1
|
Ferrazzoli D, Ortelli P, Versace V, Stolz J, Dezi S, Vos P, Giladi N, Saltuari L, Sebastianelli L. Post-traumatic parkinsonism: The intricate twist between trauma, inflammation and neurodegeneration. A narrative review. J Neurol Sci 2024; 466:123242. [PMID: 39303348 DOI: 10.1016/j.jns.2024.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Post-traumatic Parkinsonism (PTP) is a complex neurological disorder that is often associated with the occurrence of a traumatic brain injury (TBI). PTP can occur either in the acute or chronic phase of TBI. There is still uncertainty about the mechanisms provoking PTP, which can be the result of the acute blast itself or secondary neurodegenerative process occurring months to years post the acute trauma. Currently there is an underestimation of the clinical importance of PTP and lack of specific and proven therapeutic interventions, both in the pharmacological and the neurorehabilitation field. This narrative review aims to summarize the actual knowledge about PTP in terms of its pathophysiology, clinical aspects, treatments and perspective of care in the neurorehabilitative setting.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jakob Stolz
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Sabrina Dezi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Pieter Vos
- Department of Neurology, Slingeland Hospital, Doetinchem, the Netherlands
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| |
Collapse
|
2
|
Adam CD, Mirzakhalili E, Gagnon KG, Cottone C, Arena JD, Ulyanova AV, Johnson VE, Wolf JA. Disrupted Hippocampal Theta-Gamma Coupling and Spike-Field Coherence Following Experimental Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596704. [PMID: 39314320 PMCID: PMC11418945 DOI: 10.1101/2024.05.30.596704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traumatic brain injury (TBI) often results in persistent learning and memory deficits, likely due to disrupted hippocampal circuitry underlying these processes. Precise temporal control of hippocampal neuronal activity is important for memory encoding and retrieval and is supported by oscillations that dynamically organize single unit firing. Using high-density laminar electrophysiology, we discovered a loss of oscillatory power across CA1 lamina, with a profound, layer-specific reduction in theta-gamma phase amplitude coupling in injured rats. Interneurons from injured animals were less strongly entrained to theta and gamma oscillations, suggesting a mechanism for the loss of coupling, while pyramidal cells were entrained to a later phase of theta. During quiet immobility, we report decreased ripple amplitudes from injured animals during sharp-wave ripple events. These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies.
Collapse
Affiliation(s)
- Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ehsan Mirzakhalili
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Kimberly G Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John D Arena
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| |
Collapse
|
3
|
Hirad AA, Mix D, Venkataraman A, Meyers SP, Mahon BZ. Strain concentration drives the anatomical distribution of injury in acute and chronic traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595352. [PMID: 38826417 PMCID: PMC11142169 DOI: 10.1101/2024.05.22.595352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Brain tissue injury caused by mild traumatic brain injury (mTBI) disproportionately concentrates in the midbrain, cerebellum, mesial temporal lobe, and the interface between cortex and white matter at sulcal depths 1-12. The bio-mechanical principles that explain why physical impacts to different parts of the skull translate to common foci of injury concentrated in specific brain structures are unknown. A general and longstanding idea, which has not to date been directly tested in humans, is that different brain regions are differentially susceptible to strain loading11,13-15. We use Magnetic Resonance Elastography (MRE) in healthy participants to develop whole-brain bio-mechanical vulnerability maps that independently define which regions of the brain exhibit disproportionate strain concentration. We then validate those vulnerability maps in a prospective cohort of mTBI patients, using diffusion MRI data collected at three cross-sectional timepoints after injury: acute, sub-acute, chronic. We show that regions that exhibit high strain, measured with MRE, are also the sites of greatest injury, as measured with diffusion MR in mTBI patients. This was the case in acute, subacute, and chronic subgroups of the mTBI cohort. Follow-on analyses decomposed the biomechanical cause of increased strain by showing it is caused jointly by disproportionately higher levels of energy arriving to 'high-strain' structures, as well as the inability of 'high strain' structures to effectively disperse that energy. These findings establish a causal mechanism that explains the anatomy of injury in mTBI based on in vivo rheological properties of the human brain.
Collapse
Affiliation(s)
- Adnan A. Hirad
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
- Del Monte Neuroscience Institute, University of Rochester, NY, USA
| | - Doran Mix
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, 1462
| | - Arun Venkataraman
- Department of Physics and Astronomy, University of Rochester, NY, 14623, USA
| | - Steven P. Meyers
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
| | - Bradford Z. Mahon
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 1462, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15206
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15206
| |
Collapse
|
4
|
Campana S, Cecchetti L, Venturi M, Buemi F, Foti C, Cerasa A, Vicario CM, Carboncini MC, Tomaiuolo F. Evolution of Severe Closed Head Injury: Assessing Ventricular Volume and Behavioral Measures at 30 and 90 Days Post-Injury. J Clin Med 2024; 13:874. [PMID: 38337568 PMCID: PMC10856794 DOI: 10.3390/jcm13030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Assessing functional outcomes in Severe Closed Head Injury (SCHI) is complex due to brain parenchymal changes. This study examines the Ventricles to Intracranial Volume Ratio (VBR) as a metric for these changes and its correlation with behavioral scales. Methods: Thirty-one SCHI patients were included. VBR was derived from CT scans at 3, 30, and 90 days post-injury and compared with Levels of Cognitive Functioning (LCF), Disability Rating Scale (DRS), and Early Rehabilitation Barthel Index (ERBI) assessments at 30 and 90 days. Results: Ten patients were excluded post-decompressive craniectomy or ventriculoperitoneal shunt. Findings indicated a VBR decrease at 3 days, suggesting acute phase compression, followed by an increase from 30 to 90 days, indicative of post-acute brain atrophy. VBR correlated positively with the Marshall score in the initial 72 h, positioning it as an early indicator of subsequent brain atrophy. Nevertheless, in contrast to the Marshall score, VBR had stronger associations with DRS and ERBI at 90 days. Conclusions: VBR, alongside behavioral assessments, presents a robust framework for evaluating SCHI progression. It supports early functional outcome correlations informing therapeutic approaches. VBR's reliability underscores its utility in neurorehabilitation for ongoing SCHI assessment and aiding clinical decisions.
Collapse
Affiliation(s)
- Serena Campana
- Neurorehabilitation Unit, Auxilium Vitae Volterra, Via Borgo San Lazzero 5, 56048 Volterra, Italy;
| | - Luca Cecchetti
- Social and Affective Neuroscience (SANe) Group, MoMiLab, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
| | - Martina Venturi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Francesco Buemi
- Department of Diagnostic and Interventional Radiology, Azienda Ospedaliera Papardo, 98158 Messina, Italy;
| | - Cristina Foti
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Antonio Cerasa
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
- S. Anna Institute, 88900 Crotone, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Carmelo Mario Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, 98125 Messina, Italy;
| | - Maria Chiara Carboncini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Francesco Tomaiuolo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| |
Collapse
|
5
|
Guerrero-Gonzalez JM, Kirk GR, Birn R, Bigler ED, Bowen K, Broman AT, Rosario BL, Butt W, Beers SR, Bell MJ, Alexander AL, Ferrazzano PA. Multi-modal MRI of hippocampal morphometry and connectivity after pediatric severe TBI. Brain Imaging Behav 2024; 18:159-170. [PMID: 37955810 PMCID: PMC10844146 DOI: 10.1007/s11682-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
This investigation explores memory performance using the California Verbal Learning Test in relation to morphometric and connectivity measures of the memory network in severe traumatic brain injury. Twenty-two adolescents with severe traumatic brain injury were recruited for multimodal MRI scanning 1-2 years post-injury at 13 participating sites. Analyses included hippocampal volume derived from anatomical T1-weighted imaging, fornix white matter microstructure from diffusion tensor imaging, and hippocampal resting-state functional magnetic resonance imaging connectivity as well as diffusion-based structural connectivity. A typically developing control cohort of forty-nine age-matched children also underwent scanning and neurocognitive assessment. Results showed hippocampus volume was decreased in traumatic brain injury with respect to controls. Further, hippocampal volume loss was associated with worse performance on memory and learning in traumatic brain injury subjects. Similarly, hippocampal fornix fractional anisotropy was reduced in traumatic brain injury with respect to controls, while decreased fractional anisotropy in the hippocampal fornix also was associated with worse performance on memory and learning in traumatic brain injury subjects. Additionally, reduced structural connectivity of left hippocampus to thalamus and calcarine sulcus was associated with memory and learning in traumatic brain injury subjects. Functional connectivity in the left hippocampal network was also associated with memory and learning in traumatic brain injury subjects. These regional findings from a multi-modal neuroimaging approach should not only be useful for gaining valuable insight into traumatic brain injury induced memory and learning disfunction, but may also be informative for monitoring injury progression, recovery, and for developing rehabilitation as well as therapy strategies.
