1
|
Avni I, Arac A, Binyamin-Netser R, Kramer S, Krakauer JW, Shmuelof L. The Kinematics of 3D Arm Movements in Sub-Acute Stroke: Impaired Inter-Joint Coordination is Attributable to Both Weakness and Flexor Synergy Intrusion. Neurorehabil Neural Repair 2024; 38:646-658. [PMID: 39113590 PMCID: PMC11403926 DOI: 10.1177/15459683241268535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
BACKGROUND It has long been of interest to characterize the components of the motor abnormality in the arm after stroke. One approach has been to decompose the hemiparesis phenotype into negative signs, such as weakness, and positive signs, such as intrusion of synergies. We sought to identify the contributions of weakness and flexor synergy to motor deficits in sub-acute stroke. METHODS Thirty-three sub-acute post-stroke participants and 16 healthy controls performed two functional arm movements; one within flexor synergy (shoulder and elbow flexion), and the other outside flexor synergy (shoulder flexion and elbow extension). We analyzed upper limb 3D kinematics to assess both overall task performance and intrusion of pathological synergies. Weakness and spasticity were also measured. RESULTS Both tasks produced similar impairments compared to controls. Analysis of elbow and shoulder multi-joint coordination patterns revealed intrusion of synergies in the out-of-synergy reaching task based on the time spent within a flexion-flexion pattern and the correlation between shoulder and elbow angles. Regression analysis indicated that both weakness and synergy intrusion contributed to motor impairment in the out-of-synergy reaching task. Notably, the Fugl-Meyer Assessment (FMA) was abnormal even when only weakness caused the impairment, cautioning that it is not a pure synergy scale. CONCLUSIONS Weakness and synergy intrusion contribute to motor deficits in the sub-acute post-stroke period. An abnormal FMA score cannot be assumed to be due to synergy intrusion. Careful kinematic analysis of naturalistic movements is required to better characterize the contribution of negative and positive signs to upper limb impairment after stroke.
Collapse
Affiliation(s)
- Inbar Avni
- Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Ahmet Arac
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Reut Binyamin-Netser
- Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| | - Shilo Kramer
- Department of Physical Medicine and Rehabilitation, Adi Negev Nahalat Eran Rehabilitation Hospital, Ofakim, Israel
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Lior Shmuelof
- Department of Cognitive and Brain Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The Translational Neurorehabilitation Lab at Adi Negev Nahalat Eran, Ofakim, Israel
| |
Collapse
|
2
|
Bao SC, Sun R, Tong RKY. Pedaling Asymmetry Reflected by Bilateral EMG Complexity in Chronic Stroke. ENTROPY (BASEL, SWITZERLAND) 2024; 26:538. [PMID: 39056901 PMCID: PMC11275654 DOI: 10.3390/e26070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
This study examines pedaling asymmetry using the electromyogram (EMG) complexity of six bilateral lower limb muscles for chronic stroke survivors. Fifteen unilateral chronic stroke and twelve healthy participants joined passive and volitional recumbent pedaling tasks using a self-modified stationary bike with a constant speed of 25 revolutions per minute. The fuzzy approximate entropy (fApEn) was adopted in EMG complexity estimation. EMG complexity values of stroke participants during pedaling were smaller than those of healthy participants (p = 0.002). For chronic stroke participants, the complexity of paretic limbs was smaller than that of non-paretic limbs during the passive pedaling task (p = 0.005). Additionally, there was a significant correlation between clinical scores and the paretic EMG complexity during passive pedaling (p = 0.022, p = 0.028), indicating that the paretic EMG complexity during passive movement might serve as an indicator of stroke motor function status. This study suggests that EMG complexity is an appropriate quantitative tool for measuring neuromuscular characteristics in lower limb dynamic movement tasks for chronic stroke survivors.
Collapse
Affiliation(s)
- Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen 518110, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rui Sun
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Xie T, Leng Y, Xu P, Li L, Song R. Mapping of spastic muscle activity after stroke: difference between passive stretch and active contraction. J Neuroeng Rehabil 2024; 21:102. [PMID: 38877589 PMCID: PMC11177522 DOI: 10.1186/s12984-024-01376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Investigating the spatial distribution of muscle activity would facilitate understanding the underlying mechanism of spasticity. The purpose of this study is to investigate the characteristics of spastic muscles during passive stretch and active contraction by high-density surface electromyography (HD-sEMG). METHODS Fourteen spastic hemiparetic subjects and ten healthy subjects were recruited. The biceps brachii (BB) muscle activity of each subject was recorded by HD-sEMG during passive stretch at four stretch velocities (10, 60, 120, 180˚/s) and active contraction at three submaximal contraction levels (20, 50, 80%MVC). The intensity and spatial distribution of the BB activity were compared by the means of two-way analysis of variance, independent sample t-test, and paired sample t-test. RESULTS Compared with healthy subjects, spastic hemiparetic subjects showed significantly higher intensity with velocity-dependent heterogeneous activation during passive stretch and more lateral and proximal activation distribution during active contraction. In addition, spastic hemiparetic subjects displayed almost non-overlapping activation areas during passive stretch and active contraction. The activation distribution of passive stretch was more distal when compared with the active contraction. CONCLUSIONS These alterations of the BB activity could be the consequence of deficits in the descending central control after stroke. The complementary spatial distribution of spastic BB activity reflected their opposite motor units (MUs) recruitment patterns between passive stretch and active contraction. This HD-sEMG study provides new neurophysiological evidence for the spatial relationship of spastic BB activity between passive stretch and active contraction, advancing our knowledge on the mechanism of spasticity. TRIAL REGISTRATION ChiCTR2000032245.
Collapse
Affiliation(s)
- Tian Xie
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yan Leng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Pan Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China.
- Shenzhen Research Institute of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Wang X, Li L, Wei Y, Zhou P. Clustering index analysis on EMG-Torque relation-based representation of complex neuromuscular changes after spinal cord injury. J Electromyogr Kinesiol 2024; 76:102885. [PMID: 38723398 DOI: 10.1016/j.jelekin.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Spinal cord injury (SCI) resulting in complex neuromuscular pathology is not sufficiently well understood. To better quantify neuromuscular changes after SCI, this study uses a clustering index (CI) method for surface electromyography (sEMG) clustering representation to investigate the relation between sEMG and torque in SCI survivors. The sEMG signals were recorded from 13 subjects with SCI and 13 gender-age matched able-bodied subjects during isometric contraction of the biceps brachii muscle at different torque levels using a linear electrode array. Two torque representations, maximum voluntary contraction (MVC%) and absolute torque, were used. CI values were calculated for sEMG. Regression analyses were performed on CI values and torque levels of elbow flexion, revealing a strong linear relationship. The slopes of regressions between SCI survivors and control subjects were compared. The findings indicated that the range of distribution of CI values and slopes was greater in subjects with SCI than in control subjects (p < 0.05). The increase or decrease in slope was also observed at the individual level. This suggests that the CI and its sEMG clustering-torque relation may serve as valuable quantitative indicators for determining neuromuscular lesions after SCI, contributing to the development of effective rehabilitation strategies for improving motor performance.
Collapse
Affiliation(s)
- Xiang Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| | - Yongli Wei
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
5
|
Beauchamp JA, Hassan AS, McPherson LM, Negro F, Pearcey GEP, Cummings M, Heckman CJ, Dewald JPA. Motor unit firing rate modulation is more impaired during flexion synergy-driven contractions of the biceps brachii in chronic stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298905. [PMID: 38045404 PMCID: PMC10690344 DOI: 10.1101/2023.11.22.23298905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Following a hemiparetic stroke, individuals exhibit altered motor unit firing patterns during voluntary muscle contractions, including impairments in firing rate modulation and recruitment. These individuals also exhibit abnormal muscle coactivation through multi-joint synergies (e.g., flexion synergy). Here, we investigate whether motor unit firing activity during flexion synergy-driven contractions of the paretic biceps brachii differs from that of voluntary contractions and use these differences to predict changes in descending motor commands. To accomplish this, we characterized motor unit firing patterns of the biceps brachii in individuals with chronic hemiparetic stroke during voluntary isometric elbow flexion contractions in the paretic and non-paretic limbs, as well as during contractions driven by voluntary effort and by flexion synergy expression in the paretic limb. We observed significant reductions in motor unit firing rate modulation from the non-paretic to paretic limb (non-paretic - paretic: 0.14 pps/%MVT, 95% CI: [0.09 0.19]) that were further reduced during synergy-driven contractions (voluntary paretic - synergy driven: 0.19 pps/%MVT, 95% CI: [0.14 0.25]). Moreover, using recently developed metrics, we evaluated how a stroke-induced reliance on indirect motor pathways alters the inputs that motor units receive and revealed progressive increases in neuromodulatory and inhibitory drive to the motor pool in the paretic limb, with the changes greatest during synergy-driven contractions. These findings suggest that an interplay between heightened neuromodulatory drive and alterations in inhibitory command structure may account for the observed motor unit impairments, further illuminating underlying neural mechanisms involved in the flexion synergy and its impact on motor unit firing patterns post-stroke.
