1
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
2
|
Chimthanawala NMA, Haria A, Sathaye S. Non-invasive Biomarkers for Early Detection of Alzheimer's Disease: a New-Age Perspective. Mol Neurobiol 2024; 61:212-223. [PMID: 37596437 DOI: 10.1007/s12035-023-03578-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the elderly population. It gradually leads to memory loss, loss of thinking ability, and an overall cognitive decline. However, exhaustive literature is available to suggest that pathological changes in the brain occur decades before the first clinical symptoms appear. This review provides insight into the non-invasive biomarkers for early detection of AD that have been successfully studied in populations across the globe. These biomarkers have been detected in the blood, saliva, breath, and urine samples. Retinal imaging techniques are also reported. In this study, PubMed and Google scholar were the databases employed using keywords "Alzheimer's disease," "neurodegeneration," "non-invasive biomarkers," "early diagnosis," "blood-based biomarkers," and "preclinical AD," among others. The evaluation of these biomarkers will provide early diagnosis of AD in the preclinical stages due to their positive correlation with brain pathology in AD. Early diagnosis with reliable and timely intervention can effectively manage this disease.
Collapse
Affiliation(s)
- Niyamat M A Chimthanawala
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
3
|
Han SH, Noh DH, Jo EJ, Kam KY. Effects of Apolipoprotein E ɛ4 and Risk Factors on Domains of Cognition in Mild Cognitive Impairment and Dementia. J Alzheimers Dis 2022; 87:1181-1188. [PMID: 35466935 DOI: 10.3233/jad-215075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The apolipoprotein E (APOE) gene is the most potent genetic risk factor for dementia. However, there are few studies on how the APOE gene affects cognitive domain functions. OBJECTIVE This study aimed to investigate the effects of risk factors for dementia on cognitive function in patients with mild cognitive impairment and Alzheimer's disease (AD). METHODS This study included subjects whose Clinical Dementia Rating scores ranged from 0.5 to 2 and who were older than 65 years. Risk factors for dementia included the APOE ɛ4 allele, age, education period, employment period, body mass index, and exercise. APOE genotyping was performed by polymerase chain reaction, and other factors were identified using medical charts or structured checklists. Cognitive function was measured using the Seoul Neuropsychological Screening Battery II. RESULTS General cognitive function did not show a significant difference according to APOE ɛ4 status. However, the score for delayed verbal memory was lower in the APOE ɛ4-carrier group than in the non-carrier group (p < 0.05). In addition, age, education period, employment period, and exercise were correlated with different cognitive function domains in the non-carrier group (p < 0.05); however, the carrier group was showed a significant correlation between age, body mass index, and cognitive domains. CONCLUSION Our findings suggest that APOE ɛ4 significantly decreases verbal memory in patients with AD. Moreover, the effects of risk factors on cognitive function were significantly different according to the APOE ɛ4 status.
Collapse
Affiliation(s)
- Seung-Hyup Han
- Department of Occupational Therapy, Masan University, Naeseo-eup, Masanhoewon-gu, Changwon-si, Gyeongsangnam-do, Republic of Korea
| | - Dong-Hee Noh
- Policy Team, Korea Workers' Compensation and Welfare Service Headquarters, Jung-gu, Ulsan, Republic of Korea
| | - Eun-Ju Jo
- Department of Occupational Therapy, Masan University, Naeseo-eup, Masanhoewon-gu, Changwon-si, Gyeongsangnam-do, Republic of Korea
| | - Kyung-Yoon Kam
- Department of Occupational Therapy, College of Healthcare Medical Science and Engineering, Inje University, Gimhae-si, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
4
|
Fu M, Chang TS. Phenome-Wide Association Study of Polygenic Risk Score for Alzheimer's Disease in Electronic Health Records. Front Aging Neurosci 2022; 14:800375. [PMID: 35370621 PMCID: PMC8965623 DOI: 10.3389/fnagi.2022.800375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and a growing public health burden in the United States. Significant progress has been made in identifying genetic risk for AD, but limited studies have investigated how AD genetic risk may be associated with other disease conditions in an unbiased fashion. In this study, we conducted a phenome-wide association study (PheWAS) by genetic ancestry groups within a large academic health system using the polygenic risk score (PRS) for AD. PRS was calculated using LDpred2 with genome-wide association study (GWAS) summary statistics. Phenotypes were extracted from electronic health record (EHR) diagnosis codes and mapped to more clinically meaningful phecodes. Logistic regression with Firth's bias correction was used for PRS phenotype analyses. Mendelian randomization was used to examine causality in significant PheWAS associations. Our results showed a strong association between AD PRS and AD phenotype in European ancestry (OR = 1.26, 95% CI: 1.13, 1.40). Among a total of 1,515 PheWAS tests within the European sample, we observed strong associations of AD PRS with AD and related phenotypes, which include mild cognitive impairment (MCI), memory loss, and dementias. We observed a phenome-wide significant association between AD PRS and gouty arthropathy (OR = 0.90, adjusted p = 0.05). Further causal inference tests with Mendelian randomization showed that gout was not causally associated with AD. We concluded that genetic predisposition of AD was negatively associated with gout, but gout was not a causal risk factor for AD. Our study evaluated AD PRS in a real-world EHR setting and provided evidence that AD PRS may help to identify individuals who are genetically at risk of AD and other related phenotypes. We identified non-neurodegenerative diseases associated with AD PRS, which is essential to understand the genetic architecture of AD and potential side effects of drugs targeting genetic risk factors of AD. Together, these findings expand our understanding of AD genetic and clinical risk factors, which provide a framework for continued research in aging with the growing number of real-world EHR linked with genetic data.