Collapse
Affiliation(s)
- Jose M Guerrero-Gonzalez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | - Gregory R Kirk
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Rasmus Birn
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
- Department of Neurology & Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Aimee T Broman
- Department of Biostatistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Bedda L Rosario
- Department of Epidemiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Warwick Butt
- Department of Critical Care, Faculty of Medicine, Melbourne University, Melbourne, Australia
| | - Sue R Beers
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Bell
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Peter A Ferrazzano
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
6
|
Oshima K, Siddiqui N, Orfila JE, Carter D, Laing J, Han X, Zakharevich I, Iozzo RV, Ghasabyan A, Moore H, Zhang F, Linhardt RJ, Moore EE, Quillinan N, Schmidt EP, Herson PS, Hippensteel JA. A role for decorin in improving motor deficits after traumatic brain injury. Matrix Biol 2024; 125:88-99. [PMID: 38135163 PMCID: PMC10922985 DOI: 10.1016/j.matbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability due to injury worldwide. Extracellular matrix (ECM) remodeling is known to significantly contribute to TBI pathophysiology. Glycosaminoglycans, which are long-chain, variably sulfated polysaccharides abundant within the ECM, have previously been shown to be substantially altered after TBI. In this study, we sought to delineate the dynamics of glycosaminoglycan alterations after TBI and discover the precise biologic processes responsible for observed glycosaminoglycan changes after injury. We performed state-of-the art mass spectrometry on brain tissues isolated from mice after TBI or craniotomy-alone. We observed dynamic changes in glycosaminoglycans at Day 1 and 7 post-TBI, with heparan sulfate, chondroitin sulfate, and hyaluronan remaining significantly increased after a week vis-à-vis craniotomy-alone tissues. We did not observe appreciable changes in circulating glycosaminoglycans in mice after experimental TBI compared to craniotomy-alone nor in patients with TBI and severe polytrauma compared to control patients with mild injuries, suggesting increases in injury site glycosaminoglycans are driven by local synthesis. We subsequently performed an unbiased whole genome transcriptomics analysis on mouse brain tissues 7 days post-TBI and discovered a significant induction of hyaluronan synthase 2, glypican-3, and decorin. The functional role of decorin after injury was further examined through multimodal behavioral testing comparing wild-type and Dcn-/- mice. We discovered that genetic ablation of Dcn led to an overall negative effect of TBI on function, exacerbating motor impairments after TBI. Collectively, our results provide a spatiotemporal characterization of post-TBI glycosaminoglycan alterations in the brain ECM and support an important adaptive role for decorin upregulation after TBI.
Collapse
Affiliation(s)
- Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah Siddiqui
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Danelle Carter
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin Laing
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Igor Zakharevich
- Department of Biochemistry, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Arsen Ghasabyan
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Hunter Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
7
|
Janković T, Pilipović K. Single Versus Repetitive Traumatic Brain Injury: Current Knowledge on the Chronic Outcomes, Neuropathology and the Role of TDP-43 Proteinopathy. Exp Neurobiol 2023; 32:195-215. [PMID: 37749924 PMCID: PMC10569144 DOI: 10.5607/en23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death and disability in adults and thus an important public health problem. Following TBI, secondary pathophysiological processes develop over time and condition the development of different neurodegenerative entities. Previous studies suggest that neurobehavioral changes occurring after a single TBI are the basis for the development of Alzheimer's disease, while repetitive TBI is considered to be a contributing factor for chronic traumatic encephalopathy development. However, pathophysiological processes that determine the evolvement of a particular chronic entity are still unclear. Human post-mortem studies have found combinations of amyloid, tau, Lewi bodies, and TAR DNA-binding protein 43 (TDP-43) pathologies after both single and repetitive TBI. This review focuses on the pathological changes of TDP-43 after single and repetitive brain traumas. Numerous studies have shown that TDP-43 proteinopathy noticeably occurs after repetitive head trauma. A relatively small number of available preclinical research on single brain injury are not in complete agreement with the results from the human samples, which makes it difficult to draw specific conclusions. Also, as TBI is considered a heterogeneous type of injury, different experimental trauma models and injury intensities may cause differences in the cascade of secondary injury, which should be considered in future studies. Experimental and post-mortem studies of TDP-43 pathobiology should be carried out, preferably in the same laboratories, to determine its involvement in the development of neurodegenerative conditions after one and repetitive TBI, especially in the context of the development of new therapeutic options.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
8
|
Danielli E, Simard N, DeMatteo CA, Kumbhare D, Ulmer S, Noseworthy MD. A review of brain regions and associated post-concussion symptoms. Front Neurol 2023; 14:1136367. [PMID: 37602240 PMCID: PMC10435092 DOI: 10.3389/fneur.2023.1136367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The human brain is an exceptionally complex organ that is comprised of billions of neurons. Therefore, when a traumatic event such as a concussion occurs, somatic, cognitive, behavioral, and sleep impairments are the common outcome. Each concussion is unique in the sense that the magnitude of biomechanical forces and the direction, rotation, and source of those forces are different for each concussive event. This helps to explain the unpredictable nature of post-concussion symptoms that can arise and resolve. The purpose of this narrative review is to connect the anatomical location, healthy function, and associated post-concussion symptoms of some major cerebral gray and white matter brain regions and the cerebellum. As a non-exhaustive description of post-concussion symptoms nor comprehensive inclusion of all brain regions, we have aimed to amalgamate the research performed for specific brain regions into a single article to clarify and enhance clinical and research concussion assessment. The current status of concussion diagnosis is highly subjective and primarily based on self-report of symptoms, so this review may be able to provide a connection between brain anatomy and the clinical presentation of concussions to enhance medical imaging assessments. By explaining anatomical relevance in terms of clinical concussion symptom presentation, an increased understanding of concussions may also be achieved to improve concussion recognition and diagnosis.
Collapse
Affiliation(s)
- Ethan Danielli
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Nicholas Simard
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Carol A. DeMatteo
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Dinesh Kumbhare
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephan Ulmer
- Neurorad.ch, Zurich, Switzerland
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Michael D. Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Lu Y, Jarrahi A, Moore N, Bartoli M, Brann DW, Baban B, Dhandapani KM. Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury. Neurobiol Dis 2023; 180:106090. [PMID: 36934795 PMCID: PMC10763650 DOI: 10.1016/j.nbd.2023.106090] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nicholas Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Darrell W Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
10
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
11
|
Umfress A, Chakraborti A, Priya Sudarsana Devi S, Adams R, Epstein D, Massicano A, Sorace A, Singh S, Iqbal Hossian M, Andrabi SA, Crossman DK, Kumar N, Shahid Mukhtar M, Luo H, Simpson C, Abell K, Stokes M, Wiederhold T, Rosen C, Lu H, Natarajan A, Bibb JA. Cdk5 mediates rotational force-induced brain injury. Sci Rep 2023; 13:3394. [PMID: 36854738 PMCID: PMC9974974 DOI: 10.1038/s41598-023-29322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.
Collapse
Affiliation(s)
- Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ayanabha Chakraborti
- Department of Translational Neuroscience, University of Arizona College of Medicine in Phoeni, Biomedical Sciences Partnership Bldg, Phoenix, AZ, 85004 , USA
| | | | - Raegan Adams
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Epstein
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adriana Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases University of Nebraska Medical Center, Omaha, NE, USA
| | - M Iqbal Hossian
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nilesh Kumar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Shahid Mukhtar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | - Charles Rosen
- OSF Healthcare Illinois Neurological Institute, Peoria, IL, USA
| | - Hongbing Lu
- Department of Mechanical Engineering, University of Texas at Dallas, Dallas, TX, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases University of Nebraska Medical Center, Omaha, NE, USA
| | - James A Bibb
- Department of Translational Neuroscience, University of Arizona College of Medicine in Phoeni, Biomedical Sciences Partnership Bldg, Phoenix, AZ, 85004 , USA.
| |
Collapse
|
12
|
Shi RX, Liu C, Xu YJ, Wang YY, He BD, He XC, Du HZ, Hu B, Jiao J, Liu CM, Teng ZQ. The Role and Mechanism of Transglutaminase 2 in Regulating Hippocampal Neurogenesis after Traumatic Brain Injury. Cells 2023; 12:cells12040558. [PMID: 36831225 PMCID: PMC9954100 DOI: 10.3390/cells12040558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Traumatic brain injury usually results in neuronal loss and cognitive deficits. Promoting endogenous neurogenesis has been considered as a viable treatment option to improve functional recovery after TBI. However, neural stem/progenitor cells (NSPCs) in neurogenic regions are often unable to migrate and differentiate into mature neurons at the injury site. Transglutaminase 2 (TGM2) has been identified as a crucial component of neurogenic niche, and significantly dysregulated after TBI. Therefore, we speculate that TGM2 may play an important role in neurogenesis after TBI, and strategies targeting TGM2 to promote endogenous neural regeneration may be applied in TBI therapy. Using a tamoxifen-induced Tgm2 conditional knockout mouse line and a mouse model of stab wound injury, we investigated the role and mechanism of TGM2 in regulating hippocampal neurogenesis after TBI. We found that Tgm2 was highly expressed in adult NSPCs and up-regulated after TBI. Conditional deletion of Tgm2 resulted in the impaired proliferation and differentiation of NSPCs, while Tgm2 overexpression enhanced the abilities of self-renewal, proliferation, differentiation, and migration of NSPCs after TBI. Importantly, injection of lentivirus overexpressing TGM2 significantly promoted hippocampal neurogenesis after TBI. Therefore, TGM2 is a key regulator of hippocampal neurogenesis and a pivotal therapeutic target for intervention following TBI.
