1
|
|
2
|
Nomura S, Inoue T, Imoto H, Suehiro E, Maruta Y, Hirayama Y, Suzuki M. Effects of focal brain cooling on extracellular concentrations of neurotransmitters in patients with epilepsy. Epilepsia 2017; 58:627-634. [PMID: 28225164 DOI: 10.1111/epi.13704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Brain hypothermia controls epileptic discharge and reduces extracellular concentrations of glutamate (Glu), an excitatory neurotransmitter. We aimed to determine the effects of focal brain cooling (FBC) on levels of γ-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. The relationship between Glu or GABA concentrations and the severity of epileptic symptoms was also analyzed. METHODS Patients with intractable epilepsy underwent FBC at lesionectomized (n = 11) or hippocampectomized (n = 8) regions at 15°C for 30 min using custom-made cooling devices. Concentrations of Glu (n = 18) and GABA (n = 12) were measured in extracellular fluid obtained through microdialysis using high-performance liquid chromatography (HPLC). The reduction rate of neurotransmitter levels and its relationship with electrocorticography (ECoG) signal changes in response to FBC were measured. RESULTS We found no relationship between the concentrations of Glu or GABA and seizure severity. There was a significant decrease in the concentration of Glu to 66.3% of control levels during the cooling period (p = 0.001). This rate of reduction correlated with ECoG power (r2 = 0.68). Cortical and hippocampal GABA levels significantly (p = 0.02) and nonsignificantly decreased to 47.7% and 32.4% of control levels, respectively. However, the rate of this reduction did not correlate with ECoG (r2 = 0.11). SIGNIFICANCE Although the decrease in hippocampal GABA levels was not significant due to wide variations in its concentration, the levels of cortical GABA and Glu were decreased following FBC. FBC suppresses epileptic discharge and the release of both excitatory and inhibitory neurotransmitters. The reduction in Glu levels further contributes to the reduction in epileptic discharge. However, the reduction in the levels of GABA has no impact on ECoG.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Takao Inoue
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuya Hirayama
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| |
Collapse
|
3
|
Mosca MS, Justison G, Reece TB. A Clinical Protocol for Goal Directed Cerebral Perfusion during Aortic Arch Surgery. Semin Cardiothorac Vasc Anesth 2016; 20:289-297. [PMID: 27742818 DOI: 10.1177/1089253216672854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The optimal strategy to deliver antegrade cerebral perfusion for cerebral protection during hypothermic circulatory arrest has not been established. The purpose of this review was to present our current clinical protocol utilizing selective antegrade cerebral perfusion during aortic arch surgery and to compare it to other published experience. CLINICAL PROTOCOL Since 2013, our clinical protocol for aortic arch surgery has evolved to using selective antegrade cerebral perfusion via the innominate artery, moderate hypothermia, and ancillary strategies such as goal-directed perfusion (GDP). Other published techniques favored antegrade cerebral perfusion but were limited by smaller cannulae, multiple cannulation sites, and lower cooling temperatures. CONCLUSION Our clinical protocol may offer higher flow rates, avoid complications associated with additional cannulae, and provide an easy setup for dual arterial perfusion. Additionally, GDP has enhanced our understanding of metabolic physiology and may facilitate the development of a better cerebral protection strategy.
Collapse
|
4
|
Schiefecker AJ, Beer R, Broessner G, Kofler M, Schmutzhard E, Helbok R. Can Therapeutic Hypothermia Be Guided by Advanced Neuromonitoring in Neurocritical Care Patients? A Review. Ther Hypothermia Temp Manag 2015; 5:126-34. [PMID: 25875898 DOI: 10.1089/ther.2014.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The impact of therapeutic hypothermia (TH) on long-term neurological outcome is still controversial. Data on the effects of TH on brain homeostasis are mostly derived from experimental research. Invasive multimodal neuromonitoring techniques may provide additional insight into pathophysiological changes associated with primary or secondary brain injury in humans. In this study we describe the principles of multimodal neuromonitoring and its potential in the clinical setting of TH. We call for more research using multimodal neuromonitoring techniques in patients undergoing TH to optimize cooling and rewarming strategies.