Collapse
Affiliation(s)
- Mingzhou Fu
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Timothy S. Chang
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Bjorkli C, Louet C, Flo TH, Hemler M, Sandvig A, Sandvig I. In Vivo Microdialysis in Mice Captures Changes in Alzheimer's Disease Cerebrospinal Fluid Biomarkers Consistent with Developing Pathology. J Alzheimers Dis 2021; 84:1781-1794. [PMID: 34719495 DOI: 10.3233/jad-210715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Preclinical models of Alzheimer's disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal CSF monitoring. OBJECTIVE An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. Here we draw upon patient-based findings to characterize CSF biomarkers in a commonly used preclinical mouse model for AD. METHODS Our modified push-pull microdialysis method was first validated ex vivo with human CSF samples, and then in vivo in an AD mouse model, permitting assessment of dynamic changes of CSF Aβ and tau and allowing for better translational understanding of CSF biomarkers. RESULTS We demonstrate that CSF biomarker changes in preclinical models capture what is observed in the brain; with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain parenchyma. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to CSF collection by lumbar puncture in patients. CONCLUSION Our approach can further advance AD and other neurodegenerative research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal and can additionally be used to administer pharmaceutical compounds and assess their efficacy (Bjorkli, unpublished data).
Collapse
Affiliation(s)
- Christiana Bjorkli
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claire Louet
- Center for Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trude Helen Flo
- Center for Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mary Hemler
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Neuroscience, Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and Alzheimer's disease. Microb Cell Fact 2021; 20:25. [PMID: 33509204 PMCID: PMC7844946 DOI: 10.1186/s12934-021-01520-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood-brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD's aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.
Collapse
Affiliation(s)
- Dana Vigasova
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Nemergut
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Barbora Liskova
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Occhiutto ML, de Melo MB, Cabral de Vasconcellos JP, Rodrigues TAR, Bajano FF, Costa FF, Costa VP. "Association of APOE gene polymorphisms with primary open angle glaucoma in Brazilian patients". Ophthalmic Genet 2020; 42:53-61. [PMID: 33287609 DOI: 10.1080/13816810.2020.1849314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Primary open-angle glaucoma (POAG) is a multifactorial disease that affects 65.5 million people worldwide. In addition to the genetic variants already established as indicators of greater risk for POAG, the apolipoprotein (APOE) gene has been studied in some populations, with controversial results. The aim of this study is to investigate the frequency of the genetic variants of APOE in the Brazilian population, and to evaluate the association between these polymorphisms and the risk of POAG. Methods: APOE variants (rs429358; rs7412) were genotyped in 402 POAG patients and 401 controls. We evaluated the association between APOE genetic variants and the risk for POAG, as well as the correlation between the requirement of glaucoma surgery and the APOE polymorphisms. Results: Among the three APOE gene isoforms, we found a low frequency of APOE alleles ε2 (7.34%) and ε4 (11.76%), but a high frequency of ε3 (80.88%) in our population. When compared to ε3ε3 reference genotype, ε2 allele-carriers (OR = 1.516; p-value = 0.04) and ε2ε3 genotype (OR = 1.655; p-value = 0.02) were associated with a greater risk for POAG. An additive genetic model confirmed the influence of the ε2 allele in the risk of POAG in this sample of the Brazilian population (OR = 1.502; p-value = 0.04). There was no significant association between the analyzed genotypes and the requirement or number of glaucoma surgeries (p > .05). Conclusion: Brazilian individuals carrying the APOEε2 allele may be at an increased risk for the development of POAG.
Collapse
Affiliation(s)
- Marcelo Luís Occhiutto
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas - UNICAMP , Campinas, Brazil
| | - Mônica Barbosa de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , Campinas, Brazil
| | | | | | - Flávia Fialho Bajano
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , Campinas, Brazil
| | | | - Vital Paulino Costa
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas - UNICAMP , Campinas, Brazil
| |
Collapse
|
8
|
Exploring Beyond the DNA Sequence: A Review of Epigenomic Studies of DNA and Histone Modifications in Dementia. CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00190-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose of Review
Although genome-scale studies have identified many genetic variants associated with dementia, these do not account for all of disease incidence and so recently attention has turned to studying mechanisms of genome regulation. Epigenetic processes such as modifications to the DNA and histones alter transcriptional activity and have been hypothesized to be involved in the etiology of dementia. Here, we review the growing body of literature on dementia epigenomics, with a focus on novel discoveries, current limitations, and future directions for the field.