Collapse
|
6
|
Huang C, Chen M, Lu Z, Klein CS, Zhou P. Spatial Dependence of Log-Transformed Electromyography-Force Relation: Model-Based Sensitivity Analysis and Experimental Study of Biceps Brachii. Bioengineering (Basel) 2023; 10:bioengineering10040469. [PMID: 37106655 PMCID: PMC10136339 DOI: 10.3390/bioengineering10040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated electromyography (EMG)-force relations using both simulated and experimental approaches. A motor neuron pool model was first implemented to simulate EMG-force signals, focusing on three different conditions that test the effects of small or large motor units located more or less superficially in the muscle. It was found that the patterns of the EMG-force relations varied significantly across the simulated conditions, quantified by the slope (b) of the log-transformed EMG-force relation. b was significantly higher for large motor units, which were preferentially located superficially rather than for random depth or deep depth conditions (p < 0.001). The log-transformed EMG-force relations in the biceps brachii muscles of nine healthy subjects were examined using a high-density surface EMG. The slope (b) distribution of the relation across the electrode array showed a spatial dependence; b in the proximal region was significantly larger than the distal region, whereas b was not different between the lateral and medial regions. The findings of this study provide evidence that the log-transformed EMG-force relations are sensitive to different motor unit spatial distributions. The slope (b) of this relation may prove to be a useful adjunct measure in the investigation of muscle or motor unit changes associated with disease, injury, or aging.
Collapse
Affiliation(s)
- Chengjun Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maoqi Chen
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| | - Zhiyuan Lu
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center, Rehabilitation Research Institute, Guangzhou 510440, China
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| |
Collapse
|
7
|
Son J, Rymer WZ. Relative contribution of altered neuromuscular factors to muscle activation-force relationships following chronic stroke: A simulation study. J Electromyogr Kinesiol 2022; 66:102680. [PMID: 35843049 DOI: 10.1016/j.jelekin.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/23/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the potential effects of key neuromuscular factors on muscle activation-force relationships, thereby helping us understand abnormal EMG-force relationships often reported in chronic stroke-impaired muscles. A modified Hill-type muscle model was developed to calculate muscle force production for a given muscle activation level and musculotendon length. Model parameters used to characterize musculotendon unit properties of medial gastrocnemius were adjusted to simulate known stroke-related changes in neuromuscular factors (e.g., voluntary activation and muscle mechanical properties). The muscle activation-force slope (i.e., muscle activation over force) was computed as a function of ankle joint angle. A Monte Carlo simulation approach was implemented to understand which neuromuscular factors are closely associated with the activation-force slope. Our simulations showed that a reduction in factors linked to voluntary activation capacity and to maximum force-generating capacity may be the primary contributors that increase the activation-force slope in dorsiflexed positions, and that a narrower active force-length curve appears to be the most significant factor that increases the slope in plantar flexed positions. In addition, our Monte Carlo simulation results demonstrated that an increase in the activation-force slope is strongly correlated with a reduction in voluntary activation capacity, in the maximum force-generating capacity, and in the active force-length curve width. These findings will help us to better interpret altered EMG-force relationships following chronic stroke.
Collapse
Affiliation(s)
- Jongsang Son
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Kumar A, Gao L, Li J, Ma J, Fu J, Gu X, Mahmoud SS, Fang Q. Error-Related Negativity-Based Robot-Assisted Stroke Rehabilitation System: Design and Proof-of-Concept. Front Neurorobot 2022; 16:837119. [PMID: 35548781 PMCID: PMC9085417 DOI: 10.3389/fnbot.2022.837119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Conventional rehabilitation systems typically execute a fixed set of programs that most motor-impaired stroke patients undergo. In these systems, the brain, which is embodied in the body, is often left out. Including the brains of stroke patients in the control loop of a rehabilitation system can be worthwhile as the system can be tailored to each participant and, thus, be more effective. Here, we propose a novel brain-computer interface (BCI)-based robot-assisted stroke rehabilitation system (RASRS), which takes inputs from the patient's intrinsic feedback mechanism to adapt the assistance level of the RASRS. The proposed system will utilize the patients' consciousness about their performance decoded through their error-related negativity signals. As a proof-of-concept, we experimented on 12 healthy people in which we recorded their electroencephalogram (EEG) signals while performing a standard rehabilitation exercise. We set the performance requirements beforehand and observed participants' neural responses when they failed/met the set requirements and found a statistically significant (p < 0.05) difference in their neural responses in the two conditions. The feasibility of the proposed BCI-based RASRS was demonstrated through a use-case description with a timing diagram and meeting the crucial requirements for developing the proposed rehabilitation system. The use of a patient's intrinsic feedback mechanism will have significant implications for the development of human-in-the-loop stroke rehabilitation systems.
Collapse
Affiliation(s)
- Akshay Kumar
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Lin Gao
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Jiaming Li
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Jiaxin Ma
- OMRON SINIC X Corporation, Tokyo, Japan
| | | | - Xudong Gu
- 2nd Hospital of Jiaxing, Jiaxing, China
| | - Seedahmed S. Mahmoud
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
| | - Qiang Fang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, China
- *Correspondence: Qiang Fang
| |
Collapse
|
9
|
Merlo A, Bò MC, Campanini I. Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:7322. [PMID: 34770627 PMCID: PMC8587451 DOI: 10.3390/s21217322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
The brachioradialis muscle (BRD) is one of the main elbow flexors and is often assessed by surface electromyography (sEMG) in physiology, clinical, sports, ergonomics, and bioengineering applications. The reliability of the sEMG measurement strongly relies on the characteristics of the detection system used, because of possible crosstalk from the surrounding forearm muscles. We conducted a scoping review of the main databases to explore available guidelines of electrode placement on BRD and to map the electrode configurations used and authors' awareness on the issues of crosstalk. One hundred and thirty-four studies were included in the review. The crosstalk was mentioned in 29 studies, although two studies only were specifically designed to assess it. One hundred and six studies (79%) did not even address the issue by generically placing the sensors above BRD, usually choosing large disposable ECG electrodes. The analysis of the literature highlights a general lack of awareness on the issues of crosstalk and the need for adequate training in the sEMG field. Three guidelines were found, whose recommendations have been compared and summarized to promote reliability in further studies. In particular, it is crucial to use miniaturized electrodes placed on a specific area over the muscle, especially when BRD activity is recorded for clinical applications.
Collapse
Affiliation(s)
- Andrea Merlo
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy;
- Merlo Bioengineering, 43100 Parma, Italy;
| | | | - Isabella Campanini
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy;
| |
Collapse
|
10
|
Saes M, Mohamed Refai MI, van Kordelaar J, Scheltinga BL, van Beijnum BJF, Bussmann JBJ, Buurke JH, Veltink PH, Meskers CGM, van Wegen EEH, Kwakkel G. Smoothness metric during reach-to-grasp after stroke: part 2. longitudinal association with motor impairment. J Neuroeng Rehabil 2021; 18:144. [PMID: 34560898 PMCID: PMC8461930 DOI: 10.1186/s12984-021-00937-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The cause of smoothness deficits as a proxy for quality of movement post stroke is currently unclear. Previous simulation analyses showed that spectral arc length (SPARC) is a valid metric for investigating smoothness during a multi-joint goal-directed reaching task. The goal of this observational study was to investigate how SPARC values change over time, and whether SPARC is longitudinally associated with the recovery from motor impairments reflected by the Fugl-Meyer motor assessment of the upper extremity (FM-UE) in the first 6 months after stroke. METHODS Forty patients who suffered a first-ever unilateral ischemic stroke (22 males, aged 58.6 ± 12.5 years) with upper extremity paresis underwent kinematic and clinical measurements in weeks 1, 2, 3, 4, 5, 8, 12, and 26 post stroke. Clinical measures included amongst others FM-UE. SPARC was obtained by three-dimensional kinematic measurements using an electromagnetic motion tracking system during a reach-to-grasp movement. Kinematic assessments of 12 healthy, age-matched individuals served as reference. Longitudinal linear mixed model analyses were performed to determine SPARC change over time, compare smoothness in patients with reference values of healthy individuals, and establish the longitudinal association between SPARC and FM-UE scores. RESULTS SPARC showed a significant positive longitudinal association with FM-UE (B: 31.73, 95%-CI: [27.27 36.20], P < 0.001), which encompassed significant within- and between-subject effects (B: 30.85, 95%-CI: [26.28 35.41], P < 0.001 and B: 50.59, 95%-CI: [29.97 71.21], P < 0.001, respectively). Until 5 weeks post stroke, progress of time contributed significantly to the increase in SPARC and FM-UE scores (P < 0.05), whereafter they levelled off. At group level, smoothness was lower in patients who suffered a stroke compared to healthy subjects at all time points (P < 0.05). CONCLUSIONS The present findings show that, after stroke, recovery of smoothness in a multi-joint reaching task and recovery from motor impairments are longitudinally associated and follow a similar time course. This suggests that the reduction of smoothness deficits quantified by SPARC is a proper objective reflection of recovery from motor impairment, as reflected by FM-UE, probably driven by a common underlying process of spontaneous neurological recovery early post stroke.
Collapse
Affiliation(s)
- Mique Saes
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, de Boelelaan 1117, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Mohamed Irfan Mohamed Refai
- Department of Biomedical Signals & Systems, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Joost van Kordelaar
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, de Boelelaan 1117, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Bouke L Scheltinga
- Department of Biomedical Signals & Systems, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Bert-Jan F van Beijnum
- Department of Biomedical Signals & Systems, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Johannes B J Bussmann
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Jaap H Buurke
- Department of Biomedical Signals & Systems, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Il, USA
- Rehabilitation Technology, Roessingh Research and Development, Enschede, The Netherlands
| | - Peter H Veltink
- Department of Biomedical Signals & Systems, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, de Boelelaan 1117, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Il, USA
| | - Erwin E H van Wegen
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, de Boelelaan 1117, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, de Boelelaan 1117, Location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Il, USA.