Collapse
Affiliation(s)
- Alois Josef Schiefecker
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Ronny Beer
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Gregor Broessner
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Mario Kofler
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Erich Schmutzhard
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Raimund Helbok
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
5
|
Algarni KD, Yanagawa B, Rao V, Yau TM. Profound hypothermia compared with moderate hypothermia in repair of acute type A aortic dissection. J Thorac Cardiovasc Surg 2014; 148:2888-94. [DOI: 10.1016/j.jtcvs.2014.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/02/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
6
|
Nomura S, Fujii M, Inoue T, He Y, Maruta Y, Koizumi H, Suehiro E, Imoto H, Ishihara H, Oka F, Matsumoto M, Owada Y, Yamakawa T, Suzuki M. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans. Epilepsia 2014; 55:770-776. [PMID: 24779587 DOI: 10.1111/epi.12600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. METHODS Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. RESULTS Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. SIGNIFICANCE FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bossers SM, de Boer RDH, Boer C, Peerdeman SM. The diagnostic accuracy of brain microdialysis during surgery: a qualitative systematic review. Acta Neurochir (Wien) 2013; 155:345-53. [PMID: 23275069 DOI: 10.1007/s00701-012-1582-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Monitoring of brain function and metabolism during surgery may be of benefit for patient outcome. Microdialysis is the only sampling technique to date that allows continuous monitoring of drug or metabolite concentrations in the extracellular fluid of multiple tissues in the brain. This qualitative systematic review aimed to determine whether microdialysis is a valid tool for detecting changes in tissue composition as would be expected upon changes in (induced) tissue metabolic composition during brain surgery. METHODS A systematic review was conducted by performing a MEDLINE search using the terms "Intraoperative Period" (Medical Subject Heading [MeSH]) OR "Surgery" [Subheading] OR "Monitoring, Intraoperative" [MeSH] AND "Microdialysis" [MeSH] AND "Brain" [MeSH]. Two reviewers independently assessed the methodological quality of the studies. For each study the grades of recommendation were determined. RESULTS The search strategy yielded 46 publications in Medline. Data extraction was performed on 16 studies. The methodological quality of studies was low, with overall scores of 4 or 5. A quantitative analysis could not be performed because of lack of sufficient data. A qualitative analysis was positive with regard to the detection of different states of tissue composition by microdialysis. However, the levels of recommendation on the outcome statements were low, resulting in a grade D level of recommendation on all statements. CONCLUSIONS The available evidence for the validity of cerebral microdialysis as a diagnostic tool during brain surgery is of low scientific quality. In order to develop cerebral microdialysis as a valid instrument for monitoring of brain metabolism during surgery, standardised clinical prospective studies in homogeneous patient populations are required.
Collapse
|
8
|
Chan KWY, Chow AM, Chan KC, Yang J, Wu EX. Magnetic resonance spectroscopy of the brain under mild hypothermia indicates changes in neuroprotection-related metabolites. Neurosci Lett 2010; 475:150-5. [PMID: 20362032 DOI: 10.1016/j.neulet.2010.03.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/25/2022]
Abstract
Brain hypothermia has demonstrated pronounced neuroprotective effect in patients with cardiac arrest, ischemia and acute liver failure. However, its underlying neuroprotective mechanisms remain to be elucidated in order to improve therapeutic outcomes. Single voxel proton magnetic resonance spectroscopy ((1)H-MRS) was performed using a 7 Tesla MRI scanner on normal Sprague-Dawley rats (N=8) in the same voxel under normothermia (36.5 degrees C) and 30min mild hypothermia (33.5 degrees C). Levels of various brain proton metabolites were compared. The level of lactate (Lac) and myo-inositol (mI) increased in the cortex during hypothermia. In the thalamus, taurine (Tau), a cryogen in brain, increased and choline (Cho) decreased. These metabolic alterations indicated the onset of a number of neuroprotective processes that include attenuation of energy metabolism, excitotoxic pathways, brain osmolytes and thermoregulation, thus protecting neuronal cells from damage. These experimental findings demonstrated that (1)H-MRS can be applied to investigate the changes of specific metabolites and corresponding neuroprotection mechanisms in vivo noninvasively, and ultimately improve our basic understanding of hypothermia and ability to optimize its therapeutic efficacy.