Recent Findings
It is through advances in genomic technology that large-scale quantification of epigenetic modifications is now possible in dementia. Most of the literature in the field has primarily focussed on exploring DNA modifications, namely DNA methylation, in postmortem brain samples from individuals with Alzheimer’s disease. However, recent studies have now begun to explore other epigenetic marks, such as histone modifications, investigating these signatures in both the brain and blood, and in a range of other dementias.
Summary
There is still a demand for more epigenomic studies to be conducted in the dementia field, particularly those assessing chromatin dynamics and a broader range of histone modifications. The field faces limitations in sample accessibility with many studies lacking power. Furthermore, the frequent use of heterogeneous bulk tissue containing multiple cell types further hinders data interpretation. Looking to the future, multi-omic studies, integrating many different epigenetic marks, with matched genetic, transcriptomic, and proteomic data, will be vital, particularly when undertaken in isolated cell populations, or ideally at the level of the single cell. Ultimately these studies could identify novel dysfunctional pathways and biomarkers for disease, which could lead to new therapeutic avenues.
Collapse
|
9
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Network-based identification of genetic factors in ageing, lifestyle and type 2 diabetes that influence to the progression of Alzheimer's disease. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
11
|
Siddarth P, Burggren AC, Merrill DA, Ercoli LM, Mahmood Z, Barrio JR, Small GW. Longer TOMM40 poly-T variants associated with higher FDDNP-PET medial temporal tau and amyloid binding. PLoS One 2018; 13:e0208358. [PMID: 30517207 PMCID: PMC6281258 DOI: 10.1371/journal.pone.0208358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/15/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The translocase of outer mitochondrial membrane 40 (TOMM40), which lies in linkage disequilibrium with the apolipoprotein E (APOE) gene, has been implicated in Alzheimer's disease (AD). TOMM40 influences AD pathology through mitochondrial neurotoxicity, and the medial temporal lobe (MTL) is the most likely brain region for identifying early manifestations of AD-related morphology changes. While early reports indicated that the longer length poly-T allele of TOMM40 increases risk for AD, these findings have not been consistently replicated in further studies. We examined the effect of TOMM40 and APOE on regional brain positron emission tomography (PET) 2-(1-{6-[(2 [F18]fluoroethyl) (methyl) amino]-2-naphthyl}ethylidene)malononitrile (FDDNP) binding values in MTL. METHODS A total of 73 non-demented older adults (42 females; mean age: 62.9(10.9) completed genotyping for both APOE and TOMM40 and received FDDNP-PET scans. For TOMM40, the lengths of the poly-T sequence were classified as short (14-20 repeats; S), long (21-29 repeats, L) or very long (>29 repeats, VL). Using general linear models, we examined medial temporal lobe FDDNP binding and cognitive functioning between TOMM40 and APOE-4 groups, with age, sex, and education as covariates. RESULTS Data from 30 individuals with APOE-4 and L TOMM40 poly-T length, 11 non E4 TOMM40 S/S, 14 non E4 TOMM40 S/VL and 13 non E4 TOMM40 VL/VL were analyzed. Medial temporal FDDNP binding differed significantly between TOMM40/APOE groups (F(3,62) = 3.3,p = .03). Participants with TOMM40 S/S exhibited significantly lower binding compared to TOMM40 S/VL and APOE-4 carriers. We did not find a significant relationship between TOMM40 poly-T lengths/APOE risk groups and cognitive functioning. CONCLUSIONS This is the first report to demonstrate a significant association between longer TOMM40 poly-T lengths and higher medial temporal plaque and tangle burden in non-demented older adults. Identifying biomarkers that are risk factors for AD will enhance our ability to identify subjects likely to benefit from novel AD treatments.
Collapse
Affiliation(s)
- Prabha Siddarth
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, United States of America
| | - Alison C. Burggren
- Center for Cognitive Neurosciences, UCLA, Los Angeles, United States of America
- Lewis Center for Neuroimaging, The University of Oregon, Eugene, United States of America
| | - David A. Merrill
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, United States of America
| | - Linda M. Ercoli
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, United States of America
| | - Zanjbeel Mahmood
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, United States of America
| | - Jorge R. Barrio
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, United States of America
| | - Gary W. Small
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, United States of America
| |
Collapse
|
12
|
Zapico SC, Ubelaker DH. mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences. Aging Dis 2013; 4:364-80. [PMID: 24307969 DOI: 10.14336/ad.2013.0400364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are independent organelles with their own DNA. As a primary function, mitochondria produce the energy for the cell through Oxidative Phosphorylation (OXPHOS) in the Electron Transport Chain (ETC). One of the toxic products of this process is Reactive Oxygen Species (ROS), which can induce oxidative damage in macromolecules like lipids, proteins and DNA. Mitochondrial DNA (mtDNA) is less protected and has fewer reparation mechanisms than nuclear DNA (nDNA), and as such is more exposed to oxidative, mutation-inducing damage. This review analyzes the causes and consequences of mtDNA mutations and their relationship with the aging process. Neurodegenerative diseases, related with the aging, are consequences of mtDNA mutations resulting in a decrease in mitochondrial function. Also described are "mitochondrial diseases", pathologies produced by mtDNA mutations and whose symptoms are related with mitochondrial dysfunction. Finally, mtDNA haplogroups are defined in this review; these groups are important for determination of geographical origin of an individual. Additionally, different haplogroups exhibit variably longevity and risk of certain diseases. mtDNA mutations in aging and haplogroups are of special interest to forensic science research. Therefore this review will help to clarify the key role of mtDNA mutations in these processes and support further research in this area.
