CD, Carleo G, Palazzo C, Iaffaldano A, Bollo L, Guerra T, Saracino A, Frigeri A, Iaffaldano P, Trojano M. Real-Life Experience of the Effects of Cladribine Tablets on Lymphocyte Subsets and Serum Neurofilament Light Chain Levels in Relapsing Multiple Sclerosis Patients. Brain Sci 2022; 12:brainsci12121595. [PMID: 36552055 PMCID: PMC9776379 DOI: 10.3390/brainsci12121595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Although cladribine induces sustained reductions in peripheral T and B lymphocytes, little is known about its effect on axonal damage reduction in multiple sclerosis (MS), which could be demonstrated by assessing the serum neurofilament light chain (sNfL) levels. We investigated the reduction/reconstitution of different lymphocyte subsets (LS) by verifying the correlation with no evidence of disease activity (NEDA) and the variation in sNfL levels during cladribine treatment. We analysed 33 highly active relapsing MS patients and followed them up for 12 ± 3.3 months; blood samples were collected at treatment start (W0) and after 8, 24 and 48 weeks. Seventeen patients (60.7%) showed NEDA during the first treatment. At week 8, we observed a significant decrease in B memory cells, B regulatory 1 CD19+/CD38+ and B regulatory 2 CD19+/CD25+, a significant increase in T regulatory CD4+/CD25+, a slight increase in T cytotoxic CD3+/CD8+ and a non-significant decrease in T helper CD3+/CD4+. Starting from week 24, the B subsets recovered; however, at week 48, CD19+/CD38+ and CD19+/CD25+ reached values near the baseline, while the Bmem were significantly lower. The T cell subsets remained unchanged except for CD4+/CD25+, which increased compared to W0. The LS changes were not predictive of NEDA achievement. The sNfL levels were significantly lower at week 24 (p = 0.046) vs. baseline. These results could demonstrate how cladribine, by inflammatory activity depletion, can also reduce axonal damage, according to the sNfL levels.
Collapse
Affiliation(s)
- Damiano Paolicelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-080-5593604
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Alessia Manni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Concetta D. Gargano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Graziana Carleo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Claudia Palazzo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luca Bollo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Tommaso Guerra
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
19
|
Ford RK, Juillard P, Hawke S, Grau GE, Marsh-Wakefield F. Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier. J Clin Med 2022; 11:jcm11206006. [PMID: 36294327 PMCID: PMC9604596 DOI: 10.3390/jcm11206006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system (CNS) induced by immune dysregulation. Cladribine has been championed for its clinical efficacy with relatively minor side effects in treating MS. Although it is proposed that cladribine exerts an anti-migratory effect on lymphocytes at the blood–brain barrier (BBB) in addition to its lymphocyte-depleting and modulating effects, this has not been properly studied. Here, we aimed to determine if cladribine treatment influences trans-endothelial migration of T cell subsets across an inflamed BBB. Human brain endothelial cells stimulated with pro-inflammatory cytokines were used to mimic the BBB. Peripheral blood mononuclear cells were obtained from healthy controls, untreated and cladribine-treated MS patients. The trans-endothelial migration of CD4+ effector memory T (TEM) and CD8+ central memory T (TCM) cells was reduced in cladribine-treated MS patients. CD28 expression was decreased on both CD4+ TEM and CD8+ TCM cells, suggesting lowered peripheral activation of these cells thereby maintaining the integrity of the BBB. In addition, these cells have likely reconstituted following cladribine treatment, revealing a long-term anti-migratory effect. These results highlight new mechanisms by which cladribine acts to control MS pathogenesis.
Collapse
Affiliation(s)
- Rachel K. Ford
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Central West Neurology and Neurosurgery, Orange, NSW 2800, Australia
| | - Georges E. Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (G.E.G.); (F.M.-W.)
| | - Felix Marsh-Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW 2050, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (G.E.G.); (F.M.-W.)
| |
Collapse
|
20
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
21
|
Balasa R, Maier S, Hutanu A, Voidazan S, Andone S, Oiaga M, Manu D. Cytokine Secretion Dynamics of Isolated PBMC after Cladribine Exposure in RRMS Patients. Int J Mol Sci 2022; 23:ijms231810262. [PMID: 36142168 PMCID: PMC9499495 DOI: 10.3390/ijms231810262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Cladribine (CLD) treats multiple sclerosis (MS) by selectively and transiently depleting B and T cells with a secondary long-term reconstruction of the immune system. This study provides evidence of CLD’s immunomodulatory role in peripheral blood mononuclear cells (PBMCs) harvested from 40 patients with untreated relapsing-remitting MS (RRMS) exposed to CLD. We quantified cytokine secretion from PBMCs isolated by density gradient centrifugation with Ficoll−Paque using xMAP technology on a FlexMap 3D analyzer with a highly sensitive multiplex immunoassay kit. The PBMC secretory profile was evaluated with and without CLD exposure. PBMCs isolated from patients with RRMS for ≤12 months had significantly higher IL-4 but significantly lower IFN-γ and TNF-α secretion after CLD exposure. PBMCs isolated from patients with RRMS for >12 months had altered inflammatory ratios toward an anti-inflammatory profile and increased IL-4 but decreased TNF-α secretion after CLD exposure. CLD induced nonsignificant changes in IL-17 secretion in both RRMS groups. Our findings reaffirm CLD’s immunomodulatory effect that induces an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Correspondence:
| | - Adina Hutanu
- Department of Laboratory Medicine, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Septimiu Voidazan
- Department of Epidemiology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Mirela Oiaga
- Anaesthesiology and Intensive Care Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
22
|
Lu M, Xiao L, Xu B, Gao Q. Identification of Novel Genes and Associated Drugs in Advanced Clear Cell Renal Cell Carcinoma by Bioinformatic Methods. TOHOKU J EXP MED 2022; 258:79-90. [PMID: 35896362 DOI: 10.1620/tjem.2022.j059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Liangxiang Xiao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Bo Xu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University.,The Third Clinical Medical College, Fujian Medical University
| |
Collapse
|
23
|
Medeiros-Furquim T, Ayoub S, Johnson LJ, Aprico A, Nwoke E, Binder MD, Kilpatrick TJ. Cladribine Treatment for MS Preserves the Differentiative Capacity of Subsequently Generated Monocytes, Whereas Its Administration In Vitro Acutely Influences Monocyte Differentiation but Not Microglial Activation. Front Immunol 2022; 13:678817. [PMID: 35734180 PMCID: PMC9207174 DOI: 10.3389/fimmu.2022.678817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Cladribine (2-chlorodeoxyadenosine, 2CdA) is one of the most effective disease-modifying drugs for multiple sclerosis (MS). Cladribine is a synthetic purine nucleoside analog that induces cell death of lymphocytes and oral cladribine treatment leads to a long-lasting disease stabilization, potentially attributable to immune reconstitution. In addition to its effects on lymphocytes, cladribine has been shown to have immunomodulatory effects on innate immune cells, including dendritic cells and monocytes, which could also contribute to its therapeutic efficacy. However, whether cladribine can modulate human macrophage/microglial activation or monocyte differentiation is currently unknown. The aim of this study was to determine the immunomodulatory effects of cladribine upon monocytes, monocyte-derived macrophages (MDMs) and microglia. We analyzed the phenotype and differentiation of monocytes from MS patients receiving their first course of oral cladribine both before and three weeks after the start of treatment. Flow cytometric analysis of monocytes from MS patients undergoing cladribine treatment revealed that the number and composition of CD14/CD16 monocyte subsets remained unchanged after treatment. Furthermore, after differentiation with M-CSF, such MDMs from treated MS patients showed no difference in gene expression of the inflammatory markers compared to baseline. We further investigated the direct effects of cladribine in vitro using human adult primary MDMs and microglia. GM-CSF-derived MDMs were more sensitive to cell death than M-CSF-derived MDMs. In addition, MDMs treated with cladribine showed increased expression of costimulatory molecules CD80 and CD40, as well as expression of anti-inflammatory, pro-trophic genes IL10 and MERTK, depending on the differentiation condition. Cladribine treatment in vitro did not modulate the expression of activation markers in human microglia. Our study shows that cladribine treatment in vitro affects the differentiation of monocytes into macrophages by modulating the expression of activation markers, which might occur similarly in tissue after their infiltration in the CNS during MS.