Collapse
Affiliation(s)
- Kannie W Y Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
9
|
Al-Rawi PG, Tseng MY, Richards HK, Nortje J, Timofeev I, Matta BF, Hutchinson PJ, Kirkpatrick PJ. Hypertonic saline in patients with poor-grade subarachnoid hemorrhage improves cerebral blood flow, brain tissue oxygen, and pH. Stroke 2009; 41:122-8. [PMID: 19910550 DOI: 10.1161/strokeaha.109.560698] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Delayed cerebral ischemia and infarction due to reduced CBF remains the leading cause of poor outcome after aneurysmal subarachnoid hemorrhage. Hypertonic saline (HS) is associated with an increase in CBF. This study explores whether CBF enhancement with HS in patients with poor-grade subarachnoid hemorrhage is associated with improved cerebral tissue oxygenation. METHODS Continuous monitoring of arterial blood pressure, intracranial pressure, cerebral perfusion pressure, brain tissue oxygen, carbon dioxide, pH, and middle cerebral artery flow velocity was performed in 44 patients. Patients were given an infusion (2 mL/kg) of 23.5% HS. In 16 patients, xenon CT scanning was also performed. CBF in a region surrounding the tissue oxygen sensor was calculated. Data are mean+/-SD. RESULTS Thirty minutes postinfusion, a significant increase in arterial blood pressure, cerebral perfusion pressure, flow velocity, brain tissue pH, and brain tissue oxygen was seen together with a decrease in intracranial pressure (P<0.05). Intracranial pressure remained reduced for >300 minutes and flow velocity elevated for >240 minutes. A significant increase in brain tissue oxygen persisted for 240 minutes. Average baseline regional CBF was 33.9+/-13.5 mL/100 g/min, rising by 20.3%+/-37.4% (P<0.05) after HS. Patients with favorable outcome responded better to HS in terms of increased CBF, brain tissue oxygen, and pH and reduced intracranial pressure compared with those with an unfavorable outcome. A sustained increase in brain tissue oxygen (beyond 210 minutes) was associated with favorable outcome (P<0.023). CONCLUSIONS HS augments CBF in patients with poor-grade subarachnoid hemorrhage and significantly improves cerebral oxygenation for 4 hours postinfusion. Favorable outcome is associated with an improvement in brain tissue oxygen beyond 210 minutes.
Collapse
Affiliation(s)
- Pippa G Al-Rawi
- University Department of Neurosurgery, Box 167, Level 4, A-Block, Addenbrooke's Hospital, Hills Road, Cambridge CB20QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in cerebral microdialysis for investigational and clinical neurochemical monitoring in patients with critical neurological conditions. RECENT FINDINGS Use of microdialysis with other methods, including PET, electrophysiological monitoring and brain tissue oximetry in traumatic brain injury, subarachnoid hemorrhage with vasospasm, and infarction with refractory increased intracranial pressure have been reported. Potentially adverse neurochemical effects of nonconvulsive status epilepticus and cortical slow depolarization waves, both of which are increasingly recognized in traumatic brain injury and stroke patients, have been reported. The explosive growth in the use of cerebral oximetry with targeted management of brain tissue oxygen levels is leading to greater understanding of derangements of cerebral bioenergetics in the critically ill brain, but there remain unresolved basic issues. Understanding of the analytes that are measurable at the bedside - glucose, lactate, pyruvate, glutamate and glycerol - continues to evolve with glucose, lactate, pyruvate and the lactate-pyruvate ratio taking center stage. Analytes including inflammatory biomarkers such as cytokines and metabolites of nitric oxide are presently investigational, but hold promise for future application in advancing our understanding of basic pathophysiology, therapeutic target selection and prognostication. Growing consensus on indications for use of clinical microdialysis and advances in commercially available equipment continue to make microdialysis increasingly 'ready for prime time.' SUMMARY Cerebral microdialysis is an established tool for neurochemical research in the ICU. This technique cannot be fruitfully used in isolation, but when combined with other monitoring methods provides unique insights into the biochemical and physiological derangements in the injured brain.
