1
|
Su JG, Aslebagh S, Shahriary E, Barrett M, Balmes JR. Impacts from air pollution on respiratory disease outcomes: a meta-analysis. Front Public Health 2024; 12:1417450. [PMID: 39444957 PMCID: PMC11497638 DOI: 10.3389/fpubh.2024.1417450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Air pollution is widely acknowledged as a significant factor in respiratory outcomes, including coughing, wheezing, emergency department (ED) visits, and even death. Although several literature reviews have confirmed the association between air pollution and respiratory outcomes, they often did not standardize associations across different studies and overlooked other increasingly impactful pollutants such as trace metals. Recognizing the importance of consistent comparison and emissions of non-exhaust particles from road traffic, this study aims to comprehensively evaluate the standardized effects of various criteria pollutants and trace metals on respiratory health. Methods We conducted a comprehensive meta-analysis of peer-reviewed journal articles on air pollution and respiratory outcomes published between 1 January 2000, and 1 June 2024. The study included children (age < 18 years), adults (age ≥ 18 years), and all age groups exposed to criteria pollutants established by the US Environmental Protection Agency National Ambient Air Quality Standards and over 10 trace metals. Using databases, such as PubMed, MEDLINE, Web of Science Core Collection, and Google Scholar, we identified 579 relevant articles. After rigorous screening and quality assessment using the Newcastle-Ottawa Scale, 50 high-quality studies were included. We converted various reported outcomes (e.g., odds ratios, relative risk, and percent increase) to a standardized odds ratio (OR) for comparability and performed meta-analyses using R 4.4.0 and related packages, ensuring the robustness of our findings. Results Our meta-analysis indicated significant associations between air pollutants and respiratory outcomes. For particulate matter with diameter ≤ 2.5 μm (PM2.5), the overall ORs for children, adults, and combined age groups were 1.31, 1.10, and 1.26, respectively, indicating a consistent positive association. Similar positive associations were observed for particulate matter with diameter ≤ 10 μm (PM10) and other pollutants, with children showing higher susceptibility than adults. The analysis of trace metals also showed significant associations; however, these findings require cautious interpretation due to the small number of studies. Conclusion Our study supports associations between air pollutants, including non-exhaust trace metals, and respiratory outcomes across different age groups. The findings underscore the need for stringent environmental health policies and further research, especially in regions with higher pollution levels. The future studies should consider long-term and short-term exposures separately and include diverse populations to improve the accuracy and generalizability of the results.
Collapse
Affiliation(s)
- Jason G. Su
- School of Public Health, University of California, Berkeley, CA, United States
| | - Shadi Aslebagh
- School of Public Health, University of California, Berkeley, CA, United States
| | - Eahsan Shahriary
- School of Public Health, University of California, Berkeley, CA, United States
| | | | | |
Collapse
|
2
|
Kim LD, Kreitner K, Scott DM, Seabaugh K, Duncan CG, Magzamen S. The effects of ambient air pollution exposure on Thoroughbred racehorse performance. Equine Vet J 2024. [PMID: 39228107 DOI: 10.1111/evj.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Limited research exists on impacts of air pollution on non-human mammals, particularly animal athletes such as Thoroughbred racehorses. Athletes have a greater risk of exposure as heightened exertion and increased airflow carry more pollutants deeper into the respiratory tract. OBJECTIVES To provide insights into the impact of ambient air pollution, particularly fine particulate matter (PM2.5), on race speed. STUDY DESIGN Retrospective observational study. METHODS Data were obtained from The Jockey Club Information Systems, covering 31 407 winning races by Thoroughbred horses in California spanning 10 years (2011-2020) and evaluated the association between air pollution and winning race speeds. For race days, we collected PM2.5 data from the nearest U.S. Environmental Protection Agency (EPA) monitoring site within 100 km of each racetrack (n = 12). We assessed the associations between daily average PM2.5 concentrations and speed of winning horses with linear mixed effects regression. We adjusted for horse characteristics, race-related covariates, temporal indicators (e.g., year), other air pollutants and temperature. We conducted sensitivity analyses by adjusting extreme air pollution days by reassigning values to the 95th percentile value and conducting linear mixed effects regression on series of datasets with incremental cutpoints of PM2.5. RESULTS In the cutpoint analysis, we found that for PM2.5 between 4 and 23.6 μg/m3, speed decreased 0.0008 m/s (95% CI: -0.0014562 to -0.00018) for every 1 μg/m3 increase of PM2.5. MAIN LIMITATIONS Limitations include the use of offsite monitors leading to imprecise exposure measurements, not using training practice data, and generalisability as the study focuses on California racetracks. CONCLUSION This study highlights the need to create advisories to safeguard the performance of horses during periods of poor air quality. Further research is recommended to explore additional factors influencing the relationship between air pollution and equine welfare.