Collapse
Affiliation(s)
- Sara C Zapico
- Smithsonian Institution, National Museum of Natural History, Department of Anthropology, Washington, DC 20560, USA
| | | |
Collapse
|
13
|
Biology of mitochondria in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:355-415. [PMID: 22482456 DOI: 10.1016/b978-0-12-385883-2.00005-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS.
Collapse
|
14
|
Woo RS, Lee JH, Yu HN, Song DY, Baik TK. Expression of ErbB4 in the neurons of Alzheimer's disease brain and APP/PS1 mice, a model of Alzheimer's disease. Anat Cell Biol 2011; 44:116-27. [PMID: 21829755 PMCID: PMC3145840 DOI: 10.5115/acb.2011.44.2.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/21/2011] [Accepted: 05/02/2011] [Indexed: 01/10/2023] Open
Abstract
Neuregulin-1 (NRG1) plays important roles in the development and plasticity of the brain, and has also been reported to exhibit potent neuroprotective properties. Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its role in Alzheimer's disease (AD). AD is characterized by progressive impairment of cognition and behavioral disturbance that strongly correlate with degeneration and death of neurons in the cerebral cortex and limbic brain areas, such as the hippocampus and the amygdala. Here, we show that the ErbB4 and phospho-ErbB4 immunoreactivities were higher intensity in the neurons of the CA1-2 transitional field of AD brains as compared to age-matched controls. Also, ErbB4 expression was increased in the neurons of the cortico medial nucleus amygdala, human basal forebrain and superior frontal gyrus of AD brains. In cerebral cortex and hippocampus of amyloid precursor protein/presenilin 1 double transgenic mice, ErbB4 immunoreactivity significantly increased in comparison to age-matched wild type control. These results suggest that up-regulating of ErbB4 immunoreactivity may involve in the progression of pathology of AD.
Collapse
Affiliation(s)
- Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
15
|
Boks MPM, Derks EM, Dolan CV, Kahn RS, Ophoff RA. "Forward genetics" as a method to maximize power and cost-efficiency in studies of human complex traits. Behav Genet 2010; 40:564-71. [PMID: 20232132 PMCID: PMC2886904 DOI: 10.1007/s10519-010-9348-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 02/17/2010] [Indexed: 11/16/2022]
Abstract
There is increasing interest in methods to disentangle the relationship between genotype and (endo)phenotypes in human complex traits. We present a population-based method of increasing the power and cost-efficiency of studies by selecting random individuals with a particular genotype and then assessing the accompanying quantitative phenotypes. Using statistical derivations, power- and cost graphs we show that such a "forward genetics" approach can lead to a marked reduction in sample size and costs. This approach is particularly apt for implementing in epidemiological studies for which DNA is already available but the phenotyping costs are high.
Collapse
Affiliation(s)
- M P M Boks
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Chilibeck G, Lock M, Sehdev M. Postgenomics, uncertain futures, and the familiarization of susceptibility genes. Soc Sci Med 2010; 72:1768-75. [PMID: 20570031 DOI: 10.1016/j.socscimed.2010.01.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 10/26/2009] [Accepted: 01/06/2010] [Indexed: 11/26/2022]
Abstract
This paper draws on empirical findings from interview studies in the USA and Canada to interrogate the idea that expanding practices of genetic testing are likely to transform kin and family relations in fundamental ways. We argue that in connection with common adult onset disorders in which susceptibility genes with low predictive power are implicated it is unlikely that family relationships will be radically altered as a result of learning about either individual or family genotypes. Rather, pre-existing family dynamics and ideas about family susceptibilities for disease may be reinforced. The case of the ApoE gene and its relationship to Alzheimer's disease is used as an illustrative example. We found that "postgenomic" thinking, in which complexity of disease causation is emphasized, is readily apparent in informant narratives.
Collapse
Affiliation(s)
- Gillian Chilibeck
- Department of Anthropology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
17
|
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.
Collapse
|
18
|
Polymorphisms of APOE and LRP genes in Brazilian individuals with Alzheimer disease. Alzheimer Dis Assoc Disord 2008; 22:61-5. [PMID: 18317248 DOI: 10.1097/wad.0b013e31815a9da7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alzheimer disease (AD) is the most frequent cause of dementia in Western countries. Putative genetic risk factors for AD are polymorphisms in the apolipoprotein E (APOE) gene and in the low-density lipoprotein receptor-related protein (LRP) gene. Our objective was to investigate the role of the APOE coding region polymorphisms epsilon 2, epsilon 3, and epsilon 4 and APOE promoter variants A/T at position -491 and G/T at -219, as well as LRP polymorphism C/T, as risk factors for AD in Brazilian individuals. One hundred and twenty patients with probable AD, along with 120 controls were analyzed. A significant difference between patients and controls for epsilon 4 alleles was observed: frequency of this allele in AD was 0.31, and 0.10 in controls. Individuals with 2 epsilon 4 alleles had a higher risk for AD than subjects with only 1 such allele; presence of 1 epsilon 2 allele proved protective. The presence of the T allele of the -219 polymorphism was also associated with an increased risk of AD, but this polymorphism is in linkage disequilibrium with APOE epsilon polymorphisms. No significant differences between patients and controls were observed for -491 APOE or LRP polymorphisms. In this Brazilian population, both the epsilon 4 allele and T -219 polymorphism were associated with an increased risk for AD.