- Department of Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Fauvet M, Gasq D, Chalard A, Tisseyre J, Amarantini D. Temporal Dynamics of Corticomuscular Coherence Reflects Alteration of the Central Mechanisms of Neural Motor Control in Post-Stroke Patients. Front Hum Neurosci 2021; 15:682080. [PMID: 34366811 PMCID: PMC8342994 DOI: 10.3389/fnhum.2021.682080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The neural control of muscular activity during a voluntary movement implies a continuous updating of a mix of afferent and efferent information. Corticomuscular coherence (CMC) is a powerful tool to explore the interactions between the motor cortex and the muscles involved in movement realization. The comparison of the temporal dynamics of CMC between healthy subjects and post-stroke patients could provide new insights into the question of how agonist and antagonist muscles are controlled related to motor performance during active voluntary movements. We recorded scalp electroencephalography activity, electromyography signals from agonist and antagonist muscles, and upper limb kinematics in eight healthy subjects and seventeen chronic post-stroke patients during twenty repeated voluntary elbow extensions and explored whether the modulation of the temporal dynamics of CMC could contribute to motor function impairment. Concomitantly with the alteration of elbow extension kinematics in post-stroke patients, dynamic CMC analysis showed a continuous CMC in both agonist and antagonist muscles during movement and highlighted that instantaneous CMC in antagonist muscles was higher for post-stroke patients compared to controls during the acceleration phase of elbow extension movement. In relation to motor control theories, our findings suggest that CMC could be involved in the online control of voluntary movement through the continuous integration of sensorimotor information. Moreover, specific alterations of CMC in antagonist muscles could reflect central command alterations of the selectivity in post-stroke patients.
Collapse
Affiliation(s)
- Maxime Fauvet
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Gasq
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital Rangueil, Toulouse, France
| | - Alexandre Chalard
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,California Rehabilitation Institute, Los Angeles, CA, United States
| | - Joseph Tisseyre
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Amarantini
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
12
|
Characteristics of rectus femoris activation and rectus femoris-hamstrings coactivation during force-matching isometric knee extension in subacute stroke. Exp Brain Res 2021; 239:2621-2633. [PMID: 34213633 DOI: 10.1007/s00221-021-06162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The spectral properties of surface electromyographic (EMG) signal in the rectus femoris (RF) and the coactivation in the medial hamstrings (MH) were investigated in 45 stroke subjects (22 ± 12 days post-onset) and 30 age-matched healthy controls who performed unilateral knee extensions at maximum effort (100% MVC) and during 5-s force-matching tasks (10, 30, 50% MVC). The spectral properties were obtained through a power spectrum analysis based on Fast Fourier Transform. The coactivation was measured as the MH amplitude (%max) and MH/RF amplitude ratio. Force variability was expressed as the coefficient of variation. Both knee extensors and flexors were weaker in the paretic leg than the non-paretic and control legs (p < 0.001). A significantly higher relative power in the 5-13 and 13-30 Hz bands was found in the paretic than the non-paretic leg across all force levels (p ≤ 0.001) without changes in the 30-60 and 60-100 Hz bands or the mean and median frequencies. Regarding the antagonist coactivation, MH amplitude in the paretic leg was higher than in the non-paretic leg (submaximal levels, p < 0.0001) and the control leg (all force levels, p = 0.0005) with no differences between legs in the MH/RF ratio. The steadiness of the knee extension force was not related to the spectral properties of the agonist EMG or antagonistic coactivation. Greater coactivation was associated with weaker paretic knee flexors (p ≤ 0.0002). The overall results suggest variably altered agonist activation and antagonistic coactivation over the range of isometric knee extension contractions in subacute stroke.
Collapse
|
13
|
Li S, Francisco GE, Rymer WZ. A New Definition of Poststroke Spasticity and the Interference of Spasticity With Motor Recovery From Acute to Chronic Stages. Neurorehabil Neural Repair 2021; 35:601-610. [PMID: 33978513 DOI: 10.1177/15459683211011214] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The relationship of poststroke spasticity and motor recovery can be confusing. "True" motor recovery refers to return of motor behaviors to prestroke state with the same end-effectors and temporo-spatial pattern. This requires neural recovery and repair, and presumably occurs mainly in the acute and subacute stages. However, according to the International Classification of Functioning, Disability and Health, motor recovery after stroke is also defined as "improvement in performance of functional tasks," i.e., functional recovery, which is mainly mediated by compensatory mechanisms. Therefore, stroke survivors can execute motor tasks in spite of disordered motor control and the presence of spasticity. Spasticity interferes with execution of normal motor behaviors ("true" motor recovery), throughout the evolution of stroke from acute to chronic stages. Spasticity reduction does not affect functional recovery in the acute and subacute stages; however, appropriate management of spasticity could lead to improvement of motor function, that is, functional recovery, during the chronic stage of stroke. We assert that spasticity results from upregulation of medial cortico-reticulo-spinal pathways that are disinhibited due to damage of the motor cortex or corticobulbar pathways. Spasticity emerges as a manifestation of maladaptive plasticity in the early stages of recovery and can persist into the chronic stage. It coexists and shares similar pathophysiological processes with related motor impairments, such as abnormal force control, muscle coactivation and motor synergies, and diffuse interlimb muscle activation. Accordingly, we propose a new definition of spasticity to better account for its pathophysiology and the complex nuances of different definitions of motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA
| | - Gerard E Francisco
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA.,World Federation of NeuroRehabilitation, North Shields, UK
| | | |
Collapse
|
14
|
Temporal Changes in Electromyographic Activity and Gait Ability during Extended Walking in Individuals Post-Stroke: A Pilot Study. Healthcare (Basel) 2021; 9:healthcare9040444. [PMID: 33920156 PMCID: PMC8070003 DOI: 10.3390/healthcare9040444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Abnormal gait, particularly in patients with stroke, causes neuromuscular fatigue. We aimed to clarify temporal changes in gait performance and lower limb muscle activity during extended walking in people with stroke hemiplegia. Twelve adults with stroke and eleven healthy controls performed an extended trial involving 20-min continuous walk at a comfortable speed. The primary outcome was electromyography amplitude during the trial and secondary outcomes were walking performance and the instantaneous mean frequency of electromyography during the trial. Data at 1, 6, 12, and 18 min after initiating walking were compared. Performance during extended walking in people with stroke was maintained over time. The electromyography amplitude decreased in the tibialis anterior during the pre-swing phase and increased in the rectus femoris during the single-support phase over time; these changes were similar on the paretic and nonparetic sides. Instantaneous mean frequency decreased over time on the nonparetic side in the tibialis anterior and on the paretic side in the rectus femoris. Healthy subjects did not show any changes over time. The changes in muscle activity in patients with stroke differed between the paretic and nonparetic sides, muscle type, and gait phase; walking performance was maintained despite being affected by neuromuscular fatigue.
Collapse
|
15
|
Nito M, Katagiri N, Yoshida K, Koseki T, Kudo D, Nanba S, Tanabe S, Yamaguchi T. Repetitive Peripheral Magnetic Stimulation of Wrist Extensors Enhances Cortical Excitability and Motor Performance in Healthy Individuals. Front Neurosci 2021; 15:632716. [PMID: 33679314 PMCID: PMC7930341 DOI: 10.3389/fnins.2021.632716] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Repetitive peripheral magnetic stimulation (rPMS) may improve motor function following central nervous system lesions, but the optimal parameters of rPMS to induce neural plasticity and mechanisms underlying its action remain unclear. We examined the effects of rPMS over wrist extensor muscles on neural plasticity and motor performance in 26 healthy volunteers. In separate experiments, the effects of rPMS on motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), direct motor response (M-wave), Hoffmann-reflex, and ballistic wrist extension movements were assessed before and after rPMS. First, to examine the effects of stimulus frequency, rPMS was applied at 50, 25, and 10 Hz by setting a fixed total number of stimuli. A significant increase in MEPs of wrist extensors was observed following 50 and 25 Hz rPMS, but not 10 Hz rPMS. Next, we examined the time required to induce plasticity by increasing the number of stimuli, and found that at least 15 min of 50 and 25 Hz rPMS was required. Based on these parameters, lasting effects were evaluated following 15 min of 50 or 25 Hz rPMS. A significant increase in MEP was observed up to 60 min following 50 and 25 Hz rPMS; similarly, an attenuation of SICI and enhancement of ICF were also observed. The maximal M-wave and Hoffmann-reflex did not change, suggesting that the increase in MEP was due to plastic changes at the motor cortex. This was accompanied by increasing force and electromyograms during wrist ballistic extension movements following 50 and 25 Hz rPMS. These findings suggest that 15 min of rPMS with 25 Hz or more induces an increase in cortical excitability of the relevant area rather than altering the excitability of spinal circuits, and has the potential to improve motor output.
