1
|
Persson NDÅ, Lohela TJ, Mortensen KN, Rosenholm M, Li Q, Weikop P, Nedergaard M, Lilius TO. Anesthesia Blunts Carbon Dioxide Effects on Glymphatic Cerebrospinal Fluid Dynamics in Mechanically Ventilated Rats. Anesthesiology 2024; 141:338-352. [PMID: 38787687 DOI: 10.1097/aln.0000000000005039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND Impaired glymphatic clearance of cerebral metabolic products and fluids contribute to traumatic and ischemic brain edema and neurodegeneration in preclinical models. Glymphatic perivascular cerebrospinal fluid flow varies between anesthetics possibly due to changes in vasomotor tone and thereby in the dynamics of the periarterial cerebrospinal fluid (CSF)-containing space. To better understand the influence of anesthetics and carbon dioxide levels on CSF dynamics, this study examined the effect of periarterial size modulation on CSF distribution by changing blood carbon dioxide levels and anesthetic regimens with opposing vasomotor influences: vasoconstrictive ketamine-dexmedetomidine (K/DEX) and vasodilatory isoflurane. METHODS End-tidal carbon dioxide (ETco2) was modulated with either supplemental inhaled carbon dioxide to reach hypercapnia (Etco2, 80 mmHg) or hyperventilation (Etco2, 20 mmHg) in tracheostomized and anesthetized female rats. Distribution of intracisternally infused radiolabeled CSF tracer 111In-diethylamine pentaacetate was assessed for 86 min in (1) normoventilated (Etco2, 40 mmHg) K/DEX; (2) normoventilated isoflurane; (3) hypercapnic K/DEX; and (4) hyperventilated isoflurane groups using dynamic whole-body single-photon emission tomography. CSF volume changes were assessed with magnetic resonance imaging. RESULTS Under normoventilation, cortical CSF tracer perfusion, perivascular space size around middle cerebral arteries, and intracranial CSF volume were higher under K/DEX compared with isoflurane (cortical maximum percentage of injected dose ratio, 2.33 [95% CI, 1.35 to 4.04]; perivascular size ratio 2.20 [95% CI, 1.09 to 4.45]; and intracranial CSF volume ratio, 1.90 [95% CI, 1.33 to 2.71]). Under isoflurane, tracer was directed to systemic circulation. Under K/DEX, the intracranial tracer distribution and CSF volume were uninfluenced by hypercapnia compared with normoventilation. Intracranial CSF tracer distribution was unaffected by hyperventilation under isoflurane despite a 28% increase in CSF volume around middle cerebral arteries. CONCLUSIONS K/DEX and isoflurane overrode carbon dioxide as a regulator of CSF flow. K/DEX could be used to preserve CSF space and dynamics in hypercapnia, whereas hyperventilation was insufficient to increase cerebral CSF perfusion under isoflurane. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Niklas Daniel Åke Persson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terhi J Lohela
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care and Pain Medicine, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kristian Nygaard Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianliang Li
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Tuomas O Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Emergency Medicine and Services, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Carr JMJR, Caldwell HG, Carter H, Smith K, Tymko MM, Green DJ, Ainslie PN, Hoiland RL. The stability of cerebrovascular CO 2 reactivity following attainment of physiological steady-state. Exp Physiol 2021; 106:2542-2555. [PMID: 34730862 DOI: 10.1113/ep089982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? During a steady-state cerebrovascular CO2 reactivity test, do different data extraction time points change the outcome for cerebrovascular CO2 reactivity? What is the main finding and its importance? Once steady-state end-tidal pressure of CO2 and haemodynamics were achieved, cerebral blood flow was stable, and so cerebrovascular CO2 reactivity values remained unchanged regardless of data extraction length (30 vs. 60 s) and time point (at 2-5 min). ABSTRACT This study assessed cerebrovascular CO2 reactivity (CVR) and examined data extraction time points and durations with the hypotheses that: (1) there would be no difference in CVR values when calculated with cerebral blood flow (CBF) measures at different time points following the attainment of physiological steady-state, (2) once steady-state was achieved there would be no difference in CVR values derived from 60 to 30 s extracted means, and (3) that changes in V ̇ E would not be associated with any changes in CVR. We conducted a single step iso-oxic hypercapnic CVR test using dynamic end-tidal forcing (end-tidal P C O 2 , +9.4 ± 0.7 mmHg), and transcranial Doppler and Duplex ultrasound of middle cerebral artery (MCA) and internal carotid artery (ICA), respectively. From the second minute of hypercapnia onwards, physiological