Collapse
|
19
|
Limited clearance of pre-existing amyloid plaques after intracerebral injection of Abeta antibodies in two mouse models of Alzheimer disease. J Neuropathol Exp Neurol 2008; 67:30-40. [PMID: 18091561 DOI: 10.1097/nen.0b013e31815f38d2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential utility of antibodies for the treatment of Alzheimer disease (AD). In transgenic mouse models of AD, peripheral and intracerebral administration of Abeta-specific antibodies reduces amyloid burdens to varied extents. The mechanism may involve clearance of pre-existing amyloid plaques or prevention of new amyloid formation. Here, we have used two transgenic models, the inducible CamKII-ttAxtetAPP/swe/ind (Line 107) and the APPswe/PS1dE9 (Line 85), to test the ability of intracerebral injection of Abeta antibodies to clear amyloid. Because the production of Abeta peptides in the Line 107 model is inducible, whereas production in Line 85 mice is constitutive, we could study the effects of antibody on pre-existing plaques versus continuous plaque formation. In Line 85, injection of antibody resulted in modest but statistically significant reductions in amyloid burden (average, 14%-16%). However, injected antibodies had no effect on amyloid burden in Line 107 under conditions in which the production of Abeta was suppressed, indicating that pre-existing plaques are not rapidly cleared. These results indicate that intracerebral injection of Abeta antibodies produces modest reductions in amyloid deposition in these two models and that the mechanism may involve prevention of amyloid formation rather than clearance of pre-existing plaques.
Collapse
|
20
|
Findeis MA. The role of amyloid beta peptide 42 in Alzheimer's disease. Pharmacol Ther 2007; 116:266-86. [PMID: 17716740 DOI: 10.1016/j.pharmthera.2007.06.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023]
Abstract
During the last 20 years, an expanding body of research has elucidated the central role of amyloid precursor protein (APP) processing and amyloid beta peptide (Abeta) production in the risk, onset, and progression of the neurodegenerative disorder Alzheimer's disease (AD), the most common form of dementia. Ongoing research is establishing a greater level of detail for our understanding of the normal functions of APP, its proteolysis products, and the mechanisms by which this processing occurs. The importance of this processing machinery in normal cellular function, such as Notch processing, has revealed specific concerns about targeting APP processing for therapeutic purposes. Aspects of AD that are now well studied include direct and indirect genetic and other risk factors for AD, APP processing, and Abeta production. Emerging from these studies is the particular importance of the long form of Abeta, Abeta42. Elevated Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to the shorter major form Abeta40, has been identified as important in early events in the pathogenesis of AD. The specific pathological importance of Abeta42 has drawn attention to seeking drugs that will selectively lower the levels of this peptide through reduced production or increased clearance while allowing normal protein processing to remain substantially intact. An increasing variety of compounds that modulate APP processing to reduce Abeta levels are being identified, some with Abeta42 selectivity. Such compounds are now reaching clinical evaluation to determine how they may be of benefit in the treatment of AD.
Collapse
Affiliation(s)
- Mark A Findeis
- Satori Pharmaceuticals Incorporated, 222 Berkeley Street, Suite 1040, Boston, MA 02116, USA.
| |
Collapse
|
21
|
|
22
|
|
23
|
Fangerau H, Ohlraun S, Granath RO, Nöthen MM, Rietschel M, Schulze TG. Computer-assisted phenotype characterization for genetic research in psychiatry. Hum Hered 2005; 58:122-30. [PMID: 15812168 DOI: 10.1159/000083538] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 08/27/2004] [Indexed: 11/19/2022] Open
Abstract
Psychiatric disorders differ from other complex phenotypes in their lack of objectively assessable biological markers that contribute to the establishment of a research diagnosis for genetic studies. To nevertheless allow for the delineation of genetically meaningful diagnostic entities for psychiatric genetic research, comprehensive phenotype characterization procedures are required. It is widely agreed that these should include the standardized assessment of life-time clinical symptomatology, sociodemographic, and environmental factors. Data should be based on several sources, i.e. diagnostic interviews with probands and their relatives as well as a thorough review of medical records, and final assignment of diagnosis should follow robust algorithms (i.e. best-estimate procedures, consensus diagnosis). Here, we outline a practical implementation of such a phenotype characterization strategy, including patient recruitment, study enrolment procedures, comprehensive diagnostic assessment, and data management. We argue that successful psychiatric phenotype characterization requires flexible tools. For this purpose, we have developed a computer-assisted phenotype characterization inventory, built around the backbone of a relational database. It allows for the straightforward assessment of symptoms, automated error checks and diagnostic assignment, easily manageable data storage and handling, and flexible data transfer between various research centers even across language barriers, while at the same time keeping up with the highest standards for the protection of sensitive patient data.