Collapse
Affiliation(s)
- Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Natsuki Katagiri
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Kaito Yoshida
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Tadaki Koseki
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Daisuke Kudo
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Shigehiro Nanba
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake-shi, Japan
| | - Tomofumi Yamaguchi
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.,Department of Physical Therapy, Faculty of Health Science, Juntendo University, Bunkyo-ku, Japan
| |
Collapse
|
16
|
Son J, Rymer WZ. Longer electromechanical delay in paretic triceps surae muscles during voluntary isometric plantarflexion torque generation in chronic hemispheric stroke survivors. J Electromyogr Kinesiol 2020; 56:102475. [PMID: 33242750 DOI: 10.1016/j.jelekin.2020.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022] Open
Abstract
Electromechanical delay (EMD) is the time delay between the onset of muscle activity and the onset of force/joint torque. This delay appears to be linked to muscular contraction efficiency. However, to our knowledge, limited evidence is available regarding the magnitude of the EMD in stroke-impaired muscles. Accordingly, this study aims to quantify the EMD in both paretic and non-paretic triceps surae muscles of chronic hemispheric stroke survivors, and to investigate whether the EMD is related to voluntary force-generating capacity in this muscle group. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different force levels and at different ankle joint angles ranging from maximum plantarflexion to maximum dorsiflexion. The surface electromyograms were recorded from triceps surae muscles. The longest EMD among triceps surae muscles was chosen as the EMD for each side. Our results revealed that the EMD in paretic muscles was significantly longer than in non-paretic muscles. Moreover, both paretic and non-paretic muscles showed a negative correlation between the EMD and maximum torque-generating capacity. In addition, there was a strong positive relationship between the EMD and shear wave speed in paretic muscles as well as a negative relationship between the EMD and passive ankle joint range of motion. These findings imply that the EMD may be a useful biomarker, in part, associated with contractile and material properties in stroke-impaired muscles.
Collapse
Affiliation(s)
- Jongsang Son
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
17
|
Son J, Rymer WZ. Loss of variable fascicle gearing during voluntary isometric contractions of paretic medial gastrocnemius muscles in male chronic stroke survivors. J Physiol 2020; 598:5183-5194. [PMID: 32818308 DOI: 10.1113/jp280126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 07/31/2023] Open
Abstract
KEY POINTS Maximum fascicle shortening/rotation was significantly decreased in paretic medial gastrocnemius (MG) muscles compared to non-paretic MG muscles. The fascicle gear ratio on both sides decreased as the ankle became dorsiflexed, but the slope of the fascicle gear ratio over ankle joint angle was significantly lower on the paretic side. The side-to-side slope difference was strongly correlated with the relative maximum joint torque and with the relative shear wave speed, suggesting that variable gearing may explain muscle weakness after stroke. ABSTRACT The present study aimed to understand variable fascicle gearing during voluntary isometric contractions of the medial gastrocnemius (MG) muscle in chronic stroke survivors. Using ultrasonography, we characterized fascicle behaviour on both paretic and non-paretic sides during plantarflexion contractions at different intensities and at different ankle joint angles. Shear wave speed was also recorded from the MG muscle belly under passive conditions. Fascicle gear ratios were then calculated as the ratio of muscle belly shortening velocity to fascicle shortening velocity, and variable fascicle gearing was quantified from the slope of gear ratio vs. joint angle relations. This slope was used to establish associations with maximum joint torques and with shear wave speeds. At all measured angles, we found a significant reduction in both maximum fascicle shortening and maximum fascicle rotation on the paretic side compared to the non-paretic side on our stroke survivor cohort. The fascicle rotation per fascicle shortening on the paretic side was also significantly smaller than on the non-paretic side, especially at plantarflexed positions. Furthermore, the fascicle gear ratio on both sides decreased as the ankle became dorsiflexed, but the change in the fascicle gear ratio was significantly lower on the paretic side. The side-to-side difference in the gear ratio slope was also strongly correlated with the relative maximum joint torque and with the relative shear wave speed, suggesting that variable gearing may explain muscle weakness after stroke. Further studies are needed to investigate how muscular changes after stroke may impede variable gearing and adversely impact muscle performance.
Collapse
Affiliation(s)
- Jongsang Son
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Negro F, Bathon KE, Nguyen JN, Bannon CG, Orizio C, Hunter SK, Hyngstrom AS. Impaired Firing Behavior of Individually Tracked Paretic Motor Units During Fatiguing Contractions of the Dorsiflexors and Functional Implications Post Stroke. Front Neurol 2020; 11:540893. [PMID: 33192970 PMCID: PMC7658471 DOI: 10.3389/fneur.2020.540893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: This study quantified stroke-related changes in the following: (1) the averaged discharge rate of motor units (individually tracked and untracked) identified from high-density electromyography (HD-EMG) recordings, (2) global muscle EMG properties of the dorsiflexors during a fatiguing contraction, and the relationship between task endurance and measures of leg function. Methods: Ten individuals with chronic stroke performed a sustained sub-maximal, isometric, fatiguing dorsiflexion contraction in paretic and non-paretic legs. Motor-unit firing behavior, task duration, maximal voluntary contraction strength (MVC), and clinical measures of leg function were obtained. Results: Compared to the non-paretic leg, the paretic leg task duration was shorter, and there was a larger exercise-related reduction in motor unit global rates, individually tracked discharge rates, and overall magnitude of EMG. Task duration of the paretic leg was more predictive of walking speed and lower extremity Fugl-Meyer scores compared to the non-paretic leg. Discussion: Paretic leg muscle fatigability is increased post stroke. It is characterized by impaired rate coding and recruitment and relates to measures of motor function.
Collapse
Affiliation(s)
- Francesco Negro
- Department of Clinical and Experimental Sciences, Research Center for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani", Università degli Studi di Brescia, Brescia, Italy
| | - Kathleen E Bathon
- Uniformed Services, University of Health Sciences, Bethesda, MD, United States
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cassidy G Bannon
- Uniformed Services, University of Health Sciences, Bethesda, MD, United States
| | - Claudio Orizio
- Department of Clinical and Experimental Sciences, Research Center for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani", Università degli Studi di Brescia, Brescia, Italy
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
19
|
Chandra S, Afsharipour B, Rymer WZ, Suresh NL. Precise quantification of the time course of voluntary activation capacity following Botulinum toxin injections in the biceps brachii muscles of chronic stroke survivors. J Neuroeng Rehabil 2020; 17:102. [PMID: 32703213 PMCID: PMC7376714 DOI: 10.1186/s12984-020-00716-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Spasticity is a key motor impairment that affects many hemispheric stroke survivors. Intramuscular botulinum toxin (BT) injections are used widely to clinically manage spasticity-related symptoms in stroke survivors by chemically denervating muscle fibers from their associated motor neurons. In this study, we sought to understand how BT affects muscle activation, motor unit composition and voluntary force generating capacity over a time period of 3 months. Our purpose was to characterize the time course of functional changes in voluntary muscle activity in stroke survivors who are undergoing BT therapy as part of their physician-prescribed clinical plan. Method Our assessment of the effects of BT was based on the quantification of surface electromyogram (sEMG) recordings in the biceps brachii (BB), an upper arm muscle and of voluntary contraction force. We report here on voluntary force and sEMG responses during isometric elbow contractions across consecutive recording sessions, spread over 12 weeks in three segments, starting with a preliminary session performed just prior to the BT injection. At predetermined time points, we conducted additional clinical assessments and we also recorded from the contralateral limbs of our stroke cohort. Eight subjects were studied for approximately 86 experimental recording sessions on both stroke-affected and contralateral sides. Results We recorded an initial reduction in force and sEMG in all subjects, followed by a trajectory with a progressive return to baseline over a maximum of 12 weeks, although the minimum sEMG and minimum force were not always recorded at the same time point. Three participants were able to complete only one to two segments. Slope values of the sEMG-force relations were also found to vary across the different time segments. While sEMG-force slopes provide assessments of force generation capacity of the BT injected muscle, amplitude histograms from novel sEMG recordings during the voluntary tasks provide additional insights about differential actions of BT on the overall motor unit (MU) population over time. Conclusions The results of our study indicate that there are potential short term as well as long term decrements in muscle control and activation properties after BT administration on the affected side of chronic stroke survivors. Muscle activation levels as recorded using sEMG, did not routinely return to baseline even at three months’ post injection. The concurrent clinical measures also did not follow the same time course, nor did they provide the same resolution as our experimental measures. It follows that even 12 weeks after intramuscular BT injections muscle recovery may not be complete, and may thereby contribute to pre-existing paresis.