Collapse
Affiliation(s)
- Linda D Kim
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kimberly Kreitner
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Danielle M Scott
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Katie Seabaugh
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Colleen G Duncan
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Su JG, Vuong V, Shahriary E, Aslebagh S, Yakutis E, Sage E, Haile R, Balmes J, Barrett M. Health effects of air pollution on respiratory symptoms: A longitudinal study using digital health sensors. ENVIRONMENT INTERNATIONAL 2024; 189:108810. [PMID: 38875815 DOI: 10.1016/j.envint.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Previous studies of air pollution and respiratory disease often relied on aggregated or lagged acute respiratory disease outcome measures, such as emergency department (ED) visits or hospitalizations, which may lack temporal and spatial resolution. This study investigated the association between daily air pollution exposure and respiratory symptoms among participants with asthma and chronic obstructive pulmonary disease (COPD), using a unique dataset passively collected by digital sensors monitoring inhaled medication use. The aggregated dataset comprised 456,779 short-acting beta-agonist (SABA) puffs across 3,386 people with asthma or COPD, between 2012 and 2019, across the state of California. Each rescue use was assigned space-time air pollution values of nitrogen dioxide (NO2), fine particulate matter with diameter ≤ 2.5 µm (PM2.5) and ozone (O3), derived from highly spatially resolved air pollution surfaces generated for the state of California. Statistical analyses were conducted using linear mixed models and random forest machine learning. Results indicate that daily air pollution exposure is positively associated with an increase in daily SABA use, for individual pollutants and simultaneous exposure to multiple pollutants. The advanced linear mixed model found that a 10-ppb increase in NO2, a 10 μg m-3 increase in PM2.5, and a 30-ppb increase in O3 were respectively associated with incidence rate ratios of SABA use of 1.025 (95 % CI: 1.013-1.038), 1.054 (95 % CI: 1.041-1.068), and 1.161 (95 % CI: 1.127-1.233), equivalent to a respective 2.5 %, 5.4 % and 16 % increase in SABA puffs over the mean. The random forest machine learning approach showed similar results. This study highlights the potential of digital health sensors to provide valuable insights into the daily health impacts of environmental exposures, offering a novel approach to epidemiological research that goes beyond residential address. Further investigation is warranted to explore potential causal relationships and to inform public health strategies for respiratory disease management.
Collapse
Affiliation(s)
- Jason G Su
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States.