Collapse
Affiliation(s)
- Ruo-Xi Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| |
Collapse
|
13
|
Anh NDQ, Cuong TC, Thang LM, Duc NM. Diagnostic determination by diffusion tensor imaging of neural axon injury between the 2 hemispheres following traumatic brain injury. Radiol Case Rep 2023; 18:1107-1111. [PMID: 36684622 PMCID: PMC9849864 DOI: 10.1016/j.radcr.2022.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) is caused by an external mechanical force to the head resulting in alteration of brain function. However, the injury to neural tracts and the connections between them is difficult to diagnose using traditional imaging techniques. A 54-year-old woman visited our clinic because of insufficient coordination of her body. Her personal history included severe TBI with a 10-day coma medically treated 10 years previously. She presented with memory impairment and insufficient coordination of her body, suggesting post-concussion syndrome. Her Glasgow Coma Scale score was 15 and the strength testing result was 5/5 for both sides; however, she could not walk. She had been examined at many medical centers, but without a diagnosis of her condition. She was scanned using morphometric magnetic resonance imaging (MRI), which detected a significant reduction in the corpus callosum. MRI-diffusion tensor imaging (DTI) revealed decreased fractional anisotropy (FA) in the white matter of the right temporal lobe and the corpus callosum. FA reflects the degree of anisotropy of water molecules. The decrease in FA in the corpus callosum indicated loss of connection between the 2 hemispheres. MRI tractography was used to describe the number of neural tracts in the corpus callosum. MRI-DTI and MRI tractography served as powerful diagnostic tools, providing imaging results that offered an explanation for our patient's clinical picture.
Collapse
Affiliation(s)
| | - Tran Chi Cuong
- Digital Subtraction Angiography Unit, Can Tho S.I.S General Hospital, Can Tho, Vietnam
| | - Le Minh Thang
- Digital Subtraction Angiography Unit, Can Tho S.I.S General Hospital, Can Tho, Vietnam
| | - Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, 2 Duong Quang Trung Ward 12 District 10, Ho Chi Minh City, Vietnam,Corresponding author.
| |
Collapse
|
14
|
Xu J, Guan X, Wen J, Zhang M, Xu X. Polygenic hazard score modified the relationship between hippocampal subfield atrophy and episodic memory in older adults. Front Aging Neurosci 2022; 14:943702. [PMID: 36389062 PMCID: PMC9659745 DOI: 10.3389/fnagi.2022.943702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Understanding genetic influences on Alzheimer's disease (AD) may improve early identification. Polygenic hazard score (PHS) is associated with the age of AD onset and cognitive decline. It interacts with other risk factors, but the nature of such combined effects remains poorly understood. MATERIALS AND METHODS We examined the effect of genetic risk and hippocampal atrophy pattern on episodic memory in a sample of older adults ranging from cognitively normal to those diagnosed with AD using structural MRI. Participants included 51 memory unimpaired normal control (NC), 69 mild cognitive impairment (MCI), and 43 AD adults enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Hierarchical linear regression analyses examined the main and interaction effects of hippocampal subfield volumes and PHS, indicating genetic risk for AD, on a validated episodic memory composite score. Diagnosis-stratified models further assessed the role of PHS. RESULTS Polygenic hazard score moderated the relationship between right fimbria/hippocampus volume ratio and episodic memory, such that patients with high PHS and lower volume ratio had lower episodic memory composite scores [ΔF = 6.730, p = 0.011, ΔR 2 = 0.059]. This effect was also found among individuals with MCI [ΔF = 4.519, p = 0.038, ΔR 2 = 0.050]. In contrast, no interaction effects were present for those NC or AD individuals. A follow-up mediation analysis also indicated that the right fimbria/hippocampus volume ratio might mediate the link between PHS and episodic memory performance in the MCI group, whereas no mediation effects were present for those NC or AD individuals. CONCLUSION These findings suggest that the interaction between AD genetic risk and hippocampal subfield volume ratio increases memory impairment among older adults. Also, the results highlighted a potential pathway in which genetic risk affects memory by degrading hippocampal subfield volume ratio in cognitive decline subjects.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
15
|
The Effect of Dual-Task Motor-Cognitive Training in Adults with Neurological Diseases Who Are at Risk of Falling. Brain Sci 2022; 12:brainsci12091207. [PMID: 36138943 PMCID: PMC9497151 DOI: 10.3390/brainsci12091207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Falls are common in patients with neurological diseases and can be very problematic. Recently, there has been an increase in fall prevention research in people with neurological diseases; however, these studies are usually condition-specific (e.g., only MS, PD or stroke). Here, our aim was to evaluate and compare the efficacy of an advanced and innovative dual-task, motor-cognitive rehabilitation program in individuals with different neurological diseases who are at risk of falling. We recruited 95 consecutive adults with neurological diseases who are at risk of falling and divided them into four groups: 31 with cerebrovascular disease (CVD), 20 with Parkinson’s disease (PD), 23 with traumatic brain injury (TBI) and 21 with other neurological diseases (OND). Each patient completed a dual-task, motor-cognitive training program and underwent two test evaluations to assess balance, gait, fear of falling and walking performance at the pre-and post-intervention. We found that our experimental motor-cognitive, dual-task rehabilitation program was an effective method for improving walking balance, gait, walking endurance and speed, and fear of falling, and that it reduced the risk of falls in patients with different neurological diseases. This study presents an alternative approach for people with chronic neurological diseases and provides innovative data for managing this population.
Collapse
|
16
|
Svirsky SE, Ranellone NS, Parry M, Holets E, Henchir J, Li Y, Carlson SW, Edward Dixon C. All-trans Retinoic Acid has Limited Therapeutic Effects on Cognition and Hippocampal Protein Expression After Controlled Cortical Impact. Neuroscience 2022; 499:130-141. [PMID: 35878718 DOI: 10.1016/j.neuroscience.2022.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Traumatic brain injury (TBI) is known to impair synaptic function, and subsequently contribute to observed cognitive deficits. Retinoic Acid (RA) signaling modulates expression of synaptic plasticity proteins and is involved in hippocampal learning and memory. All trans-retinoic acid (ATRA), a metabolite of Vitamin A, has been identified as a potential pharmacotherapeutic for other neurological disorders due to this role. This study conducted an ATRA dose response to determine its therapeutic effects on cognitive behaviors and expression of hippocampal markers of synaptic plasticity and RA signaling proteins after experimental TBI. Under isoflurane anesthesia, adult male Sprague Dawley rats received either controlled cortical impact (CCI, 2.5 mm deformation, 4 m/s) or control surgery. Animals received daily intraperitoneal injection of 0.5, 1, 5, or 10 mg/kg of ATRA or vehicle for 2 weeks. Animals underwent motor and spatial learning and memory testing. Hippocampal expression of synaptic plasticity proteins neurogranin (Ng), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 sub-unit, as well as RA signaling proteins STRA6, ADLH1a1, CYP26A1 and CYP26B1 were evaluated by western blot at 2-weeks post-injury. ATRA treatment significantly recovered Ng synaptic protein expression, while having no effect on motor performance, spatial learning, and memory, and GluA1 expression after TBI. RA signaling protein expression is unchanged 2 weeks after TBI. Overall, ATRA administration after TBI showed limited therapeutic benefits compared to the vehicle.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Nicholas S Ranellone
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Madison Parry
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Erik Holets
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Youming Li
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
17
|
Xu H, Tao Y, Zhu P, Li D, Zhang M, Bai G, Yin B. Restoration of aberrant shape of caudate sub-regions associated with cognitive function improvement in mild traumatic brain injury. J Neurotrauma 2022; 39:348-357. [PMID: 35019763 DOI: 10.1089/neu.2021.0426] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is an important but less recognized public health concern. Research shows that altered subcortical structures mediate cognitive impairment in patients with mTBI. This has been performed mostly using voxel-based morphometry methods and traditional volume measurement methods, which have certain limitations. In this study, we conducted a vertex-wise shape analysis to understand the aberrant patterns of caudate sub-regions and recovery from mTBI. The study involved 36 mTBI patients and 34 matched healthy controls (HCs) observed at seven-days (acute phase) and followed-up for one-month (subacute phase) post-injury. Different aberrant shapes of the caudate sub-regions were observed at acute phase, which revealed atrophy in the bilateral dorsal medial caudate, and increase in the size of the right ventral anterior caudate in mTBI patients related to HCs. Moreover, specific and significant shape restoration of right dorsal medial caudate in mTBI was observed at subacute phase, which significantly associated with the cognitive function improvement of the patients. These findings suggest that the restoration of the aberrant shape atrophy of right dorsal medial caudate plays a vital role in the improvement of cognitive function of mTBI patients, providing an alternative clinical target for these patients.