Collapse
|
11
|
Nordmark J, Rubertsson S, Mörtberg E, Nilsson P, Enblad P. Intracerebral monitoring in comatose patients treated with hypothermia after a cardiac arrest. Acta Anaesthesiol Scand 2009; 53:289-98. [PMID: 19243314 DOI: 10.1111/j.1399-6576.2008.01885.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Induced mild hypothermia (32-34 degrees C) has proven to reduce ischemic brain injury and improve outcome after a cardiac arrest (CA). The aim of this investigation was to study the occurrence of increased intracranial pressure (ICP) and neurochemical metabolic changes indicating cerebral ischemia, after CA and cardiopulmonary resuscitation (CPR), when induced hypothermia was applied. METHODS ICP, brain chemistry and brain temperature were monitored during induced hypothermia and re-warming in four adult unconscious patients with restoration of spontaneous circulation after CA and CPR. RESULTS ICP was occasionally above 20 mmHg. Neurochemical changes indicating cerebral ischemia (increased lactate/pyruvate ratio) and excitoxicity (increased glutamate) were found after CA, and signs of ischemia were also observed during the re-warming phase. A biphasic increase in glycerol was seen, which may have been a result of both membrane degradation and overspill from the general circulation. CONCLUSIONS Intracerebral microdialysis and ICP monitoring may be used in selected patients not requiring anticoagulants and PCI to obtain information regarding the common disturbances of intracranial dynamics after CA. The results of this study underline the importance of inducing hypothermia quickly after CA and emphasize the need for developing tools for guidance of the re-warming.
Collapse
Affiliation(s)
- J Nordmark
- Department of Surgical Sciences/Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
12
|
Percy A, Widman S, Rizzo JA, Tranquilli M, Elefteriades JA. Deep Hypothermic Circulatory Arrest in Patients With High Cognitive Needs: Full Preservation of Cognitive Abilities. Ann Thorac Surg 2009; 87:117-23. [DOI: 10.1016/j.athoracsur.2008.10.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/11/2008] [Accepted: 10/14/2008] [Indexed: 11/26/2022]
|
13
|
Ching TS, Connolly P. Simultaneous transdermal extraction of glucose and lactate from human subjects by reverse iontophoresis. Int J Nanomedicine 2008; 3:211-23. [PMID: 18686780 PMCID: PMC2527667 DOI: 10.2147/ijn.s1728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study investigated the possibility of simultaneously extracting glucose and lactate from human subjects, at the same skin location, using transdermal reverse iontophoresis. Transdermal monitoring using iontophoresis is made possible by the skin’s permeability to small molecules and the nanoporous and microporous nature of the structure of skin. The study was intended to provide information which could be used to develop a full, biosensor-based, monitoring system for multiple parameters from transdermal extraction. As a precursor to the human study, in vitro reverse iontophoresis experiments were performed in an artificial skin system to establish the optimum current waveforms to be applied during iontophoresis. In the human study, a bipolar DC current waveform (with reversal of the electrode current direction every 15 minutes) was applied to ten healthy volunteers via skin electrodes and utilized for simultaneous glucose and lactate transdermal extraction at an applied current density of 300 μA/cm2. Glucose and lactate were successfully extracted through each subject’s skin into the conducting gel that formed part of each iontophoresis electrode. The results suggest that it will be possible to noninvasively and simultaneously monitor glucose and lactate levels in patients using this approach and this could have future applications in diagnostic monitoring for a variety of medical conditions.