| | - Vy Vuong
- Propeller Health, 505 Montgomery St #2300, San Francisco, CA 94111, United States
| | - Eahsan Shahriary
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Shadi Aslebagh
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Emma Yakutis
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Emma Sage
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Rebecca Haile
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States
| | - John Balmes
- School of Medicine, University of California, San Francisco, CA 94143, United States
| | - Meredith Barrett
- Propeller Health, 505 Montgomery St #2300, San Francisco, CA 94111, United States; ResMed, San Diego, CA 92123, United States
| |
Collapse
|
4
|
Sorensen C, Lehmann E, Holder C, Hu J, Krishnan A, Münzel T, Mb R, Rn S. Reducing the health impacts of ambient air pollution. BMJ 2022; 379:e069487. [PMID: 36223913 DOI: 10.1136/bmj-2021-069487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- C Sorensen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Emergency Medicine, Columbia Irving Medical Center, New York, NY, USA
| | - E Lehmann
- Harvard Global Health Institute, Cambridge, MA, USA
| | - C Holder
- Department of Humanities, Health and Society, Florida International University Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - J Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Zhangjiang Institute, Fudan University, Shanghai, China
| | - A Krishnan
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - T Münzel
- Department of Cardiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Rice Mb
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Salas Rn
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Global Health Institute, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Janjua S, Powell P, Atkinson R, Stovold E, Fortescue R. Individual-level interventions to reduce personal exposure to outdoor air pollution and their effects on people with long-term respiratory conditions. Cochrane Database Syst Rev 2021; 8:CD013441. [PMID: 34368949 PMCID: PMC8407478 DOI: 10.1002/14651858.cd013441.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND More than 90% of the global population lives in areas exceeding World Health Organization air quality limits. More than four million people each year are thought to die early due to air pollution, and poor air quality is thought to reduce an average European's life expectancy by one year. Individuals may be able to reduce health risks through interventions such as masks, behavioural changes and use of air quality alerts. To date, evidence is lacking about the efficacy and safety of such interventions for the general population and people with long-term respiratory conditions. This topic, and the review question relating to supporting evidence to avoid or lessen the effects of air pollution, emerged directly from a group of people with chronic obstructive pulmonary disease (COPD) in South London, UK. OBJECTIVES 1. To assess the efficacy, safety and acceptability of individual-level interventions that aim to help people with or without chronic respiratory conditions to reduce their exposure to outdoor air pollution. 2. To assess the efficacy, safety and acceptability of individual-level interventions that aim to help people with chronic respiratory conditions reduce the personal impact of outdoor air pollution and improve health outcomes. SEARCH METHODS We identified studies from the Cochrane Airways Trials Register, Cochrane Central Register of Controlled Trials, and other major databases. We did not restrict our searches by date, language or publication type and included a search of the grey literature (e.g. unpublished information). We conducted the most recent search on 16 October 2020. SELECTION CRITERIA We included randomised controlled trials (RCTs) and non-randomised studies (NRS) that included a comparison treatment arm, in adults and children that investigated the effectiveness of an individual-level intervention to reduce risks of outdoor air pollution. We included studies in healthy individuals and those in people with long-term respiratory conditions. We excluded studies which focused on non-respiratory long-term conditions, such as cardiovascular disease. We did not restrict eligibility of studies based on outcomes. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Two review authors independently selected trials for inclusion, extracted study characteristics and outcome data, and assessed risk of bias using the Cochrane Risk of Bias tool for RCTs and the Risk Of Bias In Non-randomised Studies - of Interventions (ROBINS-I) as appropriate. One review author entered data into the review; this was spot-checked by a second author. We planned to meta-analyse results from RCTs and NRS separately, using a random-effects model. This was not possible, so we presented evidence narratively. We assessed certainty of the evidence using the GRADE approach. Primary outcomes were: measures of air pollution exposure; exacerbation of respiratory conditions; hospital admissions; quality of life; and serious adverse events. MAIN RESULTS We identified 11 studies (3372 participants) meeting our inclusion criteria (10 RCTs and one NRS). Participants' ages ranged from 18 to 74 years, and the duration of studies ranged from 24 hours to 104 weeks. Six cross-over studies recruited healthy adults and five parallel studies included either people with pre-existing conditions (three studies) or only pregnant women (two studies). Interventions included masks (e.g. an N95 mask designed to filter out airborne particles) (five studies), an alternative cycle route (one study), air quality alerts and education (five