steady-state was apparent, with no subsequent changes in end-tidal P C O 2 , P O 2 or mean arterial pressure. Therefore, CVR measured in the ICA and MCA was stable following the second minute of hypercapnia onwards. Data extraction durations of 30 or 60 s did not give statistically different CVR values. No differences in CVR were detected following the second minute of hypercapnia after accounting for mean arterial pressure via calculated conductance or covariation of mean arterial pressure. These findings demonstrate that, provided the P C O 2 stimulus remains in a steady-state, data extracted from any minute of a CVR test during physiological steady-state conditions produce equivalent CVR values; any change in the CVR value would represent a failure of CVR mechanisms, a change in the magnitude of the stimulus, or measurement error.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Howard Carter
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Kurt Smith
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory (CHEERS), School of Exercise Science and Physical Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Canada
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaborations on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
4
|
McAvoy MP, Tagliazucchi E, Laufs H, Raichle ME. Human non-REM sleep and the mean global BOLD signal. J Cereb Blood Flow Metab 2019; 39:2210-2222. [PMID: 30073858 PMCID: PMC6827126 DOI: 10.1177/0271678x18791070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/27/2018] [Indexed: 12/28/2022]
Abstract
A hallmark of non-rapid eye movement (REM) sleep is the decreased brain activity as measured by global reductions in cerebral blood flow, oxygen metabolism, and glucose metabolism. It is unknown whether the blood oxygen level dependent (BOLD) signal undergoes similar changes. Here we show that, in contrast to the decreases in blood flow and metabolism, the mean global BOLD signal increases with sleep depth in a regionally non-uniform manner throughout gray matter. We relate our findings to the circulatory and metabolic processes influencing the BOLD signal and conclude that because oxygen consumption decreases proportionately more than blood flow in sleep, the resulting decrease in paramagnetic deoxyhemoglobin accounts for the increase in mean global BOLD signal.
Collapse
Affiliation(s)
- Mark P McAvoy
- Department of Radiology, Washington University, Saint Louis, MO, USA
| | - Enzo Tagliazucchi
- PICNIC Lab, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Helmut Laufs
- Department of Neurology, Brain Imaging Center, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
- Department of Neurology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marcus E Raichle
- Department of Radiology, Washington University, Saint Louis, MO, USA
- Alan and Edith L. Wolff Distinguished Professor of Medicine, Washington University, Saint Louis, MO, USA
| |
Collapse
|
5
|
Abstract
UNLABELLED The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by "retention" of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. SIGNIFICANCE STATEMENT The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain.
Collapse
|
6
|
Haubrich C, Steiner LA, Diehl RR, Kasprowicz M, Smielewski P, Pickard JD, Czosnyka M. Doppler flow velocity and intra-cranial pressure: responses to short-term mild hypocapnia help to assess the pressure-volume relationship after head injury. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1521-6. [PMID: 23830102 DOI: 10.1016/j.ultrasmedbio.2013.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
To anticipate an increase in intra-cranial pressure (ICP), information about pressure-volume (p/v) compliance is required. ICP monitoring often fails at this task after head injury. Could a test that transiently shifts intra-cranial blood volume produce consistent information about the p/v relationship? Doppler flow velocities in the middle cerebral arteries (left: 80.8 ± 34.7 cm/s; right: 65.9 ± 28.0 cm/s) and ICP (16.4 ± 6.7 mm Hg) were measured in 29 patients with head injury, before and during moderate hypocapnia (4.4 ± 3.0 kPa). The ratio of vasomotor response to change in ICP differed between those with high (left: 14.8 ± 6.9, right: 14.4 ± 6.6 cm/s/kPa/mm Hg) and low (left: 1.8 ± 0.6, right: 2.2 ± 0.9 cm/s/kPa/mm g) intra-cranial compliance. Additionally, the ratio identified 12 patients deviating from the classic non-linear p/v curve (left: 5.7 ± 1.3, right: 5.8 ± 1.0 cm/s/kPa/mm Hg). They exhibited an almost proportional relationship between vasomotor and ICP responses (R = 0.69, p < 0.01). Results suggest that a test that combines the responses of two intra-cranial compartments may provide consistent information about intra-cranial p/v compliance, even if the parameters derived from ICP monitoring are inconclusive.