Collapse
Affiliation(s)
- Tiago Medeiros-Furquim
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sinan Ayoub
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Laura J. Johnson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Eze Nwoke
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michele D. Binder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Trevor J. Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Trevor J. Kilpatrick,
| |
Collapse
|
24
|
Predictors of Cladribine Effectiveness and Safety in Multiple Sclerosis: A Real-World, Multicenter, 2-Year Follow-Up Study. Neurol Ther 2022; 11:1193-1208. [PMID: 35653061 PMCID: PMC9338179 DOI: 10.1007/s40120-022-00364-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Cladribine administration has been approved for the treatment of relapsing–remitting multiple sclerosis (MS) in 2017; thus, data on cladribine in a real-world setting are still emerging. Methods We report on cladribine effectiveness, safety profile, and treatment response predictors in 243 patients with MS followed at eight tertiary MS centers. Study outcomes were: (1) No Evidence of Disease Activity-3 (NEDA-3) status and its components (absence of clinical relapses, MRI activity, and sustained disability worsening); (2) development of grade III/IV lymphopenia. The relationship between baseline features and the selected outcomes was tested via multivariate logistic models. Results Of the 243 subjects included in the study (66.5% female, age 34.2 ± 10 years, disease duration 6.6 ± 9.6 years), 64% showed NEDA-3 at median follow-up (22 months). Patients with higher number of previous treatments had lower probability to retain NEDA-3 [odds ratio (OR) 0.64, 95% confidence interval (CI) 0.41–0.98, p = 0.04] and were more prone to experience clinical relapses (OR 1.6, 95% CI 1–2.6, p = 0.04). The presence of active lesions at baseline was associated with follow-up magnetic resonance imaging (MRI) activity (OR 1.92, 95% CI 1.04–3.55, p = 0.04). Patients with higher rate of relapses in the year prior to cladribine start were at higher risk of developing sustained disability worsening (OR 2.95% CI 1–4.2, p = 0.04). Lymphopenia grade III/IV over the follow-up was associated with baseline lymphocyte count (OR 0.998, 95% CI 0.997–0.999, p = 0.01). Conclusion In this large cohort, we confirm previous data about cladribine effectiveness on disease activity and disability worsening and provide information on response predictors that might inform therapeutic choices.
Collapse
|
25
|
Talanki Manjunatha R, Habib S, Sangaraju SL, Yepez D, Grandes XA. Multiple Sclerosis: Therapeutic Strategies on the Horizon. Cureus 2022; 14:e24895. [PMID: 35706718 PMCID: PMC9187186 DOI: 10.7759/cureus.24895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease affecting the brain and the spinal cord. It is a chronic inflammatory demyelinating disease of the central nervous system. It is the leading cause of non-traumatic disability in young adults. The clinical course of the disease is quite variable, ranging from stable chronic disease to rapidly evolving debilitating disease. The pathogenesis of MS is not fully understood. Still, there has been a rapid shift in understanding the immune pathology of MS away from pure T cell-mediated disease to B cells and microglia/astrocytes having a vital role in the pathogenesis of MS. This has helped in the emergence of new therapies for management. Effective treatment of MS requires a multidisciplinary approach to manage acute attacks, prevent relapses and disease progression and treat the disabling symptoms associated with the disease. In this review, we discuss the pathogenesis of MS, management of acute relapses, disease-modifying therapies in MS, new drugs and drugs currently in trial for MS and the symptomatic treatment of MS. All language search was conducted on Google Scholar, PubMed, MEDLINE, and Embase till February 2022. The following search strings and medical subheadings (MeSH) were used: "Multiple Sclerosis", "Pathogenesis of MS", and "Disease-modifying therapies in MS". We explored literature on the pathogenic mechanisms behind MS, management of acute relapses, disease-modifying therapies in MS and symptomatic management.
Collapse
Affiliation(s)
| | - Salma Habib
- Medicine and Surgery, Institute of Applied Health Science, Chittagong, BGD
| | | | - Daniela Yepez
- Faculty of Medicine, Universidad Catolica de Santiago de Guayaquil, Guayaquil, ECU
| | - Xavier A Grandes
- General Physician, Universidad Catolica Santiago de Guayaquil, Guayaquil, ECU
| |
Collapse
|
26
|
2-Chlorodeoxyadenosine (Cladribine) preferentially inhibits the biological activity of microglial cells. Int Immunopharmacol 2022; 105:108571. [DOI: 10.1016/j.intimp.2022.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
|
27
|
Barbieri MA, Sorbara EE, Battaglia A, Cicala G, Rizzo V, Spina E, Cutroneo PM. Adverse Drug Reactions with Drugs Used in Multiple Sclerosis: An Analysis from the Italian Pharmacovigilance Database. Front Pharmacol 2022; 13:808370. [PMID: 35281926 PMCID: PMC8904918 DOI: 10.3389/fphar.2022.808370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the importance of inflammation at the onset of multiple sclerosis (MS), therapy is mainly based on the use of anti-inflammatory drugs including disease modifying therapies (DMTs). Considering the recent approval of some DMTs, pharmacovigilance becomes a fundamental tool for the acquisition of new safety data. The aim of the study was to analyze adverse drug reactions (ADRs) related to the use of drugs approved for MS. All national publicly-available aggregated ADR reports recorded from 2002 to 2020 into the Reports of Adverse Reactions of Medicines (RAM) system and all complete Sicilian data reported into the Italian spontaneous reporting system (SRS) database having as suspected drugs interferon β-1a (IFN β-1a), interferon β-1b (IFN β-1b), peginterferon β-1a (PEG-IFN β-1a), glatiramer acetate (GA), natalizumab (NTZ), fingolimod (FNG), teriflunomide (TRF), dimethyl fumarate (DMF), alemtuzumab (Alem), ocrelizumab (OCZ), or cladribine (Cladr), were collected. Descriptive analyses of national, publicly-available aggregated data and full-access regional data were performed to assess demographic characteristics and drug-related variables followed by a more in-depth analysis of all Sicilian ADRs with a case-by-case assessment and a disproportionality analysis of unexpected ADRs. A total of 13,880 national reports have been collected from 2002 to 2020: they were mainly not serious ADRs (67.9% vs. 26.1%) and related to females (71.7% vs. 26.3%) in the age group 18–65 years (76.5%). The most reported ADRs were general and administration site conditions (n = 6,565; 47.3%), followed by nervous (n = 3,090; 22.3%), skin (n = 2,763; 19.9%) and blood disorders (n = 2,180; 15.7%). Some unexpected Sicilian ADRs were shown, including dyslipidemia for FNG (n = 10; ROR 28.5, CI 14.3–59.6), NTZ (n = 5; 10.3, 4.1–25.8), and IFN β-1a (n = 4; 8.7, 3.1–24.1), abortion and alopecia for NTZ (n = 9; 208.1, 73.4–590.1; n = 3; 4.9, 1.5–15.7), and vitamin D deficiency for GA (n = 3; 121.2, 30.9–475.3). Moreover, breast cancer with DMF (n = 4, 62.8, 20.5–191.9) and hypothyroidism with Cladr (n = 3; 89.2, 25.9–307.5) were also unexpected. The reporting of drugs-related ADRs in MS were mostly reported in the literature, but some unknown ADRs were also found. However, further studies are necessary to increase the awareness about the safety profiles of new drugs on the market.