Collapse
|
24
|
Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 2004; 490:115-25. [PMID: 15094078 DOI: 10.1016/j.ejphar.2004.02.049] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 12/10/2003] [Accepted: 02/27/2004] [Indexed: 12/29/2022]
Abstract
Nosologically, Alzheimer disease is not a single disorder in spite of a common clinical phenotype. Etiologically, two different types or even more exist. (1) In a minority of about 5% or less of all cases, Alzheimer disease is due to mutations of three genes, resulting in the permanent generation of betaA4. (2) The great majority (95% or more) of cases of Alzheimer disease are sporadic in origin, with old age as main risk factor, supporting the view that susceptibility genes and aging contribute to age-related sporadic Alzheimer disease. However, disturbances in the neuronal insulin signal transduction pathway may be of central pathophysiological significance. In early-onset familial Alzheimer disease, the inhibition of neuronal insulin receptor function may be due to competitive binding of amyloid beta (Abeta) to the insulin receptor. In late-onset sporadic Alzheimer disease, the neuronal insulin receptor may be desensitized by inhibition of receptor function at different sites by noradrenaline and/or cortisol, the levels of which both increase with increasing age. The consequences of the inhibition of neuronal insulin signal transduction may be largely identical to those of disturbances of oxidative energy metabolism and related metabolism, and of hyperphosphorylation of tau-protein. As far as the metabolism of amyloid precursor protein (APP) in late-onset sporadic Alzheimer disease is concerned, neuronal insulin receptor dysfunction may result in the intracellular accumulation of Abeta and in subsequent cellular damage. In this context, the desensitization of the neuronal insulin receptor in late-onset sporadic Alzheimer disease is different from that occurring in normal aging and early-onset familial Alzheimer disease. In late-onset sporadic Alzheimer disease changes in the brain are similar to those caused by non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Siegfried Hoyer
- Department of Pathology, University of Heidelberg, Im Neuenheimer Feld 220/221, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Lake S, Liverani E, Desai M, Casson R, James B, Clark A, Salmon JF. Normal tension glaucoma is not associated with the common apolipoprotein E gene polymorphisms. Br J Ophthalmol 2004; 88:491-3. [PMID: 15031162 PMCID: PMC1772090 DOI: 10.1136/bjo.2003.023366] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND /aims: In normal tension glaucoma (NTG) factors other than raised intraocular pressure have a role in the pathogenesis of the optic neuropathy. Because particular apolipoprotein E (ApoE) gene polymorphisms have been associated with cell death and survival in neurological degenerative diseases, the purpose of this study was to determine the ApoE allele frequencies in patients with normal tension glaucoma. METHODS The apolipoprotein E genotype of 155 patients with normal tension glaucoma was compared to that of 349 non-affected, control subjects from the same geographical area. A similar comparison was made between 53 patients with normal tension glaucoma who demonstrated progressive visual field loss, and control subjects. The frequencies of genotypes was compared with the chi(2) test and Mantel-Haenszel coefficent. RESULTS There was no significant difference in the frequency of ApoE alleles or genotypes in the normal tension glaucoma population compared to the control group. The ApoE alleles and genotypes in NTG patients with progressive disease were not different from the control group. CONCLUSION ApoE gene polymorphisms are not linked to normal tension glaucoma, suggesting that this gene does not have a role in the pathogenesis of optic neuropathy in this disease.
Collapse
Affiliation(s)
- S Lake
- Oxford Eye Hospital, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Roder S, Danober L, Pozza MF, Lingenhoehl K, Wiederhold KH, Olpe HR. Electrophysiological studies on the hippocampus and prefrontal cortex assessing the effects of amyloidosis in amyloid precursor protein 23 transgenic mice. Neuroscience 2003; 120:705-20. [PMID: 12895511 DOI: 10.1016/s0306-4522(03)00381-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro and in vivo electrophysiological studies were done to investigate the neuronal function of the hippocampus and prefrontal cortex in the amyloid precursor protein (APP) 23 transgenic mouse model for amyloidosis developed by Sturchler-Pierrat et al. [Proc Natl Acad Sci USA 94 (1997) 13287]. Brain slices were taken from 3, 6, 9, 12, 18 and 24 month old wildtype and hemizygous type APP23 mice. Extracellular field potentials were recorded from the CA1 region of the hippocampus while stimulating the Schaffer collaterals. In addition, extracellular field potentials were elicited from areas within layer V/VI of the prefrontal cortex by stimulating the same layer V/VI. Basic synaptic function in the hippocampus was reduced in hemizygous APP23 mice compared with their wildtype littermates at 12 and 18 months of age, whereas, it was unaltered within the prefrontal cortex. Long-term potentiation in the hippocampus and the prefrontal cortex of hemizygous APP23 mice was similar compared with their wildtype littermates. In vivo electrophysiological experiments were done in 3, 9, 18 and 24 month old wildtype and hemizygous APP23 mice. No differences were observed in the number of single spontaneously active units recorded within the prefrontal cortex of hemizygous APP23 mice compared with their wildtype littermates. Field potentials elicited during stimulation of cortico-cortical pathways to assess synaptic transmission and short-term synaptic plasticity were also unchanged in hemizygous APP23 mice. Furthermore, presumable antidromic field potentials recorded in the prefrontal cortex during stimulation of the striatum were similar between the hemizygous APP23 and wildtype mice at each age. The present study shows that amyloidosis impairs basic synaptic function but not long-term potentiation in the hippocampus, however, does not alter any of the neurophysiological functions measured within the prefrontal cortex. These findings suggest that amyloidosis may be involved in altering some neurophysiological functions within only certain brain structures. Although APP23 mice have impaired cognitive performance, long-term plasticity, a cellular model for memory, is not affected, raising the question on the relationship between these processes.