Collapse
|
14
|
Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 2005; 22:3-41. [PMID: 15665601 DOI: 10.1089/neu.2005.22.3] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microdialysis (MD) was introduced as an intracerebral sampling method for clinical neurosurgery by Hillered et al. and Meyerson et al. in 1990. Since then MD has been embraced as a research tool to measure the neurochemistry of acute human brain injury and epilepsy. In general investigators have focused their attention to relative chemical changes during neurointensive care, operative procedures, and epileptic seizure activity. This initial excitement surrounding this technology has subsided over the years due to concerns about the amount of tissue sampled and the complicated issues related to quantification. The interpretation of mild to moderate MD fluctuations in general remains an issue relating to dynamic changes of the architecture and size of the interstitial space, blood-brain barrier (BBB) function, and analytical imprecision, calling for additional validation studies and new methods to control for in vivo recovery variations. Consequently, the use of this methodology to influence clinical decisions regarding the care of patients has been restricted to a few institutions. Clinical studies have provided ample evidence that intracerebral MD monitoring is useful for the detection of overt adverse neurochemical conditions involving hypoxia/ischemia and seizure activity in subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), thromboembolic stroke, and epilepsy. There is some data strongly suggesting that MD changes precede the onset of secondary neurological deterioration following SAH, hemispheric stroke, and surges of increased ICP in fulminant hepatic failure. These promising investigations have relied on MD-markers for disturbed glucose metabolism (glucose, lactate, and pyruvate) and amino acids. Others have focused on trying to capture other important neurochemical events, such as excitotoxicity, cell membrane degradation, reactive oxygen species (ROS) and nitric oxide (NO) formation, cellular edema, and BBB dysfunction. However, these other applications need additional validation. Although these cerebral events and their corresponding changes in neurochemistry are important, other promising MD applications, as yet less explored, comprise local neurochemical provocations, drug penetration to the human brain, MD as a tool in clinical drug trials, and for studying the proteomics of acute human brain injury. Nevertheless, MD has provided new important insights into the neurochemistry of acute human brain injury. It remains one of very few methods for neurochemical measurements in the interstitial compartment of the human brain and will continue to be a valuable translational research tool for the future. Therefore, this technology has the potential of becoming an established part of multimodality neuro-ICU monitoring, contributing unique information about the acute brain injury process. However, in order to reach this stage, several issues related to quantification and bedside presentation of MD data, implantation strategies, and quality assurance need to be resolved. The future success of MD as a diagnostic tool in clinical neurosurgery depends heavily on the choice of biomarkers, their sensitivity, specificity, and predictive value for secondary neurochemical events, and the availability of practical bedside methods for chemical analysis of the individual markers. The purpose of this review was to summarize the results of clinical studies using cerebral MD in neurosurgical patients and to discuss the current status of MD as a potential method for use in clinical decision-making. The approach was to focus on adverse neurochemical conditions in the injured human brain and the MD biomarkers used to study those events. Methodological issues that appeared critical for the future success of MD as a routine intracerebral sampling method were addressed.
Collapse
Affiliation(s)
- Lars Hillered
- Division of Neurosurgery, Department of Surgery, The David Geffen UCLA School of Medicine, Los Angeles, California, USA.
| | | | | |
Collapse
|
15
|
Molchanova S, Kööbi P, Oja SS, Saransaari P. Interstitial concentrations of amino acids in the rat striatum during global forebrain ischemia and potassium-evoked spreading depression. Neurochem Res 2004; 29:1519-27. [PMID: 15260129 DOI: 10.1023/b:nere.0000029564.98905.5c] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The early detection and appropriate treatment of brain ischemia is of paramount importance. The interstitial concentrations of neurotransmitter amino acids are often used as an index of neuronal injury. However, monitoring of non-neurotransmitter amino acids may be equally important. We have studied the behavior of 10 amino acids during K(+)-induced spreading depression (application of 70 mM KCl during 40 min) and global forebrain ischemia (two-vessel occlusion with hypotension during 20 min). The concentrations of glutamate, aspartate, taurine, GABA, glycine, and alanine, measured in the rat striatum by microdialysis, increased during both ischemia and spreading depression, whereas glutamine concentrations decreased in both cases. Only ischemia, but not spreading depression, led to enhanced release of serine, threonine, and asparagine. We thus conclude that an elevation in the interstitial concentrations of non-neurotransmitter amino acids is specific to deep ischemic injury to nervous tissue. We propose the monitoring of serine, asparagine, and threonine, together with excitatory amino acids, as an index of the degree of ischemic brain injury.
Collapse
Affiliation(s)
- Svetlana Molchanova
- Brain Research Center, Medical School, FIN-33014 University of Tampere, Finland.
| | | | | | | |
Collapse
|
16
|
Tormo-Calandín C. Papel de la neuroprotección. Med Intensiva 2004. [DOI: 10.1016/s0210-5691(04)70037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, Kerr D, Leone P, Krystal JH, Spencer DD, During MJ, Sherwin RS. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 2002; 22:271-9. [PMID: 11891432 DOI: 10.1097/00004647-200203000-00004] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.