Collapse
Affiliation(s)
| | | | - Alessandro Battaglia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Cicala
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paola Maria Cutroneo
- Sicilian Regional Pharmacovigilance Centre, University Hospital of Messina, Messina, Italy
| |
Collapse
|
28
|
Stamatellos VP, Rigas A, Stamoula E, Lallas A, Papadopoulou A, Papazisis G. S1P receptor modulators in Multiple Sclerosis: Detecting a potential skin cancer safety signal. Mult Scler Relat Disord 2022; 59:103681. [DOI: 10.1016/j.msard.2022.103681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 01/13/2023]
|
29
|
Tortorella C, Aiello A, Gasperini C, Agrati C, Castilletti C, Ruggieri S, Meschi S, Matusali G, Colavita F, Farroni C, Cuzzi G, Cimini E, Tartaglia E, Vanini V, Prosperini L, Haggiag S, Galgani S, Quartuccio ME, Salmi A, Repele F, Altera AMG, Cristofanelli F, D'Abramo A, Bevilacqua N, Corpolongo A, Puro V, Vaia F, Capobianchi MR, Ippolito G, Nicastri E, Goletti D. Humoral- and T-Cell-Specific Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients With MS Using Different Disease-Modifying Therapies. Neurology 2022; 98:e541-e554. [PMID: 34810244 PMCID: PMC8826460 DOI: 10.1212/wnl.0000000000013108] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/04/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the immune-specific response after full severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination of patients with multiple sclerosis (MS) treated with different disease-modifying drugs by the detection of both serologic and T-cell responses. METHODS Healthcare workers (HCWs) and patients with MS, having completed the 2-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the past 2-4 weeks, were enrolled from 2 parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani-IRCSS and San Camillo Forlanini Hospital. Serologic response was evaluated by quantifying the region-binding domain (RBD) and neutralizing antibodies. Cell-mediated response was analyzed by a whole-blood test quantifying interferon (IFN)-γ response to spike peptides. Cells responding to spike stimulation were identified by fluorescence-activated cell sorting analysis. RESULTS We prospectively enrolled 186 vaccinated individuals: 78 HCWs and 108 patients with MS. Twenty-eight patients with MS were treated with IFN-β, 35 with fingolimod, 20 with cladribine, and 25 with ocrelizumab. A lower anti-RBD antibody response rate was found in patients treated with ocrelizumab (40%, p < 0.0001) and fingolimod (85.7%, p = 0.0023) compared to HCWs and patients treated with cladribine or IFN-β. Anti-RBD antibody median titer was lower in patients treated with ocrelizumab (p < 0.0001), fingolimod (p < 0.0001), and cladribine (p = 0.010) compared to HCWs and IFN-β-treated patients. Serum neutralizing activity was present in all the HCWs tested and in only a minority of the fingolimod-treated patients (16.6%). T-cell-specific response was detected in the majority of patients with MS (62%), albeit with significantly lower IFN-γ levels compared to HCWs. The lowest frequency of T-cell response was found in fingolimod-treated patients (14.3%). T-cell-specific response correlated with lymphocyte count and anti-RBD antibody titer (ρ = 0.554, p < 0.0001 and ρ = 0.255, p = 0.0078 respectively). IFN-γ T-cell response was mediated by both CD4+ and CD8+ T cells. DISCUSSION mRNA vaccines induce both humoral and cell-mediated specific immune responses against spike peptides in all HCWs and in the majority of patients with MS. These results carry relevant implications for managing vaccinations, suggesting promoting vaccination in all treated patients with MS. CLASSIFICATION OF EVIDENCE This study provides Class III data that SARS-CoV-2 mRNA vaccination induces both humoral and cell-mediated specific immune responses against viral spike proteins in a majority of patients with MS.
Collapse
Affiliation(s)
- Carla Tortorella
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Alessandra Aiello
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Claudio Gasperini
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Chiara Agrati
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Concetta Castilletti
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Serena Ruggieri
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Silvia Meschi
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Matusali
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Francesca Colavita
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Chiara Farroni
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Gilda Cuzzi
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Eleonora Cimini
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Eleonora Tartaglia
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanini
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Luca Prosperini
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Shalom Haggiag
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Simona Galgani
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Maria Esmeralda Quartuccio
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Andrea Salmi
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Federica Repele
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Anna Maria Gerarda Altera
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Flavia Cristofanelli
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Alessandra D'Abramo
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Nazario Bevilacqua
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Angela Corpolongo
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Vincenzo Puro
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Vaia
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Maria Rosaria Capobianchi
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Ippolito
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Emanuele Nicastri
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Delia Goletti
- From the Department of Neurosciences (C.T., C.G., L.P., S.H., S.G., M.E.Q.), San Camillo-Forlanini Hospital; Translational Research Unit (A.A., C.F., G.C., V.V., A.S., F.R., A.M.G.A., D.G.), Laboratory of Cellular Immunology (C.A., E.C., E.T., Flavia Cristofanelli), Laboratory of Virology (C.C., S.M., G.M., Francesca Colavita, M.R.C.), UOS Professioni Sanitarie Tecniche (V.V.), Clinical Division of Infectious Diseases (A.D.A., N.B., A.C., E.N.), UOC Emerging Infections and CRAIDS (V.P.), Health Direction (F.V.), and Scientific Direction (G.I.), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS; Department of Human Neurosciences (S.R.), Sapienza University of Rome; and Neuroimmunology Unit (S.R.), IRCSS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
30
|
Moccia M, Haider L, Eshaghi A, van de Pavert SHP, Brescia Morra V, Patel A, Wheeler-Kingshott CAM, Barkhof F, Ciccarelli O. B Cells in the CNS at Postmortem Are Associated With Worse Outcome and Cell Types in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1108. [PMID: 34759021 PMCID: PMC8587731 DOI: 10.1212/nxi.0000000000001108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES To define the clinical and pathologic correlations of compartmentalized perivascular B cells in postmortem progressive multiple sclerosis (MS) brains. METHODS Brain slices were acquired from 11 people with secondary progressive (SP) MS, 5 people with primary progressive (PP) MS, and 4 controls. Brain slices were immunostained for B lymphocytes (CD20), T lymphocytes (CD3), cytotoxic T lymphocytes (CD8), neuronal neurofilaments (NF200), myelin (SMI94), macrophages/microglia (CD68 and IBA1), astrocytes (glial fibrillary acidic protein [GFAP]), and mitochondria (voltage-dependent anion channel and cytochrome c oxidase subunit 4). Differences in CD20 immunostaining intensity between disease groups and associations between CD20 immunostaining intensity and both clinical variables and other immunostaining intensities were explored with linear mixed regression models and Cox regression models, as appropriate. RESULTS CD20 immunostaining intensity was higher in PPMS (Coeff = 0.410; 95% confidence interval [CI] = 0.046, 0.774; p = 0.027) and SPMS (Coeff = 0.302; 95% CI = 0.020, 0.585; p = 0.036) compared with controls. CD20 immunostaining intensity was higher in cerebellar, spinal cord, and pyramidal onset (Coeff = 0.274; 95% CI = 0.039, 0.510; p = 0.022) compared with optic neuritis and sensory onset. Higher CD20 immunostaining intensity was associated with younger age at onset (hazard ratio [HR] = 1.033; 95% CI = 1.013, 1.053; p = 0.001), SP conversion (HR = 1.056; 95% CI = 1.022, 1.091; p = 0.001), wheelchair dependence (HR = 1.472; 95% CI = 1.108, 1.954; p = 0.008), and death (HR = 1.684; 95% CI = 1.238, 2.291; p = 0.001). Higher immunostaining intensity for CD20 was associated with higher immunostaining intensity for CD3 (Coeff = 0.114; 95% CI = 0.005, 0.224; p = 0.040), CD8 (Coeff = 0.275; 95% CI = 0.200, 0.350; p < 0.001), CD68 (Coeff = 0.084; 95% CI = 0.023, 0.144; p = 0.006), GFAP (Coeff = 0.002; 95% CI = 0.001, 0.004; p = 0.030), and damaged mitochondria (Coeff = 3.902; 95% CI = 0.891, 6.914; p = 0.011). DISCUSSION Perivascular B cells were associated with worse clinical outcomes and CNS-compartmentalized inflammation. Our findings further support the concept of targeting compartmentalized B-cell inflammation in progressive MS.