Collapse
Affiliation(s)
- Christina Haubrich
- Department of Academic Neurosurgery, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Thomas BP, Liu P, Aslan S, King KS, van Osch MJP, Lu H. Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles. Neuroimage 2013; 83:505-12. [PMID: 23851322 DOI: 10.1016/j.neuroimage.2013.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/23/2013] [Accepted: 07/02/2013] [Indexed: 12/21/2022] Open
Abstract
With a growing need for specific biomarkers in vascular diseases, there has been a surging interest in mapping cerebrovascular reactivity (CVR) of the brain. This index can be measured by conducting a hypercapnia challenge while acquiring blood-oxygenation-level-dependent (BOLD) signals. A BOLD signal increase with hypercapnia is the expected outcome and represents the majority of literature reports; in this work we report an intriguing observation of an apparently negative BOLD CVR response at 3T, during inhalation of 5% CO2 with balance medical air. These "negative-CVR" clusters were specifically located in the ventricular regions of the brain, where CSF is abundant and results in an intense baseline signal. The amplitude of the CVR response was -0.51±0.44% (N=14, age 26±4 years). We hypothesized that this observation might not be due to a decrease in oxygenation but rather a volume effect in which bright CSF signal is replaced by a less intensive blood signal as a result of vasodilation. To test this, we performed an inversion-recovery (IR) experiment to suppress the CSF signal (N=10, age 27±5 years). This maneuver in imaging sequence reversed the sign of the signal response (to 0.66±0.25%), suggesting that the volume change was the predominant reason for the apparently negative CVR in the BOLD experiment. Further support of this hypothesis was provided by a BOLD hyperoxia experiment, in which no voxels showed a negative response, presumably because vasodilation is not usually associated with this challenge. Absolute CBF response to hypercapnia was measured in a new group of subjects (N=8, age 29±7 years) and it was found that CBF in ventricular regions increased by 48% upon CO2 inhalation, suggesting that blood oxygenation most likely increased rather than decreased. The findings from this study suggest that CO2 inhalation results in the dilation of ventricular vessels accompanied by shrinkage in CSF space, which is responsible for the apparently negative CVR in brain ventricles.
Collapse
Affiliation(s)
- Binu P Thomas
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Biomedical Engineering Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioengineering, UT Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | |
Collapse
|
8
|
Impact of protein binding on receptor occupancy: a two-compartment model. J Theor Biol 2010; 265:657-71. [PMID: 20561976 DOI: 10.1016/j.jtbi.2010.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/22/2022]
Abstract
In this paper we analyse the impact of protein-, lipid- and receptor-binding on receptor occupancy in a two-compartment system, with proteins in both compartments and lipids and receptors in the peripheral compartment only. We do this for two manners of drug administration: a bolus administration and a constant rate infusion, both into the central compartment. We derive explicit approximations for the time-curves of the different compounds valid for a wide range of realistic values of rate constants and initial concentrations of proteins, lipids, receptors and the drug. These approximations are used to obtain both qualitative and quantitative insight into such critical properties as the distribution of the drug over the two compartments, the maximum receptor occupancy and the area under the drug-receptor complex curve. In particular we focus on assessing the impact of the dissociation constants, K(P), K(L) and K(R) of the drug with, respectively, the proteins, the lipids and the receptors, the permeability and the surface area of the membrane between compartments, and the rate the drug is eliminated from the system.
Collapse
|
9
|
Abstract
Spontaneous intracranial hypotension (SIH) is typically manifested by orthostatic headaches that may be associated with one or more of several other symptoms, including pain or stiffness of the neck, nausea, emesis, horizontal diplopia, dizziness, change in hearing, visual blurring or visual field cuts, photophobia, interscapular pain, and occasionally face numbness or weakness or radicular upper-limb symptoms. Cerebrospinal fluid (CSF) pressures, by definition, are quite low. SIH almost invariably results from a spontaneous CSF leak. Only very infrequently is this leak at the skull base (cribriform plate). In the overwhelming majority of patients, the leak is at the level of the spine, particularly the thoracic spine and cervicothoracic junction. Sometimes, documented leaks and typical clinical and imaging findings of SIH are associated with CSF pressures that are consistently within limits of normal. Magnetic resonance imaging of the head typically shows diffuse pachymeningeal gadolinium enhancement, often with imaging evidence of sinking of the brain, and less frequently with subdural fluid collections, engorged cerebral venous sinuses, enlarged pituitary gland, or decreased size of the ventricles. Radioisotope cisternography typically shows absence of activity over the cerebral convexities, even at 24 or 48 hours, and early appearance of activity in the kidneys and urinary bladder, and may sometimes reveal the level of the leak. Although various treatment modalities have been implemented, epidural blood patch is probably the treatment of choice in patients who have failed an initial trial of conservative management. When adequate trials of epidural blood patches fail, surgery can offer encouraging results in selected cases in which the site of the leak has been identified. Some of the spontaneous CSF leaks are related to weakness of the meningeal sac, likely in connection with a connective tissue abnormality.