Collapse
Affiliation(s)
- S Roder
- Novartis Pharma Inc., Nervous System Research, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Sciacca FL, Ferri C, Licastro F, Veglia F, Biunno I, Gavazzi A, Calabrese E, Martinelli Boneschi F, Sorbi S, Mariani C, Franceschi M, Grimaldi LME. Interleukin-1B polymorphism is associated with age at onset of Alzheimer's disease. Neurobiol Aging 2003; 24:927-31. [PMID: 12928052 DOI: 10.1016/s0197-4580(03)00011-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin-1alpha (IL-1alpha) and IL-1beta are two pro-inflammatory cytokines involved in the pathogenesis of Alzheimer's disease (AD). The genes coding for IL-1alpha (IL-1A) and for IL-1beta (IL-1B) are clustered in chromosome 2q14-2q14.2. In a previous work, we investigated the role of IL-1A promoter polymorphism (-889 position) in AD pathogenesis: IL-1A -889 TT genotype was associated with sporadic early onset AD. We now report the study on polymorphism of exon 5 IL-1B in position +3953, the nearest polymorphism to -889 IL-1A. We found that the genotype distribution of IL-1B +3953 varied significantly between patients with early and late onset of AD (P<0.0001). Patients carrying IL-1B +3953 CT or TT genotypes had 4 or 5 years anticipation of AD onset (P=0.0034; odds ratio for early onset, 3.01) and 7 years anticipation if they also carried the IL-1A -889 TT genotype (P<0.0001; odds ratio for early onset, 7.4). These data further support a role for inflammation-related genes in AD or indicate linkage disequilibrium with an unknown chromosome 2 locus.
Collapse
Affiliation(s)
- F L Sciacca
- Department of Neuroscience, Neuroimmunology Unit, AUSL2, via Cusmano 3, Caltanissetta, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
An emerging body of evidence suggests that an increased prevalence of insulin abnormalities and insulin resistance in Alzheimer's disease may contribute to the disease pathophysiology and clinical symptoms. It has long been known that insulin is essential for energy metabolism in the periphery. In the past 2 decades, convergent findings have begun to demonstrate that insulin also plays a role in energy metabolism and other aspects of CNS function. Investigators reported 20 years ago that insulin and insulin receptors were densely but selectively expressed in the brain, including the medial temporal regions that support the formation of memory. It has recently been demonstrated that insulin-sensitive glucose transporters are localised to the same regions supporting memory and that insulin plays a role in memory functions. Collectively, these findings suggest that insulin may contribute to normal cognitive functioning and that insulin abnormalities may exacerbate cognitive impairments, such as those associated with Alzheimer's disease. Insulin may also play a role in regulating the amyloid precursor protein and its derivative beta-amyloid (Abeta), which is associated with senile plaques, a neuropathological hallmark of Alzheimer's disease. It has been proposed that insulin can accelerate the intracellular trafficking of Abeta and interfere with its degradation. These findings are consistent with the notion that insulin abnormalities may potentially influence levels of Abeta in the brains of patients with Alzheimer's disease. The increased occurrence of insulin resistance in Alzheimer's disease and the numerous mechanisms through which insulin may affect clinical and pathological aspects of the disease suggest that improving insulin effectiveness may have therapeutic benefit for patients with Alzheimer's disease. The thiazolidinedione rosiglitazone has been shown to have a potent insulin-sensitising action that appears to be mediated through the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). PPAR-gamma agonists, such as rosiglitazone, also have anti-inflammatory effects that may be of therapeutic benefit in patients with Alzheimer's disease. This review presents evidence suggesting that insulin resistance plays a role in the pathophysiology and clinical symptoms of Alzheimer's disease. Based on this evidence, we propose that treatment of insulin resistance may reduce the risk or retard the development of Alzheimer's disease.
Collapse
Affiliation(s)
- G Stennis Watson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | | |
Collapse
|
29
|
Abstract
Determining the incidence and prevalence of dementia is an inexact science. Dementia is difficult to define and detect in the population. Even with the difficulties of determining prevalence and incidence, it is clear that dementia causes a substantial burden on our society. Problems with diagnostic inaccuracy and insidious disease onset influence our ability to observe risk factor associations; factors related to survival may be mistaken for risk/protective factors. Current studies suggest that factors influencing brain development or cognitive reserve may delay the onset of AD, perhaps through a protective mechanism or a delay in diagnosis caused by improved performance on cognitive tests. The recent identification of genes that cause dementia suggests that these genes or their biochemical pathways may be involved in the pathogenesis of nonfamilial cases. The contribution of genes that cause disease in and of themselves may be smaller than that of genes that act to metabolize or potentiate environmental exposures. The interaction between gene and environment should be increasingly well studied in the future. Epidemiology must take advantage of these molecular advances. The tasks of public health and epidemiology should still involve prevention, the nonrandom occurrence of disease, and its environmental context in addition to heredity. The tools to address these tasks should continue to be refined.