Collapse
Affiliation(s)
- Marcello Moccia
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Lukas Haider
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Arman Eshaghi
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Steven Harry Pieter van de Pavert
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Vincenzo Brescia Morra
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Amy Patel
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Claudia Angela Michela Wheeler-Kingshott
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Frederik Barkhof
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| | - Olga Ciccarelli
- From the Queen Square MS Centre (M.M., L.H., A.E., S.H.P.v.d.P., A.P., C.A.M.W.-K., O.C.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, United Kingdom; Multiple Sclerosis Clinical Care and Research Unit (M.M., V.B.M.), Department of Neurosciences, Federico II University, Naples, Italy; Department of Biomedical Imaging and Image Guided Therapy (L.H.), Medical University of Vienna, Austria; Translational Imaging Group F.B., UCL Institute of Healthcare Engineering, University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), VU University Medical Center, Amsterdam, the Netherlands; and National Institute for Health Research (O.C.), University College London Hospitals Biomedical Research Centre, United Kingdom
| |
Collapse
|
31
|
Grothe C, Steffen F, Bittner S. Humoral immune response and lymphocyte levels after complete vaccination against COVID-19 in a cohort of multiple sclerosis patients treated with cladribine tablets. J Cent Nerv Syst Dis 2021; 13:11795735211060118. [PMID: 34880703 PMCID: PMC8647228 DOI: 10.1177/11795735211060118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients with multiple sclerosis (MS) receiving immunomodulatory drugs were excluded from clinical trials on COVID-19 vaccines. Therefore, data regarding the efficacy of COVID-19 vaccines to induce humoral immunity in MS patients treated with B- and T-cell depleting agents is urgently warranted. Cladribine tablets are a high-efficacy disease-modifying treatment that exerts its therapeutic effect via sustained but transient lymphocyte depletion. AIM We report humoral responses in a German cohort of MS patients treated with cladribine tablets. METHODS This retrospective analysis included patients ≥18 years who were treated with cladribine tablets for relapsing MS in the first or second year and were fully vaccinated against COVID-19. Two weeks after the second vaccination at the earliest, blood samples were obtained for the assessment of anti-SARS-CoV-2 IgG antibodies, lymphocyte counts, B-cells, CD4+ T-cells, and CD8+ T-cells. Anti-SARS-CoV-2 IgG antibodies were quantified with the LIAISON® SARS-CoV-2 TrimericS IgG assay. Positivity was defined at a cutoff value of 33.8 BAU/mL. RESULTS In total, 38 patients (73.7% female, aged 23-66 years) were included in the analysis. Ten patients (26.3%) were treatment-naïve before initiating treatment with cladribine tablets. Most patients (84.2%) received mRNA vaccines. The time between the last dose of cladribine tablets and vaccination ranged between 2 and 96 weeks. Six patients (15.8%) were vaccinated within 4 weeks of their last cladribine dose. All patients achieved positive anti-SARS-CoV-2 IgG antibody levels. Humoral immune response was independent of age, time of vaccination in relation to the last cladribine dose, lymphocyte counts as well as B- and T-cell counts. CONCLUSIONS Treatment with cladribine tablets did not impair humoral response to COVID-19 vaccination. Time since last cladribine dose, age, prior therapy, lymphocyte count as well as B- and T-cell counts had no effect on seropositivity of anti-SARS-CoV-2 IgG antibodies.
Collapse
Affiliation(s)
| | - Falk Steffen
- Klinik und Poliklinik für Neurologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Germany
| | - Stefan Bittner
- Klinik und Poliklinik für Neurologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Germany
| |
Collapse
|
32
|
Spiezia AL, Cerbone V, Molinari EA, Capasso N, Lanzillo R, Carotenuto A, Petracca M, Novarella F, Covelli B, Scalia G, Brescia Morra V, Moccia M. Changes in lymphocytes, neutrophils and immunoglobulins in year-1 cladribine treatment in multiple sclerosis. Mult Scler Relat Disord 2021; 57:103431. [PMID: 34871857 DOI: 10.1016/j.msard.2021.103431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Antonio Luca Spiezia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | | | | | - Nicola Capasso
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Antonio Carotenuto
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Maria Petracca
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Federica Novarella
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Bianca Covelli
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Scalia
- Centre for Advanced Biotechnology (CEINGE), Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Marcello Moccia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
33
|
Boziki M, Bakirtzis C, Giantzi V, Sintila SA, Kallivoulos S, Afrantou T, Nikolaidis I, Ioannidis P, Karapanayiotides T, Koutroulou I, Parissis D, Grigoriadis N. Long-Term Efficacy Outcomes of Natalizumab vs. Fingolimod in Patients With Highly Active Relapsing-Remitting Multiple Sclerosis: Real-World Data From a Multiple Sclerosis Reference Center. Front Neurol 2021; 12:699844. [PMID: 34497577 PMCID: PMC8419322 DOI: 10.3389/fneur.2021.699844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Natalizumab (NTZ) and fingolimod (FTY) are second-line disease modifying treatments (DMTs) approved for Relapsing – Remitting Multiple Sclerosis (RRMS). Few studies are available on a direct comparison between NTZ and FTY, based on post-marketing experience, with conflicting results and reporting relatively short follow-up period. Aim: We hereby report real-world experience of a MS Center with respect to NTZ vs. FTY comparison in terms of efficacy and safety, referencing long-term follow-up. Methods: We used retrospective data for all patients that received 2nd-line treatment NTZ (since May 2007) or FTY (since September 2011). Primary endpoints were, among others, annual EDSS score (mean change from baseline), time to disability worsening or improvement, Annualized Relapse Rate (ARR) after 12 and 24 months and upon total treatment duration, time to first relapse and time to radiological progression. Results: A total of 138 unmatched patients, 84 treated with NTZ and 54 treated with FTY were included. Following Propensity Score (PS) matching, 31 patients in each group were retained. Mean follow-up period for NTZ- and FTY-treated patients was 4.43 ± 0.29 and 3.59 ± 0.32 years (p = 0.057), respectively. In the matched analysis, time to disability improvement and time to disability worsening was comparable between groups. A higher proportion of patients remained free of relapse under NTZ, compared to FTY (Log Rank test p = 0.021, HR: 0.25, 95% CI: 0.08–0.8), as well as free of MRI activity (Log Rank test p = 0.006, HR: 0.26, 95% CI: 0.08–0.6). Treatment discontinuation due to MRI activity was significantly higher for FTY-treated patients compared to NTZ (Log Rank test p = 0.019, HR: 0.12, 95% CI: 0.05–0.76). Conclusion: Our results indicate toward NTZ superiority with respect to relapse and MRI activity outcomes. The fact that NTZ-treated patients may achieve long-standing clinical and radiological remission points toward the need for long follow-up data.