Collapse
Affiliation(s)
- Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, China.,McMaster University, 3710, Department of Psychiatry and Behavioural Neurosciences,, Hamilton, Ontario, Canada;
| | - Yin Tao
- McMaster University, 3710, Department of Psychiatry and Behavioural Neurosciences,, Hamilton, Ontario, Canada.,Xi'an Jiaotong University School of Life Science and Technology, 529492, he Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, Xi'an, Shaanxi, China;
| | - Pingyi Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Radiology, Wenzhou, China;
| | - Dandong Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, China;
| | - Ming Zhang
- Xi'an Jiaotong University Medical College First Affiliated Hospital Department of Medical Imaging, 535072, Xi'an, Shaanxi, China;
| | - Guanghui Bai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Radiology, Wenzhou, China;
| | - Bo Yin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, China;
| |
Collapse
|
18
|
Srisaikaew P, Wongpakaran N, Anderson ND, Chen JJ, Kothan S, Varnado P, Unsrisong K, Mahakkanukrauh P. Fornix Integrity Is Differently Associated With Cognition in Healthy Aging and Non-amnestic Mild Cognitive Impairment: A Pilot Diffusion Tensor Imaging Study in Thai Older Adults. Front Aging Neurosci 2020; 12:594002. [PMID: 33343334 PMCID: PMC7745667 DOI: 10.3389/fnagi.2020.594002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
Damage to the fornix leads to significant memory impairment and executive dysfunction and is associated with dementia risk. We sought to identify if fornix integrity and fiber length are disrupted in mild cognitive impairment (MCI) and how they associate with cognition. Data from 14 healthy older adult controls (HCs) and 17 subjects with non-amnestic MCI (n-aMCI) were analyzed. Diffusion tensor imaging (DTI) at 1.5 Tesla MRI was performed to enable manual tracing of the fornix and calculation of DTI parameters. Higher fractional anisotropy of body and column of the fornix was associated with better executive functioning and memory, more strongly in the HC than in the n-aMCI group. Fornix fiber tract length (FTL) was associated with better executive function, more strongly in the n-aMCI than in the HC group, and with better memory, more strongly in the HC than in the n-aMCI group. These results highlight a decline in the contributions of the fornix to cognition in n-aMCI and suggest that maintenance of fornix FTL is essential for sustaining executive functioning in people with n-aMCI.
Collapse
Affiliation(s)
- Patcharaporn Srisaikaew
- Ph.D. Program in Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nahathai Wongpakaran
- Geriatric Psychiatry Unit, Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nicole D. Anderson
- Rotman Research Institute, Baycrest Health Science, Toronto, ON, Canada
- Department of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J. Jean Chen
- Rotman Research Institute, Baycrest Health Science, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pairada Varnado
- Geriatric Psychiatry Unit, Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Unsrisong
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Campos-Pires R, Onggradito H, Ujvari E, Karimi S, Valeo F, Aldhoun J, Edge CJ, Franks NP, Dickinson R. Xenon treatment after severe traumatic brain injury improves locomotor outcome, reduces acute neuronal loss and enhances early beneficial neuroinflammation: a randomized, blinded, controlled animal study. Crit Care 2020; 24:667. [PMID: 33246487 PMCID: PMC7691958 DOI: 10.1186/s13054-020-03373-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/04/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of morbidity and mortality, but there are no clinically proven treatments that specifically target neuronal loss and secondary injury development following TBI. In this study, we evaluate the effect of xenon treatment on functional outcome, lesion volume, neuronal loss and neuroinflammation after severe TBI in rats. METHODS Young adult male Sprague Dawley rats were subjected to controlled cortical impact (CCI) brain trauma or sham surgery followed by treatment with either 50% xenon:25% oxygen balance nitrogen, or control gas 75% nitrogen:25% oxygen. Locomotor function was assessed using Catwalk-XT automated gait analysis at baseline and 24 h after injury. Histological outcomes were assessed following perfusion fixation at 15 min or 24 h after injury or sham procedure. RESULTS Xenon treatment reduced lesion volume, reduced early locomotor deficits, and attenuated neuronal loss in clinically relevant cortical and subcortical areas. Xenon treatment resulted in significant increases in Iba1-positive microglia and GFAP-positive reactive astrocytes that was associated with neuronal preservation. CONCLUSIONS Our findings demonstrate that xenon improves functional outcome and reduces neuronal loss after brain trauma in rats. Neuronal preservation was associated with a xenon-induced enhancement of microglial cell numbers and astrocyte activation, consistent with a role for early beneficial neuroinflammation in xenon's neuroprotective effect. These findings suggest that xenon may be a first-line clinical treatment for brain trauma.
Collapse
Affiliation(s)
- Rita Campos-Pires
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
- Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Bessemer Building, South Kensington, London, SW7 2AZ, UK
- Charing Cross Hospital Intensive Care Unit, Critical Care Directorate, Imperial College Healthcare NHS Trust, London, UK
| | - Haldis Onggradito
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Eszter Ujvari
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Shughoofa Karimi
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Flavia Valeo
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Jitka Aldhoun
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
- Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust, London Road, Reading, RG1 5AN, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK
| | - Robert Dickinson
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, Sir Ernst Chain Building, South Kensington, London, SW7 2AZ, UK.
- Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Bessemer Building, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
20
|
Tomaiuolo F, Cerasa A, Lerch JP, Bivona U, Carlesimo GA, Ciurli P, Raffa G, Quattropani MC, Germanò A, Caltagirone C, Formisano R, Nigro S. Brain Neurodegeneration in the Chronic Stage of the Survivors from Severe Non-Missile Traumatic Brain Injury: A Voxel-Based Morphometry Within-Group at One versus Nine Years from a Head Injury. J Neurotrauma 2020; 38:283-290. [PMID: 32962533 DOI: 10.1089/neu.2020.7203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The long-term time course of neuropathological changes occurring in survivors from severe traumatic brain injury (TBI) remains uncertain. We investigated the brain morphometry and memory performance modifications within the same group of severe non-missile traumatic brain injury patients (nmTBI) after about ∼one year and at ∼ nine years from injury. Brain magnetic resonance imaging (MRI) measurements were performed with voxel-based morphometry (VBM) to determine specific changes in the gray matter (GM) and white matter (WM) and the overall gray matter volume modifications (GMV) and white matter volume modifications (WMV). Contemporarily, memory-tests were also administered. In comparison with healthy control subjects (HC), those with nmTBI showed a significant change and volume reduction in the GM and WM and also in the GMV and WMV after ∼one year; conversely, ∼nine years after injury, neurodegenerative changes spared the GM and GMV, but a prominent loss was detected in WMV and in WM sites, such as the superior longitudinal fasciculi, the body of the corpus callosum, the optic radiation, and the uncinate fasciculus. Memory performance at ∼one year in comparison with ∼nine years was stable with a subtle but significant trend toward recovery. These data demonstrate that patients with nmTBI undergo neurodegenerative processes during the chronic stage affecting mainly the cerebral WM rather than GM. Despite these anatomical brain parenchyma losses, memory performance tends to be stable or even slightly recovered. These results suggest possible correlations between progressive demyelinization and/or neuropsychiatric changes other than memory performance, and support possible treatments to prevent long-term WM degeneration of the examined nmTBI.