Collapse
Affiliation(s)
- S Chandra
- Shirley Ryan Ability Lab, 355 East Erie St., 21st floor, Chicago, IL, 60611, USA. .,Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, IL, USA.
| | - B Afsharipour
- Department of Biomedical Engineering, University of Alberta, Edmonton, CA, Canada
| | - W Z Rymer
- Shirley Ryan Ability Lab, 355 East Erie St., 21st floor, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, IL, USA
| | - N L Suresh
- Shirley Ryan Ability Lab, 355 East Erie St., 21st floor, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, IL, USA
| |
Collapse
|
20
|
Son J, Rymer WZ. Effects of Changes in Ankle Joint Angle on the Relation Between Plantarflexion Torque and EMG Magnitude in Major Plantar Flexors of Male Chronic Stroke Survivors. Front Neurol 2020; 11:224. [PMID: 32318013 PMCID: PMC7155781 DOI: 10.3389/fneur.2020.00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
The slope of the EMG-torque relation is potentially useful as a parameter related to muscular contraction efficiency, as a greater EMG-torque slope has often been reported in stroke-impaired muscles, compared to intact muscles. One major barrier limiting the use of this parameter on a routine basis is that we do not know how the EMG-torque slope is affected by changing joint angles. Thus, the primary purpose of this study is to characterize the EMG-torque relations of triceps surae muscles at different ankle joint angles in both paretic and non-paretic limbs of chronic hemispheric stroke survivors. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different contraction intensities and at five different ankle joint angles, ranging from maximum plantarflexion to maximum dorsiflexion. Our results showed that the greater slope of the EMG-torque relations was found on the paretic side compared to the non-paretic side at comparable ankle joint angles. The EMG-torque slope increased as the ankle became plantarflexed on both sides, but an increment of the EMG-torque slope (i.e., the coefficient a) was significantly greater on the paretic side. Moreover, the relative (non-paretic/paretic) coefficient a was also strongly correlated with the relative (paretic/non-paretic) maximum ankle plantarflexion torque and with shear wave speed in the medial gastrocnemius muscle. Conversely, the relative coefficient a was not well-correlated with the relative muscle thickness. Our findings suggest that muscular contraction efficiency is affected by hemispheric stroke, but in an angle-dependent and non-uniform manner. These findings may allow us to explore the relative contributions of neural factors and muscular changes to voluntary force generating-capacity after stroke.
Collapse
Affiliation(s)
- Jongsang Son
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
21
|
Durandau G, Farina D, Asín-Prieto G, Dimbwadyo-Terrer I, Lerma-Lara S, Pons JL, Moreno JC, Sartori M. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. J Neuroeng Rehabil 2019; 16:91. [PMID: 31315633 PMCID: PMC6637518 DOI: 10.1186/s12984-019-0559-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/26/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Research efforts in neurorehabilitation technologies have been directed towards creating robotic exoskeletons to restore motor function in impaired individuals. However, despite advances in mechatronics and bioelectrical signal processing, current robotic exoskeletons have had only modest clinical impact. A major limitation is the inability to enable exoskeleton voluntary control in neurologically impaired individuals. This hinders the possibility of optimally inducing the activity-driven neuroplastic changes that are required for recovery. METHODS We have developed a patient-specific computational model of the human musculoskeletal system controlled via neural surrogates, i.e., electromyography-derived neural activations to muscles. The electromyography-driven musculoskeletal model was synthesized into a human-machine interface (HMI) that enabled poststroke and incomplete spinal cord injury patients to voluntarily control multiple joints in a multifunctional robotic exoskeleton in real time. RESULTS We demonstrated patients' control accuracy across a wide range of lower-extremity motor tasks. Remarkably, an increased level of exoskeleton assistance always resulted in a reduction in both amplitude and variability in muscle activations as well as in the mechanical moments required to perform a motor task. Since small discrepancies in onset time between human limb movement and that of the parallel exoskeleton would potentially increase human neuromuscular effort, these results demonstrate that the developed HMI precisely synchronizes the device actuation with residual voluntary muscle contraction capacity in neurologically impaired patients. CONCLUSIONS Continuous voluntary control of robotic exoskeletons (i.e. event-free and task-independent) has never been demonstrated before in populations with paretic and spastic-like muscle activity, such as those investigated in this study. Our proposed methodology may open new avenues for harnessing residual neuromuscular function in neurologically impaired individuals via symbiotic wearable robots.
Collapse
Affiliation(s)
- Guillaume Durandau
- Faculty of Engineering Technology, Department of Biomechanical Engineering, University of Twente, Technical Medical Centre, Building: Horsting. Room: W106, P.O. Box: 217, 7500 AE Enschede, The Netherlands
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| | - Guillermo Asín-Prieto
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Iris Dimbwadyo-Terrer
- Occupational Thinks Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Lerma-Lara
- Occupational Thinks Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose L. Pons
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Juan C. Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Massimo Sartori
- Faculty of Engineering Technology, Department of Biomechanical Engineering, University of Twente, Technical Medical Centre, Building: Horsting. Room: W106, P.O. Box: 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
van der Krogt H, Kouwijzer I, Klomp A, Meskers CGM, Arendzen JH, de Groot JH. Loss of selective wrist muscle activation in post-stroke patients. Disabil Rehabil 2019; 42:779-787. [PMID: 30634868 DOI: 10.1080/09638288.2018.1509241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Loss of selective muscle activation after stroke contributes to impaired arm function, is difficult to quantify and is not systematically assessed yet. The aim of this study was to describe and validate a technique for quantification of selective muscle activation of wrist flexor and extensor muscles in a cohort of post-stroke patients. Patterns of selective muscle activation were compared to healthy volunteers and test-retest reliability was assessed.Materials and methods: Activation Ratios describe selective activation of a muscle during its expected optimal activation as agonist and antagonist. Activation Ratios were calculated from electromyography signals during an isometric maximal torque task in 31 post-stroke patients and 14 healthy volunteers. Participants with insufficient voluntary muscle activation (maximal electromyography signal <3SD higher than baseline) were excluded.Results: Activation Ratios at the wrist were reliably quantified (Intraclass correlation coefficients 0.77-0.78). Activation Ratios were significantly lower in post-stroke patients compared to healthy participants (p < 0.05).Conclusion: Activation Ratios allow for muscle-specific quantification of selective muscle activation at the wrist in post-stroke patients. Loss of selective muscle activation may be a relevant determinant in assigning and evaluating therapy to improve functional outcome.Implications for RehabilitationLoss of selective muscle activation after stroke contributes to impaired arm function, is difficult to quantify and is not systematically assessed yet.The ability for selective muscle activation is a relevant determinant in assigning and evaluating therapy to improve functional outcome, e.g., botulinum toxin.Activation Ratios allow for reliable and muscle-specific quantification of selective muscle activation in post-stroke patients.
Collapse
Affiliation(s)
- Hanneke van der Krogt
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Kouwijzer
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Asbjørn Klomp
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Laboratory for Neuromuscular Control, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - J Hans Arendzen
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurriaan H de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Tang X, Zhang X, Gao X, Chen X, Zhou P. A Novel Interpretation of Sample Entropy in Surface Electromyographic Examination of Complex Neuromuscular Alternations in Subacute and Chronic Stroke. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1878-1888. [PMID: 30106682 DOI: 10.1109/tnsre.2018.2864317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this paper was to develop sample entropy (SampEn) as a novel surface electromyogram (EMG) biomarker to quantitatively examine post-stroke neuromuscular alternations. The SampEn method was performed on surface EMG interference patterns recorded from biceps brachii muscles of nine healthy control subjects, fourteen subjects with subacute stroke, and eleven subjects with chronic stroke, respectively. Measurements were collected during isometric contractions of elbow flexion at different constant force levels. By producing diagnostic decisions for individual muscles, two categories of abnormalities in some paretic muscles were discriminated in terms of abnormally increased and decreased SampEn. The efficiency of the SampEn was demonstrated by its comparable performance with a previously reported clustering index (CI) method. Mixed SampEn (or CI) patterns were observed in paretic muscles of subjects with stroke indicating complex neuromuscular changes at work as a result of a hemispheric brain lesion. Although both categories of SampEn (or CI) abnormalities were observed in both subacute and chronic stages of stroke, the underlying processes contributing to the SampEn abnormalities might vary a lot in stroke stage. The SampEn abnormalities were also found in contralateral muscles of subjects with chronic stroke indicating the necessity of applying interventions to contralateral muscles during stroke rehabilitation. Our work not only presents a novel method for quantitative examination of neuromuscular changes, but also explains the neuropathological mechanisms of motor impairments and offers guidelines for a better design of effective rehabilitation protocols toward improved motor recovery.
Collapse
|
24
|
Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii. J Electromyogr Kinesiol 2018; 38:49-55. [DOI: 10.1016/j.jelekin.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/14/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022] Open
|
25
|
Tang W, Zhang X, Tang X, Cao S, Gao X, Chen X. Surface Electromyographic Examination of Poststroke Neuromuscular Changes in Proximal and Distal Muscles Using Clustering Index Analysis. Front Neurol 2018; 8:731. [PMID: 29379465 PMCID: PMC5775223 DOI: 10.3389/fneur.2017.00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Whether stroke-induced paretic muscle changes vary across different distal and proximal muscles remains unclear. The objective of this study was to compare paretic muscle changes between a relatively proximal muscle (the biceps brachii muscle) and two distal muscles (the first dorsal interosseous muscle and the abductor pollicis brevis muscle) following hemisphere stroke using clustering index (CI) analysis of surface electromyograms (EMGs). For each muscle, surface EMG signals were recorded from the paretic and contralateral sides of 12 stroke subjects versus the dominant side of eight control subjects during isometric muscle contractions to measure the consequence of graded levels of contraction (from a mild level to the maximal voluntary contraction). Across all examined muscles, it was found that partial paretic muscles had abnormally higher or lower CI values than those of the healthy control muscles, which exhibited a significantly larger variance in the CI via a series of homogeneity of variance tests (p < 0.05). This finding indicated that both neurogenic and myopathic changes were likely to take place in paretic muscles. When examining two distal muscles of individual stroke subjects, relatively consistent CI abnormalities (toward neuropathy or myopathy) were observed. By contrast, consistency in CI abnormalities were not found when comparing proximal and distal muscles, indicating differences in motor unit alternation between the proximal and distal muscles on the paretic sides of stroke survivors. Furthermore, CI abnormalities were also observed for all three muscles on the contralateral side. Our findings help elucidate the pathological mechanisms underlying stroke sequels, which might prove useful in developing improved stroke rehabilitation protocols.