Collapse
Affiliation(s)
- Marina Boziki
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Christos Bakirtzis
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Virginia Giantzi
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Styliani-Aggeliki Sintila
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Stylianos Kallivoulos
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Ioannis Nikolaidis
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Panagiotis Ioannidis
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Theodoros Karapanayiotides
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Ioanna Koutroulou
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Dimitrios Parissis
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Neurological University Department, American Hellenic Educational Progressive Association (AHEPA) General Hospital, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki, Greece
| |
Collapse
|
34
|
Rejdak K, Papuć E. Cladribine suppresses disease activity in neuromyelitis optica spectrum disorder: a 2-year follow-up study. Eur J Neurol 2021; 28:3167-3172. [PMID: 34233064 DOI: 10.1111/ene.15012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Neuromyelitis optica spectrum disorder (NMOSD) is a difficult condition to treat. Cladribine selectively and transiently depletes B and T lymphocytes, leading to long-lasting immune reconstitution. This report describes observations from 24 months of follow-up after cladribine in NMOSD patients. METHODS This is a retrospective analysis of a case series including 12 seropositive patients with NMOSD. Patients were given cladribine by subcutaneous injections in a series of several 2-day cycles of 20 mg administered at intervals of 4-6 weeks. Thus, the full treatment course delivered a cumulative bioavailable dose similar to that approved for treatment of multiple sclerosis. Annualized relapse rate (ARR), disability (Expanded Disability Status Scale [EDSS] score) and safety in the 24 months preceding and the 24 months following the initiation of cladribine treatment were assessed. RESULTS The mean ARR in the 24 months preceding cladribine treatment was 1.04 (95% confidence interval [CI] 0.67-1.62). The mean ARR in the 24 months following initiation of cladribine treatment was 0.21 (95% CI 0.08-0.56). The ratio in the rate of events post versus prior cladribine initiation was 0.20 (95% CI 0.07-0.59) and highly significant (p = 0.0073). The EDSS score did not change over the follow-up period (2.5 ± 1.7; mean ± SD) compared to baseline (2.5 ± 1.5; mean ± SD). No serious adverse events considered to be linked to cladribine were observed during follow-up. CONCLUSIONS Cladribine was safe in NMOSD patients over a 2-year observation period. Cladribine treatment was associated with clinical stabilization, as evidenced by significantly decreased ARR and no progression of EDSS score.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Ewa Papuć
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
35
|
Wienands J. IgG antibody titers to SARS-CoV-2 reveal a distinct efficacy of multiple sclerosis-modifying therapies to curtail lymphocyte compartments. Ther Adv Neurol Disord 2021; 14:17562864211022109. [PMID: 34158836 PMCID: PMC8182216 DOI: 10.1177/17562864211022109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, George August University of Göttingen, Humboldtallee 34, Göttingen, 37073, Germany
| |
Collapse
|
36
|
Pfeuffer S, Rolfes L, Hackert J, Kleinschnitz K, Ruck T, Wiendl H, Klotz L, Kleinschnitz C, Meuth SG, Pul R. Effectiveness and safety of cladribine in MS: Real-world experience from two tertiary centres. MULTIPLE SCLEROSIS (HOUNDMILLS, BASINGSTOKE, ENGLAND) 2021; 28:257-268. [PMID: 33975489 PMCID: PMC8795224 DOI: 10.1177/13524585211012227] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Oral cladribine has been approved for the treatment of relapsing multiple sclerosis (MS) yet real-world evidence regarding its effectiveness and safety remains scarce. Objective: To evaluate efficacy and safety outcomes of MS patients following induction of cladribine. Methods: We evaluated our prospective cohort of cladribine-treated MS patients from two tertiary centres in Germany. Relapses, disability worsening and occurrence of new or enlarging T2-hyperintense magnetic resonance imaging (MRI) lesions were assessed as well as lymphocyte counts and herpes virus infections. Results: Among 270 patients treated with cladribine, we observed a profound reduction of both relapses and new or enlarging MRI lesions. Treatment appeared more efficacious, especially in patients without previous therapy or following platform substances. Patients switching from natalizumab were prone to re-emerging disease activity. Among patients following dimethyl fumarate pre-treatment, severe lymphopenia was common and associated with increased rates of herpes virus manifestations. Conclusion: Overall, we observed an efficacy and safety profile of cladribine consistent with data from the phase 3 clinical trial. However, patients switching from natalizumab experienced suboptimal disease control beyond rebound activity following cessation of natalizumab. Furthermore, dimethyl fumarate pre-treatment was associated with a profound risk of developing severe lymphopenia and subsequent herpes virus infections.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jana Hackert
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Konstanze Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany/Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany/Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Refik Pul
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Medicine Essen, Essen, Germany
| |
Collapse
|
37
|
Achiron A, Mandel M, Dreyer-Alster S, Harari G, Magalashvili D, Sonis P, Dolev M, Menascu S, Flechter S, Falb R, Gurevich M. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther Adv Neurol Disord 2021; 14:17562864211012835. [PMID: 34035836 PMCID: PMC8072850 DOI: 10.1177/17562864211012835] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023] Open
Abstract
Background and Aims The National Multiple Sclerosis Society and other expert organizations recommended that all patients with multiple sclerosis (MS) should be vaccinated against COVID-19. However, the effect of disease-modifying therapies (DMTs) on the efficacy to mount an appropriate immune response is unknown. We aimed to characterize humoral immunity in mRNA-COVID-19 MS vaccinees treated with high-efficacy DMTs. Methods We measured SARS-CoV-2 IgG response using anti-spike protein-based serology (EUROIMMUN) in 125 MS patients vaccinated with BNT162b2-COVID-19 vaccine 1 month after the second dose. Patients were either untreated or under treatment with fingolimod, cladribine, or ocrelizumab. A group of healthy subjects similarly vaccinated served as control. The percent of subjects that developed protective antibodies, the titer, and the time from the last dosing were evaluated. Results Protective humoral immunity of 97.9%, 100%, 100%, 22.7%, and 3.8%, was observed in COVID-19 vaccinated healthy subjects (N = 47), untreated MS patients (N = 32), and MS patients treated with cladribine (N = 23), ocrelizumab (N = 44), and fingolimod (N = 26), respectively. SARS-CoV-2 IgG antibody titer was high in healthy subjects, untreated MS patients, and MS patients under cladribine treatment, within 29.5-55 days after the second vaccine dose. Only 22.7% of patients treated with ocrelizumab developed humoral IgG response irrespective to normal absolute lymphocyte count. Most fingolimod-treated MS patients had very low lymphocyte count and failed to develop SARS-COV-2 antibodies. Age, disease duration, and time from the last dosing did not affect humoral response to COVID-19 vaccination. Conclusions Cladribine treatment does not impair humoral response to COVID-19 vaccination. We recommend postponing ocrelizumab treatment in MS patients willing to be vaccinated as a protective humoral response can be expected only in some. We do not recommend vaccinating MS patients treated with fingolimod as a protective humoral response is not expected.