Collapse
Affiliation(s)
- Francesco Tomaiuolo
- Department of Clinical and Experimental Medicine and Department BIOMORF, University of Messina, Messina, Italy
| | - Antonio Cerasa
- IRIB, National Research Council, Cosenza, Italy, and S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, The University of Oxford, Oxford, United Kingdom
| | | | - Giovanni Augusto Carlesimo
- IRCCS Fondazione 'Santa Lucia', Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | | | - Giovanni Raffa
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | - Marina Catena Quattropani
- Department of Clinical and Experimental Medicine and Department BIOMORF, University of Messina, Messina, Italy
| | - Antonino Germanò
- Division of Neurosurgery, Department BIOMORF, University of Messina, Messina, Italy
| | | | | | - Salvatore Nigro
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| |
Collapse
|
21
|
Portnova G, Girzhova I, Filatova D, Podlepich V, Tetereva A, Martynova O. Brain Oscillatory Activity during Tactile Stimulation Correlates with Cortical Thickness of Intact Areas and Predicts Outcome in Post-Traumatic Comatose Patients. Brain Sci 2020; 10:brainsci10100720. [PMID: 33053681 PMCID: PMC7601666 DOI: 10.3390/brainsci10100720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, we have reported a correlation between structural brain changes and electroencephalography (EEG) in response to tactile stimulation in ten comatose patients after severe traumatic brain injury (TBI). Structural morphometry showed a decrease in whole-brain cortical thickness, cortical gray matter volume, and subcortical structures in ten comatose patients compared to fifteen healthy controls. The observed decrease in gray matter volume indicated brain atrophy in coma patients induced by TBI. In resting-state EEG, the power of slow-wave activity was significantly higher (2–6 Hz), and the power of alpha and beta rhythms was lower in coma patients than in controls. During tactile stimulation, coma patients’ theta rhythm power significantly decreased compared to that in the resting state. This decrease was not observed in the control group and correlated positively with better coma outcome and the volume of whole-brain gray matter, the right putamen, and the insula. It correlated negatively with the volume of damaged brain tissue. During tactile stimulation, an increase in beta rhythm power correlated with the thickness of patients’ somatosensory cortex. Our results showed that slow-wave desynchronization, as a nonspecific response to tactile stimulation, may serve as a sensitive index of coma outcome and morphometric changes after brain injury.
Collapse
Affiliation(s)
- Galina Portnova
- Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia; (A.T.); (O.M.)
- Correspondence: ; Tel.: +7-9031256186
| | - Irina Girzhova
- Faculty of Medicine, Lomonosov Moscow State University, 27 Lomonosovsky pr-t., 119991 Moscow, Russia; (I.G.); (D.F.)
| | - Daria Filatova
- Faculty of Medicine, Lomonosov Moscow State University, 27 Lomonosovsky pr-t., 119991 Moscow, Russia; (I.G.); (D.F.)
| | - Vitaliy Podlepich
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16 4-ya Tverskaya-Yamskaya str., 125047 Moscow, Russia;
| | - Alina Tetereva
- Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia; (A.T.); (O.M.)
| | - Olga Martynova
- Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia; (A.T.); (O.M.)
| |
Collapse
|
22
|
Harris TC, de Rooij R, Kuhl E. The Shrinking Brain: Cerebral Atrophy Following Traumatic Brain Injury. Ann Biomed Eng 2019; 47:1941-1959. [PMID: 30341741 PMCID: PMC6757025 DOI: 10.1007/s10439-018-02148-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022]
Abstract
Cerebral atrophy in response to traumatic brain injury is a well-documented phenomenon in both primary investigations and review articles. Recent atrophy studies focus on exploring the region-specific patterns of cerebral atrophy; yet, there is no study that analyzes and synthesizes the emerging atrophy patterns in a single comprehensive review. Here we attempt to fill this gap in our current knowledge by integrating the current literature into a cohesive theory of preferential brain tissue loss and by identifying common risk factors for accelerated atrophy progression. Our review reveals that observations for mild traumatic brain injury remain inconclusive, whereas observations for moderate-to-severe traumatic brain injury converge towards robust patterns: brain tissue loss is on the order of 5% per year, and occurs in the form of generalized atrophy, across the entire brain, or focal atrophy, in specific brain regions. The most common regions of focal atrophy are the thalamus, hippocampus, and cerebellum in gray matter and the corpus callosum, corona radiata, and brainstem in white matter. We illustrate the differences of generalized and focal gray and white matter atrophy on emerging deformation and stress profiles across the whole brain using computational simulation. The characteristic features of our atrophy simulations-a widening of the cortical sulci, a gradual enlargement of the ventricles, and a pronounced cortical thinning-agree well with clinical observations. Understanding region-specific atrophy patterns in response to traumatic brain injury has significant implications in modeling, simulating, and predicting injury outcomes. Computational modeling of brain atrophy could open new strategies for physicians to make informed decisions for whom, how, and when to administer pharmaceutical treatment to manage the chronic loss of brain structure and function.
Collapse
|
23
|
Volume and shape analysis of the Hippocampus and amygdala in veterans with traumatic brain injury and posttraumatic stress disorder. Brain Imaging Behav 2019; 14:1850-1864. [DOI: 10.1007/s11682-019-00127-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Inhibition of Drp1 after traumatic brain injury provides brain protection and improves behavioral performance in rats. Chem Biol Interact 2019; 304:173-185. [DOI: 10.1016/j.cbi.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
|
25
|
Wadhawan A, Stiller JW, Potocki E, Okusaga O, Dagdag A, Lowry CA, Benros ME, Postolache TT. Traumatic Brain Injury and Suicidal Behavior: A Review. J Alzheimers Dis 2019; 68:1339-1370. [DOI: 10.3233/jad-181055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - John W. Stiller
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Neurology Consultation Service, Washington, DC, USA
- Maryland State Athletic Commission, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Olaoluwa Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland Medical Center, Baltimore, MD, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
| | - Michael E. Benros
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
26
|
Ubukata S, Oishi N, Sugihara G, Aso T, Fukuyama H, Murai T, Ueda K. Transcallosal Fiber Disruption and its Relationship with Corresponding Gray Matter Alteration in Patients with Diffuse Axonal Injury. J Neurotrauma 2019; 36:1106-1114. [DOI: 10.1089/neu.2018.5823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shiho Ubukata
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Medical Innovation Center, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medical Innovation Center, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Genichi Sugihara
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Toshihiko Aso
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Human Brain Research Center, Graduate School of Medicine, and Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Beijing Institute of Technology, Beijing, China
- Research and Educational Unit of Leaders for Integrated Medical System, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Keita Ueda
- Department of Psychiatry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Abstract
Over 1.4 million people in the United States experience traumatic brain injury (TBI) each year and approximately 52,000 people die annually due to complications related to TBI. Traditionally, TBI has been viewed as a static injury with significant consequences for frontal lobe functioning that plateaus after some window of recovery, remaining relatively stable thereafter. However, over the past decade there has been growing consensus that the consequences of TBI are dynamic, with unique characteristics expressed at the individual level and over the life span. This chapter first discusses the pathophysiology of TBI in order to understand its dynamic process and then describes the behavioral changes that are the result of injury with focus on frontal lobe functions. It integrates a historical perspective on structural and functional brain-imaging approaches used to understand how TBI impacts the frontal lobes, as well as more recent approaches to examine large-scale network changes after TBI. The factors most useful for outcome prediction are surveyed, along with how the theoretical frameworks used to predict recovery have developed over time. In this chapter, the authors argue for the need to understand outcome after TBI as a dynamic process with individual trajectories, taking a network theory perspective to understand the consequences of disrupting frontal systems in TBI. Within this framework, understanding frontal lobe dysfunction within a larger coordinated neural network to study TBI may provide a novel perspective in outcome prediction and in developing individualized treatments.
Collapse
Affiliation(s)
- Rachel A Bernier
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States
| | - Frank G Hillary
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States.
| |
Collapse
|
28
|
Zheng F, Cui D, Zhang L, Zhang S, Zhao Y, Liu X, Liu C, Li Z, Zhang D, Shi L, Liu Z, Hou K, Lu W, Yin T, Qiu J. The Volume of Hippocampal Subfields in Relation to Decline of Memory Recall Across the Adult Lifespan. Front Aging Neurosci 2018; 10:320. [PMID: 30364081 PMCID: PMC6191512 DOI: 10.3389/fnagi.2018.00320] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: The hippocampus is an important limbic structure closely related to memory function. However, few studies have focused on the association between hippocampal subfields and age-related memory decline. We investigated the volume alterations of hippocampal subfields at different ages and assessed the correlations with Immediate and Delayed recall abilities. Materials and Methods: A total of 275 participants aged 20-89 years were classified into 4 groups: Young, 20-35 years; Middle-early, 36-50 years; Middle-late, 51-65 years; Old, 66-89 years. All data were acquired from the Dallas Lifespan Brain Study (DLBS). The volumes of hippocampal subfields were obtained using Freesurfer software. Analysis of covariance (ANCOVA) was performed to analyze alterations of subfield volumes among the 4 groups, and multiple comparisons between groups were performed using the Bonferroni method. Spearman correlation with false discovery rate correction was used to investigate the relationship between memory recall scores and hippocampal subfield volumes. Results: Apart from no significant difference in the left parasubiculum (P = 0.269) and a slight difference in the right parasubiculum (P = 0.022), the volumes of other hippocampal subfields were significantly different across the adult lifespan (P < 0.001). The hippocampal fissure volume was increased in the Old group, while volumes for other subfields decreased. In addition, Immediate recall scores were associated with volumes of the bilateral molecular layer, granule cell layer of the dentate gyrus (GC-DG), cornus ammonis (CA) 1, CA2/3, CA4, left fimbria and hippocampal amygdala transition area (HATA), and right fissure (P < 0.05). Delayed recall scores were associated with the bilateral molecular layer, GC-DG, CA2/3 and CA4; left tail, presubiculum, CA1, subiculum, fimbria and HATA (P < 0.05). Conclusion: The parasubiculum volume was not significantly different across the adult lifespan, while atrophy in dementia patients in some studies. Based on these findings, we speculate that volume changes in this region might be considered as a biomarker for dementia disorders. Additionally, several hippocampal subfield volumes were significantly associated with memory scores, further highlighting the key role of the hippocampus in age-related memory decline. These regions could be used to assess the risk of memory decline across the adult lifespan.