Collapse
Affiliation(s)
- Walid M Abi-Saab
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Berger C, Schäbitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S. Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 2002; 33:519-24. [PMID: 11823663 DOI: 10.1161/hs0102.100878] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The objective of this study was to assess the effect of therapeutic moderate hypothermia on excitatory amino acids and metabolism by applying cerebral microdialysis in patients suffering from space-occupying middle cerebral artery infarction. METHODS This was an open, prospective, observational study of 12 patients undergoing moderate hypothermia (33 degrees C) as rescue therapy for large, life-threatening middle cerebral artery infarction. Microdialysis probes were placed concomitantly with intracranial pressure (ICP) measuring devices in the frontal lobe of the infarcted and/or noninfarcted hemisphere. Using the CMA 600 Microdialysis Autoanalyzer, we analyzed glutamate, glycerol, pyruvate, and lactate. RESULTS According to follow-up cranial CT scans, 3 different compartments of microdialysis measurements could be defined. First, noninfarcted brain tissue had stable dialysate concentrations but a significant effect of hypothermia on glutamate (2.6 versus 3.6 micromol/L), lactate (1.8 versus 3 mmol/L), and pyruvate (50 versus 95.8 micromol/L). Second, measurements from peri-infarct tissue had a significant effect of hypothermia on glutamate (4.8 versus 12.6 micromol/L), glycerol (58 versus 82 micromol/L), lactate (0.7 versus 1.3 mmol/L), and pyruvate (13.3 versus 36.8 micromol/L). Third, dialysate concentrations obtained from irreversibly damaged tissue were excessive for glutamate (453 micromol/L), glycerol (1187 micromol/L), lactate (12 micromol/L), and pyruvate (4 micromol/L). In this extreme compartment, no effect of hypothermia was observed. CONCLUSIONS Cerebral microdialysis is a safe and feasible bedside method for neurochemical monitoring indicating normal brain tissue, potentially salvageable brain tissue, and irreversibly damaged areas in stroke. We could demonstrate that hypothermia decreases glutamate, glycerol, lactate, and pyruvate in the "tissue at risk" area of the infarct but not within the infarct core. Thus, future treatment strategies for life-threatening stroke should be guided by close neurochemical monitoring.
Collapse
Affiliation(s)
- Christian Berger
- Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Fedele E, Mazzone P, Stefani A, Bassi A, Ansaldo MA, Raiteri M, Altibrandi MG, Pierantozzi M, Giacomini P, Bernardi G, Stanzione P. Microdialysis in Parkinsonian patient basal ganglia: acute apomorphine-induced clinical and electrophysiological effects not paralleled by changes in the release of neuroactive amino acids. Exp Neurol 2001; 167:356-65. [PMID: 11161624 DOI: 10.1006/exnr.2000.7568] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During stereotaxic neurosurgery for deep brain stimulation in Parkinson's disease (PD), we performed a microdialysis study of the extracellular amino acid (aspartate, glutamate, glycine, and GABA) concentrations. Their levels were measured in the GPe/GPi of five and in the STN of four different PD patients, after prolonged therapy washout. The results show stable values of basal release of the examined amino acids within 1 h. The basal levels of GABA in "OFF" state were significantly higher in the GPi than in the GPe. Acute apomorphine administration, while inducing clinical amelioration and electrophysiological changes in the examined nuclei, did not change amino acid concentrations. This result could be related to a limited microdialysis ability to detect subtle changes in amino acid spontaneous release. Alternatively, it could suggest that dopaminergic receptors located in the output nuclei, possibly present also in humans, might mediate the acute apomorphine clinical effects, not involving amino acid changes along the direct and/or indirect pathway.