Collapse
Affiliation(s)
- Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center and The Laura Schwarz-Kipp Research of Autoimmune Diseases, Sackler School of Medicine, Tel-Aviv University, Israel, 2 Derech Sheba, Ramat-Gann, 52621, Israel
| | - Mathilda Mandel
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gann, Israel
| | | | - Gil Harari
- School of Public Health, University of Haifa, Israel
| | | | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gann, Israel
| | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gann, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gann, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Shlomo Flechter
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gann, Israel
| | - Rina Falb
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gann, Israel
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gann, and Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
38
|
Scotto R, Reia A, Buonomo AR, Moccia M, Viceconte G, Pisano E, Zappulo E, Brescia Morra V, Gentile I. Risk of invasive fungal infections among patients treated with disease modifying treatments for multiple sclerosis: a comprehensive review. Expert Opin Drug Saf 2021; 20:925-936. [PMID: 33880975 DOI: 10.1080/14740338.2021.1918673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Disease modifying treatments are commonly used in the treatment of multiple sclerosis. As different opportunistic infections have been reported, concerns are also raised regarding the risk of invasive fungal infections.Areas covered: Both clinical trials and observational studies on safety and efficacy of diseases modifying treatment for multiple sclerosis were reviewed and data regarding the occurrence of invasive fungal infections were reported. Papers evaluating the following drugs were reviewed: rituximab, ocrelizumab, alemtuzumab, fingolimod, natalizumab, dimethyl fumarate, interferon, glatiramer acetate, cladribine, teriflunomide.Expert opinion: Overall, the occurrence of invasive fungal infections was low, with most infective events reported among patients treated with monoclonal antibodies and fingolimod. Aspergillosis and cryptococcal meningitidis were the most representative fungal infections. Although not common, these infections may be difficult to diagnose and their fatality rate is often high. For this reason, screening protocols for fungal infections must be implemented in the clinical practice when managing patients with MS.
Collapse
Affiliation(s)
- R Scotto
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - A Reia
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Centre, University of Naples Federico II, Italy
| | - A R Buonomo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - M Moccia
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Centre, University of Naples Federico II, Italy
| | - G Viceconte
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - E Pisano
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Centre, University of Naples Federico II, Italy
| | - E Zappulo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - V Brescia Morra
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Centre, University of Naples Federico II, Italy
| | - I Gentile
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
The development and impact of cladribine on lymphoid and myeloid cells in multiple sclerosis. Mult Scler Relat Disord 2021; 52:102962. [PMID: 33901971 DOI: 10.1016/j.msard.2021.102962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022]
Abstract
Cladribine is an approved selective immune reconstitution therapy for relapsing-remitting MS (RRMS). It was first developed and used to treat various forms of cancer, particularly leukemia via parenteral administration. The oral tablet version of cladribine was later developed to treat RRMS, an autoimmune disorder of the central nervous system (CNS) with periods of relapse and remission. Cladribine is found to selectively deplete adaptive immune cell types, and its role on innate immune cells is largely unknown. Among the lymphocyte populations and subtypes, the magnitude and kinetics of depletion by cladribine vary substantially. The current consensus on the selective cytotoxic effect of cladribine is that it is dependent on the deoxycytidine kinase (DCK) to 5'nucleotidase (5-NT) ratio of the immune cell type. Nonetheless, there are some discrepancies that cannot be fully elucidated by the DCK:5-NT ratio paradigm. This review aims to delineate the development and pharmacological properties of cladribine, and elucidate its influence on lymphoid and myeloid cells in MS.
Collapse
|
40
|
Voss L, Guttek K, Reddig A, Reinhold A, Voss M, Schraven B, Reinhold D. Screening of FDA-Approved Drug Library Identifies Adefovir Dipivoxil as Highly Potent Inhibitor of T Cell Proliferation. Front Immunol 2021; 11:616570. [PMID: 33488629 PMCID: PMC7821167 DOI: 10.3389/fimmu.2020.616570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Repositioning of approved drugs for identifying new therapeutic purposes is an alternative, time and cost saving strategy to classical drug development. Here, we screened a library of 786 FDA-approved drugs to find compounds, which can potentially be repurposed for treatment of T cell-mediated autoimmune diseases. Investigating the effect of these diverse substances on mitogen-stimulated proliferation of both, freshly stimulated and pre-activated (48 h) peripheral blood mononuclear cells (PBMCs), we discovered Adefovir Dipivoxil (ADV) as very potent compound, which inhibits T cell proliferation in a nanomolar range. We further analyzed the influence of ADV on proliferation, activation, cytokine production, viability and apoptosis of freshly stimulated as well as pre-activated human T cells stimulated with anti-CD3/CD28 antibodies. We observed that ADV was capable of suppressing the proliferation in both T cell stimulation systems in a dose-dependent manner (50% inhibition [IC50]: 63.12 and 364.8 nM for freshly stimulated T cells and pre-activated T cells, respectively). Moreover, the drug impaired T cell activation and inhibited Th1 (IFN-γ), Th2 (IL-5), and Th17 (IL-17) cytokine production dose-dependently. Furthermore, ADV treatment induced DNA double-strand breaks (γH2AX foci expression), which led to an increase of p53-phospho-Ser15 expression. In response to DNA damage p21 and PUMA are transactivated by p53. Subsequently, this caused cell cycle arrest at G0/G1 phase and activation of the intrinsic apoptosis pathway. Our results indicate that ADV could be a new potential candidate for treatment of T cell-mediated autoimmune diseases. Prospective studies should be performed to verify this possible therapeutic application of ADV for such disorders.