Collapse
Affiliation(s)
- Weidi Tang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xu Zhang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiao Tang
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Shuai Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaoping Gao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
McManus L, Hu X, Rymer WZ, Suresh NL, Lowery MM. Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors. Front Hum Neurosci 2017; 11:569. [PMID: 29225574 PMCID: PMC5705653 DOI: 10.3389/fnhum.2017.00569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/09/2017] [Indexed: 12/03/2022] Open
Abstract
Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU) mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC). A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s) than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045). The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04). Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03). MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively), and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04). This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the affected and less-affected side post-stroke, and may suggest that central mechanisms observed here as changes in firing rate are the dominant processes leading to task failure on the affected side.
Collapse
Affiliation(s)
- Lara McManus
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Belfield, Ireland
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - William Z Rymer
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Nina L Suresh
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Madeleine M Lowery
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Belfield, Ireland
| |
Collapse
|
27
|
RAMLEE MUHAMMADHANIF, GAN KOKBENG. FUNCTION AND BIOMECHANICS OF UPPER LIMB IN POST-STROKE PATIENTS — A SYSTEMATIC REVIEW. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417500993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current clinical services are struggling to provide the most favorable rehabilitation treatment for patients with stroke, which inspired researchers to investigate and explore the use of rehabilitation devices suitable for the patients and rehabilitation therapy. This review paper addresses the importance of biomechanical features in patients who experienced stroke to the upper limb. First and foremost, a review was done on general biomechanical description associated with motor control, shoulder, elbow, wrist and fingers joint. This included the ability of the patients to move their affected arm and the affect on peak joint torque, range of motion, joint forces, grip strength and muscle activities during the activities of daily living. In addition, we also reviewed the material properties and geometrical condition of tissue in stroke patient. The repercussions of post-stroke patient regarding the bone density, stiffness of muscle as well as the thickness of cartilage are described in this review. Based on the findings, the movement of affected stroke hand is associated with the motor control and material properties of tissue. To strengthen the motor control and maintaining tissue properties, early physical training on patients should be conducted in two to four weeks after stroke. In conclusion, this report suggests a new approach for future biomechanical studies in order to enhance the quality of physiotherapy rehabilitation peculiarly for post-stroke patients.
Collapse
Affiliation(s)
- MUHAMMAD HANIF RAMLEE
- Medical Devices and Technology Group (MEDITEG), Department of Clinical Science, Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Sport Innovation and Technology Group (SITC), Institute of Human Centered Engineering (IHCE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - KOK BENG GAN
- Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
28
|
Zhang X, Wei Z, Ren X, Gao X, Chen X, Zhou P. Complex Neuromuscular Changes Post-Stroke Revealed by Clustering Index Analysis of Surface Electromyogram. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2105-2112. [PMID: 28541902 DOI: 10.1109/tnsre.2017.2707582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of this paperwas to characterize complex neuromuscular changes induced by a hemisphere stroke through a novel clustering index (CI) analysis of surface electromyogram (EMG). The CI analysis was performed using surface EMG signals collected bilaterally from the thenar muscles of 17 subjects with stroke and 12 age-matched healthy controls during their performance of varying levels of isometric muscle contractions. Compared with the neurologically intact or contralateral muscles, mixed CI patterns were observed in the paretic muscles. Two paretic muscles showed significantly increased CI implying dominant neurogenic changes, whereas three paretic muscles had significantly reduced CI indicating dominantmyopathic changes; the other paretic muscles did not demonstrate a significant CI alternation, likely due to a deficit of descending central drive or a combined effect of neuromuscular factors. Such discrimination of paretic muscles was further highlighted using a modified CI method that emphasizes between-side comparison for each individual subject. The CI findings suggest that there appears to be different central and peripheral processes at work in varying degrees after stroke. This paper provides a convenient and quantitative analysis to assess the nature of neuromuscular changes after stroke, without using any special equipment but conventional surface EMG recording. Such assessment is helpful for the development of appropriate rehabilitation strategies for recovery of motor function.
Collapse
|
29
|
Robertson JW, Johnston JA. Modifying motor unit territory placement in the Fuglevand model. Med Biol Eng Comput 2017; 55:2015-2025. [PMID: 28390003 DOI: 10.1007/s11517-017-1645-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
The Fuglevand model is often used to address challenging questions in neurophysiology; however, there are elements of the neuromuscular system unaccounted for in the model. For instance, in some muscles, slow and fast motor units (MUs) tend to reside deep and superficially in the muscle, respectively, necessarily altering the development of surface electromyogram (EMG) power during activation. Thus, the objective of this study was to replace the randomized MU territory (MUT) placement algorithm in the Fuglevand model with an optimized method capable of reflecting these observations. To accomplish this, a weighting term was added to a previously developed optimization algorithm to encourage regionalized MUT placement. The weighting term consequently produced significantly different muscle fibre type content in the deep and superficial portions of the muscle. The relation between simulated EMG and muscle force was found to be significantly affected by regionalization. These changes were specifically a function of EMG power, as force was unaffected by regionalization. These findings suggest that parameterizing MUT regionalization will allow the model to produce a larger variety of EMG-force relations, as is observed physiologically, and could potentially simulate the loss of specific MU types as observed in ageing and clinical populations.
Collapse
Affiliation(s)
- Jason W Robertson
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada. .,Institute of Biomedical Engineering, University of New Brunswick, 25 Dineen Dr., Fredericton, NB, E3B 5A3, Canada.
| | - Jamie A Johnston
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Maeda K, Yamaguchi T, Tatemoto T, Kondo K, Otaka Y, Tanaka S. Transcranial Direct Current Stimulation Does Not Affect Lower Extremity Muscle Strength Training in Healthy Individuals: A Triple-Blind, Sham-Controlled Study. Front Neurosci 2017; 11:179. [PMID: 28420959 PMCID: PMC5378798 DOI: 10.3389/fnins.2017.00179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the effects of anodal transcranial direct current stimulation (tDCS) on lower extremity muscle strength training in 24 healthy participants. In this triple-blind, sham-controlled study, participants were randomly allocated to the anodal tDCS plus muscle strength training (anodal tDCS) group or sham tDCS plus muscle strength training (sham tDCS) group. Anodal tDCS (2 mA) was applied to the primary motor cortex of the lower extremity during muscle strength training of the knee extensors and flexors. Training was conducted once every 3 days for 3 weeks (7 sessions). Knee extensor and flexor peak torques were evaluated before and after the 3 weeks of training. After the 3-week intervention, peak torques of knee extension and flexion changed from 155.9 to 191.1 Nm and from 81.5 to 93.1 Nm in the anodal tDCS group. Peak torques changed from 164.1 to 194.8 Nm on extension and from 78.0 to 85.6 Nm on flexion in the sham tDCS group. In both groups, peak torques of knee extension and flexion significantly increased after the intervention, with no significant difference between the anodal tDCS and sham tDCS groups. In conclusion, although the administration of eccentric training increased knee extensor and flexor peak torques, anodal tDCS did not enhance the effects of lower extremity muscle strength training in healthy individuals. The present null results have crucial implications for selecting optimal stimulation parameters for clinical trials.
Collapse
Affiliation(s)
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of MedicineTokyo, Japan.,Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark.,Department of Physical Therapy, Yamagata Prefectural University of Health SciencesYamagata, Japan
| | | | | | - Yohei Otaka
- Tokyo Bay Rehabilitation HospitalChiba, Japan.,Department of Rehabilitation Medicine, Keio University School of MedicineTokyo, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of MedicineShizuoka, Japan
| |
Collapse
|
31
|
Zhang X, Wang D, Yu Z, Chen X, Li S, Zhou P. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array. IEEE J Biomed Health Inform 2016; 21:1562-1572. [PMID: 27845680 DOI: 10.1109/jbhi.2016.2626399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.
Collapse
|
32
|
Afsharipour B, Rymer WZ, Suresh NL. Impairment of muscle force transmission in spastic-paretic muscles of stroke survivors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:6098-6101. [PMID: 28269644 DOI: 10.1109/embc.2016.7592120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hemispheric stroke survivors tend to have persistent motor impairments, with muscle weakness and muscle spasticity observed concurrently in the affected muscles. The objective of this preliminary study was to identify whether impairment of muscle force transmission could contribute to weakness in spastic-paretic muscles of chronic stroke survivors. To characterize the efficiency of the transmission of muscle forces to the tendon, we activated biceps brachii muscle electrically by stimulating the musculocutaneous nerve with maximum current. The ratio between the elicited maximum twitch force amplitude and the maximum M-wave peak-peak amplitude was calculated as a measure of the efficiency of force transmission. Based on the preliminary results of two stroke survivors, we show that the Force/M-wave ratio was reduced in the affected biceps brachii muscles in comparison with the contralateral muscles, indicating a potential impairment in the muscle force transmission in the affected muscles. Our findings suggest that disrupted muscle force transmission to the tendon could contribute to weakness in spastic muscles of chronic stroke survivors.