Collapse
Affiliation(s)
- Fenglian Zheng
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Dong Cui
- College of Radiology, Taishan Medical University, Taian, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Li Zhang
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Shitong Zhang
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yue Zhao
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Xiaojing Liu
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Chunhua Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, China
| | - Zhengmei Li
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Dongsheng Zhang
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Liting Shi
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kun Hou
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Wen Lu
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center, Taishan Medical University, Taian, China
- Imaging-X Joint Laboratory, Taian, China
- College of Radiology, Taishan Medical University, Taian, China
| |
Collapse
|
29
|
Ruet A, Joyeux F, Segobin S, Jokic C, Desgranges B, Eustache F, Pitel AL. Severe Traumatic Brain Injury Patients without Focal Lesion but with Behavioral Disorders: Shrinkage of Gray Matter Nuclei and Thalamus Revealed in a Pilot Voxel-Based MRI Study. J Neurotrauma 2018; 35:1552-1556. [PMID: 29648977 DOI: 10.1089/neu.2017.5242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After a traumatic brain injury (TBI), behavioral disorders can occur without major focal brain lesion, and in these situations, their pathophysiology remains unclear. The aim of this study is to examine whether TBI patients with behavioral disorders but without any focal damage, as observed from an initial clinical CT scan, present subtle volumetric alterations that could be measured voxel-by-voxel in the whole brain with MRI. Eight male adults with severe TBI who had behavioral sequela but not major focal cerebral lesion and 17 age-matched controls underwent a volumetric T1-weighted 1.5T MRI. A two step analysis was performed. First, gray matter (GM) and white matter (WM) volumes were compared between groups using voxel-based morphometry. Second, we examined brain regions systematically damaged using the sum of the individual binary maps obtained from z-maps thresholded at -1.75 for significant GM and WM atrophy. TBI patients had lower GM volume than controls (p < 0.001, uncorrected) in the right parahippocampal gyrus; left and right superior, middle, and inferior temporal gyri; left superior frontal gyrus; right middle frontal gyrus; thalami; mammillary bodies; caudate nuclei; insulae; cerebellar cortex; and vermis. WM volume was lower (p < 0.001, uncorrected) in the TBI group than in controls in the periventricular area and around the basal nuclei. We found shrinkage in the dorsomedial thalami in each of the TBI patients, and in the posterior part of the right putamen and caudate nuclei in seven TBI patients. Shrinkage in the dorsomedial thalami and in the posterior part of the right putamen and caudate nuclei may be a common effect of the disseminated microscopic lesions, and be associated with behavioral issues in severe TBI patients without major focal lesions.
Collapse
Affiliation(s)
- Alexis Ruet
- 1 CHU de Caen, Service de Médecine Physique et de Réadaptation, Caen, France .,2 INSERM; EPHE, Neuropsychologie et Imagerie de la Mémoire Humaine, UNICAEN, PSL Research University , Normandie Université, Caen, France .,3 CH Aunay Bayeux, Service de Médecine Physique et de Réadaptation, Aunay/Odon, France
| | - Françoise Joyeux
- 2 INSERM; EPHE, Neuropsychologie et Imagerie de la Mémoire Humaine, UNICAEN, PSL Research University , Normandie Université, Caen, France .,3 CH Aunay Bayeux, Service de Médecine Physique et de Réadaptation, Aunay/Odon, France
| | - Shailendra Segobin
- 2 INSERM; EPHE, Neuropsychologie et Imagerie de la Mémoire Humaine, UNICAEN, PSL Research University , Normandie Université, Caen, France
| | - Corine Jokic
- 3 CH Aunay Bayeux, Service de Médecine Physique et de Réadaptation, Aunay/Odon, France
| | - Béatrice Desgranges
- 2 INSERM; EPHE, Neuropsychologie et Imagerie de la Mémoire Humaine, UNICAEN, PSL Research University , Normandie Université, Caen, France
| | - Francis Eustache
- 2 INSERM; EPHE, Neuropsychologie et Imagerie de la Mémoire Humaine, UNICAEN, PSL Research University , Normandie Université, Caen, France
| | - Anne-Lise Pitel
- 2 INSERM; EPHE, Neuropsychologie et Imagerie de la Mémoire Humaine, UNICAEN, PSL Research University , Normandie Université, Caen, France
| |
Collapse
|
30
|
Sommer JB, Bach A, Malá H, Strømgaard K, Mogensen J, Pickering DS. Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after fimbria-fornix transection in rats. Pharmacol Biochem Behav 2017; 161:62-67. [PMID: 28943199 DOI: 10.1016/j.pbb.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Pharmacological inhibition of PSD-95 is a promising therapeutic strategy in the treatment of stroke, and positive effects of monomeric and dimeric PSD-95 inhibitors have been reported in numerous studies. However, whether therapeutic effects will generalize to other types of acute brain injury such as traumatic brain injury (TBI), which has pathophysiological mechanisms in common with stroke, is currently uncertain. We have previously found a lack of neuroprotective effects of dimeric PSD-95 inhibitors in the controlled cortical impact model of TBI in rats. However, as no single animal model is currently able to mimic the complex and heterogeneous pathophysiology of TBI, it is necessary to assess treatment effects across a range of models. In this preliminary study we investigated the neuroprotective abilities of the dimeric PSD-95 inhibitor UCCB01-144 after fimbria-fornix (FF) transection in rats. UCCB01-144 or saline was injected into the lateral tail vein of rats immediately after sham surgery or FF-transection, and effects on spatial delayed alternation in a T-maze were assessed over a 28-day period. Task acquisition was significantly impaired in FF-transected animals, but there were no significant effects of UCCB01-144 on spatial delayed alternation after FF-transection or sham surgery, although decelerated learning curves were seen after treatment with UCCB01-144 in FF-transected animals. The results of the present study are consistent with previous research showing a lack of neuroprotective effects of PSD-95 inhibition in experimental models of TBI.
Collapse
Affiliation(s)
- Jens Bak Sommer
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Hana Malá
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
31
|
McDonald S, Rushby JA, Dalton KI, Allen SK, Parks N. The role of abnormalities in the corpus callosum in social cognition deficits after Traumatic Brain Injury. Soc Neurosci 2017; 13:471-479. [DOI: 10.1080/17470919.2017.1356370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Skye McDonald
- School of Psychology, University of New South Wales, Sydney, Australia
| | | | - Katie I. Dalton
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Samantha K. Allen
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Nicklas Parks
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
32
|
Roy A, Bernier RA, Wang J, Benson M, French JJ, Good DC, Hillary FG. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury. PLoS One 2017; 12:e0170541. [PMID: 28422992 PMCID: PMC5396850 DOI: 10.1371/journal.pone.0170541] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/06/2017] [Indexed: 02/08/2023] Open
Abstract
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Rachel A. Bernier
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jianli Wang
- Department of Radiology, Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Monica Benson
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jerry J. French
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David C. Good
- Department of Neurology, Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Frank G. Hillary
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Neurology, Hershey Medical Center, Hershey, Pennsylvania, United States of America
- Social, Life and Engineering Sciences Imaging Center, University Park, Pennsylvania, United States of America
| |
Collapse
|
33
|
Milovanova OA, Alikhanov AA, Tambiev IE, Tarakanova TY. [Modern diagnostic of agenesis of the corpus callosum in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:63-66. [PMID: 28252607 DOI: 10.17116/jnevro20171171163-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Observations of the authors regarding main MRI symptoms of agenesis of the corpus callosum (ACC) and literature review on the structure of the corpus callosum in normalcy and pathology are presented. The authors emphasize that some cases of isolated ACC has been found during routine prenatal ultrasound examination. In this regard, prenatal MRI is more effective. In 74% patients with ACC, MRI results are consistent with the results of ultrasound and CT. MRI has advantages in the differentiation of inherited corpus callosum malformation as well as concomitant CNS abnormalities.