Collapse
Affiliation(s)
- Linda Voss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infection and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Voss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infection and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infection and Inflammation (GC-I3), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
41
|
Cree BAC, Bowen JD, Hartung HP, Vermersch P, Hughes B, Damian D, Hyvert Y, Dangond F, Galazka A, Grosso M, Jones DL, Leist TP. Subgroup analysis of clinical and MRI outcomes in participants with a first clinical demyelinating event at risk of multiple sclerosis in the ORACLE-MS study. Mult Scler Relat Disord 2020; 49:102695. [PMID: 33578191 DOI: 10.1016/j.msard.2020.102695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND In the Phase 3, 96-week ORACLE-MS study, cladribine 10 mg tablets (3.5 mg/kg or 5.25 mg/kg cumulative dose over 2 years) significantly reduced the rate of conversion to clinically definite multiple sclerosis (CDMS) per the Poser criteria (henceforth referred to as CDMS), multiple sclerosis (MS) per the 2005 McDonald criteria, and the number of new or persisting T1 gadolinium-enhancing (Gd+), new or enlarging T2, and combined unique active (CUA) lesions versus placebo in participants with a first clinical demyelinating event (FCDE). Patient demographic and disease characteristics may be predictors of disease progression. The current study analyzed the effect of cladribine tablets in subgroups of participants in the ORACLE-MS study by baseline demographics and disease characteristics. METHODS This analysis retrospectively examined data collected from 616 participants enrolled in the ORACLE-MS study (placebo, n=206; cladribine tablets 3.5 mg/kg, n=206; cladribine tablets 5.25 mg/kg, n=204). Five subgroups were predetermined by baseline demographics, including sex, age (<30 or ≥30 years), classification of FCDE, and lesion characteristics, including absence or presence of T1 Gd+ lesions and number of T2 lesions (<9 or ≥9). Selected endpoints of the ORACLE-MS study were re-analyzed for these subgroups. The primary and main secondary endpoints were time to conversion to CDMS and MS (2005 McDonald criteria), respectively. Secondary magnetic resonance imaging (MRI) endpoints included cumulative T1 Gd+ and new or enlarging T2 lesions. Cox proportional hazards models were used to evaluate time to conversion to CDMS and MS (2005 McDonald criteria). This analysis focused primarily on the results for the cladribine tablets 3.5 mg/kg group because this dosage is approved for relapsing forms of MS. RESULTS In the overall intent-to-treat (ITT) population, cladribine tablets 3.5 mg/kg significantly reduced the risk of conversion to CDMS (hazard ratio [HR]=0.326; P<0.0001) and MS (2005 McDonald criteria; HR=0.485; P<0.0001) versus placebo. Similar effects of cladribine tablets on risk of conversion were observed in post hoc analyses of subgroups defined by various baseline characteristics. In both the ITT population and across subgroups, cladribine tablets 3.5 mg/kg reduced the numbers of cumulative T1 Gd+ (range of rate ratios: 0.106-0.399), new or enlarging T2 (range of rate ratios: 0.178-0.485), and CUA (range of rate ratios: 0.154-0.384) lesions versus placebo (all nominal P<0.03). Multivariate Cox proportional hazards models revealed that age (HR=0.577, nominal P<0.0001), FCDE classification (HR=0.738, nominal P=0.0043), presence of T1 Gd+ lesions (HR=0.554, nominal P<0.0001), and number of T2 lesions (HR=0.417, nominal P<0.0001) at baseline were factors associated with risk of conversion to MS (2005 McDonald criteria), whereas no baseline factors examined were associated with risk of conversion to CDMS. CONCLUSION In this post hoc analysis of the ORACLE-MS study, cladribine tablets reduced the risk of conversion to multiple sclerosis and lesion burden in participants with an FCDE in the overall ITT population and multiple subgroups defined by baseline demographics and lesion characteristics.
Collapse
Affiliation(s)
- Bruce A C Cree
- UCSF Weill Institute for Neurosciences, San Francisco, CA, USA
| | - James D Bowen
- Multiple Sclerosis Center, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Hans-Peter Hartung
- Department of Neurology, University Hospital of Düsseldorf, Medical Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Patrick Vermersch
- University of Lille, INSERM U1172, Lille Neurosciences and Cognition, CHU Lille, FHU Imminent, F-59000 Lille, France
| | - Bruce Hughes
- MercyOne Ruan Multiple Sclerosis Center, Des Moines, IA, USA
| | - Doris Damian
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA, Darmstadt, Germany
| | | | - Fernando Dangond
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA, Darmstadt, Germany
| | | | - Megan Grosso
- EMD Serono, Inc., Rockland, MA, USA, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Daniel L Jones
- EMD Serono, Inc., Rockland, MA, USA, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Thomas P Leist
- Comprehensive Multiple Sclerosis Center, Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Mateo-Casas M, Reyes S, De Trane S, Edwards F, Espasandin M, Anjorin G, Baker D, Schmierer K, Giovannoni G. Severe lymphopenia after subcutaneous cladribine in a patient with multiple sclerosis: To vaccinate or not? eNeurologicalSci 2020; 21:100279. [PMID: 33163633 PMCID: PMC7599429 DOI: 10.1016/j.ensci.2020.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To describe a fatal case of influenza A pneumonia in a patient with severe lymphopenia after receiving subcutaneous cladribine to treat her multiple sclerosis (MS). METHODS Case report. RESULTS A 53-year-old woman developed fatal influenza pneumonia associated with grade 4 lymphopenia two months after receiving a total dose of 60mg subcutaneous cladribine. Despite treatment with oseltamivir, her condition deteriorated and the patient passed away after developing respiratory failure. CONCLUSION Cladribine-related lymphopenia is usually mild to moderate, however severe lymphopenia may occur. People with MS, especially those who are immunosuppressed, should be offered the inactivated influenza vaccine annually.
Collapse
Affiliation(s)
- M. Mateo-Casas
- Department of Neurology, Hospital General Universitario de Castellón, Castellón de la Plana, Spain
- Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - S. Reyes
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - S. De Trane
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - F. Edwards
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - M. Espasandin
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - G. Anjorin
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - D. Baker
- Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - K. Schmierer
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - G. Giovannoni
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
- Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
43
|
Lechner-Scott J, Hawkes CH, Giovannoni G, Levy M, Maltby V. Why should Neurologists get involved in family planning? Mult Scler Relat Disord 2020; 46:102598. [DOI: 10.1016/j.msard.2020.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Zrzavy T, Wimmer I, Rommer PS, Berger T. Immunology of COVID-19 and disease-modifying therapies: The good, the bad and the unknown. Eur J Neurol 2020; 28:3503-3516. [PMID: 33090599 PMCID: PMC7675490 DOI: 10.1111/ene.14578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
Objective The outbreak of the SARS‐CoV‐2 pandemic, caused by a previously unknown infectious agent, posed unprecedented challenges to healthcare systems and unmasked their vulnerability and limitations worldwide. Patients with long‐term immunomodulatory/suppressive therapies, as well as their physicians, were and are concerned about balancing the risk of infection and effects of disease‐modifying therapy. Over the last few months, knowledge regarding SARS‐CoV‐2 has been growing tremendously, and the first experiences of infections in patients with multiple sclerosis (MS) have been reported. Methods This review summarizes the currently still limited knowledge about SARS‐CoV‐2 immunology and the commonly agreed modes of action of approved drugs in immune‐mediated diseases of the central nervous system (MS and neuromyelitis optica spectrum disorder). Specifically, we discuss whether immunosuppressive/immunomodulatory drugs may increase the risk of SARS‐CoV‐2 infection and, conversely, may decrease the severity of a COVID‐19 disease course. Results At present, it can be recommended in general that none of those therapies with a definite indication needs to be stopped per se. A possibly increased risk of infection for most medications is accompanied by the possibility to reduce the severity of COVID‐19. Conclusions Despite the knowledge gain over the last few months, current evidence remains limited, and, thus, further clinical vigilance and systematic documentation is essential.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Korsukewitz C, Reddel SW, Bar-Or A, Wiendl H. Neurological immunotherapy in the era of COVID-19 - looking for consensus in the literature. Nat Rev Neurol 2020; 16:493-505. [PMID: 32641860 PMCID: PMC7341707 DOI: 10.1038/s41582-020-0385-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is concerning for patients with neuroimmunological diseases who are receiving immunotherapy. Uncertainty remains about whether immunotherapies increase the risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or increase the risk of severe disease and death upon infection. National and international societies have developed guidelines and statements, but consensus does not exist in several areas. In this Review, we attempt to clarify where consensus exists and where uncertainty remains to inform management approaches based on the first principles of neuroimmunology. We identified key questions that have been addressed in the literature and collated the recommendations to generate a consensus calculation in a Delphi-like approach to summarize the information. We summarize the international recommendations, discuss them in light of the first available data from patients with COVID-19 receiving immunotherapy and provide an overview of management approaches in the COVID-19 era. We stress the principles of medicine in general and neuroimmunology in particular because, although the risk of viral infection has become more relevant, most of the considerations apply to the general management of neurological immunotherapy. We also give special consideration to immunosuppressive treatment and cell-depleting therapies that might increase susceptibility to SARS-CoV-2 infection but reduce the risk of severe COVID-19.