Collapse
|
33
|
Bohannon RW, Puharic T. Torque fluctuations during maximal voluntary knee extension efforts after stroke. Clin Rehabil 2016. [DOI: 10.1177/026921559200600406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study of 18 ambulatory hemiparetic stroke patients was to describe the differences in torque fluctuations between sides (paretic and nonparetic) and also to determine the implications of such fluctuations on gait performance relative to other knee extension torque variables. Bilateral measurements of torque during maximal voluntary isometric knee extension efforts of about four seconds were obtained using an isokinetic dynamometer. The amplitude of the associated torque curves was measured at 0.1 second intervals and statistically manipulated to provide information about actual and percentage fluctuations. The nonparetic side displayed significantly higher actual fluctuations whereas the paretic side demonstrated significantly higher percentage fluctuations. The reliability of the torque fluctuation measurements was questionable. The correlations of the fluctuation measurements with gait performance were low, especially when compared to the significant correlations of peak and average torque with gait performance. Given the results of this study, we find little reason to focus on torque fluctuations among patients with stroke who are undergoing rehabilitation.
Collapse
Affiliation(s)
- Richard W Bohannon
- Department of Rehabilitation, Hartford Hospital and School of Allied Health, University of Connecticut
| | - Terri Puharic
- Department of Rehabilitation, Hartford Hospital and School of Allied Health, University of Connecticut
| |
Collapse
|
34
|
Re-evaluation of EMG-torque relation in chronic stroke using linear electrode array EMG recordings. Sci Rep 2016; 6:28957. [PMID: 27349938 PMCID: PMC4923947 DOI: 10.1038/srep28957] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 11/08/2022] Open
Abstract
The objective was to re-evaluate the controversial reports of EMG-torque relation between impaired and non-impaired sides using linear electrode array EMG recordings. Ten subjects with chronic stroke performed a series of submaximal isometric elbow flexion tasks. A 20-channel linear array was used to record surface EMG of the biceps brachii muscles from both impaired and non-impaired sides. M-wave recordings for bilateral biceps brachii muscles were also made. Distribution of the slope of the EMG-torque relations for the individual channels showed a quasi-symmetrical "M" shaped pattern. The lowest value corresponded to the innervation zone (IZ) location. The highest value from the slope curve for each side was selected for comparison to minimize the effect of electrode placement and IZ asymmetry. The slope was greater on the impaired side in 4 of 10 subjects. There were a weak correlation between slope ratio and strength ratio and a moderate to high correlation between slope ratio and M-wave ratio between two sides. These findings suggest that the EMG-torque relations are likely mediated and influenced by multiple factors. Our findings emphasize the importance of electrode placement and suggest the primary role of peripheral adaptive changes in the EMG-torque relations in chronic stroke.
Collapse
|
35
|
Gray VL, Pollock CL, Wakeling JM, Ivanova TD, Garland SJ. Patterns of muscle coordination during stepping responses post-stroke. J Electromyogr Kinesiol 2015; 25:959-65. [PMID: 26475243 DOI: 10.1016/j.jelekin.2015.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 11/25/2022] Open
Abstract
This study compared self-induced stepping reactions of seventeen participants after stroke and seventeen controls. Surface electromyographic (EMG) signals were recorded bilaterally from the soleus (SOL), tibialis anterior (TA), biceps femoris (BF) and rectus femoris (RF) muscles. Principal component analysis (PCA) was used to reduce the data into muscle activation patterns and examine group differences (paretic, non-paretic, control leg). The first principal component (PC1) explained 46.7% of the EMG signal of the stepping leg. Two PCs revealed distinct activation features for the stepping paretic leg: earlier TA onset at step initiation and earlier BF and SOL onset at mid-step. For the stance leg, PC1 explained 44.4% of the EMG signal and significant differences were found in the non-paretic leg compared to paretic (p < 0.001) and control (p < 0.001). In PC1, at step onset the BF and SOL EMG and the RF and TA EMG were increased over the latter half of the step. No PC loadings were distinct for the paretic leg during stance, however differences were found in the non-paretic leg: earlier TA burst and increased BF and SOL EMG at step initiation. The results suggest impairments in the paretic leg when stepping and compensatory strategies in the non-paretic stance leg.
Collapse
Affiliation(s)
- V L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, MD 21201, USA
| | - C L Pollock
- Dept Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - J M Wakeling
- Dept Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - T D Ivanova
- Dept Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - S J Garland
- Dept Physical Therapy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Hu X, Suresh AK, Rymer WZ, Suresh NL. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography. J Neural Eng 2015; 12:066001. [PMID: 26402920 DOI: 10.1088/1741-2560/12/6/066001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. APPROACH Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. MAIN RESULTS Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. SIGNIFICANCE Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.
Collapse
Affiliation(s)
- Xiaogang Hu
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
37
|
Jahanmiri-Nezhad F, Hu X, Suresh NL, Rymer WZ, Zhou P. EMG-force relation in the first dorsal interosseous muscle of patients with amyotrophic lateral sclerosis. NeuroRehabilitation 2015; 35:307-14. [PMID: 24990032 DOI: 10.3233/nre-141125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE The relationship between surface electromyography (EMG) and muscle force is essential to assess muscle function and its deficits. However, few studies have explored the EMG-force relation in patients with amyotrophic lateral sclerosis (ALS). The purpose of this study was to examine the EMG-force relation in ALS subjects and its alteration in comparison with healthy control subjects. METHODS Surface EMG and force signals were recorded while 10 ALS and 10 age-matched healthy control subjects produced isometric voluntary contractions in the first dorsal interosseous (FDI) muscle over the full range of activation. A linear fit of the EMG-force relation was evaluated through the normalized root mean square error (RMSE) between the experimental and predicted EMG amplitudes. The EMG-force relation was compared between the ALS and the healthy control subjects. RESULTS With a linear fit, the normalized RMSE between the experimental and predicted EMG amplitudes was 9.6 ± 3.6% for the healthy control subjects and 12.3 ± 8.0% for the ALS subjects. The slope of the linear fit was 2.9 ± 2.2 μVN-1 for the ALS subjects and was significantly shallower (p < 0.05) than the control subjects (5.1 ± 1.8 μVN-1). However, after excluding the four ALS subjects who had very weak maximum force, the slope for the remaining ALS subjects was 3.5 ± 2.2 μVN-1 and was not significantly different from the control subjects (p > 0.05). CONCLUSIONS A linear fit can be used to well describe the EMG-force relation for the FDI muscle of both ALS and healthy control subjects. A variety of processes may work together in ALS that can adversely affect the EMG-force relation.
Collapse
Affiliation(s)
- Faezeh Jahanmiri-Nezhad
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaogang Hu
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Nina L Suresh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - William Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR Memorial Hermann Research Center, Houston, TX, USA Biomedical Engineering Program, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
38
|
Chu VW, Hornby TG, Schmit BD. Perception of lower extremity loads in stroke survivors. Clin Neurophysiol 2015; 126:372-81. [DOI: 10.1016/j.clinph.2014.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
39
|
Arene N, Hidler J. Understanding Motor Impairment in the Paretic Lower Limb After a Stroke: A Review of the Literature. Top Stroke Rehabil 2015; 16:346-56. [DOI: 10.1310/tsr1605-346] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Li X, Holobar A, Gazzoni M, Merletti R, Rymer WZ, Zhou P. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition. IEEE Trans Biomed Eng 2014; 62:1242-52. [PMID: 25389239 DOI: 10.1109/tbme.2014.2368514] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.
Collapse
|
41
|
Dyer JO, Maupas E, de Andrade Melo S, Bourbonnais D, Nadeau S, Forget R. Changes in activation timing of knee and ankle extensors during gait are related to changes in heteronymous spinal pathways after stroke. J Neuroeng Rehabil 2014; 11:148. [PMID: 25343962 PMCID: PMC4271343 DOI: 10.1186/1743-0003-11-148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensor synergy is often observed in the paretic leg of stroke patients. Extensor synergy consists of an abnormal stereotyped co-activation of the leg extensors as patients attempt to move. As a component of this synergy, the simultaneous activation of knee and ankle extensors in the paretic leg during stance often affects gait pattern after stroke. The mechanisms involved in extensor synergy are still unclear. The first objective of this study is to compare the co-activation of knee and ankle extensors during the stance phase of gait between stroke and healthy individuals. The second objective is to explore whether this co-activation is related to changes in heteronymous spinal modulations between quadriceps and soleus muscles on the paretic side in post-stroke individuals. METHODS Thirteen stroke patients and ten healthy individuals participated in gait and heteronymous spinal modulation evaluations. Co-activation was measured using peak EMG activation intervals (PAI) and co-activation amplitude indexes (CAI) between knee and ankle extensors during the stance phase of gait in both groups. The evaluation of heteronymous spinal modulations was performed on the paretic leg in stroke participants and on one leg in healthy participants. This evaluation involved assessing the early facilitation and later inhibition of soleus voluntary EMG induced by femoral nerve stimulation. RESULTS All PAI were lower and most CAI were higher on the paretic side of stroke participants compared with the co-activation indexes among control participants. CAI and PAI were moderately correlated with increased heteronymous facilitation of soleus on the paretic side in stroke individuals. CONCLUSIONS Increased co-activation of knee and ankle extensors during gait is related to changes in intersegmental facilitative pathways linking quadriceps to soleus on the paretic side in stroke individuals. Malfunction of intersegmental pathways could contribute to abnormal timing of leg extensors during the stance phase of gait in hemiparetic individuals.