Collapse
Affiliation(s)
- B Mokri
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Abstract
Spontaneous intracranial hypotension (SIH) is typically manifested by orthostatic headaches that may be associated with one or more of several other symptoms, including pain or stiffness of the neck, nausea, emesis, horizontal diplopia, dizziness, change in hearing, visual blurring or visual field cuts, photophobia, interscapular pain, and occasionally face numbness or weakness or radicular upper-limb symptoms. Cerebrospinal fluid (CSF) pressures, by definition, are quite low. SIH almost invariably results from a spontaneous CSF leak. Only very infrequently is this leak at the skull base (cribriform plate). In the overwhelming majority of patients, the leak is at the level of the spine, particularly the thoracic spine and cervicothoracic junction. Sometimes, documented leaks and typical clinical and imaging findings of SIH are associated with CSF pressures that are consistently within limits of normal. Magnetic resonance imaging of the head typically shows diffuse pachymeningeal gadolinium enhancement, often with imaging evidence of sinking of the brain, and less frequently with subdural fluid collections, engorged cerebral venous sinuses, enlarged pituitary gland, or decreased size of the ventricles. Radioisotope cisternography typically shows absence of activity over the cerebral convexities, even at 24 or 48 hours, and early appearance of activity in the kidneys and urinary bladder, and may sometimes reveal the level of the leak. Although various treatment modalities have been implemented, epidural blood patch is probably the treatment of choice in patients who have failed an initial trial of conservative management. When adequate trials of epidural blood patches fail, surgery can offer encouraging results in selected cases in which the site of the leak has been identified. Some of the spontaneous CSF leaks are related to weakness of the meningeal sac, likely in connection with a connective tissue abnormality.
Collapse
Affiliation(s)
- B Mokri
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Abstract
Cerebrospinal fluid (CSF) volume depletion, due to CSF leakage or CSF shunt overdrainage, is typically indicated when patients present with orthostatic headaches, with or without several other symptoms: neck or interscapular pain, nausea, emesis, diplopia, changes in hearing, visual blurring, facial numbness or weakness, and radicular upper-limb symptoms. Cerebrospinal fluid pressures typically are quite low and head magnetic resonance images typically reveal diffuse pachymeningeal gadolinium enhancement, with or without evidence of sagging of the brain and less frequently with subdural fluid collections, enlarged cerebral venous sinuses or pituitary gland or decreased ventricular size. Magnetic resonance imaging has revolutionized detection of spontaneous CSF leaks, leading to identification of far more cases and recognition of several clinical/imaging forms of presentation of the disorder. These forms, which are different from the "typical" presentation, include a group with consistently normal CSF pressures (normal pressure), another group without abnormal meningeal enhancement (normal meninges), and a group without headache (acephalic). Each of these forms can be seen in a setting of documented and ongoing CSF volume depletion. Awareness of CSF volume depletion is increasing, and its clinical and imaging spectrum is broadening.
Collapse
Affiliation(s)
- B Mokri
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
12
|
Grant R, Condon B, Hart I, Teasdale GM. Changes in intracranial CSF volume after lumbar puncture and their relationship to post-LP headache. J Neurol Neurosurg Psychiatry 1991; 54:440-2. [PMID: 1865208 PMCID: PMC488545 DOI: 10.1136/jnnp.54.5.440] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Post-lumbar puncture (LP) headache may be due to "low CSF pressure", leading to stretching of pain sensitive intracranial structures. The low intracranial pressure is secondary to net loss of intracranial CSF. It has, however, not been possible to measure intracranial CSF volume accurately during life until recently. Intracranial CSF volume can now be measured non-invasively by a MRI technique. The changes in intracranial CSF volume were studied in 20 patients who had LP. Total intracranial CSF volume was reduced in 19 of the 20 patients 24 hours after LP (range -1.8 mls to -158.6 mls). Most of the CSF was lost from the cortical sulci. Very large reductions in intracranial CSF volume were frequently related to post-LP headache but some patients developed headache with relatively little alteration in the intracranial CSF volume. There was not a measurable change in position of the intracranial structures following LP.