Collapse
Affiliation(s)
- Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany
| | - Stephen W Reddel
- Department of Neurology, Concord Hospital and The Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany.
| |
Collapse
|
46
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
47
|
Torke S, Weber MS. Inhibition of Bruton´s tyrosine kinase as a novel therapeutic approach in multiple sclerosis. Expert Opin Investig Drugs 2020; 29:1143-1150. [DOI: 10.1080/13543784.2020.1807934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sebastian Torke
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| |
Collapse
|
48
|
Differential Effects of MS Therapeutics on B Cells-Implications for Their Use and Failure in AQP4-Positive NMOSD Patients. Int J Mol Sci 2020; 21:ijms21145021. [PMID: 32708663 PMCID: PMC7404039 DOI: 10.3390/ijms21145021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
B cells are considered major contributors to multiple sclerosis (MS) pathophysiology. While lately approved disease-modifying drugs like ocrelizumab deplete B cells directly, most MS medications were not primarily designed to target B cells. Here, we review the current understanding how approved MS medications affect peripheral B lymphocytes in humans. These highly contrasting effects are of substantial importance when considering these drugs as therapy for neuromyelitis optica spectrum disorders (NMOSD), a frequent differential diagnosis to MS, which is considered being a primarily B cell- and antibody-driven diseases. Data indicates that MS medications, which deplete B cells or induce an anti-inflammatory phenotype of the remaining ones, were effective and safe in aquaporin-4 antibody positive NMOSD. In contrast, drugs such as natalizumab and interferon-β, which lead to activation and accumulation of B cells in the peripheral blood, lack efficacy or even induce catastrophic disease activity in NMOSD. Hence, we conclude that the differential effect of MS drugs on B cells is one potential parameter determining the therapeutic efficacy or failure in antibody-dependent diseases like seropositive NMOSD.
Collapse
|
49
|
Moccia M, Lanzillo R, Petruzzo M, Nozzolillo A, De Angelis M, Carotenuto A, Palladino R, Brescia Morra V. Single-Center 8-Years Clinical Follow-Up of Cladribine-Treated Patients From Phase 2 and 3 Trials. Front Neurol 2020; 11:489. [PMID: 32625161 PMCID: PMC7311570 DOI: 10.3389/fneur.2020.00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Cladribine is approved for the treatment of highly-active relapsing multiple sclerosis (MS), where it is also effective on disability progression. In the present single-center study, we aim to report on the 8-years clinical follow-up of 27 patients included in phase 2 and 3 clinical trials for cladribine. Methods: We included patients exposed to cladribine (n = 13) or placebo (n = 14) in ONWARD, CLARITY, and ORACLE-MS trials, and followed-up at the same center after trial termination. Outcomes of long-term disease progression were recorded. Results: During 8-year follow-up, patients treated with cladribine presented with reduced risk of EDSS progression (HR = 0.148; 95%CI = 0.031, 0.709; p = 0.017), of reaching EDSS 6.0 (HR = 0.115; 95%CI = 0.015, 0.872; p = 0.036), and of SP conversion (HR = 0.010; 95%CI = 0.001, 0.329; p = 0.010), when compared with placebo. Conclusions: Our exploratory study provides additional evidence that cladribine may be useful to prevent or, at least, mitigate the risk of disability progression after 8 years.
Collapse
Affiliation(s)
- Marcello Moccia
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Roberta Lanzillo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Martina Petruzzo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Agostino Nozzolillo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Marcello De Angelis
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Antonio Carotenuto
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Raffaele Palladino
- Department of Primary Care and Public Health, Imperial College, London, United Kingdom.,Department of Public Health, Federico II University, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| |
Collapse
|
50
|
Patti F, Visconti A, Capacchione A, Roy S, Trojano M. Long-term effectiveness in patients previously treated with cladribine tablets: a real-world analysis of the Italian multiple sclerosis registry (CLARINET-MS). Ther Adv Neurol Disord 2020; 13:1756286420922685. [PMID: 32587633 PMCID: PMC7294475 DOI: 10.1177/1756286420922685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background The CLARINET-MS study assessed the long-term effectiveness of cladribine tablets by following patients with multiple sclerosis (MS) in Italy, using data from the Italian MS Registry. Methods Real-world data (RWD) from Italian MS patients who participated in cladribine tablets randomised clinical trials (RCTs; CLARITY, CLARITY Extension, ONWARD or ORACLE-MS) across 17 MS centres were obtained from the Italian MS Registry. RWD were collected during a set observation period, spanning from the last dose of cladribine tablets during the RCT (defined as baseline) to the last visit date in the registry, treatment switch to other disease-modifying drugs, date of last Expanded Disability Status Scale recording or date of the last relapse (whichever occurred last). Time-to-event analysis was completed using the Kaplan-Meier (KM) method. Median duration and associated 95% confidence intervals (CI) were estimated from the model. Results Time span under observation in the Italian MS Registry was 1-137 (median 80.3) months. In the total Italian patient population (n = 80), the KM estimates for the probability of being relapse-free at 12, 36 and 60 months after the last dose of cladribine tablets were 84.8%, 66.2% and 57.2%, respectively. The corresponding probability of being progression-free at 60 months after the last dose was 63.7%. The KM estimate for the probability of not initiating another disease-modifying treatment at 60 months after the last dose of cladribine tablets was 28.1%, and the median time-to-treatment change was 32.1 (95% CI 15.5-39.5) months. Conclusion CLARINET-MS provides an indirect measure of the long-term effectiveness of cladribine tablets. Over half of MS patients analysed did not relapse or experience disability progression during 60 months of follow-up from the last dose, suggesting that cladribine tablets remain effective in years 3 and 4 after short courses at the beginning of years 1 and 2.
Collapse
Affiliation(s)
- Francesco Patti
- Azienda Ospedaliera-Universitaria, "Policlinico Vittorio Emanuele", Catania via Santa Sofia 78, Catania, 95123, Italy
| | - Andrea Visconti
- Merck Serono S.p.A., Rome, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Antonio Capacchione
- Merck Serono S.p.A., Rome, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Sanjeev Roy
- Merck, Aubonne, Switzerland, a division of Merck KGaA, Darmstadt, Germany
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | | |
Collapse
|