Collapse
Affiliation(s)
- E Fedele
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Viale Cembrano 4, 16148 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kumral E, Yüksel M, Büket S, Yagdi T, Atay Y, Güzelant A. Neurologic complications after deep hypothermic circulatory arrest: types, predictors, and timing. Tex Heart Inst J 2001; 28:83-8. [PMID: 11453137 PMCID: PMC101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
To determine the nature of neurologic dysfunction after deep hypothermic circulatory arrest during aortic arch surgery, we reconsidered the cases of 154 patients who had undergone aortic arch surgery (either of the ascending or transverse aorta, or both) between November 1993 and July 1999. Temporary postoperative neurologic dysfunction was seen in 9 patients (5.8%), and another 3 patients (1.9%) experienced stroke. Patients with temporary neurologic dysfunction had no new infarct and were discharged home with no residual symptoms. Computed tomographic scans revealed that 2 patients with stroke had multiple infarcts in the brainstem, and the 3rd had bilateral border-zone infarcts. The patients with brainstem infarcts died on postoperative days 7 and 15, and the patient with border-zone infarct was discharged home with no symptoms 3 months after surgery. Univariate analysis revealed that patients with neurologic deficits had significantly higher rates of history of hypertension, concomitant coronary artery bypass grafting, cardiac ischemia times longer than 90 minutes, and chronic renal failure. A multivariate logistic regression analysis revealed that the significant preoperative variables associated with neurologic deficits were a history of hypertension and a cardiac ischemia time longer than 90 minutes. Deep hypothermic circulatory arrest is a safe and useful technique for protection of the brain during surgery for complex aortic problems. In future, some patients at extreme risk for perioperative neurologic complications might be offered novel neuroprotective agents, in combination with deep hypothermia.
Collapse
Affiliation(s)
- E Kumral
- Neurology Department, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
21
|
Mertens P, Ghaemmaghami C, Bert L, Perret-Liaudet A, Guenot M, Naous H, Laganier L, Later R, Sindou M, Renaud B. Microdialysis study of amino acid neurotransmitters in the spinal dorsal horn of patients undergoing microsurgical dorsal root entry zone lesioning. Technical note. J Neurosurg 2001; 94:165-73. [PMID: 11147857 DOI: 10.3171/spi.2001.94.1.0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to develop, for the first time in the human spinal dorsal horn (DH), an in vivo method for the study of amino acids (AAs). A microdialysis technique was used to sample AAs in the extracellular fluid of the DH apex in eight patients in whom surgery in the dorsal root entry zone (DREZ) was performed. Before making microsurgical lesions, specific concentric-type microdialysis probes were implanted over a 60-minute period in the DREZ and directed to the DH apex (10 implantations). The AA concentrations in the dialysates were determined using high-performance liquid chromatography with fluorescence detection. The concentrations of excitatory AAs (glutamate and aspartate) and inhibitory AAs (gamma-aminobutyric acid and glycine) decreased and were stabilized by 45 minutes after probe implantation, whereas the levels of nonneurotransmitter AAs (alanine and threonine) were not stabilized at 60 minutes. The ability of the probe to track the changes of extracellular AAs was demonstrated. Neither intra- nor postoperative microdialysis-related complications were observed (with a follow up of 18 months). The present study demonstrates that microdialysis can be performed safely in the human DH during DREZ lesioning. Despite technical and analytical limitations related to the intraoperative conditions, this technique offers new possibilities for clinical research on neurotransmitters involved in some relevant pathological states, especially in chronic pain and spasticity.
Collapse
Affiliation(s)
- P Mertens
- INSERM-U 512, Department of Neurosurgery, Federative Institute for Neuroscience, Claude Bernald University and Neurological Hospital, Hospices Civils de Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fried I, Wilson CL, Maidment NT, Engel J, Behnke E, Fields TA, MacDonald KA, Morrow JW, Ackerson L. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. Technical note. J Neurosurg 1999; 91:697-705. [PMID: 10507396 DOI: 10.3171/jns.1999.91.4.0697] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monitoring physiological changes in the brain parenchyma has important applications in the care of neurosurgical patients. A technique is described for measuring extracellular neurochemicals by cerebral microdialysis with simultaneous recording of electroencephalographic (EEG) and single-unit (neuron) activity in selected targets in the human brain. Forty-two patients with medically intractable epilepsy underwent stereotactically guided implantation of a total of 423 intracranial depth electrodes to delineate potentially resectable seizure foci. The electrodes had platinum alloy contacts for EEG recordings and four to nine 40-microm microwires for recording single-unit neuron activity. Eighty-six electrodes also included microdialysis probes introduced via the electrode lumens. During monitoring on the neurosurgical ward, electrophysiological recording and cerebral microdialysis sampling were performed during seizures, cognitive tasks, and sleep-waking cycles. The technique described here could be used in developing novel approaches for evaluation and treatment in a variety of neurological conditions such as head injury, subarachnoid hemorrhage, epilepsy, and movement disorders.
Collapse
Affiliation(s)
- I Fried
- Department of Psychiatry, University of California at Los Angeles School of Medicine, 90095-7039, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|