Collapse
Affiliation(s)
- Walter A Kukull
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195-7286, USA.
| | | |
Collapse
|
30
|
Torreilles F, Touchon J. Pathogenic theories and intrathecal analysis of the sporadic form of Alzheimer's disease. Prog Neurobiol 2002; 66:191-203. [PMID: 11943451 DOI: 10.1016/s0301-0082(01)00030-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent dementia characterized by progressive loss of cognitive functions and by characteristic pathological changes in the brain: the formation of aggregates extracellularly by beta-amyloid (Abeta) peptide and intracellularly by tau proteins. The disease presents several major diagnostic difficulties: (1) AD develops slowly; (2) analysis of damaged brain tissues is difficult, requiring a biopsy which poses ethical problems; (3) no biochemical markers are available for the diagnosis and monitoring of the disease progression. Since the cerebrospinal fluid (CSF) is in contact with the extracellular space of the brain, many studies have tried to correlate the levels of the intrathecal peptides and amino acids and the development of dementia. The present review analyzes the main results of intrathecal content analyses in light of pathogenic theories proposed to explain the damage associated with AD and observed in the brain of patients by postmortem examination.
Collapse
Affiliation(s)
- François Torreilles
- CNRS UMR 5094, Institut de Biotechnologie et Pharmacologie, UFR Pharmacie, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France.
| | | |
Collapse
|
31
|
Abstract
Definition of the phenotype is a key issue in designing any genetic study whose goal is to detect disease genes. This chapter describes strategies to increase the power to detect susceptibility loci for complex diseases. A narrowly defined disease phenotype can offer advantages over broad definitions. Studies of clinical disease can also benefit from judicious selection of endophenotypes and related quantitative traits for analysis. The effect of diagnostic and measurement error is also discussed; power is maximized when strategies to reduce error are incorporated into a study design.
Collapse
Affiliation(s)
- J P Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
32
|
Abstract
Alzheimer's disease (AD) is thought by many to result from the accumulation of the neurotoxic amyloid-beta (A beta) peptide in brain parenchyma. The process by which A beta is proteolytically derived from the larger amyloid precursor protein (APP) has been the focus of much attention in the AD research field over the past decade. Recently, several of the proteins directly involved in the generation of A beta have been identified and characterized providing a number of viable therapeutic targets for the treatment of AD. However, the cellular mechanisms by which these proteins interact in the proteolytic processing of APP have not been well defined, nor are they readily apparent when one considers what is known about the intracellular localization and trafficking of the various participants. This article will review the underlying cell biology of A beta production and discuss the mechanistic options for APP processing given the current knowledge of the proteases involved.
Collapse
Affiliation(s)
- J T Huse
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, 806 Abramson, 34th and Civic Center Blvd, Philadelphia, PA 19104, USA
| | | |
Collapse
|
33
|
Abstract
This article reviews current knowledge about the prevalence and incidence of dementia and the risk and protective factors for dementia. Relevant epidemiologic concepts and methodological issues are reviewed, focusing on the implications of designing and interpreting epidemiologic studies of dementia and illustrating the integrative role of epidemiology.
Collapse
Affiliation(s)
- W A Kukull
- Department of Epidemiology, School of Public Health and Community Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
34
|
Huse JT, Doms RW. Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer's disease. Mol Neurobiol 2000; 22:81-98. [PMID: 11414282 DOI: 10.1385/mn:22:1-3:081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulation of the amyloid-beta (A beta) peptide in the central nervous system (CNS) is considered by many to be the crucial pathological insult that ultimately leads to the development of Alzheimer's disease (AD). Regulating the production and/or aggregation of A beta could therefore be of considerable benefit to patients afflicted with AD. It has long been known that A beta is derived from the proteolytic processing of the amyloid precursor protein (APP) by two enzymatic activities, beta-secretase and gamma-secretase. Recent breakthroughs have led to the identification of the aspartyl protease BACE (beta-site APP-cleaving enzyme) as beta-secretase and the probable identification of the presenilin proteins as gamma-secretases. This review discusses what is know about BACE and the presenilins, focusing on their capacity as secretases, as well as the options for therapeutic advancement the careful characterization of these proteins will provide. These findings are presented in the context of the "amyloid cascade hypothesis" and its physiological relevance in AD pathogenesis.
Collapse
Affiliation(s)
- J T Huse
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
35
|
Ashani Y. Prospective of human butyrylcholinesterase as a detoxifying antidote and potential regulator of controlled-release drugs. Drug Dev Res 2000. [DOI: 10.1002/1098-2299(200007/08)50:3/4<298::aid-ddr13>3.0.co;2-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|