Collapse
Affiliation(s)
- Joseph-Omer Dyer
- Centre de recherche interdisciplinaire en réadaptation, Institut de réadaptation Gingras-Lindsay de Montréal, Montréal, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol 2014; 126:997-1006. [PMID: 25449559 DOI: 10.1016/j.clinph.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We sought to determine the therapeutic effect of robotic-assisted step training (RAST) on neuromuscular abnormalities associated with spasticity by characterization of their recovery patterns in people with spinal cord injury (SCI). METHODS Twenty-three motor-incomplete SCI subjects received one-hour RAST sessions three times per week for 4 weeks, while an SCI control group received no training. Neuromuscular properties were assessed using ankle perturbations prior to and during the training, and a system-identification technique quantified stretch reflex and intrinsic stiffness magnitude and modulation with joint position. Growth-mixture modeling classified subjects based on similar intrinsic and reflex recovery patterns. RESULTS All recovery classes in the RAST group presented significant (p<0.05) reductions in intrinsic and reflex stiffness magnitude and modulation with position; the control group presented no changes over time. Subjects with larger baseline abnormalities exhibited larger reductions, and over longer training periods. CONCLUSIONS Our findings demonstrate that RAST can effectively reduce neuromuscular abnormalities, with greater improvements for subjects with higher baseline abnormalities. SIGNIFICANCE Our findings suggest, in addition to its primary goal of improving locomotor patterns, RAST can also reduce neuromuscular abnormalities associated with spasticity. These findings also demonstrate that these techniques can be used to characterize neuromuscular recovery patterns in response to various types of interventions.
Collapse
Affiliation(s)
- Mehdi M Mirbagheri
- Department of Physical Medicine and Rehabilitation, Northwestern University, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, USA.
| | - Matthew W Kindig
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, USA
| | - Xun Niu
- Department of Physical Medicine and Rehabilitation, Northwestern University, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, USA
| |
Collapse
|
43
|
Suresh NL, Concepcion NS, Madoff J, Rymer WZ. Anomalous EMG-force relations during low-force isometric tasks in hemiparetic stroke survivors. Exp Brain Res 2014; 233:15-25. [PMID: 25224701 DOI: 10.1007/s00221-014-4061-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Hemispheric brain injury resulting from a stroke is often accompanied by muscle weakness in contralateral limbs. In neurologically intact subjects, appropriate motoneuronal recruitment and rate modulation are utilized to optimize muscle force production. In the present study, we sought to determine whether weakness in an affected hand muscle in stroke survivors is partially attributable to alterations in the control of muscle activation. Specifically, our goal was to characterize whether the surface EMG amplitude was systematically larger as a function of (low) force in paretic hand muscles as compared to contralateral muscles in the same subject. We tested a multifunctional muscle, the first dorsal interosseous (FDI), in multiple directions about the second metacarpophalangeal joint in ten hemiparetic and six neurologically intact subjects. In six of the ten stroke subjects, the EMG-force slope was significantly greater on the affected side as compared to the contralateral side, as well as compared to neurologically intact subjects. An unexpected set of results was a nonlinear relation between recorded EMG and generated force commonly observed in the paretic FDI, even at very low-force levels. We discuss possible experimental as well as physiological factors that may contribute to an increased EMG-force slope, concluding that changes in motor unit (MU) control are the most likely reasons for the observed changes.
Collapse
Affiliation(s)
- Nina L Suresh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E Superior Street, Room 1378, Chicago, IL, 60611, USA,
| | | | | | | |
Collapse
|
44
|
Mottram CJ, Heckman CJ, Powers RK, Rymer WZ, Suresh NL. Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors. J Neurophysiol 2014; 111:2017-28. [PMID: 24572092 DOI: 10.1152/jn.00389.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing.
Collapse
Affiliation(s)
- C J Mottram
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois;
| | - C J Heckman
- Departments of Physiology, Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - R K Powers
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington; and
| | - W Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - N L Suresh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| |
Collapse
|
45
|
van Kordelaar J, van Wegen E, Kwakkel G. Impact of Time on Quality of Motor Control of the Paretic Upper Limb After Stroke. Arch Phys Med Rehabil 2014; 95:338-44. [DOI: 10.1016/j.apmr.2013.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
|
46
|
Krishnan C, Ranganathan R, Kantak SS, Dhaher YY, Rymer WZ. Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimul 2014; 7:443-50. [PMID: 24582369 DOI: 10.1016/j.brs.2014.01.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/11/2014] [Accepted: 01/25/2014] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is known to reliably alter motor cortical excitability in a polarity dependent fashion such that anodal stimulation increases cortical excitability and cathodal stimulation inhibits cortical excitability. However, the effect of tDCS on agonist and antagonist volitional muscle activation is currently not known. OBJECTIVE This study investigated the effect of motor cortical anodal tDCS on EMG/force relationships of biceps brachii (agonist) and triceps brachii (antagonist) using surface electromyography (EMG). METHODS Eighteen neurologically intact adults (9 tDCS and 9 controls) participated in this study. EMG/force relationships were established by having subjects perform submaximal isometric contractions at several force levels (12.5%, 25%, 37.5%, and 50% of maximum). RESULTS Results showed that anodal tDCS significantly affected the EMG/force relationship of the biceps brachii muscle. Specifically, anodal tDCS increased the magnitude of biceps brachii activation at 37.5% and 50% of maximum. Anodal tDCS also resulted in an increase in the peak force and EMG values during maximal contractions as compared to the control condition. EMG analyses of other elbow muscles indicated that the increase in biceps brachii activation after anodal tDCS was not related to alterations in synergistic or antagonistic muscle activity. CONCLUSIONS Our results indicate that anodal tDCS significantly affects the voluntary EMG/force relationship of the agonist muscles without altering the coactivation of the antagonistic muscles. The most likely explanation for the observed greater EMG per unit force after anodal tDCS appears to be related to alterations in motor unit recruitment strategies.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Rajiv Ranganathan
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shailesh S Kantak
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yasin Y Dhaher
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
47
|
Zhou P, Li X, Rymer WZ. EMG-force relations during isometric contractions of the first dorsal interosseous muscle after stroke. Top Stroke Rehabil 2014; 20:537-44. [PMID: 24273301 DOI: 10.1310/tsr2006-537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study examines the electromyogram (EMG)-force relations observed in the first dorsal interosseous (FDI) muscle of hemiparetic stroke survivors. METHODS Fourteen stroke subjects were instructed to perform different levels of index finger abduction using their paretic and contralateral hands, respectively. Surface EMG and force signals were recorded from the FDI muscle. The EMG-force relation was constructed using linear regression of the EMG amplitude and force measurements. RESULTS We found that there were diverse changes in the slope of the EMG-force relations in paretic muscles compared with contralateral muscles, with significant increases and decreases being observed relative to the contralateral side. Regression analysis did not verify strong correlations between the ratio of paretic and contralateral muscle EMG-force slopes and any clinical parameters. CONCLUSIONS These findings suggest that there appear to be different types of processes (eg, motor unit control property changes, muscle fiber atrophy, spinal motoneuron degeneration, muscle fiber reinnervation, etc) at work post stroke that may impact the EMG-force relations and that may be present in varying degree in any given stroke survivor.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Biomedical Engineering, University of Science and Technology of China, Hefei, China Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, USA Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
48
|
Motoneurone afterhyperpolarisation time-course following stroke. Clin Neurophysiol 2013; 125:544-51. [PMID: 24074627 DOI: 10.1016/j.clinph.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Our aim was to investigate any changes in the estimated time-course of the afterhyperpolarisation (AHP) in motoneurones innervating the tibialis anterior following stroke, with a secondary objective to compare the results from two different AHP estimation techniques. METHODS Motor units from tibialis anterior on the paretic and non-paretic sides of 15 subjects with chronic stroke were recorded using intramuscular electrodes during voluntary isometric contraction. Participants varied the motor unit firing rate from its lowest rate to approximately 10 Hz. The AHP duration was estimated using the interval death rate (IDR) and transition point methods. RESULTS The AHP decay time-constant was significantly different between sides (paretic: 41.7 ± 8.5 ms, non-paretic: 36.2 ± 6.4 ms). Additionally, the paretic AHP time-constant was significantly longer in participants with low motor recovery (45.9 ± 9.1 ms) than with high motor recovery (39.3 ± 10.0 ms) as measured by CMSA score. The AHP estimates from the two techniques were correlated (r=0.78). CONCLUSIONS The AHP time-course prolongation on the paretic side of people with chronic stroke is more pronounced in people with low motor recovery. SIGNIFICANCE Changes in the motoneurone AHP time course post-stroke were related to muscle function and may play a role in the commonly-observed reduction of motor unit discharge rate during voluntary contractions following stroke.
Collapse
|
49
|
Fotiadis F, Grouios G, Ypsilanti A, Hatzinikolaou K. Hemiplegic shoulder syndrome: possible underlying neurophysiological mechanisms. PHYSICAL THERAPY REVIEWS 2013. [DOI: 10.1179/108331905x43445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
50
|
Busse M, Wiles C, van Deursen RW. Muscle co-activation in neurological conditions. PHYSICAL THERAPY REVIEWS 2013. [DOI: 10.1179/108331905x78915] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|