Collapse
Affiliation(s)
- O A Milovanova
- Russian Medical Academy of Postgraduate Education, Moscow; Bashlyaeva Children's City Hospital, Moscow, Russia
| | | | - I E Tambiev
- Russian Medical Academy of Postgraduate Education, Moscow; Bashlyaeva Children's City Hospital, Moscow, Russia
| | | |
Collapse
|
34
|
Drijkoningen D, Chalavi S, Sunaert S, Duysens J, Swinnen SP, Caeyenberghs K. Regional Gray Matter Volume Loss Is Associated with Gait Impairments in Young Brain-Injured Individuals. J Neurotrauma 2017; 34:1022-1034. [DOI: 10.1089/neu.2016.4500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- David Drijkoningen
- University Medical Center Utrecht, Utrecht, the Netherlands
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospital, Leuven, Belgium
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
- Leuven Research Institute for Neuroscience and Disease, Leuven, Belgium
| | - Karen Caeyenberghs
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
- Australian Catholic University, Melbourne, Australia
| |
Collapse
|
35
|
Perrine K, Helcer J, Tsiouris AJ, Pisapia DJ, Stieg P. The Current Status of Research on Chronic Traumatic Encephalopathy. World Neurosurg 2017; 102:533-544. [PMID: 28254594 DOI: 10.1016/j.wneu.2017.02.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) evolved from the term dementia pugilistica describing the dementia found in many boxers to its current use in describing the dementia and depression sometimes found in athletes subjected to multiple concussions or subconcussive blows to the head. Concurrently, the neuropathology evolved to specify a unique type of tauopathy found in perivascular spaces at the depth of sulci and other features not typically seen in neurodegenerative tauopathies. Four stages of CTE have been proposed, with 4 corresponding clinical syndromes of traumatic encephalopathy syndrome. However, it remains unclear whether this is a syndrome unique to repetitive head trauma, especially in contact sports, because the epidemiology has been difficult to establish. In particular, research to date has had a denominator problem in not establishing the total number of potential cases at risk for developing CTE. The current review examines the evidence to date for these syndromes and contributing or complicating factors affecting the neuropathology, neuroimaging, and clinical presentations associated with them.
Collapse
Affiliation(s)
- Kenneth Perrine
- Department of Neurological Surgery, Weill Cornell Medical College, New York, USA.
| | - Jacqueline Helcer
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA
| | - Philip Stieg
- Department of Neurological Surgery, Weill Cornell Medical College, New York, USA
| |
Collapse
|
36
|
Visuospatial memory improvement in patients with diffuse axonal injury (DAI): a 1-year follow-up study. Acta Neuropsychiatr 2017; 29:35-42. [PMID: 27725006 DOI: 10.1017/neu.2016.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diffuse axonal injury (DAI) is prevalent in traumatic brain injury (TBI), and is often associated with poor outcomes and cognitive impairment, including memory deficits. Few studies have explored visual memory after TBI and its relationship to executive functioning. Executive functioning is crucial for remembering an object's location, operating devices, driving, and route finding. We compared visual memory performance via the Rey-Osterrieth Complex Figure (ROCF) test 6 and 12 months after DAI. METHOD In total, 40 patients (mean age 28.7 years; 87.5% male) with moderate-to-severe DAI following a road traffic accident completed the 1-year follow-up. There was a three-phase prospective assessment. In phase 1 (1-3 months after trauma), patients completed the Beck Depression Inventory (BDI) and State-Trait Anxiety Inventory (STAI). In phases 2 (6 months) and 3 (12 months), they completed the BDI, STAI, and a neuropsychological battery [ROCF copy and recall, digit span forward/backward, Grooved Pegboard test, intelligence quotient (IQ) by Wechsler Adult Intelligence Scale-III (WAIS-III)]. RESULTS There was an improvement in ROCF recall over time (p=0.013), but not ROCF copy (p=0.657).There was no change in executive function (Savage scores) copy (p=0.230) or recall (p=0.155). Age, years of education, severity of the trauma, and IQ did not influence ROCF recall improvement. CONCLUSION There are time-dependent improvements in visual memory in patients with DAI. Neuroplasticity in the 1st months after trauma provides an opportunity for visuospatial memory learning. The present findings may be useful to formulate management plans for long-term TBI rehabilitation.
Collapse
|
37
|
Johnson VE, Stewart W, Arena JD, Smith DH. Traumatic Brain Injury as a Trigger of Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2017; 15:383-400. [PMID: 28674990 DOI: 10.1007/978-3-319-57193-5_15] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although millions of individuals suffer a traumatic brain injury (TBI) worldwide each year, it is only recently that TBI has been recognized as a major public health problem. Beyond the acute clinical manifestations, there is growing recognition that a single severe TBI (sTBI) or repeated mild TBIs (rTBI) can also induce insidious neurodegenerative processes, which may be associated with early dementia, in particular chronic traumatic encephalopathy (CTE). Identified at autopsy examination in individuals with histories of exposure to sTBI or rTBI, CTE is recognized as a complex pathology featuring both macroscopic and microscopic abnormalities. These include cavum septum pellucidum, brain atrophy and ventricular dilation, together with pathologies in tau, TDP-43, and amyloid-β. However, the establishment and characterization of CTE as a distinct disease entity is in its infancy. Moreover, the relative "dose" of TBI, such as the frequency and severity of injury, associated with risk of CTE remains unknown. As such, there is a clear and pressing need to improve the recognition and diagnosis of CTE and to identify mechanistic links between TBI and chronic neurodegeneration.
Collapse
Affiliation(s)
- Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.,University of Glasgow, Glasgow, G12 8QQ, UK
| | - John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Wogensen E, Gram MG, Sommer JB, Vilsen CR, Mogensen J, Malá H. Delayed voluntary exercise does not enhance cognitive performance after hippocampal injury: an investigation of differentially distributed exercise protocols. J Exerc Rehabil 2016; 12:401-412. [PMID: 27807517 PMCID: PMC5091054 DOI: 10.12965/jer.1632680.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022] Open
Abstract
Voluntary exercise has previously been shown to enhance cognitive recovery after acquired brain injury (ABI). The present study evaluated effects of two differentially distributed protocols of delayed, voluntary exercise on cognitive recovery using an allocentric place learning task in an 8-arm radial maze. Fifty-four Wistar rats were subjected to either bilateral transection of the fimbria-fornix (FF) or to sham surgery. Twenty-one days postinjury, the animals started exercising in running wheels either for 14 consecutive days (FF/exercise daily [ExD], sham/ExD) or every other day for 14 days (FF/exercise every second day [ExS], sham/ExS). Additional groups were given no exercise treatment (FF/not exercise [NE], sham/NE). Regardless of how exercise was distributed, we found no cognitively enhancing effects of exercise in the brain injured animals. Design and protocol factors possibly affecting the efficacy of post-ABI exercise are discussed.
Collapse
Affiliation(s)
- Elise Wogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen,
Denmark
| | - Marie Gajhede Gram
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen,
Denmark
| | - Jens Bak Sommer
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen,
Denmark
| | - Christina Rytter Vilsen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen,
Denmark
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen,
Denmark
| | - Hana Malá
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Copenhagen,
Denmark
| |
Collapse
|
39
|
Affiliation(s)
- Graham Martin
- Accident Compensation Corporation of New Zealand, Wellington, New Zealand
| |
Collapse
|
40
|
De Pasquale F, Caravasso CF, Péran P, Catani S, Tuovinen N, Sabatini U, Formisano R. Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity. FUNCTIONAL NEUROLOGY 2016; 30:193-201. [PMID: 26910178 DOI: 10.11138/fneur/2015.30.3.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this preliminary study was to present a new approach for connectivity analysis in patients with severe acquired brain injury (ABI) that overcomes some of the difficulties created by anatomical abnormalities due to the brain injury. Using a data-driven approach, resting-state structural MRI (sMRI) and functional MRI (fMRI) data from three severe ABI patients - two with disorders of consciousness (DOC) and one who had recovered consciousness (non-DOC) - were integrated and analyzed. Parameters extracted from the distribution of the connectivity values, such as mean, standard deviation and skeweness, were considered. The distribution parameters estimated seem to provide an accurate multivariate classification of the considered cases that can be summarized as follows: connectivity in the severe ABI patients with DOC was on average lower than in the severe ABI non-DOC patient and healthy subjects. The dispersion of connectivity values of the severe ABI patients, non-DOC and DOC, was comparable, however the shape of the distribution was different in the non-DOC patient. Eventually, seed-based connectivity maps of the default mode Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity network show a pattern of increasing disruption of this network from the healthy subjects to non-DOC and DOC patients. Consistent results are obtained using an ICA-based approach..