studies). Studies were set in Australia, China, Iran, the UK, and the USA. Due to the diversity of study designs, populations, interventions and outcomes, we did not perform any meta-analyses and instead summarised results narratively. We judged both RCTs and the NRS to be at risk of bias from lack of blinding and lack of clarity regarding selection methods. Many studies did not provide a prepublished protocol or trial registration. From five studies (184 participants), we found that masks or altered cycle routes may have little or no impact on physiological markers of air pollution exposure (e.g. blood pressure and heart rate variability), but we are very uncertain about this estimate using the GRADE approach. We found conflicting evidence regarding health care usage from three studies of air pollution alerts, with one non-randomised cross-over trial (35 participants) reporting an increase in emergency hospital attendances and admissions, but the other two randomised parallel trials (1553 participants) reporting little to no difference. We also gave the evidence for this outcome a very uncertain GRADE rating. None of our included trials reported respiratory exacerbations, quality of life or serious adverse events. Secondary outcomes were not well reported, but indicated inconsistent impacts of air quality alerts and education interventions on adherence, with some trials reporting improvements in the intervention groups and others reporting little or no difference. Symptoms were reported by three trials, with one randomised cross-over trial (15 participants) reporting a small increase in breathing difficulties associated with the mask intervention, one non-randomised cross-over trial (35 participants) reporting reduced throat and nasal irritation in the lower-pollution cycle route group (but no clear difference in other respiratory symptoms), and another randomised parallel trial (519 participants) reporting no clear difference in symptoms between those who received a smog warning and those who did not. AUTHORS' CONCLUSIONS The lack of evidence and study diversity has limited the conclusions of this review. Using a mask or a lower-pollution cycle route may mitigate some of the physiological impacts from air pollution, but evidence was very uncertain. We found conflicting results for other outcomes, including health care usage, symptoms and adherence/behaviour change. We did not find evidence for adverse events. Funders should consider commissioning larger, longer studies, using high-quality and well-described methods, recruiting participants with pre-existing respiratory conditions. Studies should report outcomes of importance to people with respiratory conditions, such as exacerbations, hospital admissions, quality of life and adverse events.
Collapse
Affiliation(s)
- Sadia Janjua
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| | | | - Richard Atkinson
- Population Health Research Institute, St George's, University of London, London, UK
| | - Elizabeth Stovold
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| | - Rebecca Fortescue
- Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK
| |
Collapse
|
6
|
Janjua S, Powell P, Atkinson R, Stovold E, Fortescue R. Individual-level interventions to reduce personal exposure to outdoor air pollution and their effects on long-term respiratory conditions. Hippokratia 2019. [DOI: 10.1002/14651858.cd013441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sadia Janjua
- St George's, University of London; Cochrane Airways, Population Health Research Institute; London UK SW17 0RE
| | | | - Richard Atkinson
- St George's, University of London; Population Health Research Institute; London UK
| | - Elizabeth Stovold
- St George's, University of London; Cochrane Airways, Population Health Research Institute; London UK SW17 0RE
| | - Rebecca Fortescue
- St George's, University of London; Cochrane Airways, Population Health Research Institute; London UK SW17 0RE
| |
Collapse
|
7
|
Acute Effects of Air Pollution and Noise from Road Traffic in a Panel of Young Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050788. [PMID: 30836690 PMCID: PMC6427505 DOI: 10.3390/ijerph16050788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
Abstract
Panel studies are an efficient means to assess short-term effects of air pollution and other time-varying environmental exposures. Repeated examinations of volunteers allow for an in-depth analysis of physiological responses supporting the biological interpretation of environmental impacts. Twenty-four healthy students walked for 1 h at a minimum of four separate occasions under each of the following four settings: along a busy road, along a busy road wearing ear plugs, in a park, and in a park but exposed to traffic noise (65 dB) through headphones. Particle mass (PM2.5, PM1), particle number, and noise levels were measured throughout each walk. Lung function and exhaled nitrogen oxide (NO) were measured before, immediately after, 1 h after, and approximately 24 h after each walk. Blood pressure and heart rate variability were measured every 15 min during each walk. Recorded air pollution levels were found to correlate with reduced lung function. The effects were clearly significant for end-expiratory flows and remained visible up to 24 h after exposure. While immediate increases in airway resistance could be interpreted as protective (muscular) responses to particulate air pollution, the persisting effects indicate an induced inflammatory reaction. Noise levels reduced systolic blood pressure and heart rate variability. Maybe due to the small sample size, no effects were visible per specific setting (road vs. park).
Collapse
|