Collapse
Affiliation(s)
- R Grant
- University Department of Neurosurgery, Southern General Hospital, Glasgow, UK
| | | | | | | |
Collapse
|
13
|
Ashwal S, Stringer W, Tomasi L, Schneider S, Thompson J, Perkin R. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis. J Pediatr 1990; 117:523-30. [PMID: 2120412 DOI: 10.1016/s0022-3476(05)80683-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We examined total and regional cerebral blood flow (CBF) by stable xenon computed tomography in 20 seriously ill children with acute bacterial meningitis to determine whether CBF was reduced and to examine the changes in CBF during hyperventilation. In 13 children, total CBF was normal (62 +/- 20 ml/min/100 gm) but marked local variability of flow was seen. In five other children, total CBF was significantly reduced (26 +/- 10 ml/min/100 gm; p less than 0.05), with flow reduced more in white matter (8 +/- 5 ml/min/100 gm) than in gray matter (30 +/- 15 ml/min/100 gm). Autoregulation of CBF appeared to be present in these 18 children within a range of mean arterial blood pressure from 56 to 102 mm Hg. In the remaining two infants, brain dead within the first 24 hours, total flow was uniformly absent, averaging 3 +/- 3 ml/min/100 gm. In seven children, CBF was determined at two carbon dioxide tension (PCO2) levels: 40 (+/- 3) mm Hg and 29 (+/- 3) mm Hg. In six children, total CBF decreased 33%, from 52 (+/- 25) to 35 (+/- 15) ml/min/100 gm; the mean percentage of change in CBF per millimeter of mercury of PCO2 was 3.0%. Regional variability of perfusion to changes in PCO2 was marked in all six children. The percentage of change in CBF per millimeter of mercury of PCO2 was similar in frontal gray matter (3.1%) but higher in white matter (4.5%). In the seventh patient a paradoxical response was observed; total and regional CBF increased 25% after hyperventilation. Our findings demonstrate that (1) CBF in children with bacterial meningitis may be substantially decreased globally, with even more variability noted regionally, (2) autoregulation of CBF is preserved, (3) CBF/CO2 responsitivity varies among patients and in different regions of the brain in the same patient, and (4) hyperventilation can reduce CBF below ischemic thresholds.
Collapse
Affiliation(s)
- S Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, California 92350
| | | | | | | | | | | |
Collapse
|
14
|
Teasdale GM, Grant R, Condon B, Patterson J, Lawrence A, Hadley DM, Wyper D. Intracranial CSF volumes: natural variations and physiological changes measured by MRI. ACTA NEUROCHIRURGICA. SUPPLEMENTUM 1988; 42:230-5. [PMID: 3189015 DOI: 10.1007/978-3-7091-8975-7_45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cranial CSF volumes, for the first time including CSF in the subarachnoid space, can be measured by Magnetic Resonance Imaging (MRI). The MRI sequence causes signal from the grey matter and white matter to cancel producing a contrast of 200: 1 between a unit of CSF and a unit of brain. We have assessed the variations between normal individuals and investigated some of the physiological factors that might influence cranial CSF volumes. Total CSF volumes were measured in 64 normal subjects, aged from 18-64 years (mean 38 years). Ventricular, cortical sulcal and posterior fossa volumes were also calculated separately. In 20 females with a normal menstrual cycle, CSF volumes were measured mid cycle and premenstrually; 10 post menopausal females and 10 males were rescanned after an interval of 2 weeks. Total cranial CSF volume were calculated before and during inhalation of 7% CO2 and before and during hyperventilation while breathing 60% O2, in 12 normal subjects. Total intracranial CSF volume ranged from 57.1-286.5 ml. Total intracranial and cortical sulcal CSF volumes increased more steeply with age than ventricular or posterior fossa CSF volumes. Males had more cranial CSF than females. Total CSF volume increased premenstrually in 19 females. Males and post-menopausal females did not have a significant change in CSF volume, on repeat examination. CO2 inhalation produced a mean increase of paCO2 of 17.2 mmHg and CSF volume decreased in all subjects (mean 9.4 ml). Cranial CSF volume increased in 11 subjects during O2 inhalation (range -0.5 to +26.7 ml mean 10.9 ml).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G M Teasdale
- Institute of Neurological Sciences, Southern General Hospital, Glasgow, U.K
| | | | | | | | | | | | | |
Collapse
|