Collapse
|
41
|
Di Paola M, Phillips O, Costa A, Ciurli P, Bivona U, Catani S, Formisano R, Caltagirone C, Carlesimo GA. Selective Cognitive Dysfunction Is Related to a Specific Pattern of Cerebral Damage in Persons With Severe Traumatic Brain Injury. J Head Trauma Rehabil 2016; 30:402-10. [PMID: 24901328 DOI: 10.1097/htr.0000000000000063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Cognitive dysfunction is a common sequela of traumatic brain injury (TBI); indeed, patients show a heterogeneous pattern of cognitive deficits. This study was aimed at investigating whether patients who show selective cognitive dysfunction after TBI present a selective pattern of cerebral damage. SETTING Post-Coma Unit, IRCCS Santa Lucia Foundation, Rome, Italy. PARTICIPANTS We collected data from 8 TBI patients with episodic memory disorder and without executive deficits, 7 patients with executive function impairment and preserved episodic memory capacities, and 16 healthy controls. DESIGN We used 2 complementary analyses: (1) an exploratory and qualitative approach in which we investigated the distribution of lesions in the TBI groups, and (2) a hypothesis-driven and quantitative approach in which we calculated the volume of hippocampi of individuals in the TBI and control groups. MAIN MEASURES Neuropsychological scores and hippocampal volumes. RESULTS We found that patients with TBI and executive functions impairment presented focal lesions involving the frontal lobes, whereas patients with TBI and episodic memory disorders showed atrophic changes of the mesial temporal structure (hippocampus). CONCLUSION The complexity of TBI is due to several heterogeneous factors. Indeed, studying patients with TBI and selective cognitive dysfunction should lead to a better understanding of correlations with specific brain impairment and damage, better follow-up of long-term outcome scenarios, and better planning of selective and focused rehabilitation programs.
Collapse
Affiliation(s)
- Margherita Di Paola
- Clinical and Behavioural Neurology Department (Drs Di Paola, Costa, Caltagirone, and Carlesimo and Mr Phillips), Post-Coma Unit (Drs Bivona, Catani, and Formisano), and Neuropsychological Diagnosis and Rehabilitation Unit (Dr Ciurli), IRCCS Santa Lucia Foundation, Rome, Italy; MeSVA Department, University of L'Aquila, L'Aquila, Italy (Dr Paola); and Neuroscience Department, University of Rome "Tor Vergata," Rome, Italy (Drs Caltagirone and Carlesimo)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brain Magnetic Resonance Imaging for Traumatic Brain Injury: Why, When, and How? Top Magn Reson Imaging 2016; 24:225-39. [PMID: 26502305 DOI: 10.1097/rmr.0000000000000061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Conventional magnetic resonance imaging (MRI) and angiography (MRA) provide invaluable information in the evaluation of patients with all stages and grades of traumatic brain injury (TBI). The information obtained with MRI provides a more complete assessment of the patient's brain injury and possible long-term sequelae.
Collapse
|
43
|
Wilson NM, Titus DJ, Oliva AA, Furones C, Atkins CM. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front Syst Neurosci 2016; 10:5. [PMID: 26903822 PMCID: PMC4742790 DOI: 10.3389/fnsys.2016.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3′,5′-cyclic adenosine monophosphate, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE) expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 h and 6 h after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6, and 24 h after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 h after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A, or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 h after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b+ immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b+ immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of long-term potentiation (LTP) into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive function acutely after TBI.
Collapse
Affiliation(s)
- Nicole M Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Anthony A Oliva
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
44
|
Hay J, Johnson VE, Smith DH, Stewart W. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:21-45. [PMID: 26772317 DOI: 10.1146/annurev-pathol-012615-044116] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.
Collapse
Affiliation(s)
- Jennifer Hay
- School of Medicine and.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Victoria E Johnson
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom; .,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| |
Collapse
|
45
|
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015; 32:1861-82. [PMID: 25490251 PMCID: PMC4677114 DOI: 10.1089/neu.2014.3680] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.
Collapse
Affiliation(s)
- Nicole D. Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony DeSana
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Seton Hill University, Greensburg, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Brainstem white matter integrity is related to loss of consciousness and postconcussive symptomatology in veterans with chronic mild to moderate traumatic brain injury. Brain Imaging Behav 2015; 9:500-12. [DOI: 10.1007/s11682-015-9432-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Abstract
Amantadine hydrochloride is one of the most commonly used drugs in the pharmacotherapeutic treatment of disorders of consciousness (DOCs) following traumatic brain injury (TBI). Indeed, its actions as a pro-dopaminergic drug and as an N-methyl-D-aspartate antagonist makes amantadine an interesting candidate to improve consciousness and responsiveness in individuals with DOC, including vegetative state and minimally conscious state. Giacino et al (N Engl J Med. 2012;366(9):819-826) recently reported that amantadine was able to accelerate the functional recovery course of subjects after TBI with DOC, during a 4-week treatment period. Some patients with DOC following severe TBI have been reported to have parkinsonian symptoms. Severe TBI and posttraumatic parkinsonism may share a common midbrain network dysfunction. In fact, both vegetative state and minimally conscious state following severe TBI can include features of akinetic mutism and parkinsonism. Responsiveness to pro-dopaminergic agents in some patients and to deep brain stimulation in others, might depend, respectively, on the integrity, or lack thereof, of the dopaminergic postsynaptic receptors. We are of the strong opinion that more attention should be given to parkinsonian findings in persons with DOC after severe TBI and would advocate for multicenter, randomized, controlled trials to assess risk factors for parkinsonism following severe TBI.
Collapse
|
48
|
Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: Clues to axon and myelin repair capacity. Exp Neurol 2015; 275 Pt 3:328-333. [PMID: 25697845 DOI: 10.1016/j.expneurol.2015.02.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 11/17/2022]
Abstract
Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.
Collapse
Affiliation(s)
- Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Amanda J Mierzwa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Christina M Marion
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
49
|
Wintermark M, Sanelli PC, Anzai Y, Tsiouris AJ, Whitlow CT, Druzgal TJ, Gean AD, Lui YW, Norbash AM, Raji C, Wright DW, Zeineh M. Imaging Evidence and Recommendations for Traumatic Brain Injury: Conventional Neuroimaging Techniques. J Am Coll Radiol 2015; 12:e1-14. [DOI: 10.1016/j.jacr.2014.10.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022]
|
50
|
Lao Y, Law M, Shi J, Gajawelli N, Haas L, Wang Y, Leporé N. A T1 and DTI fused 3D Corpus Callosum analysis in pre- vs. post-season contact sports players. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9287:92870O. [PMID: 26412925 PMCID: PMC4580707 DOI: 10.1117/12.2072600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sports related traumatic brain injury (TBI) is a worldwide public health issue, and damage to the corpus callosum (CC) has been considered as an important indicator of TBI. However, contact sports players suffer repeated hits to the head during the course of a season even in the absence of diagnosed concussion, and less is known about their effect on callosal anatomy. In addition, T1-weighted and diffusion tensor brain magnetic resonance images (DTI) have been analyzed separately, but a joint analysis of both types of data may increase statistical power and give a more complete understanding of anatomical correlates of subclinical concussions in these athletes. Here, for the first time, we fuse T1 surface-based morphometry and a new DTI analysis on 3D surface representations of the CCs into a single statistical analysis on these subjects. Our new combined method successfully increases detection power in detecting differences between pre- vs. post-season contact sports players. Alterations are found in the ventral genu, isthmus, and splenium of CC. Our findings may inform future health assessments in contact sports players. The new method here is also the first truly multimodal diffusion and T1-weighted analysis of the CC in TBI, and may be useful to detect anatomical changes in the corpus callosum in other multimodal datasets.
Collapse
Affiliation(s)
- Yi Lao
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles CA, USA ; Department of Biomedical Engineering, University of Southern California, Los Angeles CA, USA
| | - Meng Law
- Department of Biomedical Engineering, University of Southern California, Los Angeles CA, USA ; Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Niharika Gajawelli
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles CA, USA ; Department of Biomedical Engineering, University of Southern California, Los Angeles CA, USA
| | - Lauren Haas
- Department of Biomedical Engineering, University of Southern California, Los Angeles CA, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Natasha Leporé
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles CA, USA ; Department of Biomedical Engineering, University of Southern California, Los Angeles CA, USA
| |
Collapse
|